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L2 EXTENSION OF ADJOINT LINE BUNDLE
SECTIONS

by Dano KIM

Abstract. — We prove an extension theorem of Ohsawa-Takegoshi type for
line bundle sections on a subvariety of general codimension in a normal projective
variety. Our method of proof gives conditions to be satisfied for such extension in
a general setting, while such conditions are satisfied when the subvariety is given
by an appropriate multiplier ideal sheaf.

Résumé. — Nous prouvons un théorème d’extension de type Ohsawa-Takegoshi
pour les sections du fibré en droite de codimension générale dans une variété pro-
jective normale. Notre méthode donne des conditions qui doivent être satisfaites
par de telles extensions dans un cadre général, alors qu’elles sont satisfaites quand
la sous-variété est donnée par un faisceau d’idéaux multiplicateur approprié.

1. Introduction

The purpose of this paper is to prove an L2 extension theorem (Theo-
rem 4.2) of Ohsawa-Takegoshi type to lift line bundle sections from a closed
subvariety of general codimension of a projective variety. For the moment,
let Z ⊂ X be a complex submanifold of a complex manifold. Let L be a
line bundle on X together with a norm ‖·‖1 (see (2.6)) for holomorphic
sections in Γ(X,L) and a norm ‖·‖2 for holomorphic sections in Γ(Z,L|Z).
L2 extension is a statement of the following type (under suitable conditions
on the quintuple Λ = (X,Z,L, ‖·‖1, ‖·‖2) of the above data):

(*) If a section s ∈ Γ(Z,L|Z) has the finite norm ‖s‖2 < ∞, then there
exists a section s̃ ∈ Γ(X,L) such that s̃|Z = s and its norm is bounded by
‖s̃‖1 6 C‖s‖2,
where C > 0 is a constant independent of s and independent of L (having
L within a class of line bundles on X to be specified).

Keywords: L2 extension, multiplier ideal sheaf, pluricanonical line bundle.
Math. classification: 32J25, 14E30.
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First established by [24] in a prototypical case, results of L2 extension
under various conditions on Λ (concerning, for example, 1) X non-compact
or compact, 2) Z a hypersurface or of higher codimension, 3) positivity
conditions on L) were given by [20], [23], [28], [2], [29], [30], [5], [21], [22],
[34] and others. These results lead to numerous applications in algebraic
geometry and complex analysis.
L2 extension theorems are comparable to the vanishing theorem of Ko-

daira type due to Kawamata, Viehweg and Nadel which has played a funda-
mental role in complex algebraic geometry. Both of them are consequences
of L2 methods ([4][5.11]) and are used to extend line bundle sections from
a subvariety. An algebraic geometer may view L2 extension as using the
methods of proof for vanishing to obtain consequences of vanishing, not via
sheaf cohomology.

While the Kodaira-type vanishing theorem requires certain strict posi-
tivity condition of the involved line bundle, the possibility of L2 extension
to work under weaker positivity condition than vanishing and therefore to
give stronger results was first realized by Siu [30] (see (4.1)). From the
viewpoint of L2 methods, this is not too surprising since even the first in-
stance of L2 extension was only possible with the innovation due to [24] of
twisting ∂ operators, while vanishing follows from the earlier version of L2

methods for usual ∂ operators.
We want to see what this exciting new possibility from [30] will lead to in

general beyond the particular setting of a local family in (4.1). On one hand,
we simply ask what would be the most general condition on the quintuple
Λ for (*) above to hold. On the other hand, from the extensive experience
of applying the vanishing theorem in algebraic geometry, we expect that
the setting of a log-canonical center (Section 3.1) may be relevant. We will
see how these two viewpoints fit together. Let us make the former question
precise. It is natural to replace the line bundle L by an adjoint line bundle
KX + L and take ‖·‖1 as an adjoint norm (2.6).

Question 1. Let Z ⊂ X be a (smooth) irreducible subvariety of a
(smooth) complex projective variety. For which quintuple Λ = (X,Z,KX +
L, ‖·‖1, ‖·‖2), does there exist a constant CΛ > 0 such that the following
holds ?:
If (B, b) is any singular hermitian line bundle on X with nonnegative cur-
vature current and s ∈ Γ(Z, (KX +L)|Z +B|Z) is any holomorphic section
satisfying

‖s‖2,b <∞,

ANNALES DE L’INSTITUT FOURIER



L2 EXTENSION 1437

then there exists a holomorphic section s̃ ∈ Γ(X, (KX +L) +B) such that
s̃|Z = s and

‖s̃‖1,b 6 CΛ‖s‖2,b

where ‖·‖1,b and ‖·‖2,b are the norms given by multiplication of the original
metrics with b. The constant CΛ is independent of (B, b) and of the section
s. (end of Question 1)

Recall that a line bundle B has a hermitian metric b with nonnegative
curvature current if and only if B is pseudo-effective ([4]). So the statement
in Question 1 says that if L is a right line bundle, then adding any pseudo-
effective (B, b), L+B also admits the L2 extension. Though Question 1 is
for arbitrary (X,Z,KX + L), the setting of an lc center enters the picture
through the following two main obstacles to be addressed for the question.

The first obstacle is that we need to identify the optimal positivity con-
dition to put on L with respect to (the normal bundle of) Z. Applying
Twisted Basic Estimate ([22], [30]) to Z of general codimension, the posi-
tivity of L we need turns out to be the existence of a real-valued function
λ on (a Zariski open subset of) X satisfying the positivity conditions (4.6),
(4.7). For a general subvariety Z, we do not see a natural way to guarantee
the existence of such a function. But when Z is a maximal lc center (of
D ∼ L), the function λ is given by using global multi-valued holomorphic
sections of L generating the multiplier ideal sheaf J (D) (on a Zariski open
subset of X) by Siu’s global generation theorem of multiplier ideal sheaves
(4.4).

That is, the positivity of L we need against Z is essentially the existence
of a Q-divisor D such that (X,D) has Z as an lc center. This is in ac-
cordance with the heuristic that when we try to find such a Q-divisor D
linearly equivalent to given L, we need D to have high multiplicity along
Z, which will become more difficult when the normal bundle of Z is higher.

The second obstacle for Question 1 is that it is most natural to have
the norm ‖·‖2 also as an adjoint norm, which means that we need a par-
ticular choice of a singular hermitian metric h of the line bundle M :=
−KZ + (KX + L)|Z . For a general subvariety Z, M does not seem to be
a remarkable line bundle coming with such a particular metric. But when
Z is an lc center, the fundamental subadjunction result of [15] gives an
effective Q-divisor hZ ∼M with certain properties, under some additional
conditions. (Note that such effectiveness of the line bundle M is already
highly non-trivial.) Essentially, the metric associated to hZ turns out to
give the metric we need in the proof of our L2 extension since it gives the
first main inequality I > I* via (3.2) (see also (1.1) (a)).

TOME 60 (2010), FASCICULE 4



1438 Dano KIM

To sort out the idea involved here, first consider the following simple
approach of using Z to obtain a non-zero holomorphic section of KX + L

on X. On one hand, (a) we need a section σ of (KX + L)|Z from some
inductive hypothesis on Z and on the other hand, (b) we need to extend
σ to X. While the subadjunction [15] with hZ itself is concerned with the
former step (a), only a candidate divisor (not necessarily effective) for hZ is
enough to define our metric h of M for the purpose of the latter extension
(b). We call this particular metric (M,h) (which is given by Q(R1) in the
setting of a refined log-resolution (3.3)) a Kawamata metric (3.1) of the
log-canonical center. We only need h to be defined up to a proper closed
subset of Z and therefore it is enough to have it defined on the level of
Z ′, birational over Z. The definition of h does not use the positivity result
[15][Theorem 2] which was the main technical part dealing with the issue
of hZ > 0 on the level of Z.

These two obstacles and their resolution give our main theorem, which
is an answer to Question 1.

Main Theorem (see Theorem 4.2 for the full statement). —
Let X be a normal projective variety and Z ⊂ X a subvariety which is not
contained in Xsing and is a maximal log-canonical center of a log-canonical
pair (X,D). Let KX+L be the Q-line bundle O(KX+D+A) for any ample
Q-line bundle A and let ‖·‖1 be the adjoint norm given by a Kawamata
metric on Z (3.1). Then there exist an adjoint norm ‖·‖2 and a constant
CΛ such that we have the L2 extension as in Question 1 for those B with
KX + L+B being an integral line bundle.

Note that, even though we formulated Question 1 for the quintuple Λ,
it turns out that for the triple (X,Z,KX + L) coming from an lc center,
there are natural choices of ‖·‖1 and ‖·‖2.

We give here a short outline of the proof (Section 4.2). Following [29],
[30] and using (2.17), (2.18), we reduce obtaining the extended holomorphic
section on X to solving a ∂ equation (4.8) on each member of an increasing
sequence of bounded Stein open subsets of X \H where H is a hyperplane
section we choose. Solving the ∂ equation is equivalent to showing the
inequality (4.9). Using Cauchy-Schwarz, inequality (4.9) reduces to two
inequalities I > I* and II > II*. Up to this point, the setup is valid for a
general subvariety Z ⊂ X. We proceed to prove I > I* and II > II* using
the condition that Z is a maximal lc center. We use the main property (3.2)
of the Kawamata metric for I > I* and use the λ function satisfying (4.6),
(4.7) for II > II*. See also (4.6). Note that (4.5) with II > II* is already
a strong indication that the setting of an lc center is relevant, but it only

ANNALES DE L’INSTITUT FOURIER



L2 EXTENSION 1439

works when combined with I > I* and (3.2) which is another fundamental
property of an lc center and is based on the work of Section 3.

Remark 1.1. — A different way to formulate Main Theorem could be
to give it as a consequence of a statement of the following type:

We have L2 extension for (X,Z,KX+L) if the following two are satisfied
(in the setting of Section 4.2):

(1) There exist λt = λ(t, ν, ε) : Ωt → R>1 satisfying (4.6) and (4.7)
and having −λt uniformly bounded above.

(2) There exists a metric h of M such that (4.2) for s implies (4.14) for
s̃`.

Having the two curvature conditions (4.6) and (4.7), this is more directly
comparable to statements of previous results (for example [5]). Our Main
Theorem is giving a reasonably general case where those conditions are
naturally satisfied.

In the last section, we give pluriadjoint extension results which are by
now standard consequences of L2 extension using the method of [25] (after
[30]).

Acknowledgement. This is a version of a Ph.D. thesis at Princeton Uni-
versity in 2007. I am very grateful to my advisor Professor János Kollár for
his generous encouragement and support. I would like to thank Professor
Osamu Fujino for helpful discussions and Professor Dror Varolin for helpful
discussions and reading an earlier draft of this paper. I would also like to
thank Professors Yum-Tong Siu, Jean-Pierre Demailly, Christopher Hacon,
Lawrence Ein, Bo Berndtsson, Ngaiming Mok for answering my questions
and Mihai Păun and Stephane Druel for pointing out an incorrect state-
ment in an earlier version of this paper (see (5.4)).

Notation and Conventions

(1) Let X be a reduced complex analytic space. We let Xsing denote
the closed subset of singular points in X and let Xreg := X \Xsing.
When X is an algebraic variety (reduced and irreducible) defined
over C, we often identify X with its associated complex analytic
space and Xreg with its associated complex manifold.

(2) Let X be a projective variety and F a Q-line bundle on X such
that F |Xreg

∼= KXreg +L for a Q-line bundle L on Xreg. As a slight
abuse of notation, we often denote F on X by KX + L (2.5).

TOME 60 (2010), FASCICULE 4



1440 Dano KIM

(3) We define and use hermitian metrics (Definition 2.3) of Q-line bun-
dles only on a complex manifold, for example, on an open subset
of Xreg. Similarly, we use the multiplier ideal sheaf J (D) of a Q
divisor D > 0 and a plurisubharmonic function only on a complex
manifold.

(4) We use additive notation for tensor products and powers of line
bundles and multiplicative notation for hermitian metrics of line
bundles. For example, (L, g), (M,h) and (L+M, g · h).

(5) lc, snc, psh are abbreviations for log-canonical, simple normal cross-
ings, plurisubharmonic, respectively. A Q-divisor D =

∑
diDi on

a complex manifold is said to be snc if each Di is smooth and they
intersect everywhere transversally ([16]).

2. Preliminaries

2.1. Singular hermitian metrics

2.1.1. The first kind

Let X be a reduced complex analytic space. An invertible sheaf L on
X is identified with a line bundle L on X. Sections of the structure sheaf
OX are called holomorphic functions on X [[8] p.9]. A line bundle L is
further identified with (an equivalence class in H1(X,O∗X) of) a collection
of transition functions on an open covering of X [[12] (III, Ex. 4.5)]. Now
we define a Q-line bundle on X (following [1] and others):

Definition 2.1. — Let X be a reduced complex analytic space. A Q-
line bundle L on X is (an equivalence class of) a collection of holomorphic
transition functions {gij : Ui ∩ Uj → C} on an open covering {Ui} of X
such that there exists an integer m > 1 and {gmij } defines a line bundle on
X (which we denote by mL).

If we can takem = 1, the Q-line bundle L is just a line bundle in the usual
sense, which we call an integral line bundle. Along with a Q-line bundle, it
is natural to define a multi-valued holomorphic section (following [1] and
others):

Definition 2.2. — Let L be a Q-line bundle with transition functions
as in Definition 2.1 such that mL is an integral line bundle for an integer
m > 1. A multi-valued holomorphic section (or a multi-valued section)
s of L is a collection of holomorphic functions {fi ∈ OX(Ui)} such that

gmij f
m
j = fmi , ∀i, j.

ANNALES DE L’INSTITUT FOURIER
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Note that the collection {fmi } defines a holomorphic section of the inte-
gral line bundle mL, in the usual sense. We also note that even when L is
an integral line bundle, multi-valued sections we obtain from the definition
are more general than the usual holomorphic sections.

Now we recall a singular hermitian metric of a Q-line bundle. In this
paper, we define and use a singular hermitian metric only over an open set
of Xreg, in other words, over a complex manifold whereas we use a Q-line
bundle over a reduced complex analytic space. First, we begin with the
following general notion of a hermitian metric:

Definition 2.3. — Let L be a Q-line bundle on a reduced complex
analytic space X as in Definition 2.1. Let X0 be an open subset of smooth
points Xreg. A hermitian metric of L on X0 is a collection of measurable
functions {αi : U ′i := Ui ∩X0 → R ∪ {±∞}} such that e−αi = |gij |2e−αj
on U ′i ∩ U ′j .

A smooth hermitian metric of L on X0 is such a collection with each
e−αi being a positive C∞ function. Equivalently to the above definition, a
hermitian metric h of L is given by h = h0 · e−φ (following S. Takayama in
part) where h0 is a smooth hermitian metric of L and φ : X0 → R∪{±∞}
is any measurable function. Note that h0 can be taken as the m-th root
of any usual smooth hermitian metric of mL in case mL is an integral
line bundle. We call the pair (L, h) a singular hermitian Q-line bundle (or
simply a singular metric, meaning the obvious pair (L, h)). The open subset
X0 ⊂ Xreg is called the domain of (L, h). Usually, a singular hermitian
metric is defined as a hermitian metric with the condition that the function
αi is locally integrable for each i. Instead of this, we will have two different
definitions, a singular hermitian metric of the first kind in (2.4) and a
singular hermitian metric of the second kind after (2.6).

Now when αi ∈ L1
loc(Ui) for each i, we define the curvature current√

−1Θh(L) of (L, h) to be
√
−1∂∂αi on each Ui, which is then a globally

well-defined (1, 1) current on X (see, for instance, [4] or [18], (9.4.19)).
Up to upper semicontinuous regularization (2.11), the curvature current is
nonnegative if and only if αi is plurisubharmonic (2.9) (psh for short).

Definition 2.4. — A hermitian metric (L, h) is called a singular her-
mitian metric of the first kind if each local weight function αi is
plurisubharmonic.

Unless otherwise specified, the domain of a singular hermitian metric of
the first kind is always assumed to be the largest possible one, that is, Xreg.

TOME 60 (2010), FASCICULE 4
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2.1.2. The second kind and the adjoint norm

Let X be a complex manifold, (L, h) an integral line bundle with a sin-
gular hermitian metric of the first kind on X and s a holomorphic section
of KX + L. In [29], Siu defined and used the integral of the absolute-value
squared of s viewed as a L-valued holomorphic n form, denoting the in-
tegral by

∫
X
|s|2 · h. We will call it the adjoint norm of s with respect to

h. In this section, we generalize the definition of the adjoint norm using
the notion of a singular hermitian metric of the second kind, in order to
formulate the L2 extension in the more general setting as in Theorem 4.2.

Let X be a reduced complex analytic space and let L be a Q-line bundle
on Xreg. The canonical line bundle KXreg may not extend as a line bundle
on the whole of X.

Definition 2.5. — If KXreg + L is extendible as a Q-line bundle, say
F on X, then F is said to be an adjoint line bundle on X.

By a slight abuse of notation, we shall denote this adjoint line bundle F
by KX + L by fixing one L.

Let (L, h) be a hermitian metric with its domain X0 ⊂ Xreg. Since each
local weight function αi is measurable, the function e−αi is also measurable.
Let s be a multi-valued holomorphic section of F . When restricted to the
open set Xreg, s gives a holomorphic L-valued n-form on Xreg (where n =
dimX). We will define the adjoint norm of s with respect to h in this
setting.

Let ξ ∈ Γ(U,L) be a local generating section on any given open neighbor-
hood U ⊂ X0. Following [33], choose local analytic coordinates z1, · · · , zn
in U such that

s = f(z)ξ ⊗ dz1 ∧ · · · ∧ dzn
where f is a holomorphic function on U . Let φ be a function on U with
e−φ = h(ξ, ξ), the squared length function of ξ with respect to the hermitian
metric h. The collection of 2n-forms |f(z)|2e−φ(

√
−1
2 )ndz1∧dz̄1∧· · ·∧dzn∧

dz̄n on each U defines a globally well-defined 2n-form ω on X0 [33] (5.1.3).

Definition 2.6. — Let KX + L be an adjoint line bundle (2.5) on
a reduced complex analytic space X and (L, h) a hermitian metric with
its domain X0 ⊂ Xreg as above. Let s ∈ Γ(X,KX + L) be a multi-valued
holomorphic section. The integral

∫
X0
ω of ω given in the above paragraph is

called the adjoint norm of s with respect to h and denoted by
∫
X
|s|2 ·h (=∫

X0
|s|2 · h).

ANNALES DE L’INSTITUT FOURIER
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Note that
∫
X
|s|2 · h ∈ [0,∞]. When a hermitian metric (L, h) is used

to define adjoint norms, it is called a singular hermitian metric of the
second kind. A (not necessarily effective) Q-divisor D on Xreg defines a
singular hermitian metric of the second kind of the Q-line bundle O(D) by
its local equations. It is denoted by (O(D), η(D)). Note that for the purpose
of local integrability as in Definition 2.6, a negative coefficient in D only
helps since it gives a zero rather than a pole.

Let h0 be a smooth hermitian metric of L. Let φ : X0 → R ∪ {±∞}
be the function defined by h = h0 · e−φ. If the function eφ is bounded
above on X0, we say the singular hermitian metric of the second kind h

is bounded away from zero. This is independent of the choice of the
smooth metric h0. The point of this definition is the following. In general,
when L is locally trivialized on an open subset U and f(s) ∈ OU is the
holomorphic function on U corresponding to s, there is a measure dµ on U
such that

∫
U
|s|2 ·g =

∫
U
|f(s)|2dµ. Given a measure dV associated to a local

euclidean volume form on U , this dµ is a R>0-valued function (say e−φ)
times dV . If the metric h is bounded away from zero, then by definition
eφ is bounded above on X0, which gives e−φ > C > 0 for some C > 0.
Then up to scaling, dµ itself can be taken as a measure associated to a
local euclidean volume form. We will call such a measure a volume form,
which we will use in a series of propositions (2.10), (2.17) and (2.18). We
need the metric g in Theorem 4.2 to be bounded away from zero to apply
these propositions. Note that, for example, when a metric h is given by a
Q-divisor D1−D2 (D1 6= D2 > 0), h is not bounded away from zero along
the non-effective −D2 since it has zero along D2.

For a metric given by an snc divisor, we have the following proposition,
which we use in Section 3.

Proposition 2.7. — Let X be a complex manifold. Let L1 be a Q-line
bundle, given the singular hermitian metric of the second kind ηD where
D is an snc Q-divisor and D ∼ L1. Let (L2, gL2) be another Q-line bundle
with a smooth hermitian metric. Then the C-vector subspace

{
s ∈ Γ(X,KX + L1 + L2)

∣∣∣ ∫
X

|s|2 · ηD · gL2 <∞
}

is identified with Γ(X,KX +L1 +L2−O(D1)) where D1 is an snc effective
divisor whose support is contained in the support of D. More precisely, if
a prime divisor S appears with the coefficient α in D and α > 1, then [α]S
appears in D1 where [α] is the largest integer less than or equal to α.

TOME 60 (2010), FASCICULE 4
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Proof. — The above norm is finite for s if and only if the pair (X,−div(s)
+D) is klt, by (3.20) of [16]. It is precisely when s has zero along [α]S when
a prime divisor S appears with the coefficient α in D and α > 1. �

2.2. Plurisubharmonic functions

We recall definitions and properties of plurisubharmonic functions and
quasi-plurisub-harmonic functions.

Definition 2.8. — A function ψ : X → [−∞,∞) on a topological
space X is said to be upper semicontinuous if the sublevel set Xc :=
{x ∈ X |ψ(x) < c} is open in X for each c ∈ R.

Definition 2.9 ([4], (1.4)). — Let U ⊂ Cn be an open subset. We say
that a function ψ : U → [−∞,∞) is plurisubharmonic if

(a) ψ is upper semicontinuous.
(b) For arbitrary p ∈ U and q ∈ Cn, we have

ψ(p) 6
1

2π

∫ 2π

0
ψ(p+ qe

√
−1θ)dθ

where the set {p+ qλ|λ ∈ C, |λ| 6 1} ⊂ U .

Plurisubharmonic is abbreviated as psh. A pullback of a psh function
under a holomorphic map is again psh, so it is straightforward to define a
R ∪ {−∞}-valued function on a complex manifold to be plurisubharmonic
if its pullback on a coordinate chart is psh.

The following proposition is application of the sub-mean-value property
of a psh function ([4], (1.5)) and it will be used in the next section.

Proposition 2.10. — Let W b U b Cn be relatively compact open
subsets of Cn and dµ a volume form on U such that U has the vol-
ume V (U) :=

∫
U

1dµ < ∞. Then there exists a positive real number
V ∈ (0, V (U)) such that for any holomorphic function f on U with the
finite norm N(U) =

∫
U
|f |2dµ <∞, we have

|f(z)|2 6 N(U)
1
V

for any z ∈W . In particular, |f(z)| is bounded above on W .

Proof. — Since W b U , we can find a family of open polydiscs {Uz}z∈W
of the same volume V (which is a sufficienty small positive number) such
that each Uz is centered at the point z and contained in U . We learned
from [7], this way of using the sub-mean-value property with respect to
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two steps of open subsets, which will be also used later when the current
proposition is applied.

Since the function log|f | is plurisubharmonic on U , the sub-mean-value
property for a plurisubharmonic function and the Jensen inequality for the
concavity of logarithm give each of the following two inequalities:

log|f(z)|2 6
1
V

∫
Uz

log|f |2dµ 6
1
V

log(
∫
Uz

|f |2dµ).

Taking the exponential, we get

|f(x)|2 6 (
∫
Uz

|f |2dµ) 1
V 6 (

∫
U

|f |2dµ) 1
V .

�

Now we turn to discuss families of functions. An important basic property
of psh functions is that the pointwise supremum function sup(ψ1, ψ2) is
psh if ψ1 and ψ2 are psh. This will be generalized to the supremum over
a family of locally uniformly bounded above psh functions. First we need
the following general definition:

Definition 2.11 ([26] (3.4.1)). — Let ψ : X → [−∞,∞) be a function
which is locally bounded above on a topological space X. We define its
upper semicontinuous regularization ψ∗ : X → [−∞,∞) to be the
function defined by

ψ∗(x) := lim sup
y→x

ψ(y)

for each x ∈ X.

A family of functions {ψα : X → [−∞,∞)}α∈A is called locally uni-
formly bounded above if there exists an upper bound for the set {ψα(y) :
α ∈ A, x ∈ Y } for each compact subset Y ⊂ X. The pointwise supremum
function ψA(x) = supα∈A ψα(x) is called the upper envelope of the fam-
ily.

Proposition 2.12. — [19, p.26] Let X be a complex manifold and
{ψα}α∈A be a locally uniformly bounded above family of psh functions.
Then the upper semicontinuous regularization of the upper envelope of the
family is also psh.

For simplicity, we will often use the term ‘upper envelope’ to mean its
upper semicontinuous regularization. In Chapter 5, we will take the upper
envelope of quasi-plurisubharmonic functions, defined as follows.

Definition 2.13. — A [−∞,∞)-valued function ψ on a complex man-
ifold X is quasi-plurisubharmonic (or quasi-psh) if there exists an open
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covering {Ui}(i ∈ J) of X such that, on each Ui, ψ is the sum ψ = vi + ui
of a plurisubharmonic function vi and a R-valued C∞ function ui, both on
Ui.

A family of quasi-psh functions {ψα} is called good if there exists a
common open covering {Ui}(i ∈ J) of X and R-valued functions ui ∈
C∞(Ui) such that ψα − ui is psh on Ui, for any α and any i ∈ J . An
immediate consequence of (2.12) is the following

Proposition 2.14. — If a good family of quasi-psh functions on a com-
plex manifold X is locally uniformly bounded above, then its upper enve-
lope is also quasi-psh.

2.3. Stein manifolds

A Stein space Ω is a complex analytic space (see Appendix B of [12])
which is characterized by the vanishing of the first cohomology of all coher-
ent analytic sheaves on Ω. (We refer to [11] for the standard definition of
Stein spaces and the proof of this characterization originally due to Serre.)
A Stein manifold is a smooth Stein space. An affine variety (or its associ-
ated complex analytic space) is an example of a Stein space. We will use
the following fundamental result in the proof of (3.3).

Proposition 2.15 (Cartan’s Theorem A, [11] Chap. 8). — If Ω is a
Stein space and F is a coherent analytic sheaf on Ω, then F is generated
by Γ(Ω,F).

On the other hand, we need another characterizing property of Stein
manifolds, that is the existence of a smooth strictly psh exhaustion func-
tion. First we need the following :

Definition 2.16. — A function ψ : X → [−∞,∞) on a topological
space X is said to be an exhaustion function if all sublevel sets Xc :=
{x ∈ X |ψ(x) < c}, c ∈ R are relatively compact (i.e., their closures are
compact).

A Stein manifold is strongly pseudoconvex, that is, it admits a smooth
strictly psh ([3], (5.20)) exhaustion function ([3] Chapter 1).

Now let X ⊂ PN be a projective variety and H ⊂ PN a hyperplane such
that Xsing ⊂ H. Then X\H is a smooth affine variety, which is a Stein
manifold and therefore admits a smooth strictly psh exhaustion function
ψ. The sublevel sets of ψ give us an increasing exhaustion sequence of
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relatively compact Stein open subsets {Ωt}t>1 of the affine variety X \H :
we take Ωt = ψ−1(−∞, ct) for an increasing sequence {ct : t ∈ Z>0} going
to infinity as t→∞. By Sard’s theorem, we can assume that each Ωt has
a smooth boundary ∂Ωt.

The proof of our main result Theorem 4.2 will use such an increasing
sequence of Stein open subsets {Ωt}t>1 with appropriate choice of the hy-
perplane H. L2 methods will give a holomorphic section on each Ωt and
then we will use the following version of the Montel theorem.

Proposition 2.17. — In the above setting, let KX + L be an integral
adjoint line bundle (2.5) on X \H and (L, g) a singular metric of the second
kind (on X \H) which is bounded away from zero. Suppose that for each
t, we have a multi-valued section st ∈ Γ(Ωt,KX + L) with∫

Ωt
|st|2 · g 6 C

where C > 0 is a constant which is independent of t > 1. Then there exists
a holomorphic section s ∈ Γ(X\H,KX + L) such that∫

X\H
|s|2 · g 6 C.

Proof. — We choose and fix a locally finite open covering {Wi}i∈J of
X\H such that the following hold:

• For each i ∈ J , there exists an open subset Ui such that Wi b Ui b
X and Wi b Ui are biholomorphic to open balls Wi

′ b Ui
′(b Cn)

respectively, as the notation suggests.
• Each of the line bundles KX and L is trivialized on every Ui ( i ∈ J

). (Note that KX is a line bundle on X\H.) We also have transition
functions gij ∈ O(Ui ∩Uj) for the line bundle KX +L on this open
covering {Ui}i∈J .
• For each i ∈ J , Wi ⊂ Ωt(i) where t(i) is the smallest positive integer
t with Wi ⊂ Ωt.
• Each Ui is equipped with a volume form dµi such that the volume
V (Ui) :=

∫
Ui

1dµi > 0 is finite and also such that∫
U

|s|2 · g =
∫
U

|fi|2dµi

for any subset U ⊂ Ui, where fi is the holomorphic function on Ui
given by the fixed local trivialization of a section s of KX + L.

We can indeed choose {Wi} to be locally finite, inductively on t as follows:
For each t > 1, the closure Ωt is a compact subset of Ωt+1. So one can find a
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finite number of open sets wi ⊂ Ωt+1 whose union contains Ωt\Ωt−1. Take
the open intersections Wi := wi ∩ Ωt and add them to the open covering.

Now for each i ∈ J , through the fixed local trivialization of KX + L,
the given sections st give a sequence of holomorphic functions f(i,t) = ft
on Ui for t > t(i). Since

∫
Ui
|ft|2dµi =

∫
Ui
|st|2 · g 6

∫
Ωt |st|

2 · g 6 C,
Proposition 2.10 gives the upper bound

|ft|2 6 C
1

V (Ui) .

With these bounds, we use the Montel theorem to conclude that (on each
Ui) there is a subsequence of {ft = f(i,t)}t>t(i) converging to fi ∈ O(Wi).
It is possible to choose those limit functions fi ∈ O(Wi) for i ∈ J such that
the collection {fi}i∈J gives an element of Γ(X\H,KX +L) by the fact that
the open cover {Wi}i∈J is locally finite and the following reason:

For any two different intersecting open sets Wi and Wj ( i, j ∈ J ),
consider the union Wi∪Wj ⊂ Ωt(i,j) where t(i, j) = max(t(i), t(j)). The two
sequences of holomorphic functions f(i,t) on Wi and f(j,t) on Wj come from
the same sections st ∈ Γ(Ωt,KX+L) for t > t(i, j). Hence f(i,t)−gijf(j,t) =
0, ∀t > t(i, j). By the Montel theorem, there is a converging subsequence of
{f(i,t)} given by an infinite subset of t indices Ti ⊂ Z>0. Now by the Montel
theorem applied on Wj , there is a further subsequence ( given by t indices
in another infinite subset Tj ⊂ Ti ) of f(i,t) for which the corresponding
subsequence of f(j,t) also converges. The last inequality clearly follows. �

In the proof of Theorem 4.2, the use of the above proposition will be
followed by the next proposition, a version of the Riemann extension the-
orem which extends a bounded holomorphic function across a divisor in a
complex analytic space.

Proposition 2.18. — Let X be a normal projective variety and KX+L
an integral adjoint line bundle on X (2.5). Let H1 ⊂ X be an effective
Cartier divisor containing Xsing. Let (L, g) be a singular hermitian metric
of the second kind which is bounded away from zero and whose domain
is X\H1. If a multi-valued section s ∈ Γ(X\H1,KX + L) on the open
complement satisfies ∫

X\H1

|s|2 · g <∞,

then there exists a holomorphic section s ∈ Γ(X,KX + L) such that
s|X\H1 = s.

Proof. — Since X is normal, it is sufficient to obtain s on Xreg. For
simplicity of notation, we assume X = Xreg. We take and fix a finite
collection of open subsets V1, · · · , Vµ of X (not of X\H1 !) satisfying that:
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For each ` = 1, · · · , µ, there is an open subset U` of X\H1 such that
V`\H1 b U` and that U` is biholomorphic to a connected open subset
U ′` b Cn.

We take an open covering {Vi}i∈J of X (with J ⊃ {1, · · · , µ}) such that
1. The line bundle KX+L is given by transition functions gij ∈ O(Vi∩
Vj).

2. For i /∈ {1, · · · , µ}, we have Vi ∩H1 = ∅.
Then the given section s on X\H1 is represented by the collection of
holomorphic functions {fi}i∈J where fi is holomorphic on Vi\H1 if i ∈
{1, · · · , µ} and otherwise, fi is holomorphic on Vi.

For each i ∈ {1, · · · , µ}, fi on Vi \ H1 is L2 with respect to a metric
which is bounded away from zero. Therefore fi is extended to fi ∈ O(Vi)
across the divisor H1 ∩ Vi by a well-known lemma ([31, Lemme 2] or [10,
(2.1)]).

Denoting fi by fi, the new collection {fi}i∈J satisfies the compatibility
condition fi = gijfj on Vi ∩ Vj since fi − gijfj is identically zero on (Vi ∩
Vj)\H1. This gives the section s we want. �

2.4. ∂ operators on the Hilbert spaces of (p, q) forms

We first recall (from [13]) the Hilbert space of L-valued (p, q) forms on a
complex manifold where L is a line bundle. Let Ω be a complex manifold
with a Hermitian metric ξ and (L, g) a singular hermitian Q-line bundle of
the first kind on Ω. Let dV denote the volume form defined by ξ.

Let V ⊂ Ω be an open neighborhood of a point in Ω with an orthonormal
coframe ω1, · · · , ωn of type (1, 0). We can also assume that there exists θV ,
a local frame of L over V and put e−ϕ = g(θV , θV ).

Following [13, p.121], we define L2
(p,q)(Ω, L, g) as the Hilbert space com-

pletion of all smooth L-valued (p, q) forms square integrable with respect
to the singular metric (L, g) in the sense that the following norm is finite :

‖u‖2 :=
∫

Ω
|u|2gdV <∞

where |u|2g is well defined when we locally define it on each open subset
V ⊂ Ω to be

|u|2g := 1
p!q!

∑
|I|=p,|J|=Q

|uI,J |2 · e−ϕ
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when the expression of u on V is given by u =
∑
uI,JθV ⊗ωI∧ωJ . Similarly,

the pointwise inner product 〈u, v〉g and its integral 〈〈u, v〉〉 =
∫

Ω〈u, v〉gdV
are defined.

From now on, we take p = n and q = 0, 1, 2. The complex manifold Ω
will always be a relatively compact Stein open subset in a smooth affine
variety X and ξ a Kähler metric on X. In this setting of L2 methods for
the ∂ operator, our operators between the Hilbert spaces L2

(n,q)(Ω, L, g) are
taken as T = ∂, S = ∂ or T = ∂(√η1 ·), S = (√η2)∂(·) where η1, η2 > 0
are functions on Ω to be multiplied to L-valued (n, q) forms. We note that
the composition ST = 0 and Dom(T ∗) = Dom(∂∗),Dom(S) = Dom(∂) in
either case.

There is a fundamental result (Proposition 2.19) giving a lower bound of
‖T ∗u‖2 + ‖Su‖2 for u ∈ H1 = L2

(n,1)(Ω, L, g). To state it, first we need to
define (for a C2 function ψ on Ω ),

(2.1) (
√
−1∂∂ψ)(u, u)g := 〈[

√
−1∂∂ψ,Λ]u, u〉g = 〈(

√
−1∂∂ψ)(Λu), u〉g

where Λ is the adjoint of the operator ωξ ∧· given by the Kähler form ωξ of
ξ and the inner product 〈 , 〉 is taken pointwise as that of L2

(n,q)(Ω, L, g).
Locally we have

(
√
−1∂∂ψ)(u, u)g =

∑ ∂2ψ

∂ωi∂ωj
uiuj · e−ϕ

when u =
∑n
j=1 ujθV ⊗ ωI ∧ ω

j on V ⊂ Ω as above. (The first order
linear differential operators ∂

∂ωi
and ∂

∂ωj
are defined by the relation dψ =∑n

1
∂ψ
∂ωi

ωi +
∑n

1
∂ψ
∂ωi

ωi as in [13, p.122]) In the place of the (1, 1) form√
−1∂∂ψ in (2.1), we can also put any closed real semipositive (1, 1) form

Π, for which we can find ψ locally such that Π =
√
−1∂∂ψ.

Now going back to the modified ∂ operators, T =∂(√η1 ·), S=(√η2)∂(·),
we determine our functions η1, η2 to work with, following McNeal and
Varolin [22], [34]. Let λ be a C2 function defined on Ω. Following [22],
we first consider an auxiliary function r(x) = 2 − x + log(2ex−1 − 1) for
x > 1. Note that r′(x) = 1

2ex−1−1 ∈ (0, 1) for x > 1. We define functions

η = λ+ r(λ) and γ = (1 + r′(λ))2

−r′′(λ)
.

It is easy to see that λ+r(λ) 6 1+log 2+λ and γ = 2eλ−1. From Section 3.2
of [34], we have

(2.2) η > 1 + r′(λ) > 1
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and

(2.3) −
√
−1∂∂η −

√
−1
γ

∂η ∧ ∂η = (1 + r′(λ))(−
√
−1∂∂λ).

We put T := ∂((
√
η + γ) ·), composition of multiplication by the function√

η + γ first and then taking ∂. Similarly, we let S := (√η)∂(·).

Proposition 2.19 (Twisted Basic Estimate : Ohsawa-Takegoshi, Siu,
McNeal-Varolin). — Let (Ω, ξ) be a relatively compact Stein open subset
of a Stein manifold, with the smooth boundary ∂Ω. Let (L, g) be a smooth
hermitian line bundle with the curvature (1, 1) form

√
−1Θg(L). For the

operators T and S defined above in terms of a C2 function λ, we have

‖T ∗u‖2 + ‖Su‖2 >
∫

Ω
(η
√
−1Θg(L)−

√
−1∂∂η − 1

γ

√
−1∂η ∧ ∂η)(u, u)gdV

=
∫

Ω
(η
√
−1Θg(L) + (1 + r′(λ))(−

√
−1∂∂λ))(u, u)gdV

for any u ∈ Dom(T ∗) ∩Dom(S) ⊂ L2
(n,1)(Ω, L, g).

Proof. — See Proposition 3.4 [30] and Section 2.1 [22]. (2.3) was used
for the equality. �

3. Kawamata metric on a log-canonical center

3.1. A refined log-resolution and the Kawamata metric

In this section, we first recall the notion of a log-canonical center following
[14], [15], [16] and [17]. Then we define the Kawamata metric on an lc center
(Definition 3.1) and prove its main property Theorem 3.2, which is crucial
in the proof of Theorem 4.2.

Let X be a normal variety and D a (not necessarily effective) Weil Q-
divisor such that the sum of the two Weil divisors KX + D is Q-Cartier.
By Hironaka’s theorem, there exist log-resolutions f : X ′ → X of the pair
(X,D). Then as a Q-line bundle, we have the equality KX′ = f∗(KX +
D) − D′ − ∆ where D′ is the birational transform of D under f and ∆
a combination of exceptional divisors. We say the pair (X,D) is klt (or
Kawamata log-terminal) if there exists such f with each prime divisor in
−D′ −∆ has its coefficient (called the discrepancy) greater than −1. We
say (X,D) is lc (or log-canonical) if each discrepancy is greater than or
equal to −1. These are well-defined, independent of the choice of f .
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Let (X,D) be an lc pair. A log-canonical center (or an lc center)
of (X,D) is an irreducible subvariety Z ⊂ X which is the image of an
exceptional divisor with its discrepancy equal to −1 on a log-resolution of
the pair (X,D). If (X,D) is lc but not klt, then it has at least one and at
most a finite number of lc centers on X. If Z1 is an lc center and there is
no other lc center Z2 such that Z2 ) Z1, then Z1 is called a maximal lc
center following [32].

After these basic notions, we recall a refined log-resolution of an lc
pair with respect to an lc center, following [15] and [17]. We will use it to
define the Kawamata metric (Definition 3.1). A refined log-resolution is a
log-resolution where the morphism from an exceptional divisor E to an lc
center Z is replaced by one from E to Z ′ (Z ′ is birational over Z) which
satisfies better properties in terms of snc divisors.

More precisely, let Z be an (not necessarily minimal) lc center of an lc
pair (X,D) and E an exceptional divisor with discrepancy −1 over Z. We
choose a log-resolution f : X ′ → X of (X,D) such that the following holds:

If we write the relative canonical divisor on X ′ as

(3.1) KX′ = f∗(KX +D)− E −D′ −∆

(where D′ is the birational transform of D and ∆ a combination of excep-
tional divisors whose coefficients are less than or equal to 1) and put

R1 := (D′ + ∆)|E ,

then there exists a smooth variety Z ′, a morphism fE : E → Z ′, a birational
morphism π : Z ′ → Z and a reduced (i.e., all nonzero coefficients equal to
1) snc divisor Q1 on Z ′, satisfying the standard snc conditions (3.4) when
we take f = fE , X

′ = X = E, Y ′ = Y = Z ′, R = R1 and Q = Q1.
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E

fE

��

Ed

��

� � // Xd

��

X ′

f

��

...

��

...

��
Ec+1

fc

��

� � // Xc+1

BlZcXc

��
Z ′

π

��

Zc

��

� � // Xc

��
...

��

...

��
Z Z1

� � // X1 X

Then we apply Proposition 3.5 for a projective morphism satisfying the
standard snc conditions, to the morphism fE from the exceptional divisor
E down to Z ′. It follows that we can write

(3.2) KE +R1 = fE
∗(KZ′ + J +Q(R1))

where J is a Q-line bundle and Q(R1) is the unique smallest Q-divisor
supported on Q1 among those satisfying

(3.3) (R1)v + fE
∗(Q1 −Q(R1)) 6 red(fE∗Q1).

Note that Q(R1) is not necessarily effective. Fix a smooth hermitian metric
γJ of the Q-line bundle J . We do not need any curvature property of γJ
or any property of the line bundle J . Let ηQ(R1) be the singular metric
associated to the divisor Q(R1). The product γJ · ηQ(R1) gives a singular
metric for the line bundle M ′ which is defined by KZ′+M ′ = π∗(KX+L)|Z
on π−1(Zreg) ⊂ Z ′, when we denote the Q-line bundle O(KX + D) by
KX + L.

Let Z0 ⊂ Zreg be the largest open subset over which π is an isomorphism.
There is a Q-line bundle M on Z0 such that KZ′ + M ′ = π∗(KZ0 + M).
On Z0, we can identify M ′ and M and define the following metric for M
using Q(R1) in (3.2).
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Definition 3.1. — Let Z be an lc center of an lc pair (X,D) with
D > 0. Choosing a refined log-resolution for Z as above and identifying
M ′ ∼= M , there is a singular hermitian metric h of M of the second kind
(whose domain is Z0) given by (M,h) ∼= (M ′, γJ · ηQ(R1)). We call (M,h)
a Kawamata metric on the lc center Z of the pair (X,D).

Note that a Kawamata metric depends on the choice of a log-resolution,
the choice of γJ and so on, which does not matter to our use of it. We use it
to define the adjoint norm of a given section of (KX +L)|Z to be extended
from Z, in the L2 extension Theorem 4.2.

The key property of a Kawamata metric is the next theorem, which shows
that the adjoint norm in terms of a Kawamata metric is precisely what we
need in formulating Theorem 4.2.

Theorem 3.2. — Let Z ⊂ X, KX + L and h as in Definition 3.1. Let
V ⊂ Xreg be a connected open Stein subset such that ∅ 6= V ∩ Z ⊂ Z0. If
given any singular hermitian line bundle (B, b) of the first kind on V and
a section s̃ ∈ Γ(V,KX + L+B) with its restriction s̃|Z on Z satisfying∫

V ∩Z
|s̃|Z |2 · h · b|Z <∞,

then the pullback f∗s̃ ∈ Γ(f−1(V ), f∗(KX + L+B)) satisfies∫
f−1(V )

|f∗s̃|2 · η(D′+∆) · γO(E) · f∗b <∞

where η(D′+∆) is the singular metric associated to the divisor D′ + ∆ in
(3.1) and γO(E) is any smooth hermitian metric of O(E).

Proof. — The idea of the proof is to use the relation between klt divisors
and finiteness of adjoint norms (as in [16], (3.20)), especially for snc divisors.

Let L′ be the line bundle on X ′ defined by the relation KX′ + L′ =
f∗(KX + L). We define C-vector subspaces Γ1 ⊂ Γ(V,KX + L + B) and
Γ2 ⊂ Γ(f−1(V ),KX′ + L′ + f∗B) by

Γ1 :=
{
s̃ ∈ Γ(V,KX + L+B)

∣∣∣ ∫
V ∩Z
|s̃|Z |2 · h · b|Z <∞

}
and

Γ2 :=
{
σ ∈ Γ(f−1(V ),KX′ +L′+f∗B)

∣∣∣ ∫
f−1(V )

|σ|2 ·η(D′+∆) ·γO(E) ·f∗b

<∞
}
.
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We need to show that f∗Γ1 ⊂ Γ2 as subspaces of Γ(f−1(V ),KX′+L′+f∗B).
We will reduce this to showing the inclusion only of a dense subset of f∗Γ1
in a topology to be specified.

First using Demailly’s approximation of psh functions by logarithms of
holomorphic functions ([5], Section 6) on V , we can assume that the sin-
gular metric of the first kind b is given by an effective Q-divisor β (having
J (β) = J (b)). The divisor β itself is not necessarily snc. We replace the
log-resolution f by another f , having additional intermediate blow-ups so
that it factors through a log-resolution f1 : V ′ → V of the pair (V,D+ β).
We take this new log-resolution in such a way that

(1) The divisor f1
∗β is snc.

(2) The restriction of f1
∗β to the inverse image of V ∩Z (a subvariety

in V ′) makes an snc divisor when it is added to the inverse image
of Q(R1) coming from π−1(V ∩ Z).

(3) The pullback f∗β makes an snc divisor when it is added to E +
D′+ ∆ on f−1(V ). ( This last condition is included in the fact that
f is a log-resolution of the pair (V,D + β).)

In the rest of the proof, we work with these snc divisors on f1
−1π−1(V ∩

Z) ⊂ V ′ instead of on π−1(V ∩ Z) ∼= V ∩ Z ⊂ V . But for simplicity
in notation, we will write under the notational assumption that the snc
conditions as in 1),2) and 3) are being achieved at the level before going
up by f1.

Reduction of showing f∗Γ1 ⊂ Γ2 to a dense subset of f∗Γ1 is given
by the following lemma. First, we use the fact that the space of global
sections Γ(V,F) is a topological vector space as a Fréchet space ([27], [3])
for a coherent sheaf F on a complex analytic space V . We always use this
topology for C-vector spaces appearing as a subspace of some Γ(V,F).

Lemma 3.3. — The following subset of Γ1 is dense in Γ1 :

{s̃ ∈ Γ1| The divisor π∗ div(s̃|Z) +Q(R1) + π∗(β|Z) is snc

on π−1(V ∩ Z) ⊂ Z ′ and the divisor

f∗ div(s̃) + E +D′ + ∆ is snc on f−1(V ) ⊂ X ′ }.

Proof. — Note that π : π−1(V ∩ Z) → V ∩ Z is isomorphism since
V ∩ Z ⊂ Z0. We view V1 := π−1(V ∩ Z) as a subvariety of V under this
isomorphism.

The conclusion will follow from Proposition 2.15 and Corollary 3.7, once
we have that Γ1 (being a subspace of ⊂ Γ(V,KX + L+B) ) is itself given
as the space of global sections of an invertible subsheaf of KX +L+B. For
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the restriction Γ1|V1 , this is given by Proposition 2.7. It then follows for Γ1
by extending the line bundle from V1 to V (which is given by the associated
line bundle of a divisor extended from V1 to V ). Since V is Stein, there is
only one extension as a line bundle. �

Using Lemma 3.3, it suffices to show that f∗s̃ ∈ Γ2 when the divisor
π∗ div(s̃|Z) +Q(R1) + π∗(β|Z) is snc on π−1(V ∩ Z) ⊂ Z ′ and f∗ div(s̃) +
E+D′+ ∆ is snc on f−1(V ) ⊂ X ′. In that case, define s := s̃|Z and define
Q-divisors

R2 := R1 − f∗ div(s) + f∗(β|Z)
Q2 := Q1 + red(π∗(div(s) + (β|Z))) and
Θ := Q(R1)− π∗ div(s) + π∗(β|Z).

Then we have (R2)h = (R1)h and (R2)v = (R1)v−f∗ div(s)+f∗(β|Z). The
following shows that Q(R2) 6 Θ (see the general definition of R 7→ Q(R)
in Proposition 3.5).

(R2)v + fE
∗(Q2 −Θ)

= (R1)v − f∗ div(s) + f∗(β|Z) + fE
∗(Q1 −Q(R1))+

fE
∗(red(π∗ div(s) + π∗(β|Z))) + fE

∗π∗ div(s)− fE∗π∗(β|Z)
6 red(fE∗Q1) + fE

∗(red(π∗ div(s) + π∗(β|Z)))
= red(fE∗Q2)

where the inequality follows from (3.3) and the fact that f = fE ◦π and the
last equality from the fact that the divisor fE∗(red(π∗ div(s) + π∗(β|Z)))
is already reduced.

Now the finiteness of the norm with respect to the Kawamata metric∫
V ∩Z
|s|2 · h · b|Z <∞

implies that the pair (Z ′,Θ = Q(R1) − π∗ div(s) + π∗(β|Z)) is klt. Since
Q(R2) 6 Θ, the pair (Z ′, Q(R2)) is also klt, which implies that (E,R2) is
klt by Proposition 3.5. Note that R2 on f−1(V ) ⊂ X ′ is the snc divisor
R2 = (D′ + ∆ − f∗ div(s̃) + f∗(β))|E . The kltness of an snc divisor is
simply characterized by its coefficients [16, (3.19.3)], so the pair (X ′, D′ +
∆− f∗ div(s̃) + f∗(β)) is klt by [16, (7.4)] (or also by [16, (7.2.1.2)]). Thus
we have ∫

f−1(V )
|f∗s̃|2 · η(D′+∆) · γO(E) · f∗b <∞.

Theorem 3.2 is proved. �
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3.2. Appendix

We first give the following definition of a property of a projective mor-
phism f between complex analytic spaces given as analytic open subsets of
varieties.

Definition 3.4 (Standard snc conditions ([17] (8.3.6)). — We say that
f : X → Y , a divisor R ⊂ X and a reduced divisor Q ⊂ Y satisfy the
standard snc conditions if the following hold :

(1) f is the restriction of a surjective projective morphism f : X ′ →
Y ′ between smooth varieties on a connected open (in the analytic
topology) subset Y ⊆ Y ′,

(2) R+ f∗Q and Q are snc divisors,
(3) f is smooth over Y \Q,
(4) Rv is supported in f−1(Q), and
(5) Rh is a relative snc divisor (1) over Y \Q, that is:

for each closed point x of X, there exists an open neighborhood U and
u1, · · · , uk ∈ OX,x inducing a regular system of parameters on f−1(f(x))
at x where k = dimx f

−1(f(x)) such that Rh ∩ U = {u1 · · ·ul = 0} for
some l such that 0 6 l 6 k ([6]).

Proposition 3.5. — Let f : X → Y and R,Q satisfy the standard snc
conditions (Definition 3.4). Assume that the Q-line bundle O(KX + R) is
the pullback under f of a Q-line bundle on Y . Let R = Rh + Rv be the
horizontal and the vertical parts of R. Assume that Rh > 0 and that each
coefficient of a component of Rh is less than 1.

Then there is the unique smallest Q-divisor supported on Q among those
satisfying

Rv + f∗(Q−Q(R)) 6 red(f∗Q)
and we denote the divisor by Q(R). Moreover, the pair (Y,Q(R)) is klt if
and only if (X,R) is klt.

Proof. — See Theorem 8.3.7 of [17]. �

On the other hand, the following is the analogue of the Bertini theorem
on a complex manifold and its corollary, which we used in the proof of
Theorem 3.2.

Proposition 3.6. — Let W be a complex manifold and M a holo-
morphic line bundle on W . Suppose that a vector subspace Γ ⊂ Γ(W,M)

(1) We note that according to [15], (8.3.6.4) of [17] should read that Rh is a relative snc
divisor instead of R.
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generates the line bundle M . Then the subset of smooth divisors in the
topological vector space Γ is dense.

Proof. — As in the statement, we will often identify a section in Γ with
the divisor defined by the section. We will show how the argument in the
proof of the original Bertini theorem in [9, pp.137-138] is adapted in our
situation. Suppose that the subset of smooth divisors in Γ is not dense. (*):
Then there exists an open subset f + Ω of the topological vector space Γ,
where f ∈ Γ is an element and Ω is an open neighborhood of the origin,
such that each divisor in f + Ω has a singular point.

By definition of a topological vector space, for any x ∈ Γ, the scalar
multiplication map C → Γ sending α to αx is continuous. Therefore the
set {α ∈ C|αx ∈ Ω} is an open set in C containing 0. It follows that
any x ∈ Γ has some scalar multiple αx ∈ Ω for some α 6= 0. Now define
a set V of points on W as V := {P ∈ W |there exists a divisor DP ∈
Γ such that P is a singular point of DP }.

For each finite dimensional subspace Γ1 of Γ, the subset of V given by
singular points of divisors in Γ1 is an analytic subset of W , as is explained
in [9, p.138] for the case of a pencil. So V is the countable union of analytic
subsets of W .

Since Γ generates the line bundle M , there exists a section g ∈ Γ which
is nonzero at (at least) one singular point of div(f). (By definition of f+Ω,
div(f) has a singular point.) Consider the linear system Γf,g generated by
f and g. Let V1 ⊂ W be the analytic subset which is precisely composed
of singular points of divisors in Γf,g. Let B be the base locus of Γf,g, that
is, the analytic subset of W given by f = g = 0. By the above choice of
g, we have V1 ( div(g). By the calculation with local equations of f and
g in [9, pp.137-138], the ratio function f

g is constant on every connected
component of V1 −B.

Considering those divisors f + λg ∈ f + Ω arising from (*), we get
contradiction since V1 − B meets infinitely many divisors given by those
f + λg’s. �

Corollary 3.7. — Let W be a complex manifold and
∑
Si a reduced

snc divisor on W . Let M be a line bundle on W which is generated by
its global sections. Then the subset in Γ(W,M) of those sections s having
div(s) +

∑
Si snc, is dense.

Proof. — This immediately follows from Proposition 3.6, as in
[18, (9.1.9)]. Note that when a line bundle M is generated by Γ(W,M), the
restricted line bundle M |S to a submanifold S ⊂W is not only generated by
Γ(S,M |S), but also generated by the restricted sections (Γ(W,M))|S . �
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4. L2 extension

In this section, we prove our main result Theorem 4.2.

4.1. Statement of the main theorem

First we recall the following L2 extension theorem of Siu [30] which he
used in his proof of invariance of plurigenera for smooth projective varieties
not necessarily of general type.

Theorem 4.1 (Siu, [30]). — Let π : X → ∆ be a smooth family of
projective varieties over the unit disk ∆ ⊂ C. Let X0 be the fiber π−1(0)
over the point 0 ∈ ∆, which is a smooth projective variety. Let (B, b) be any
line bundle having a singular metric with nonnegative curvature current on
X and let KX be the canonical line bundle of X . If s ∈ H0(KX0 +B|X0) is
a holomorphic section with ∫

X0

|s|2 · b|X0 <∞,

then it can be extended to a holomorphic section s̃ ∈ H0(KX + B) (that
is, s̃|X0 = s) such that

(4.1)
∫
X
|s̃|2 · b 6 C

∫
X0

|s|2 · b|X0 ,

where C is a universal constant.

In the proof of Theorem 4.1, an important role is played by a real-valued
function of the type log(|ω|2 + ε2) where ω is the global equation for the
divisor X0 in X and ε is an auxiliary variable (for which we will take ε→ 0).
In our setting of Z ⊂ X, a subvariety of codimension k of a projective
variety, we need a similar function replacing |ω|2 by |ω1|2 + · · · + |ωk|2
where ω1 = · · · = ωk = 0 give the equations for Z in X. Of course, we
cannot have one set of such global equations. Instead, we only need the
existence of a globally defined function λ which satisfies conditions (4.6)
and (4.7) with respect to local equations of Z. Such a function λ can be
constructed in the following setting of a maximal log-canonical center which
gives our main result Theorem 4.2.

Let X be a normal projective variety and D > 0 an effective Q-divisor
such that the pair (X,D) is log-canonical. Let Z be an irreducible subvari-
ety of X which is a maximal log-canonical center of (X,D). Let A be any
ample Q-line bundle. There is an effective Q-divisor (which we also denote
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by A) whose associated line bundle is A such that we still have the pair
(X,D + A) log-canonical and Z ⊂ X a maximal log-canonical center of
(X,D + A). Let L be the Q-line bundle on Xreg given by O(D + A) on
Xreg. We denote the Q-line bundle O(KX +D)⊗O(A) on X by KX + L.
Let D1 = D +A.

Theorem 4.2 (L2 extension). — Let Z ⊂ X be a maximal log-canonical
center of a log-canonical pair (X,D1) where D1 is an effective Q-divisor
as above. Assume that Z is not contained in Xsing. Let h be a Kawamata
metric (Definition 3.1) of the log-canonical center Z of the pair (X,D1).
Then there exist

• a constant C = C((X,D1),Z) and
• a singular metric of the second kind g = g((X,D1),Z) of L which is

bounded away from zero and whose domain is Xreg

such that the following holds: If given any Q-line bundle B on X with
(KX +L) +B being an integral line bundle, any singular hermitian metric
b of the first kind of B on Xreg and any holomorphic section s ∈ Γ(Z, (KX+
L)|Z +B|Z) satisfying

(4.2)
∫
Z

|s|2 · h · b|Z <∞,

then there exists a holomorphic section s̃ ∈ Γ(X, (KX +L) +B) such that
s̃|Z = s and ∫

X

|s̃|2 · g · b 6 C

∫
Z

|s|2 · h · b|Z .

The constant C = C((X,D1),Z) and the singular metric g = g((X,D1),Z) of L
are independent of (B, b) and the section s. (end of the statement)

The condition on g to be bounded away from zero is precisely what we
need in the proof of this theorem (in Step 7) and in its application (for
example, in (5.1)).

The proof of Theorem 4.2 is in the next section. To construct the function
λ mentioned before the statement, we apply Siu’s theorem on global gener-
ation of multiplier ideal sheaves to the sheaf (4.4). We take the q-th roots
s1, · · · , sk of k of the generating global sections and take (4.5) in Step 2.
The use of an arbitrary ample Q-line bundle A in the statement is com-
pletely limited to this step. We note that, for any positive integer a > 1, we
can use 1

aA the same way : for the line bundle KX+La = O(KX+D+ 1
aA),

we take aq-th roots of sections of

(4.3) aqLa ⊗ J (aqD) = O(KX + pA0 + aqD)⊗ J (aqD)
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instead of (4.4). This gives a sequence of functions {λa} (a > 1) except
the special case of the lc center Z being a Cartier divisor in X. For a
simple example, suppose that Z is a smooth divisor and D = Z. Then the
multiplier ideal sheaf J (aqD) is equal to the line bundle O(−aqD) and
the sheaf in (4.3) is constantly O(KX + pA0) for any aq. So there is no
sequence whose limit to take: on the other hand, for a divisor case without
A, we have the following example where L2 extension cannot be obtained
(since L2 extension as in Theorem 4.2 implies pluriadjoint extension as in
Theorem 5.3 as we will see in Section 5).

Example 4.3. — Let Y be a smooth projective variety which is a fiber of
the product X := Y ×P1. Then no multiple O(m(KX +Y )) has a nonzero
holomorphic section while we can take Y to be one with many sections of
OY (mKY ) for m > 1. So we do not have surjectivity of the restriction map
Γ(X,O(m(KX + Y )))→ Γ(Y,O(mKY )) for any m > 1.

In typical application of L2 extension in algebraic geometry, the interest
is in the existence of a section of KX + L. The special case of L being
equivalent to Z + D′ where Z is a Cartier divisor and D′ > 0, is either
essentially equivalent to the existence of a section or reduces the existence
of a section to a smaller line bundle. Such a case will be excluded in a
modified setting of lc centers.

4.2. Proof of the main theorem

The proof of Theorem 4.2 is divided into the following steps.
Step 0. Choice of a hyperplane section H ⊂ X
Step 1. A tubular neighborhood of Z given by the union of open sets W` or V`
Step 2. Construction of the function λ : Ωt → R
Step 3. Setup of the ∂ equation
Step 4. Introducing two factors I* and II*
Step 5. Inequality II > II*
Step 6. Inequality I > I*
Step 7. From each Ωt to X \H, to X

In Step 0, we first choose multi-valued holomorphic sections s1, · · · , sk of
L cutting out J (D) on a Zariski open subset of Xreg, which will be used in
Step 2, as explained in the previous section. Then we choose a hyperplane
section H ⊂ X satisfying appropriate conditions and most of our steps in
this proof will be on the complement X \H to obtain the wanted extension
on X \ H in Step 7. At the end of Step 7, we apply our version of the
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Riemann extension theorem, Proposition 2.18, to extend the section on
X \H across H, to X.

More precisely, the ∂ equation is defined and solved ( Steps 2,3,4,5,6 )
on each Ωt, a member of an increasing exhaustion sequence of relatively
compact Stein open subsets so that ∪t>1Ωt = X \H (as in the setup before
Proposition 2.17).

4.2.1. Setup of the ∂ equation

Step 0. Choice of a hyperplane section H ⊂ X
First we fix a very ample integral line bundle A0 on X. For the ample Q-

line bundle A, we can write A = p
qA0 + 1

qKX with some integers p > n+ 1
and q > 1. Then by Siu’s theorem on global generation of multiplier ideal
sheaves ([29] Proposition 1, also [18] (9.4.26)), the sheaf on Xreg ( with qL
an integral line bundle )

(4.4) qL⊗ J (qD) = O(KX + pA0 + qD)⊗ J (qD)

is generated by its global sections Γ on Xreg. We have the subadditivity
property ([18] (9.5.20)) J (qD) ⊆ (J (D))q. Then there is a proper (possibly
reducible) subvariety X1 ( X given by the image of some exceptional
divisors under the log resolution of (X,D), such that J (qD) = (J (D))q
on the open complement X \X1. Moreover, we can choose k multi-valued
sections s1, · · · , sk (being the q-th roots of k sections of Γ) such that they
give the local equations of Zreg around each point of Zreg\(X1 ∪X2) where
X2 ( X is another proper (possibly reducible) subvariety of X. Recall that
the open subset Z0 ⊂ Z is the domain of the Kawamata metric h.

Let H ⊂ X be a hyperplane section in a projective embedding of X ⊂ PN
such that

• Z * H.
• (Xsing ∪ Zsing ∪ (Z \ Z0) ∪X1 ∪X2) ⊂ H.
• H contains the divisor div(s) (i.e., the zero set and the pole set)

of a meromorphic section s of L on X so that the line bundle is
trivialized on X \H. We choose s such that Z * div(s).

In addition, take another divisor HB ⊂ X, a hyperplane section in a pro-
jective embedding of X ⊂ PN such that

• Z * HB .
• HB contains the divisor div(s) (i.e., the zero set and the pole set)

of a meromorphic section s of B on X so that the line bundle is
trivialized on X \HB . We choose s such that Z * div(s).
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We fix an increasing exhaustion sequence of relatively compact Stein open
subsets {Ωt}t>1 of the affine variety X \ (H ∪HB) as in Section 2.3.

Now let g1 be the singular metric of the first kind on Xreg associated
to the effective Q-divisor D1. Since the line bundle L is trivialized on
X \(H∪HB), g1 is given by a single function e−ϕ where ϕ is a psh function
on X \H. On each Ωt, one can use the holomorphic tangent vector fields to
regularize the psh function ϕ by [29]. We fix one such sequence gν(= g1,t,ν)
of regularizing smooth hermitian metrics of g1 on Ωt such that the weight
function of gν converges to that of g1 as the index ν ∈ Z>0 goes to ∞.
Similarly to (L, g1), we regularize the singular metric (B, b) on each Ωt and
denote the sequence of regularized metrics by bν(ν = 1, 2, 3, · · · ) converging
to b as ν →∞.

Step 1. A tubular neighborhood of Z given by the union of open sets
W` or V`

To setup our ∂ equation, we need to choose and fix a finite collection
of open subsets of X \ H whose union contains Z \ H. We will have two
different kinds (W ’s and V ’s) of such collection of open subsets, both of
which can be regarded as giving a tubular neighborhood of the subvariety
Z \H.

First, we take and fix a finite collection of open sets W1, · · · ,Wµ0 of
X \H such that W` ∩Z 6= ∅ for each ` and (Z \H) ⊂W1 ∪ · · · ∪Wµ0 . On
each W`, we take a local analytic coordinate system (z(`)

1 , · · · , z(`)
n ) where

the solution set of {z(`)
1 = 0, · · · , z(`)

k = 0} gives Z ∩W` and moreover we
can assume that

W` =
{

(z(`)
1 , · · · , z(`)

n )
∣∣∣ k∑

i=1
|z(`)
i |

2 < ε0
k+1,

n∑
j=k+1

|z(`)
j |

2 < 1
}

for ∃ε0 > 0. For each choice of such an analytic coordinate system, we let

W`(ε) :=
{

(z(`)
1 , · · · , z(`)

n )
∣∣∣ k∑

i=1
|z(`)
i |

2 < εk+1,

n∑
j=k+1

|z(`)
j |

2 < 1
}

for ε < ε0. Note that W`(ε) is a Stein manifold since it is the product of
two Stein manifolds.

Second, for ε < ε0, we take another finite collection of open subsets
V1(ε), · · · , Vµ(ε) such that each V`(ε) is contained in some W`′(ε) and more-
over, V`(ε) is the product of the set {

∑k
i=1 |z

(`′)
i |2 < εk+1} and an open sub-

set of {
∑n
j=k+1 |z

(`′)
j |2 < 1}. Unlike W`′ ’s, we do not need V` to be Stein

but we require the overlaps between different V`’s to be sufficiently small.
More precisely, let ω be the volume of the set of points in V1(ε)∪· · ·∪Vµ(ε)
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belonging to more than one V`(ε). Then ω is a function of ε, and ω is suf-
ficiently small when we take the limit ε → 0 later. We use the fact that ω
is sufficiently small at one point, when we use the Twisted Basic Estimate
after Lemma 4.4. We note that we can obtain these V`(ε)’s by replacing
each W`′ by the union of small enough open sets V` of the above product
type, whose union may leave some part of W`′ uncovered. We will often
use the same ` to denote the index both for W ’s and for V ’s, which will
not cause confusion. The index ` for V` should also be interpreted as equal
to the index `′ for one W`′ containing V`, thus allowing `′ to be denoted
by `.

To define the right hand side of our ∂ equation in Step 3, we need to take
unconditioned local extension of the given section s ∈ Γ(Z, (KX + L)|Z +
B|Z) from each Z ∩W` to W`. So we fix the following data, the first for
W ’s and the second for V ’s:

• First, on each W`, a local frame (i.e., a local nonvanishing section)
θL` of L, a local frame θB` ofB for each ` ∈ {1, · · · , µ0}. Also the local
frame θK` of KX determined by an orthonormal coframe ω1, · · · , ωn
in W`, as in Section 2.4. Denote the product θL` θB` by θ`. We have
the local frame θK` θ` of the line bundle KX + L+B on W`.
• Second, a C∞ partition of unity ϑ1, · · · , ϑµ subordinate to the cov-

ering {V`} such that
∑
ϑ` = 1 in a neighborhood of Z \H.

If the given section s is represented by a holomorphic function a ∈ OZ∩W`
up to the above local frames in W`, that is, if s|V` = a · θK` θ`|Z , then we
set the local extension on W` to be

s̃` := ã` · θK` θ`

where ã` ∈ OW` is a holomorphic extension of a (that is, ã`|Z = a) in
W` which simply exists since W` is Stein. We do not need any particular
condition on this local extension s̃`. Now using the above partition of unity,
we define a (L+B)-valued (n, 0) form on V` (note our convention of using
the index ` between V ’s and W ’s as in the above ) by

σ`(ε) := χ

(∑k
i=1 |z

(`)
i |2

εk+1

)
· ϑ` · s̃`

where χ is a fixed cut-off function of one real variable as in [30], p.246.
That is, the support of χ is in [0, 1], χ ≡ 1 on [0, δ2 ] and |χ′(x)| 6 1 + δ for
x ∈ [0, 1] where 0 < δ � 1 is a constant. We do not need to let δ → 0.
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Step 2. Construction of the function λ = λ(t, ν, ε) : Ωt → R>1
Since s1, · · · , sk from Step 0 generate J (D) on X \ H, there exists a

constant τ0 > 0 such that
∑k
j=1|sj |2gν 6 τ0 for all ν > 1. We take the

following family of R-valued functions

(4.5) λ = λ(t, ν, ε, τ) = τ − log
( k∑
j=1
|sj |2gν + ε̂2

)
where ε̂ = ε · gν (note that the metric gν is given as a single function, say
e−ϕν on Ωt), 0 < ε < ε0,m ∈ Z>0 and τ > 1 + log(τ0 + ε̂0

2). Then for
all (t, ν, ε, τ), the function satisfies λ(t, ν, ε, τ) > 1 on Ωt and also as real
smooth (1, 1) forms

(4.6)
√
−1Θgν (L) +

√
−1∂∂(−λ(t, ν, ε, τ)) > 0

on Ωt and

(4.7)
√
−1Θgν (L) +

√
−1∂∂(−λ(t, ν, ε, τ)) >

√
−1∂∂ log

( k∑
i=1
|z(`)
i |

2 + ε2
)

on Ωt ∩ V` for each `.

Step 3. Setup of the ∂ equation
We formulate our main ∂ equation in terms of Hilbert spaces Hq :=
L2

(n,q)(Ωt, L+B, gνbν) for q = 0, 1, 2. The ∂ equation and its solution is
in terms of the indices (t, ν, ε), fixing one value of τ for which we do not
take a limit. Later we take the limit involving the solution as ε→ 0, ν →∞
and t→∞.

Following [22], [34], we use the functions η = λ+ r(λ) and γ = (1+r′(λ))2

−r′′(λ)
for each case of λ = λ(t, ν, ε, τ) to define the modified ∂ operators T :=
∂((
√
η + γ) ·) and S := (√η)∂(·) as in the discussion before Proposi-

tion 2.19. Note the domains and ranges: T : H0 → H1 and S : H1 → H2.
Now our ∂ equation is

(4.8) Tv = αε := ∂
( µ∑
`=1

σ`(ε)
)
.

where the (L+B)-valued (n, 0) form σ`(ε) is as defined at the end of Step 1.
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4.2.2. Two main inequalities and the extension

Step 4. Introducing two factors I* and II*
It is a standard lemma from functional analysis [30, (3.2)] that solving

(4.8) is equivalent to showing that there exists a constant C2 satisfying the
inequality

(4.9) |〈〈u, αε〉〉|2 6 (C2

∫
Z

|s|2 · h · b|Z) · (‖T ∗u‖2 + ‖Su‖2) =: I · II

for all u ∈ Dom(T ∗) ∩ Dom(S) ⊂ H1. We will do this for all sufficiently
small ε > 0. We denote the first factor of (4.9) by I and the second by II.

First, we have the following inequalities for the left hand side of (4.9) by
the fact that σ`(ε) is supported on V`(ε) and the Cauchy-Schwarz inequality.

|〈〈u, αε〉〉|2 = |
∫

Ωt
〈u,

µ∑
`=1

∂σ`(ε)〉gνbνdV |2

6 |
∫
V1(ε)∩Ωt

〈u, ∂σ1(ε)〉gνbνdV + · · ·+
∫
Vµ(ε)∩Ωt

〈u, ∂σµ(ε)〉gνbνdV |2

6 µ ·
µ∑
`=1
|
∫
V`(ε)∩Ωt

〈u, ∂σ`(ε)〉gνbνdV |2 =: µ ·
µ∑
`=1

S` .(4.10)

In order to take a local expression in V` of each summand S` of the last line,
we fix an orthonormal basis of (n, 1) forms ωI ∧ ω1, · · · , ωI ∧ ωn where ωI
is the (n, 0) form ω1∧· · ·∧ωn. We then write u =

∑n
i=1 uiθ`⊗ωI ∧ωi in V`

where θ` is a local frame of L+B we fixed before. Let e−ϕ = gνbν(θ`, θ`).
Now we consider

(4.11) ∂σ`(ε) = 1
εk+1 ·χ

′·∂
( k∑
i=1
|z(`)
i |

2
)
·ϑ`·s̃`+χ

(∑k
i=1|z

(`)
i |2

εk+1

)
·∂(ϑ`·s̃`).

Determine the component functions ζi’s by writing

∂(
k∑
i=1
|z(`)
i |

2) =
k∑
i=1

zidz̄i =
k∑
i=1

ζiωi.

Since
∫
V`(ε)∩Ωt |〈u, χ

(∑k

i=1
|z(`)
i
|2

εk+1

)
· ∂(ϑ` · s̃`)〉g|dV goes to zero as ε → 0,

it suffices to consider only the first term of the right hand side of (4.11)
to be taken inner product with u for sufficiently small ε > 0. So we have
the following, for a constant 0.9 < C7 < 1 which is independent of u and
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(t, ν, ε) (also defining s̃′` by s̃` = s̃′`ωI and V̂ := V`(ε) ∩ Ωt):

C7 · S` 6

(∫
V̂

k∑
i=1
|uiζi

χ′ · ϑ` · s̃′`
εk+1 |e−ϕdV

)2

6

(∫
V̂

|s̃′`|2
( k∑
i=1
|ζi|2

) |χ′|2
ε2k+2 |ϑ`|

2K
2

ε2
e−ϕdV

)(∫
V̂

( k∑
i=1
|ui|2

) ε2
K2 e

−ϕdV

)(4.12)

6

(
C1

ε2k

∫
V̂

|s̃′`|2
( k∑
i=1
|ζi|2

)
e−ϕdV

)(∫
V̂

( k∑
i=1
|ui|2

) ε2
K2 e

−ϕdV

)
=: 1

µ
I∗` ·II∗`

(4.13)

for a positive constant C1, using Cauchy-Schwarz and introducing the factor
K2

ε2 where K :=
∑k
i=1 |z

(`)
i |2 + ε2. We call µ times the first factor of (4.13)

as I∗` and the second factor as II∗` . We will show the inequalities of the types
I > I∗` and II > II* :=

∑
` II∗` (up to some constants multiplied) relating

(4.13) and (4.9).

Step 5. Inequality II > II*
The actual inequality we will have is not II > II*, but II > C6 · II* for

a constant C6 as we will see below. We start with the following lemma,
which is local calculation in V`.

Lemma 4.4. — Let κ(ε) be the function log(
∑k
i=1 |z

(`)
i |2 + ε2) = logK.

Then we have the inequality

(
√
−1∂∂(κ(ε))(u, u)gνbν >

ε2

K2 · (|u1|2 + · · ·+ |uk|2)e−ϕ.

Proof. — For simplicity in notation, we suppress the notation of the
metric gνbν = e−ϕ in the following. Using the second derivatives (for 1 6
i, j 6 n, i 6= j)

∂2κ(ε)
∂ωi∂ωi

=
∑k
i=1 |zi|2 + ε2 − ζi · ζi

K2 and ∂2κ(ε)
∂ωj∂ωi

= −ζi · ζj
K2 ,
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we have the left hand side equal to

=
k∑
j=1

∑k
i=1 |zi|2 + ε2 − |ζj |2

K2 · |uj |2 −
1
K2 ·

∑
16i<j6k

(ζiζjuiūj + ζiζj ūiuj)

= 1
K
· (|u1|2 + · · ·+ |uk|2)− 1

K2 · |
k∑
j=1

ujζj |2

= 1
K2 ·

(
(|u1|2 + · · ·+ |uk|2) · ε2 + (|u1|2 + · · ·+ |uk|2)(|ζ1|2 + · · ·+ |ζk|2)

− |
k∑
j=1

ujζj |2
)

>
1
K2 ·

(
(|u1|2 + · · ·+ |uk|2) · ε2

)
,

where the inequality holds by Cauchy-Schwarz. Note that the inequality
degenerates to an equality when Z is of codimension 1. �

Next, we use Proposition 2.19 (Twisted Basic Estimate of [22]) for each
regularized metric gνbν of L+B and ε > 0 (so that λ and η are C2) to get:

‖T ∗u‖2 + ‖Su‖2

>
∫

Ωt
(η
√
−1Θgνbν (L+B)−

√
−1∂∂η − 1

γ

√
−1∂η ∧ ∂η)(u, u)gνbνdV

=
∫

Ωt
(η
√
−1Θbν (B)+η

√
−1Θgν (L)+(1 + r′(λ))(−

√
−1∂∂λ))(u, u)gνbνdV

> C6 ·
µ∑
`=1

∫
V`(ε)∩Ωt

(
√
−1∂∂ log(

k∑
i=1
|z(`)
i |

2 + ε2))(u, u)gνbνdV

> C6 ·
µ∑
`=1

∫
V`(ε)∩Ωt

(|u1|2 + · · ·+ |uk|2) · ε
2

K2 e
−ϕdV

= C6

µ∑
`=1

II∗` = C6 · II*

which gives II > C6 II*, where 0.9 < C6 < 1 is a constant which appears
from the fact that there is a small overlap between V`(ε)’s for sufficiently
small ε > 0, as mentioned in Step 1. C6 is independent of u and (t, ν, ε).
For the second inequality, we used (2.2), (4.6), (4.7) and

√
−1Θbν (B) >

0,
√
−1Θgν (L) > 0. For the third inequality, we used Lemma 4.4.
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Step 6. Inequality I > I*
The actual inequality we will have is not I > I∗` , but I > 1

C7C6
· I∗` for C7

from Step 4. The inequality is in the sense that we can choose a constant
C2. First, for 1

µ I∗` of (4.13), we have the inequality

(4.14) C1

ε2k

∫
V`(ε)∩Ωt

|s̃`|2 · ĝνbν 6
C1

ε2k

∫
W`(ε)

|s̃`|2 · ĝ1b

where ĝν := gν · (|ζ1|2 + · · · + |ζk|2) as a metric of L over W`. Recall that
the sequence of smooth hermitian metrics gν gives regularization of the
singular hermitian metric g1 as in Step 0. Since regularization of a psh
function converges from the above, we have |s̃`|2 · ĝνbν 6 |s̃`|2 · ĝ1b. We also
used V`(ε) ∩ Ωt ⊂W`(ε).

The key in this step is to show that (the right hand side of) (4.14) is
finite. By change of variables [4, (5.8)], we first have

∫
W`(ε) |s̃`|

2 · ĝ1b =∫
f−1(W`(ε))|f

∗s̃`|2 · (ĝ1b)′ where f is a log-resolution of (X,D1) as in (3.1).
Then we will apply Theorem 3.2 to the lc center Z of the pair (X,D1)
putting W`(ε) in the place of V , an open Stein subset of X. Following the
notation in Section 3 and (3.1), we write

(4.15) KX′ = f∗(KX +D1)− E − (D1)′ −∆

where (D1)′ is the birational transform of D1 under f , ∆ a combination of
exceptional divisors and E the exceptional divisor over Z.

Note that the section s̃` restricts to s ∈ H0(W` ∩ Z, (KX + L)|Z) on Z

which satisfies
∫
W`∩Z |s|

2 · h · b|Z <∞. Thus Theorem 3.2 gives∫
f−1(W`(ε))

|f∗s̃`|2 · η((D1)′+∆) · γO(E) · f∗b <∞

where γO(E) is any smooth metric of the line bundle O(E). It follows from
this and (4.15) that∫

f−1(W`(ε))
|f∗s̃`|2 · f∗(g1)f∗(|ζ1|2 + · · ·+ |ζk|2) · f∗b <∞

where f∗(g1) is the singular metric associated to the divisor f∗D1 and
f∗(|ζ1|2 + · · ·+ |ζk|2) gives the multiplication of a local equation of E. Thus
(4.14) is finite.

Once the finiteness is shown, we only need to observe the following: Up
to local frames, the sections s̃` and s are given by holomorphic functions a
and a|Z , respectively (a ∈ OW`(ε)). Then

∫
V`(ε) |s̃`|

2 · ĝ1b <∞ is integrating
|a| with respect to a 2n dimensional measure while

∫
Z∩V`(ε)|s|

2 · h · b|Z is
integrating |a||Z with respect to a 2(n− k) dimensional measure. Since the
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latter measure is not zero (that is, zero times the measure associated to a
local euclidean volume form) in any open subset, there exists a constant
C ′` such that

1
ε2k

∫
W`(ε)

|s̃`|2 · ĝ1b 6 C ′`

∫
Z∩W`(ε)

|s|2 · h · b|Z 6 C ′`

∫
Z

|s|2 · h · b|Z

for ε � 1. Taking C2 = µ
C7C6

C1 ·
(

max
16`6µ

C ′`

)
, we have the inequality

I > µ
C7C6

1
µ I∗` = 1

C7C6
I∗` .

Step 7. From each Ωt to X \H, to X
Now the inequalities I > 1

C7C6
I∗` and II > C6 II* give (4.9):

I · II >
1

C7C6
· C6

∑
`

I∗` II∗` > µ
∑
`

S` > |〈〈u, αε〉〉|2

where we used (4.13) for the second inequality and (4.10) for the third
inequality. By the standard functional analysis lemma [30, (3.2)], this solves
the ∂ equation (4.8), together with the estimate of the solution vε, ‖vε‖2 6
C2
∫
Z
|s|2 · h · b|Z . We recall that the solution vε is actually indexed by

(t, ν, ε), not only by ε. The right hand side of the estimate is independent
of the index (t, ν, ε). We rewrite (4.8) as

∂
(
−
√
η + γ·vε+

µ∑
`=1

σ`(ε)
)

= ∂

(
−
√
η + γ·vε+

µ∑
`=1

χ

(∑
|zi(`)|2

εk+1

)
·ϑ`·s̃`

)
=0,

and put F(t,ν,ε) := −
√
η + γ · vε +

∑µ
`=1 χ

(∑ |zi(`)|2

εk+1

)
· ϑ` · s̃`, which is a

(L + B)-valued holomorphic (n, 0) form, hence a holomorphic section of
Γ(Ωt,KX + L+B) and satisfies F(t,ν,ε)|Z = s.

Now we define a singular metric of the second kind g on X\H for L by

g := lim
ε→0, ν→∞,

t→∞

g′1√
η + γ

where g′1 is the metric e−ϕ of L given by ϕ = log(
∑k
j=1|sj |2). Note that g1

and g′1 have equivalent singularities on X \H.

Lemma 4.5. — The singular hermitian metrics of the second kind g and
g · b are bounded away from zero.

Proof. — The statement for g · b follows from the one for g since b is
of the first kind and a psh function is locally bounded above. We denote
the local weight function of g′1 by ϕ so that g′1 = e−ϕ locally. Writing
g′1

1√
η+γ = exp(−ϕ− 1

2 log(η+ γ)), it suffices to show that ϕ+ 1
2 log(η+ γ)
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is bounded above, taking the limit in the definition of g. Let Ẑ be the closed
subset of Xreg given by s1 = · · · = sk = 0. Note that Ẑ \H = Z \H.

First, consider (*) away from Ẑ, that is, in each open subset of Xreg,
disjoint from Ẑ. The function ϕ is locally bounded above since it is psh. On
the other hand, we have η+γ 6 1+log 2+λ+2eλ−1 6 1+λ+eλ from before
(2.2), thus it only remains to show that λ = λ(ε, ν, t) is locally bounded
above taking the limit, away from Ẑ. This follows from the definition of λ,
(4.5).

Next, consider (*) near Ẑ, say, in an open neighborhood U of a point of Ẑ.
The function λ becomes large enough and goes to +∞ as one approaches Ẑ
and as ε→ 0. Thus, we have 1

2 log(η+γ) 6 1
2 log(1+λ+eλ) 6 1

2 log(2eλ) 6 λ

on U . So it remains to show that ϕ + λ is bounded above on U taking
the limit. From the choice of H in Step 0, we have (modulo a bounded
(both above and below) function on U) ϕ = log(

∑k
j=1|sj |2) whereas λ =

τ − log(
∑k
j=1|sj |2gν + ε̂2). This completes the proof of the lemma. �

Since the volume of the support of F(t,ν,ε) −
√
η + γ · vε goes to zero

as ε → 0 and
∫
X\H |
√
ηε + γε · vε|2 · g1√

ηε+γε
· b = ‖vε‖2, there exists a

sequence of pairs (νt, εt) for t = 1, 2, 3, · · · such that the sequence of sections
st = F(t,νt,εt) satisfies∫

X\(H∪HB)
|st|2 · g · b 6 C

∫
Z

|s|2 · h · b|Z

for a constant C > 0, independent of t. We apply (2.17) to this sequence
to obtain a section s̃0 on X \ (H ∪ HB). Since X is normal, we can then
apply (2.18) to extend s̃0 across the divisor H ∪HB to obtain the wanted
section s̃ with (4.1): ∫

X

|s̃|2 · g · b 6 C

∫
Z

|s|2 · h · b|Z .

Considering the sequence of sections st|Z − s on Z, it is easy to see that
s̃|Z − s = 0. This completes the proof of Theorem 4.2.

Remark 4.6. — One of the key points in the proof was (4.12) where we
introduced two factors by Cauchy-Schwarz. Note that the particular choice
of the two factors made it possible to use two different fundamental prop-
erties of a (maximal) log-canonical center. Our use of Cauchy-Schwarz is
adaptation to general codimension of the one in [30] for which [30] com-
ments (before (3.1)): ...replaces the strictly positive (curvature) in all direc-
tions by the strictly positive (curvature) just for the direction normal to the
hypersurface from which the holomorphic section is extended. The reader
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may also find it helpful to compare our use to the use of Cauchy-Schwarz
in, for example, [5] (3.1).

5. Pluriadjoint extension

Siu ([30], [29]) invented and used an ingenious inductive argument of
applying L2 extension in order to extend pluricanonical and pluriadjoint
sections. Păun [25] found a simplified and strengthened version of the ar-
gument, which we call the tower argument and apply to Theorem 4.2.

Let Z ⊂ X, a Q-line bundle KX + L on X and the Kawamata metric
h be as in Theorem 4.2. Let m > 1 be an integer such that m(KX + L)
is an integral line bundle. On Xreg, we fix a smooth metric for each of the
line bundles (KX , gK), (L, gL) and (A, gA). Let g(km+p) denote the product
smooth metric of the line bundle (km+ p)(KX +L) +A given by products
of gK , gL and gA.

Throughout this section, we fix a global holomorphic section σ ∈ H0(Z,
m(KX + L)|Z) such that its m-th root σ 1

m as a multi-valued section of
(KX + L)|Z satisfies

(5.1)
∫
Z

|σ 1
m |2 · h <∞.

Let m0 > 1 be the smallest integer such that m0(KX + L) is an integral
line bundle. We (can always) choose an ample integral line bundle A which
is sufficiently ample such that the following hold:

For each p = 0, 1, · · · ,m − 1, there exist multi-valued sections s̃(p)
j (j =

1, · · · , Np) of the Q-line bundle p(KX + L) +A such that
(A1) Each s̃

(p)
j is divided by σ

p
m , and

(A2) The m0-th powers of s̃
(p)
j

σ
p
m

’s generate the line bundle m0(p(KX +
L) +A− p(KX + L)) = m0A.

It would be helpful for the reader also to interpret these properties for
multi-valued sections in terms of their associated Q-divisors. Now, in order
to extend σ from Z to X, we need to be able to continue this sequence of
sections s̃(p)

j beyond 0 6 p 6 m− 1 as follows.

Proposition 5.1. — If σ ∈ H0(Z,m(KX+L)|Z) satisfies the condition
(*) below (in addition to (5.1), (A1) and (A2)), then σ lies in the image of
the natural restriction map

H0(X,m(KX + L))→ H0(Z,m(KX + L)|Z).
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(*) There exist a constant C♦ and (for each k > 1 , p = 0, 1, · · · ,m − 1
and j = 1, · · · , Np) multi-valued sections s̃(km+p)

j of the Q-line bundle
(km+ p)(KX + L) +A such that the following hold (let N−1 := Nm−1):

(1)
s̃

(km+p)
j |Z = σ⊗k ⊗ s̃(p)

j |Z .

(2) ∫
X

∑Np
j=1|s̃

(km+p)
j |2

g(km+p)∑Np−1
j=1 |s̃

(km+p−1)
j |2

g(km+p−1)

dV 6 C♦.

Proof. — We would like to apply the L2 extension Theorem 4.2 with
B = (m−1)(KX +L), for which we need the existence of a singular metric
(B, b) such that

(5.2)
∫
Z

|σ|2 · b · h <∞.

We will construct b using sections given in (*). Consider the following
function defined on Xreg:

fkm+p := log

(
Np∑
j=1
|s̃(km+p)
j |2g(km+p)

)
for each k > 1 and 0 6 p 6 m − 1. It is well known from [30] and [7]
that the sequence of quasi-psh functions 1

kfkm(k > 1) is locally uniformly
bounded above. Since the sequence is a good family of quasi-psh functions
(Definition 2.13), its upper envelope is also a quasi-psh function on Xreg by
Proposition 2.14. We denote the upper envelope function by f∞. We note
that
√
−1Θ(gKgL)m(m(KX + L)) + 1

k

√
−1ΘgA(A) +

√
−1∂∂

(1
k
fkm

)
> 0.

Therefore, when we define a singular metric h∞ of m(KX +L) on Xreg by

h∞ := (gKgL)m · e−f∞ ,

we have
√
−1Θh∞(m(KX + L)) =

√
−1Θ(gKgL)m(m(KX + L)) +

√
−1∂∂f∞ > 0.

Take b = h
m−1
m∞ and we will show (5.2). We first have the upper bound of

the following pointwise length with respect to the metric h∞|Z :

Lemma 5.2. — |σ|2h∞|Z 6 C♣ on Z ∩Xreg, for some C♣ > 0.
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Proof. — Note that(1
k
fkm

)
|Z = 1

k
log

(
N0∑
j=1
|(s̃(km)

j )|Z |2g(km)

)
= 1
k

log

(
N0∑
j=1
|σk · (s̃(0)

j )|Z |2g(km)

)

= log(|σ|2(gKgL)m) + 1
k

log

(
N0∑
j=1
|(s̃(0)

j )|Z |2g(0)

)
.

From (A1) in the beginning, the sections s̃(0)
j are base-point-free. So there

is a lower bound C0 > 0 with
∑N0
j=1|(s̃

(0)
j )|2

g(0) > C0 > 0 for everywhere in
X, in particular for everywhere in Z. Thus,

log
(
|σ|2(gKgL)m

)
−
(1
k
fkm

)∣∣
Z

= −1
k

log

(
N0∑
j=1

∣∣∣s̃(0)
j

∣∣
Z

∣∣∣2
g(0)

)

6 −1
k

log(C0) 6 C1

where C1 is a constant independent of k, defined by C1 := 0 if C0 > 1
and by C1 := − log(C0) if C0 < 1. The lemma is proved by taking the
exponential of the last inequality. �

Using this lemma,∫
Z

|σ|2 · h
m−1
m∞ · h =

∫
Z

(|σ|2h∞)
m−1
m |σ| 2

m · h 6 C♣
m−1
m

∫
Z

|σ 1
m |2 · h <∞

where σ 1
m gives a multi-valued holomorphic section of (KX + L)|Z whose

adjoint norm with respect to h is finite. We do not use the Hölder inequality
here. Then by Theorem 4.2, σ is extended to H0(X,m(KX + L)). This
completes the proof of Proposition 5.1. �

Theorem 5.3. — In the setting of Proposition 5.1, suppose that L is
an integral line bundle. Then (*) of (5.1) holds and therefore σ in (5.1) is
extended to X.

Proof. — We first note that there exists a constant C1 > 0 such that

max
06p6m−1

sup
Z

∑Np
j=1|s̃

(p)
j |Z |2g(p)

|σ 1
m |(
∑Np−1
j=1 |s̃

(p−1)
j |Z |2g(p−1))

= C1

thanks to the properties (A1) and (A2) of A.
We will use induction on km+p to construct the required sections in (*).

Suppose k > 1 and assume that we have the required sections for km+p−1.
The induction begins with k = 1 and p = 0. We will apply the L2 extension
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Theorem 4.2, to extend σ⊗k⊗s̃(p)
j |Z by taking B = (km+p−1)(KX+L)+A

and b to be the singular metric given by the sections just constructed, i.e.,

b = g(km+p−1)∑Np−1
j=1 |s̃

(km+p−1)
j |2

g(km+p−1)

.

Then the section on Z to be extended satisfies the finiteness∫
Z

|σ⊗k ⊗ s̃(p)
j |Z |

2 · h · b|Z =
|s̃(p)
j |Z |2g(p)

|σ 1
m |
∑Np−1
j=1 |s̃

(p−1)
j |Z |2g(p−1)

∫
Z

|σ 1
m |2 · h

6

∑Np
j=1|s̃

(p)
j |Z |2g(p)

|σ 1
m |
∑Np−1
j=1 |s̃

(p−1)
j |Z |2g(p−1)

∫
Z

|σ 1
m |2 · h

6 C1

∫
Z

|σ 1
m |2 · h <∞

when 1 6 p 6 m − 1. Note that we have the cancellation of the length of
σk in the fraction of the first equality. For the case of p = 0, we have the
same finiteness having C1

∫
Z
|σ 1
m |2 · h multiplied by maxZ |σ|2(gKgL)m .

Thus, by Theorem 4.2, there exists s̃(km+p)
j on X satisfying (1) such that∫

X

|s̃(km+p)
j |2 · g · b 6 C

∫
Z

|σ⊗k ⊗ s̃(p)
j |Z |

2 · h · b|Z .

Summing over j, we get the following for 1 6 p 6 m− 1 (with the obvious
modification when p = 0):∫

X

∑Np
j=1|s̃

(km+p)
j |2

g(km+p)∑Np−1
j=1 |s̃

(km+p−1)
j |2

g(km+p−1)

dV 6 C

Np∑
j=1

∫
Z

|σ⊗k ⊗ s̃(p)
j |Z |

2 · h · b|Z

6 C · C1

∫
Z

|σ 1
m |2 · h

where dV is a volume form on X \H given by the fact that g is bounded
away from zero. Take the constant C♦ := max(1,maxZ |σ|2(gKgL)m) · C ·
C1
∫
Z
|σ 1
m |2 · h for (*) in Proposition 5.1. �

Remark 5.4. — In an earlier version of this paper, Theorem 5.3 was
stated without the hypothesis of L being an integral line bundle, which
was incorrect. It had resulted from an incorrect statement of Theorem 4.2
(now corrected) without the hypothesis of L + B being an integral line
bundle, which we actually needed to define the ∂ operators in the proof.
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