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POINCARÉ - VERDIER DUALITY IN O-MINIMAL
STRUCTURES

by Mário J. EDMUNDO & Luca PRELLI (*)

Abstract. — Here we prove a Poincaré - Verdier duality theorem for the o-
minimal sheaf cohomology with definably compact supports of definably normal,
definably locally compact spaces in an arbitrary o-minimal structure.

Résumé. — On démontre une dualité de Poincaré - Verdier dans le cadre de
la cohomologie o-minimale des faisceaux avec support compact et définissable sur
des espaces définissablement normaux, définissablement localement compacts dans
une structure o-minimale arbitraire.

1. Introduction

We fix an arbitrary o-minimal structureM = (M,<, . . .) and work in the
category of definable spaces, X, inM with the o-minimal site on X, with
morphisms being definable continuous maps. The o-minimal site on X is
the site whose underlying category is the set of all relatively open definable
subsets of X (open in the strong, o-minimal topology) with morphisms
the inclusions and admissible coverings being covers by open definable sets
with finite subcoverings.

The o-minimal setting generalizes the semi-algebraic and globally sub-
analytic contexts ([23]), and so our first main theorem (on Subsection
2.2) generalizes the existence of sheaf cohomology with supports in semi-
algebraic geometry, as described in the book [8]. This o-minimal sheaf co-
homology with supports satisfies the Eilenberg-Steenrod axioms adapted
to the o-minimal site - for the homotopy axiom we need to assume that

Keywords: O-minimal structures, sheaf cohomology.
Math. classification: 03C64, 55N30.
(*) The first author was supported by Fundação para a Ciência e a Tecnologia, Finan-
ciamento Base 2008 - ISFL/1/209. This work was developped within project POCTI-
ISFL:1-143 of CAUL supported by FCT and FEDER.
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M has definable Skolem functions and the definable space X involved is
definably normal such that for every closed interval [a, b] ⊆ M the projec-
tion X × [a, b] −→ X maps closed definable subsets into closed definable
subsets. Other cohomology theories have been constructed for o-minimal
structures of special types in the past. Simplicial and singular cohomolo-
gies were constructed in o-minimal expansions of fields by A.Woerheide
in his doctoral thesis, a report of which can be found in [14]. A sheaf
cohomology without supports has been constructed in [12] for o-minimal
structures (with the extra technical assumptions for the homotopy axiom
given above), which generalized the sheaf cohomology without supports for
real algebraic geometry of Delfs, for which he proved the homotopy axiom
in [7]. The theory presented here generalizes all of these and is an extension
of the corresponding theory in topological spaces ([4], [16], [17] and [18]).

Following the classical proof of the Poincaré - Verdier duality for topo-
logical spaces we prove here a version Verdier duality theorem for the o-
minimal sheaf cohomology with definably compact supports of definably
normal, definably locally compact spaces in an arbitrary o-minimal struc-
ture (Theorem 4.5). This result is new even in the semi-algebraic context.
We do not develop yet the full theory of proper direct image and its dual
in the o-minimal context but nevertheless we prove our version of Verdier
duality by considering inclusions of definably locally closed definable sub-
sets. The theory of proper direct image is partially developed in the semi-
algebraic case in the book by Delf’s ([8]). In the sub-analytic context there
are several approaches to this theory by Kashiwara and Schapira ([19]) and
also L. Prelli ([22]).

From Verdier duality we derive the Poincaré and Alexander duality the-
orems (Theorems 4.11 and 4.14). The later results are based on a general
and new orientation theory for definable manifolds which we show to be
the same as the orientation theory in o-minimal expansions of fields defined
in [2] and [1] using o-minimal singular homology. (See subsection 4.4).

Our Poincaré - Verdier duality theory relays heavily on the theory of nor-
mal and constructible supports and o-minimal cohomological Φ-dimension.
This rather technical theory in presented in Section 3 and is the o-minimal
version of the topological theory of paracompactifying families of supports
and cohomological Φ-dimension and generalizes the corresponding theory
in the semi-algebraic context ([8]).

The motivation for developing this general o-minimal Poincaré - Verdier
duality is to be able to apply it to compute the o-minimal cohomology of

ANNALES DE L’INSTITUT FOURIER



O-MINIMAL VERDIER DUALITY 1261

definably compact definable groups defined in arbitrary o-minimal struc-
tures generalizing in this way the computation of the o-minimal singular
cohomology of definable groups in o-minimal expansions of fields already
presented in [13]. We hope do this in a different paper.

Acknowledgement. The contents of Subsection 2.2 and most of Sub-
section 3.1 were previously worked out jointly with Gareth O. Jones and
Nicholas J. Peatfield. The first author would like to thank them for allowing
him to include this material here.

2. Notations and review

In this section we recall some preliminaries notions about sheaves on
topological spaces and the previous results about sheaves on the o-minimal
spectrum of a definable space. For further details about classical sheaf
theory, see for example [4], [16], [17], [18] and [20]. Good references on o-
minimality are, for example, the book [23] by van den Dries and the notes
[5] by Michel Coste. For semi-algebraic geometry relevant to this paper the
reader should consult the work by Delfs ([7] and [8]), Delfs and Knebusch
([9]) and the book [3] by Bochnak, Coste and M-F. Roy.

2.1. Sheaves on topological spaces

Let X be a topological space and let k be a field. As usual, we will set
Mod(kX) the category of sheaves of k-modules onX. This is a Grothendieck
category, hence it admits enough injectives and a family of generators (the
sheaves kU defined below). Moreover filtrant inductive limits are exact.

Let f : X → Y be a morphism of topological spaces. As usual we denote
by f∗ and f−1 the functors of direct and inverse image. In particular, when
Y is a subset of X we will denote by iY : Y ↪→ X the inclusion.

When S is closed and F ∈ Mod(kX) one sets FS = iS∗i−1
S F , and when U

is open FU = ker(F → FX\U ) (or equivalently FU is the sheaf associated
to the presheaf V 7→ Γ(V ;FU ) which is Γ(V ;F) if V ⊆ U and 0 otherwise).
When Z = U ∩ S set FZ = (FU )S . The functor (•)Z is exact and FZ is
characterized by FZ|Z = F|Z and FZ|X\Z = 0. If Z ′ is another locally
closed subset of X, then (FZ)Z′ = FZ∩Z′ . When F = kX is the constant
sheaf on X we just set kZ instead of (kX)Z . If Z1, Z2 are locally closed and
Z1 is closed in Z2 we have an exact sequence

0→ FZ2\Z1 → FZ2 → FZ2∩Z1 → 0.

TOME 60 (2010), FASCICULE 4



1262 Mário J. EDMUNDO & Luca PRELLI

When U is open one sets ΓUF = iU∗i−1
U F . Then we have Γ(V ; ΓUF) =

Γ(U ∩ V ;F). When S is closed ΓSF = ker(F → ΓX\SF) (sections with
support in S). When Z = U ∩ S we set ΓZ = ΓU ◦ ΓS . The functor ΓZ(•)
is left exact and if Z ′ is another locally closed subset, then ΓZ′(ΓZF) =
ΓZ∩Z′F . If Z1, Z2 are locally closed and Z1 is closed in Z2 we have an exact
sequence

0→ ΓZ2∩Z1F → ΓZ2F → ΓZ2\Z1F .

Let Z be a locally closed subset of X. We are going to define the functor
iZ! such that for F ∈ Mod(kZ), iZ!F is the unique k-sheaf in Mod(kX)
inducing F on Z and zero on X \ Z. First let U be an open subset of X
and let F ∈ Mod(kU ). Then iU !F is the sheaf associated to the presheaf
V 7→ Γ(V ; iU !F) which is Γ(V ;F) if V ⊆ U and 0 otherwise. If S is a closed
subset of X and F ∈ Mod(kS), then iS!F = iS∗F . Now let Z = U ∩S be a
locally closed subset of X, then one defines iZ! = iU ! ◦ iS! ' iS! ◦ iU !. The
functor iZ! is exact and has a right adjoint, denoted by i!Z , when Z is open
we have i!Z ' i

−1
Z , when Z is closed i!Z ' i

−1
Z ΓZ . With these definitions one

has

FZ ' F ⊗ kZ ' iZ!i
−1
Z F and ΓZF ' Hom(kZ ,F) ' iZ∗i!ZF .

Let X be a topological space and Φ a family of supports on X (i.e.
a collection of closed subsets of X such that: (i) Φ is closed under finite
unions and (ii) every closed subset of a member of Φ is in Φ). Recall that
for G ∈ Mod(kX), an element s ∈ Γ(X;G) is in ΓΦ(X;G) if and only if its
support,

supp s = X \ ∪{U ⊆ X : U is open in X and s|U = 0},

is in Φ, i.e.

ΓΦ(X;G) = lim−→
S∈Φ

ΓS(X;G).

The following fact (see [4], Chaper I, Proposition 6.6) will also be useful
later:

Proposition 2.1. — Let X be a topological spaces, Φ a family of sup-
ports on X, Z a locally closed subset of X and let iZ : Z → X be the
inclusion. Let F be a sheaf in Mod(kZ). Then

ΓΦ(X; iZ!F) ' ΓΦ|Z(Z;F).

ANNALES DE L’INSTITUT FOURIER
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2.2. Sheaves on o-minimal spectral spaces

Let M = (M,<, . . .) be our fixed arbitrary o-minimal structure. First
observe that in M we have the order topology generated by open definable
intervals and in Mk we have the product topology generated by the open
boxes. Thus every definable set X ⊆Mk has the induced topology and we
say that a definable subset Z ⊆ X is open (resp. closed) if it is open (resp.
closed) with the induced topology. Similarly, we can talk about continuous
definable maps f : X −→ Y between definable sets. This topology has
however a problem: in non-standard o-minimal structures definable sets
are usually totally disconnected and never connected or locally compact or
compact. So we have to introduce definable analogues of these and other
topological notions.

Since we do not want to restrict our work to the affine definable setting,
we introduce the notion of definable spaces. A definable space is a triple
(X, (Xi, φi)ki=1) where:

(i) X = ∪{Xi : i = 1, . . . , k};
(ii) each φi : Xi −→ M li is a bĳection such that φi(Xi) is a definable

subset of M li ;
(iii) for all j, φi(Xi ∩ Xj) is open in φi(Xi) and the transition maps
φij : φi(Xi ∩Xj) −→ φj(Xi ∩Xj) : x 7→ φj(φ−1

i (x)) are definable
homeomorphisms.

The dimension of a definable space X is defined as

dimX = max{dimφi(Xi) : i = 1, . . . , k}.

A definable space has a topology such that each Xi is open and the φi’s are
homeomorphisms: a subset U of X is an open in the basis for this topology
if and only if for each i, φi(U ∩Xi) is an open definable subset of φi(Xi).
We also say that a subset A of X is definable if and only if for each i,
φi(A∩Xi) is a definable subset of φi(Xi). A map between definable spaces
is definable if when it is read through the charts it is definable. Thus we
have the category of definable spaces with definable continuous maps.

We say that a definable space X is:

• definably connected if it is not the disjoint union of two open and
closed definable subsets;
• definably compact if for every continuous definable map σ : (a, b) ⊆
M ∪ {−∞,+∞} −→ X, the limits limt→a+ σ(t) and limt→b− σ(t)
exist and belong to X.

TOME 60 (2010), FASCICULE 4
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• definably locally compact if for every definably compact subset Z
with open definable neighborhood U in X, there is a definably com-
pact neighborhood of Z in U .
• definably normal if for every disjoint closed definable subsets Z1

and Z2 of X there are disjoint open definable subsets U1 and U2 of
X such that Zi ⊆ Ui for i = 1, 2.
• definable manifold of dimension n if φi(Xi) is an open definable

subset of Mn for every i = 1, . . . , k.
The o-minimal site on a definable space X is the category whose ob-

jects are open definable subsets of X, the morphisms are the inclusions
and the admissible covers are covers by open definable subsets with finite
subcoverings.

The following results are an easy adaptation of Propositions 6.4.1 and
6.3.3 of [19], replacing Tc with open definable (indeed we just need the site
generated by a family of open subsets closed under finite intersections and
whose coverings admit a finite subcover). The first result gives an easy way
to construct o-minimal k-sheaves:

Proposition 2.2. — Suppose that X be a definable space. Let F be a
k-presheaf on X relative to the o-minimal site on X and assume that:

(1) F(∅) = 0;
(2) for any U and V open definable subsets of X the canonical sequence

0 −→ F(U ∪ V ) −→ F(U)⊕F(V ) −→ F(U ∩ V )

is exact.
Then F is a k-sheaf on X relative to the o-minimal site on X.

The second result shows that in this setting the global sections functor
commutes with filtrant inductive limits:

Proposition 2.3. — Let U be a open definable subset of X and let
(F i)i∈I be a filtrant inductive family of sheaves on the o-minimal site as-
sociated to X. Then

Γ(U ; lim−→
i

F i) ' lim−→
i

Γ(U ;F i).

We define the o-minimal spectrum X̃ of a definable space X as in [5],
[6] and [21]: it is the set of ultrafilters of definable subsets of X. The o-
minimal spectrum X̃ of a definable space X is T0, quasi-compact and a
spectral topological space when equipped with the topology generated by
the open subsets of the form Ũ , where U is an open definable subset of X.

ANNALES DE L’INSTITUT FOURIER



O-MINIMAL VERDIER DUALITY 1265

That is: (i) it has a basis of quasi-compact open subsets, closed under taking
finite intersections; and (ii) each irreducible closed subset is the closure of
a unique point.

The dimension of the o-minimal spectrum X̃ of a definable space X is
defined as

dim X̃ = dimX.
By a constructible subset of X̃ we mean a subset of the form Ã where A

is a definable subset of X.
We also have the o-minimal spectrum f̃ : X̃ −→ Ỹ of a continuous

definable map f : X −→ Y between definable spaces: given an ultrafilter
α ∈ X̃, f̃(α) is the ultrafilter in Ỹ determined by the collection {A :
f−1(A) ∈ α}.

We now recall some results from [12] about this tilde functor. Note that
these results were stated in [12] in the category of definable sets but are
true in the category of definable spaces with exactly the same proofs.

As we saw in [12] we have:

Remark 2.4. — The tilde functor is an isomorphism between the boolean
algebra of definable subsets of a definable space X and the boolean algebra
of constructible subsets of its o-minimal spectrum X̃ and it commutes with
image and inverse image under definable maps.

Another useful property is the following result:

Theorem 2.5 ([12]). — Let X be a definable space. Then the following
hold:

(i) X is definably connected if and only if its o-minimal spectrum X̃
is connected.

(ii) X is definably normal if and only if its o-minimal spectrum X̃ is
normal.

Also we have the following shrinking lemma:

Proposition 2.6 ([12], The shrinking lemma). — Suppose that X is
a definably normal definable space (resp. a normal o-minimal spectrum
of a definable space). If {Ui : i = 1, . . . , n} is a covering of X by open
definable subsets (resp. open subsets) of X, then there are definable (resp.
constructible) open subsets Vi and definable (resp. constructible) closed
subsets Ki of X (1 6 i 6 n) with Vi ⊆ Ki ⊆ Ui and X = ∪{Vi : i =
1, . . . , n}.

Since the o-minimal spectrum of a definable space is quasi-compact, as
in the proof of Propositions 2.2 and 2.3, we have:

TOME 60 (2010), FASCICULE 4
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Remark 2.7. — Suppose thatX is an object in the category of o-minimal
spectra of definable spaces. Let F be a k-presheaf on X and assume that:

(1) F(∅) = 0;
(2) for any U and V open constructible subsets of X the canonical

sequence

0 −→ F(U ∪ V ) −→ F(U)⊕F(V ) −→ F(U ∩ V )

is exact.
Then F is a k-sheaf on X. Moreover sections on open constructible subsets
commute with filtrant lim−→.

We have a morphism of sites naturally induced by the above tilde functor
from the category of definable spaces with continuous definable maps into
the category of o-minimal spectral spaces with the o-minimal spectra of
continuous definable maps. This morphism of sites induces the following
isomorphism:

Theorem 2.8 ([12]). — Let X be a definable space. Then there is an
isomorphism between the category of k-sheaves on X relative to o-minimal
site on X and the category of k-sheaves on the o-minimal spectrum X̃ of
X relative to the spectral topology on X̃.

The isomorphism of Theorem 2.8 allowed the development of o-minimal
sheaf cohomology without supports in [12] by defining concepts and also
sometimes proving results via this tilde isomorphism. In this paper we will
continue to use this technique but allowing now the presence of supports.

We will now define the notion of family of supports on a definable set.
Our treatment of this will follow the corresponding theory in semi-algebraic
geometry in [8] (Chapter II, Sections 1 - 5) and in topological spaces in [4]
(Chapter I, Section 6 and Chapter II, Sections 9 - 13). Note also that since,
as we saw in [12], the role of paracompactness in sheaf theory on topological
spaces has to be replaced by normality in sheaf theory on o-minimal spectral
spaces, we will continue to do this here.

Definition 2.9. — Let X be a definable space. A family of definable
supports is a family of closed definable subsets of X such that:

(1) every closed definable subset of a member of Φ is in Φ;
(2) Φ is closed under finite unions.

Φ is said to be a family of definably normal supports if in addition:
(3) each element of Φ is definably normal;

ANNALES DE L’INSTITUT FOURIER
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(4) for each element S of Φ, if U is an open definable neighborhood of
S in X, then there exists a (closed) definable neighborhood of S in
U which is in Φ.

Example 2.10. — Let X be a definable space and let c be the collec-
tion of all definably compact definable subsets of X. Then c is a family of
definable supports on X. Moreover, if X is definably normal and definably
locally compact, then c will be a family of definably normal supports on X.

If Y is a definable subset of the definable space X and Φ a family of
definable supports on X, then we have families of definable supports

Φ ∩ Y = {A ∩ Y : A ∈ Φ}

and
Φ|Y = {A ∈ Φ : A ⊆ Y }

on Y .
If f : X −→ Z is a continuous definable map between definable spaces

and Φ is a family of definable supports on Z, then we have a family of
definable supports

f−1Φ = {A ⊆ X : A is closed, definable and ∃B ∈ Φ (A ⊆ f−1(B)}

on X.

Remark 2.11. — Note that a family of definable supports Φ on a defin-
able space X determines a family of supports

Φ̃ = {A ⊆ X̃ : A is closed and ∃B ∈ Φ (A ⊆ B̃)}

on the topological space X̃. By Remark 2.4 it follows that

Φ̃ ∩ Y = Φ̃ ∩ Ỹ , Φ̃|Y = Φ̃|Ỹ and f̃−1Φ = f̃−1Φ̃.

We will say that the family of supports on X̃ is constructible if it is obtained
by applying tilde to some family of definable supports on X.

By theorem 2.5 it follows that Φ is definably normal if and only if Φ̃ is
normal. Here, we say that Ψ is a family of normal supports on the spectral
topological space X̃ if is a family of supports and:

(1) each element of Ψ is normal;
(2) for each element S of Φ, if U is an open neighborhood of S in X̃,

then there exists a (closed) constructible neighborhood of S in U
which is in Φ.

TOME 60 (2010), FASCICULE 4
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Definition 2.12. — Let X be a definable space, Φ a family of definable
supports in X and F a k-sheaf on X relative to the o-minimal site on X.
We define the o-minimal sheaf cohomology groups with definable supports
in Φ via the tilde isomorphism of Theorem 2.8 by

H∗Φ(X;F) = H∗
Φ̃

(X̃; F̃),

where F̃ is the image of F via the isomorphism between the category of k-
sheaves on X relative to o-minimal site on X and the category of k-sheaves
on the o-minimal spectrum X̃ of X.

If f : X −→ Y is a continuous definable map, we define the induced
homomorphism

f∗ : H∗Φ(Y ;F) −→ H∗f−1Φ(X; f−1F)

in cohomology to be the same as the induced homomorphism

f̃∗ : H∗
Φ̃

(Ỹ ; F̃) −→ H∗
f̃−1Φ̃

(X̃; f̃−1F̃)

in cohomology of the continuous map f̃ : X̃ −→ Ỹ of topological spaces.

The proof of the o-minimal Vietoris-Begle theorem with supports below
is similar to its analogue without supports ([12] Theorem 4.3) using classical
arguments:

Theorem 2.13 (Vietoris-Begle theorem). — Let f : X −→ Y be a sur-
jective morphism in the category of o-minimal spectra of definable spaces
that maps constructible closed subsets of X onto closed subsets of Y . Let
F ∈ Mod(kY ), Φ a constructible family of supports on Y and suppose
that Y is a subspace of a normal space in the category of o-minimal spec-
tra of definable spaces. Assume that f−1(β) is connected and Hq(f−1(β);
f−1F|f−1(β)) = 0 for q > 0 and all β ∈ Y . Then the induced map

f∗ : H∗Φ(Y ;F) −→ H∗f−1Φ(X; f−1F)

is an isomorphism.

We have in this context the Eilenberg-Steenrod axioms with definable
supports adapted to the o-minimal site. Indeed, once we pass to the cat-
egory of o-minimal spectra of definable spaces the proofs of the exactness
and excision axioms are purely algebraic. See [4]. The dimension axiom
is also immeadiate. On the other hand, from the Vietoris-Begle theorem
(Theorem 2.13) we obtain:

ANNALES DE L’INSTITUT FOURIER
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Theorem 2.14 (Homotopy axiom). — Suppose that X is a definable
space and F is a k-sheaf on X relative to the o-minimal site on X. Let
[a, b] ⊆ M be a closed interval. Assume that M has definable Skolem
functions, X is definably normal and the projection π : X × [a, b] −→ X
maps closed definable subsets of X × [a, b] onto closed definable subsets of
X. If for d ∈ [a, b],

id : X −→ X × [a, b]
is the continuous definable map given by id(x) = (x, d) for all x ∈ X, then

i∗a = i∗b : HnΦ×[a,b](X × [a, b];π−1F) −→ HnΦ(X;F)

for all n ∈ N.

Proof. — The homotopy axiom will follow once we show that the pro-
jection map π : X × [a, b] −→ X induces an isomorphism

π∗ : HnΦ(X;F) −→ HnΦ×[a,b](X × [a, b];π−1F)

since by functoriality we obtain

i∗a = i∗b = (π∗)−1 : HnΦ×[a,b](X × [a, b];π−1F) −→ HnΦ(X;F)

for all n ∈ N. Equivalently we need to show that

π̃∗ : Hn
Φ̃

(X̃; F̃) −→ Hn
Φ̃×[a,b]

( ˜X × [a, b]; π̃−1F̃)

is an isomorphism. For this we need to verify the hypothesis of the Vietoris-
Begle theorem (Theorem 2.13), but this was done in the proof of the homo-
topy axiom for o-minimal sheaf cohomology without supports ([12] Theo-
rem 4.4). �

Remark 2.15. — In this context we also have the exactness for triples
of closed definable subsets and the Mayer-Vietoris theorem for Φ-excisive
pairs of definable sets. See [4].

3. Φ-soft sheaves

The results we present below are in the category of o-minimal spectra
of definable spaces but by the isomorphism of Theorem 2.8 they have a
suitable, but more restrictive, analogue in the category of definable spaces.
In fact these results are the analogue of classical results on paracompact-
ifying families of supports on topological spaces ([4]) adapted to normal
and constructible families of supports on spectral spaces.

TOME 60 (2010), FASCICULE 4
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3.1. Normal and constructible supports

We start the subsection with the following useful result:

Proposition 3.1. — Assume that X is an object in the category of o-
minimal spectra of definable spaces and let (Fi)i∈I be a filtrant inductive
family of sheaves in Mod(kX) and Φ a constructible family of supports on
X. Then

ΓΦ(X; lim−→
i∈I
Fi) = lim−→

i∈I
ΓΦ(X;Fi).

Proof. — First observe that by definition for any G ∈ Mod(kX) we have

ΓΦ(X;G) = lim−→
S∈Φ

ΓS(X;G).

Thus it is enough to show that for each S ∈ Φ constructible we have

ΓS(X; lim−→
i∈I
Fi) = lim−→

i∈I
ΓS(X;Fi).

For this consider the following commutative diagram where the vertical
arrows are the canonical maps

0 // lim−→
i∈I

ΓS(X;Fi)

��

// lim−→
i∈I

Γ(X;Fi)

��

// lim−→
i∈I

Γ(X \ S;Fi)

��

0 // ΓS(X; lim−→
i∈I
Fi) // Γ(X; lim−→

i∈I
Fi) // Γ(X \ S; lim−→

i∈I
Fi).

The rows are exact by definition of ΓS (i.e. ΓS(X;G) = ker(Γ(X;G) →
Γ(X \ S;G) for any G ∈ Mod(kX)) and by the exactness of filtrant lim−→.
Since X and X \S are open constructible subsets of X and sections on open
constructible subsets commute with filtrant lim−→ (Remark 2.7), it follows
that the two vertical arrows on the right are isomorphisms. Hence the first
vertical arrow is also an isomorphism as required. �

The following lemma is fundamental in this Subsection:

Lemma 3.2. — Assume that Z is a subspace of a normal space X in the
category of o-minimal spectra of definable spaces, G is a sheaf in Mod(kZ)
and Y is a quasi-compact subset of Z. Then the canonical morphism

lim−→
Y⊆U

Γ(U ∩ Z;G) −→ Γ(Y ;G|Y )

where U ranges through the family of open constructible subsets of X, is
an isomorphism.
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Proof. — Since Y is quasi-compact, the family of open neighborhoods of
Y in Z of the form V ∩ Z where V is an open constructible subset of X is
a fundamental system of neighborhoods of Y in Z. Hence, the morphism
of the lemma is certainly injective.

To prove that it is surjective, consider a section s ∈ Γ(Y ;G|Y ). There is a
covering {Uj : j ∈ J} of Y by open constructible subsets of X and sections
sj ∈ Γ(Uj ∩ Z;G|Uj∩Y ), j ∈ J , such that sj|Uj∩Y = s|Uj∩Y . Since Y is
quasi-compact, we can assume that J is finite, and so ∪{Uj : j ∈ J} is an
open constructible subset of X. Since X is normal, by the shrinking lemma
(Proposition 2.6), there are open constructible subsets {Vj : j ∈ J} of this
union such that V j ⊆ Uj for every j ∈ J and Y ⊆ ∪{Vj : j ∈ J}. For x ∈ Z
set J(x) = {j ∈ J : x ∈ V j}. Each x has a constructible neighborhood Wx
with J(y) ⊆ J(x) for each y ∈Wx. This is defined by

Wx =
( ⋂
x∈Vl

Vl ∩
⋂
j∈J(x)

Uj

)
\
⋃
k/∈J(x)

V k.

Observe that for all i, j ∈ J(x) we have thatWx is an open subset of both Ui
and Uj . Hence, for every i, j ∈ J(x) we have si|Wx∩Y = s|Wx∩Y = sj|Wx∩Y .
So, for y ∈Wx ∩ Y , we have (si)y = (sj)y for any i, j ∈ J(x). This implies
that the set

W =

x ∈ ( ⋃
j∈J
Vj

)
∩ Z : (si)x = (sj)x for any i, j ∈ J(x)


contains Y (clearly Y ⊆

⋃
x∈ZWx ∩ Y ⊆ (

⋃
j∈J Vj) ∩ Z). On the other

hand, the condition (si)z = (sj)z for any i, j ∈ J(x) and the fact that J(x)
is finite implies that z has an open neighborhood in Z on which si = sj
for any i, j ∈ J(x). Thus W is an open neighborhood of Y in Z. Since
Y is quasi-compact we may assume that W is of the form U ∩ Z for some
open constructible subset U of X. Since si|W∩Vi∩Vj = sj|W∩Vi∩Vj there exists
t ∈ Γ(W ;G) such that t|W∩Vj = sj|W∩Vj . This proves that the morphism
is surjective. �

A general form of Lemma 3.2 is:

Lemma 3.3. — Assume that X is an object in the category of o-minimal
spectra of definable spaces, Z is a subspace of X, G is a sheaf in Mod(kZ),
Φ is a normal and constructible family of supports on X and Y is a subset
of Z such that D∩Y is a quasi-compact subset for every D ∈ Φ. Then the
canonical morphism

lim−→
Y⊆U

ΓΦ∩U∩Z(U ∩ Z;G) −→ ΓΦ∩Y (Y ;G|Y )
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where U ranges through the family of open constructible subsets of X, is
an isomorphism.

Proof. — Let us prove injectivity. Let s ∈ ΓD∩U∩Z(U∩Z;G), withD ∈ Φ
and U ⊃ Y open constructible subset of X and such that s|D∩Y = 0.
Since Φ is a normal and constructible family of supports on X, there is a
constructible and normal E ∈ Φ which is a closed neighborhood of D in X.
Thus D∩Z is a subspace of a normal space E in the category of o-minimal
spectra of definable spaces and D ∩ Y is a quasi-compact subset of D ∩Z.
By Lemma 3.2 applied to E, D∩Z and D∩Y , there exists an open (in E)
constructible neighborhood V ′ of D∩Y such that s|V ′∩D∩Z = 0. Of course
we may assume that V ′ = V ∩ E for some open constructible subset V of
X. So there exists an open (in X) constructible neighborhood V of D ∩ Y
such that s|V ∩D∩Z = 0. Also, by replacing V with its intersection with U
if necessary we may assume that V ⊆ U. Set W = V ∪ (U \D). Then W is
open constructible in X, Y ⊆W ⊆ U and s|W∩Z = 0.

Let us prove that the morphism is surjective. Let s ∈ ΓΦ∩Y (Y ;G|Y ) and
consider normal constructible sets C, D and E in Φ such that D is a closed
neighborhood of C in X, E is a closed neighborhood of D in X and the
support of s is contained in C∩Y . We shall find t̃ ∈ ΓD(U ∩Z;G) such that
t̃|Y = s. After applying Lemma 3.2 above to E, D∩Z and D∩Y we see that
there exists an open in E\∂E (and hence in X) constructible neighborhood
V of D ∩ Y and a section t ∈ Γ(V ∩D ∩ Z;G) such that t|D∩Y = s|D∩Y .
Since t|∂D∩Y = 0, then each point x of ∂D ∩ Y has an open constructible
neighborhood Wx ⊂ V such that t|Wx∩D∩Z = 0. Using quasi-compactness
of ∂D∩Y (it is closed on the quasi-compact set D∩Y ), there exists a finite
number of points x1, . . . , xn such that ∂D ∩Y ⊂

⋃n
i=1Wxi :=W . We have

t|W∩D∩Z = 0 and W is open constructible. Let U1 = (V ∩ (D \ ∂D)) ∪W .
Then U1 is open constructible and D ∩ Y ⊆ U1 ⊆ V . Define t′´ ∈ Γ(U1 ∩
Z;G) by: t′|V ∩(D\∂D)∩Z = t|V ∩(D\∂D)∩Z and t′|W∩Z = 0. This is well defined
since t|W∩D∩Z = 0 and (V ∩(D\∂D)∩Z)∩(W ∩Z) ⊆W ∩D∩Z. Observe
also that t′|U1∩D∩Z = t. Let U2 = X \ D. Then U = U1 ∪ U2 is open
constructible, Y ⊆ U , U1 ∩ U2 ⊆ W and we can define t̃ ∈ Γ(U ∩ Z;G)
in the following way: t̃|U1∩Z = t′|U1∩Z , t̃|U2∩Z = 0. It is well defined since
t′|W∩Z = 0 and U1 ∩ U2 ⊂ W . Moreover supp t̃ ⊆ D and t̃|Y = s as
required. �

Recall that a sheaf F on a topological space X with a family of supports
Φ is Φ-soft if and only if the restriction Γ(X;F) −→ Γ(S;F|S) is surjective
for every S ∈ Φ. If Φ consists of all closed subsets of X, then F is simply
called soft.
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Proposition 3.4. — Let X be a topological space and F is a sheaf in
Mod(kX). If Φ is a family of supports on X such that every C ∈ Φ has a
neighborhood D in X with D ∈ Φ. Then the following are equivalent:

(1) F is Φ-soft;
(2) F|S is soft for every S ∈ Φ;
(3) ΓΦ(X;F) −→ ΓΦ|S (S;F|S) is surjective for every closed subset S

of X;
If in addition X is an object in the category of o-minimal spectra
of definable spaces and Φ is a constructible family of supports on
X, then the above are also equivalent to:

(4) F|Z is soft for every constructible subset Z of X which is in Φ;
If moreover Φ is a normal and constructible family of supports on
X, then the above are also equivalent to:

(5) Γ(X;F) −→ Γ(Z;F|Z) is surjective for every constructible subset
Z of X which is in Φ;

Proof. — The equivalence of (1), (2) and (3) is shown in [4] Chapter II,
9.3. (Our hypothesis is sufficient in the proof given there). The equivalence
of (2) and (4) is obvious since every S ∈ Φ is contained in some constructible
subset of X which is in Φ.

Clearly (1) implies (5). Assume (5) and let S ∈ Φ and s ∈ Γ(S;F|S). Since
Φ is normal and constructible, there is a normal closed and constructible
neighborhood D of S which is in Φ. By Lemma 3.2, s can be extended to a
section t ∈ Γ(W ;F) of F over a neighborhood W of S in D. Applying the
shrinking lemma we find a closed constructible neighborhood Z of S in W .
Since D ∈ Φ we have Z ∈ Φ. So t|Z ∈ Γ(Z;F|Z), (t|Z)|S = s and t|Z can
be extended to X by (5). Hence, (5) implies (1). �

Corollary 3.5. — Assume that X is an object in the category of o-
minimal spectra of definable spaces and Φ is a normal and constructible
family of supports on X. Then filtrant inductive limits of Φ-soft sheaves in
Mod(kX) are Φ-soft.

Proof. — It follows combining Propositions 3.1 and 3.4 (5) and the ex-
actness of filtrant inductive limits. �

The following topological result will also be useful below:

Proposition 3.6. — Let X be a topological space and Φ is a family of
supports on X such that every C ∈ Φ has a neighborhood D in X with
D ∈ Φ. Let W be a locally closed subset of X. The following hold:

(i) if F ∈ Mod(kX) is Φ-soft, then F |W is Φ|W -soft.
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(ii) G in Mod(kW ) is Φ|W -soft if and only if iW !G is Φ-soft.
(iii) if F ∈ Mod(kX) is Φ-soft, then FW is Φ-soft.

Proof. — (i) If W is open it is obvious. If W is closed it follows from
Proposition 3.4 (3). Combining these two cases (i) follows.

(ii) The “if ” part follows from Proposition 3.4 (2). For the “only if” part
note that by Proposition 2.1 (applied to X and S respectively and using
the fact that (Φ|S)|W = Φ|W∩S) we have ΓΦ(X; iW !G) ' ΓΦ|W (W ;G) and
ΓΦ|S(S; iW !G) = ΓΦ|W∩S(S ∩W ;G) for any closed subset S of W . Then
apply Proposition 3.4 (3).

(iii) The result follows from (i) and (ii), since FW = iW !F|W . �

A special and useful case of Proposition 3.6 is when X is an object in the
category of o-minimal spectra of definable spaces and Φ is a normal and
constructible family of supports on X.

Proposition 3.7. — Assume that X is an object in the category of o-
minimal spectra of definable spaces, Φ is a normal and constructible family
of supports on X and Y is a subspace of X such that D ∩ Y is a quasi-
compact subset for every D ∈ Φ. Then the full additive subcategory of
Mod(kY ) of Φ ∩ Y -soft k-sheaves is ΓΦ∩Y (Y ; •)-injective, i.e.:

(1) For every F ∈ Mod(kY ) there exists a Φ ∩ Y -soft F ′ ∈ Mod(kY )
and an exact sequence 0→ F → F ′.

(2) If 0 → F ′ → F → F ′′ → 0 is an exact sequence in Mod(kY ) and
F ′ is Φ ∩ Y -soft, then 0 −→ ΓΦ∩Y (Y ;F ′) −→ ΓΦ∩Y (Y ;F) −→
ΓΦ∩Y (Y ;F ′′) −→ 0 is an exact sequence.

(3) If 0 → F ′ → F → F ′′ → 0 is an exact sequence in Mod(kY ) and
F ′ and F are Φ ∩ Y -soft, then F ′′ is Φ ∩ Y -soft.

Proof. — The result for the full additive subcategory of Mod(kY ) of in-
jective (and flabby) k-sheaves is classical for topological spaces (see for
example [18], Proposition 2.4.3). Thus (1) holds for the Φ ∩ Y -soft case
since injective k-sheaves are Φ ∩ Y -soft.

We now prove (2). Let s′′ ∈ ΓΦ∩Y (Y,F ′′). Then since Φ is normal and
constructible, supp s′′ ⊂ V , with V open constructible in X and V ∈ Φ.
Now, let us consider the exact sequence

0→ F ′V ∩Y → FV ∩Y → F
′′
V ∩Y → 0.

By Proposition 3.6 (iii) we have that F ′Y ∩V is still Φ ∩ Y -soft. Replac-
ing F ′,F ,F ′′ with F ′V ∩Y ,FV ∩Y ,F

′′
V ∩Y we are reduced to prove that the

sequence
0→ Γ(Y ;F ′)→ Γ(Y ;F)→ Γ(Y ;F ′′)→ 0
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is exact when Y = Y ∩V . Let s′′ ∈ Γ(Y ;F ′′), and let {Di}ni=1, Di ∈ Φ∩Y
be a finite covering of Y such that there exists si ∈ Γ(Di;F) whose image
is s′′|Di . There exists such a covering since Φ is normal and Y ∩V is quasi-
compact. For n > 2 on D1 ∩D2 s1 − s2 defines a section of Γ(D1 ∩D2;F ′)
which extends to s′ ∈ Γ(Y ;F ′) since F ′ is Φ ∩ Y -soft. Replace s1 with
s1 − s′. We may suppose that s1 = s2 on D1 ∩ D2. Then there exists
s̃ ∈ Γ(D1 ∪ D2;F) such that s̃|Di = si, i = 1, 2. Thus the induction
proceeds.

Finally, (3) follows at once from (2) by a simple diagram chase using
Proposition 3.4 (3): let Z be a set in Φ ∩ Y and consider the following
commutative diagram

ΓΦ∩Y (Y ;F)

α

��

δ // ΓΦ∩Y (Y ;F ′′)

γ

��
ΓΦ∩Y ∩Z(Z;F|Z) β // ΓΦ∩Y ∩Z(Z;F ′′|Z).

By hypothesis on F , α is surjective. By (2) β is surjective. Therefore, γ is
surjective as required. �

Hence, if X is an object in the category of o-minimal spectra of definable
spaces, Φ is a normal and constructible family of supports on X and Y is a
subspace of X such that D∩Y is a quasi-compact subset for every D ∈ Φ.
Then one can take a Φ ∩ Y -soft resolution of F to compute H∗Φ∩Y (Y ;F).

Example 3.8. — Some particular cases of Proposition 3.7 are:
• if Y = U is open constructible such that U ∈ Φ, then the family of

Φ ∩ U -soft sheaves in Mod(kU ) is Γ(U ; •)-injective.
• If Y = D ∈ Φ, then the family of Φ|D-soft sheaves in Mod(kD) is

Γ(D; •)-injective.

Corollary 3.9. — Assume that X is an object in the category of o-
minimal spectra of definable spaces. Suppose either that Φ is a normal and
constructible family of supports on X and W is a (constructible) locally
closed subset of X or that Φ is any family of supports on X and W is a
closed subset of X. If F ∈ Mod(kW ), then

H∗Φ(X; iW !F) = H∗Φ|W (W ;F).

Proof. — The second case is covered by [4] Chapter II, 10.1. If W is
closed in an open subset U of X, then Φ|U is a normal and constructible
family of supports on U and Φ|W = Φ|U ∩W. And the result follows from
Propositions 3.7, 3.6 (ii) and 2.1. �
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The following will be useful in the next subsection:

Proposition 3.10. — Assume that X is an object in the category of
o-minimal spectra of definable spaces, F is a sheaf in Mod(kX) and Φ is
a normal and constructible family of supports on X. The following are
equivalent:

(1) F is Φ-soft;
(2) FU is ΓΦ-acyclic for all open and constructible U ⊆ X;
(3) H1

Φ(X;FU ) = 0 for all open and constructible U ⊆ X;

Proof. — (1) ⇒ (2) follows from Propositions 3.7 and 3.6 (iii). (2) ⇒
(3) is trivial. To show that (3) implies (1), consider a constructible closed
set C in Φ and the exact sequence 0 −→ FX\C −→ F −→ FC −→ 0. The
associated long exact cohomology sequence

· · · → ΓΦ(X;F)→ ΓΦ(X;FC)→ H1
Φ(X;FX\C)→ . . .

shows that ΓΦ(X;F) −→ ΓΦ(X;FC) is surjective. Hence F is Φ-soft by
Proposition 3.4 (5). �

3.2. Cohomological Φ-dimension

Recall that for a topological spaceX and Φ a family of supports onX, the
cohomological Φ-dimension of X is the smallest n such that HqΦ(X;F) = 0
for all q > n and all sheaves F in Mod(kX).

The following holds:

Proposition 3.11. — Assume that X is an object in the category of
o-minimal spectra of definable spaces and Φ is a normal and constructible
family of supports on X. Let F be a sheaf in Mod(kX). Then the following
are equivalent:

(1) If 0 −→ F −→ I0 −→ I1 −→ · · · −→ In −→ 0 is an exact sequence
of sheaves in Mod(kX) such that Ik is Φ-soft for 0 6 k 6 n − 1.
Then In is Φ-soft.

(2) F has a Φ-soft resolution of length n;
(3) HkΦ(X;FU ) = HkΦ|U (U ;F|U ) = 0 for all open and constructible
U ⊆ X and all k > n.

Proof. — The result follows from Proposition 3.10 (2) and is a particular
case of a general result of homological algebra ([18], Exercise I.19): let F be
a left exact functor and let J be the family of F -acyclic objects. Suppose
that J is cogenerating. Then (1) ⇔ (2) ⇔ (3) with J instead of Φ-soft
and F instead of ΓΦ(X; (•)U ). �
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Theorem 3.12. — Let X be an object in the category of o-minimal
spectra of definable spaces and let Φ be a normal and constructible family
of supports on X. Then the cohomological Φ-dimension of X is bounded
by dimX.

Proof. — To prove our theorem we will use (1) of Proposition 3.11. Let
n = dimX. Then, in this situation it suffices to prove that In|Z is soft for
every constructible subset Z of X which is in Φ (Proposition 3.4 (4)). Since
Φ is normal, there is a constructible neighborhood Y of Z in X which is in
Φ. If we show that In|Y is soft, then it will follow that In|Z is soft (Proposition
3.4 (2)).

Let U be an open and constructible subset of Y . By hypothesis and
Proposition 3.10 each (Ik|Y )U is acyclic for 0 6 k 6 n − 1. Let Zk =
ker((Ik|Y )U −→ (Ik+1

|Y )U ). Then the long exact cohomology sequences of
the short exact sequences 0 −→ Zk −→ (Ik|Y )U −→ Zk+1 −→ 0 show that

Hq(Y ; (In|Y )U ) = Hq(Y ;Zn) = Hq+1(Y ;Zn−1) = · · ·

= Hq+n(Y ;Z0) = Hq+n(Y ; (F|Y )U ).

Since Y is normal, constructible and dim Y = n we have Hq(Y ;G) = 0 for
q > n and every sheaf G on Y ([12] Proposition 4.2). Thus H1(Y ; (In|Y )U ) =
0. Since U was an arbitrary open and constructible subset of Y , it follows
from Proposition 3.10 that In|Y is soft as required. �

Proposition 3.13. — Assume that X is an object in the category of
o-minimal spectra of definable spaces and Φ is a normal and constructible
family of supports on X. If G ∈ Mod(kX) is Φ-soft, then for every F ∈
Mod(kX) we have that G ⊗ F ∈ Mod(kX) is Φ-soft.

Proof. — By Theorem 3.12, X has finite cohomological Φ-dimension.
Suppose that the cohomological Φ-dimension of X is n. Since the family of
the constant sheaves {kU}, U constructible open subset of X is generating,
there is a resolution of F

Pn−1
∂n−1→ Pn−2 · · · P1

∂1→ P0 → F → 0

where the Pi’s are direct sums of sheaves of the form kU , U constructible
(see [18], Proposition 2.4.12). From Proposition 3.6 (iii) it follows that
GU ' G ⊗ kU is Φ-soft. Since the direct sum of Φ-soft sheaves in Mod(kX)
is Φ-soft (Corollary 3.5) each G ⊗ Pi is Φ-soft.

From the resolution above we obtain an exact sequence of sheaves

G ⊗ Pn−1
∂n−1→ G ⊗Pn−2 · · · → G ⊗ P1

∂1→ G ⊗P0 → G ⊗F → 0.
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By Proposition 3.11, since G⊗Pi is Φ-soft for i = 0, . . . , n−2, we conclude
that G ⊗ F is Φ-soft. �

4. Duality with coefficient in a field

In this section we will work in the category of definable spaces with
continuous definable maps and k-sheaves on such spaces will be considered
always relative to the o-minimal site. In our results we will have a definably
normal, definably locally compact definable space X and the family of
definable supports c on X of definably compact definable subsets of X. By
Example 2.10 and Remark 2.11 the corresponding constructible family of
supports on the o-minimal spectra of X will be a normal and constructible
family of supports. Hence, by the tilde isomorphism in the category of k-
sheaves given by Theorem 2.8 and our Definition 2.12, in our proofs we will
apply the results of Section 3 since they transfer to this definable setting.

Remark 4.1. — We observe that since all the results of this section
depend only on Section 3, they hold on an arbitrary definable space X
replacing c by a definably normal family of definable supports Φ on X.
In particular, these results hold on any definable space X on which c is a
definably normal family of definable supports.

4.1. Sheaves of linear forms

Here we shall work with a fixed field k. For a k-vector space N we let
N ∨ denote the dual k-vector space, i.e. N ∨ = Homk(N, k).

Let X be a definably normal, definably locally compact definable space
and F a k-sheaf on X. From now on, given a locally closed subset Z of
X, we will write Γc(Z;F) instead of Γc|Z(Z;F) for short. The inclusion
V −→ U of two open definable subsets of X will induce a map

Γc(X;FV ) //

o
��

Γc(X;FU )

o
��

Γc(V ;F) // Γc(U ;F)

“extension by zero”. (Where the vertical isomorphisms are a consequence
of Proposition 2.1 with Φ = c). The k-linear dual of this

Γc(U ;F)∨ −→ Γc(V ;F)∨
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gives rise to restriction maps in a presheaf F ∨ defined by

Γ(U ;F ∨) = Γc(U ;F)∨.

Proposition 4.2. — Let X be a definably normal, definably locally
compact definable space. For every c-soft k-sheaf F on X, the presheaf F ∨
is a sheaf.

Proof. — By Proposition 2.2, it is enough to show that for any two open
definable subsets W and V of X the sequence

0 −→ Γ(V ∪W ;F ∨) −→ Γ(V ;F ∨)⊕ Γ(W ;F ∨) −→ Γ(V ∩W ;F ∨)

formed by the sum and difference between two restriction maps is exact.
Consider the Mayer-Vietoris sequence

0 −→ Γc(V ∩W ;F) −→ Γc(V ;F)⊕ Γc(W ;F)

−→ Γc(V ∪W ;F) −→ H1
c (V ∩W ;F)

and notice that H1
c (V ∩W ;F) = 0 since the restriction of F to V ∩W is

c-soft by Proposition 3.6 (i). The result now follows by taking the k-linear
dual of the Mayer-Vietoris sequence. �

Proposition 4.3. — Let X be a definably normal, definably locally
compact definable space. Let G be a c-soft k-sheaf on X. There is a natural
isomorphism

Γc(X;F ⊗ G)∨ ' Hom(F ,G ∨)
as F varies through the category of k-sheaves on X.

Proof. — Let U be an open definable subset. Consider the natural maps

Γ(U ;F)⊗ Γc(U ;G) −→ Γc(U ;F ⊗ G)→ Γc(X;F ⊗ G)

The dual of the composite can be written

Γc(X;F ⊗ G)∨ −→ Hom(Γ(U ;F),Γc(U ;G)∨)

By variation of U this defines a map

(4.1) Γc(X;F ⊗ G)∨ −→ Hom(F ,G ∨)

which we must show that it is an isomorphism.
(i) First we consider the case where F = kU where U is an open definable

subset. We have

Γc(X;GU )∨ = Γc(U ;G)∨ = Γ(U ;G ∨) = Hom(kU ,G ∨).

These identifications transform the map (4.1) into the identity.
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(ii) For the general case, consider a presentation of F of the form

P −→ Q −→ F −→ 0

where P and Q are direct sums of sheaves of the form kU as above (see
[18], Proposition 2.4.12). Let us consider the following diagram with exact
rows

0 // Γc(X;F ⊗ G)∨

��

// Γc(X;Q⊗ G)∨

��

// Γc(X;P ⊗ G)∨

��
0 // Hom(F ,G ∨) // Hom(Q,G ∨) // Hom(P,G ∨).

The two functors of (4.1) transform direct sums into direct products. It
follows that the two vertical maps to the right are isomorphisms. Then it
follows from the five lemma that the first vertical arrow is an isomorphism.

�

Corollary 4.4. — LetX be a definably normal, definably locally com-
pact definable space. Let G be a c-soft k-sheaf on X. Then the sheaf G ∨ is
injective in the category of k-sheaves on X.

Proof. — By Proposition 4.3, we must show that

F 7→ Γc(X;F ⊗ G)∨

is an exact functor. But this follows from Propositions 3.13 and 3.7 and
the exactness of ∨ in Mod(k). �

4.2. Verdier duality

If X is a definably normal, definably locally compact definable space we
will let D+(kX) denote the derived category of bounded below complexes
of k-sheaves on X. We are now ready to prove our main result:

Theorem 4.5 (Verdier duality). — Let X denote a definably normal,
definably locally compact definable space. Then there exists an object D∗
in D+(kX) and a natural isomorphism

RHom(F∗,D∗) ' RHom(RΓc(X;F∗), k)

as F∗ varies through D+(kX).
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Proof. — For a complex L∗ of k-vector spaces we put L∗∨ = Hom∗(L∗, k)
with the notation of [17] I.4.3. Notice also that L∗∨ is a complex of k-vector
spaces whose p’th differential is given by

(−1)p+1(∂−p−1)∨ : (L−p)∨ −→ (L−p−1)∨.

This formula will also be used to extend the functor G 7→ G ∨ on the
category of k-sheaves on X given by Proposition 4.2 to complexes of k-
sheaves.

By Theorem 3.12 X has finite cohomological c-dimension, hence by
Proposition 3.11 (1) the constant sheaf kX admits a bounded c-soft resolu-
tion G∗. By Corollary 4.4, G∗∨ is a bounded complex of injective k-sheaves.
For an injective complex I∗ quasi-isomorphic to F∗ in the derived category
of bounded below complexes of k-sheaves on X and integers p and q we
have, by Proposition 4.3, a canonical isomorphism

Γc(X; Ip ⊗ Gq)∨ = Hom(Ip,Gq∨).

giving an isomorphism of complexes

(4.2) Γc(X; I∗ ⊗ G∗)∨ = Hom∗(I∗,G∗∨).

From the quasi-isomorphism kX −→ G∗ we deduce a quasi-isomorpism

Γc(X; I∗ ⊗ G∗)∨ −→ Γc(X; I∗)∨

which yields a final quasi-isomorphism

(4.3) Hom∗(I∗,G∗∨) −→ Γc(X; I∗)∨.

Finally put D∗ = G∗∨. �

The complex D∗ above is called the dualizing complex. It is a bounded
below complex of injective k-sheaves uniquely determined up to homotopy
and so the cohomology k-sheaves HpD∗, p ∈ Z, are uniquely determined
up to isomorphism.

The proof above shows the following:

Remark 4.6. — The dualizing complex for a definably normal, definably
locally compact definable space of cohomological c-dimension n can be
represented by a complex D∗ of injective k-sheaves where

Di = 0 for i /∈ [−n, 0].

Recall that the inclusion V −→ U of open definable subsets of X give
rise to the extension by zero map

Hpc (V ; kX) −→ Hpc (U ; kX)
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whose k-linear dual

Hpc (U ; kX)∨ −→ Hpc (V ; kX)∨

gives rise to a presheaf U 7→ Hpc (U ; kX)∨.

Proposition 4.7. — Let D∗ denote the dualizing complex for the defin-
ably normal, definably locally compact definable space X. For any integer
p, the cohomology k-sheaf H−pD∗ is the sheaf associated to the k-presheaf

U 7→ Hpc (U ; kX)∨.

Proof. — Recall the isomorphism Hpc (U ; kX) ' Hpc (X; kU ). Passing to
the dual and using Theorem 4.5 we have the chain of isomorphisms

Hpc (U ; kX)∨ ' Hpc (X; kU )∨ ' H−pHom(kU ,D∗) ' H−p(U ;D∗)

and the result follows since H−pD∗ is the k-sheaf associated to the k-
presheaf U 7→ H−p(U ;D∗). �

Corollary 4.8. — On a definably normal, definably locally compact
definable space X of cohomological c-dimension n, the k-presheaf

U 7→ Hnc (U ; kX)∨

is a k-sheaf.

Proof. — By Remark 4.6 we have an exact sequence

0 −→ Γ(U ;H−nD∗) −→ Γ(U ;D−n) −→ Γ(U ;D−n+1).

On the other hand H−n(U ;D∗) = ker(Γ(U ;D−n) → Γ(U ;D−n+1). More-
over, as we saw above

H−n(U ;D∗) ' Hnc (U ; kX)∨.

Then Γ(U ;H−nD∗) ' Hnc (U ; kX)∨ and the result follows. �

4.3. Poincaré and Alexander duality

Here we derive Poincaré and Alexander duality from the Verdier duality.

Definition 4.9. — Let X be a definably normal, definably locally com-
pact definable manifold of dimension n. We say that X has an orientation
k-sheaf if for every open definable subset U of X there exists a finite cover
of U by open definable subsets U1, . . . , U` of U such that for each i we have

Hpc (Ui; kX) =

{
k if p = n
0 if p 6= n.
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If X has an orientation sheaf, we call the k-sheaf OrX on X with sections

Γ(U ;OrX) = Hnc (U ; kX)∨

the orientation k-sheaf on X. By Theorem 3.12, the cohomological c-
dimension of X is n and Hnc (Ui; kX) = Hnc (X; kUi) 6= 0 for i = 1, . . . , `,
hence X must have cohomological c-dimension n. So OrX is indeed a k-
sheaf on X by Corollary 4.8).

Note also that, since the o-minimal spectra X̃ of X is a quasi-compact
(spectral) topological space, X has an orientation k-sheaf if and only if for
every β ∈ X̃ and every open definable subset V of X such that β ∈ Ṽ ,
there is an open definable subset U of V such that β ∈ Ũ and

Hpc (U ; kX) =

{
k if p = n
0 if p 6= n.

Example 4.10. — Suppose that M is an o-minimal expansion of an
ordered field. Let X be a Hausdorff definable manifold of dimension n.
Since then X is affine and every definable set is definably normal, X is
definably normal ([23] Chapter 6, Lemma 3.5). Since also X and any open
definable subset of X can be covered by finitely many definable sub-balls
([11] Theorem 1.2), X is definably locally compact and, computing the
o-minimal cohomology with definably compact supports of definable sub-
balls, it follows that X has an orientation k-sheaf. Observe that the result
on coverings by definable sub-balls is related to [2] Theorem 4.3 (and can be
read off from the proofs of Lemmas 4.1 and 4.2 there) and also to Wilkie’s
result ([24] Theorem 1.3) which says that every bounded open definable set
can be covered by finitely open cells.

Let X be a definably normal, definably locally compact definable man-
ifold of dimension n with an orientation k-sheaf OrX . Then the k-sheaf
OrX is locally isomorphic to kX .

Theorem 4.11 (Poincaré duality). — Let X be a definably normal,
definably locally compact definable manifold of dimension n with an orien-
tation k-sheaf OrX . There exists an isomorphism

Hp(X;OrX) −→ Hn−pc (X; kX)∨.

Proof. — Proposition 4.7 and the fact that X has an orientation k-sheaf,
imply that

H−pD∗ = 0 ; p 6= n.
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On the other hand, by Corollary 4.8 we have H−nD∗ = OrX . Thus we
have a quasi-isomorphism

(4.4) OrX [n] ' D∗

Therefore we have

Hp(X;OrX) ' Hp−n(X;D∗) ' Hp−nHom(kX ,D∗).

By Verdier duality (Theorem 4.5) with F∗ = kX the later is also isomorphic
to Hn−pc (X; kX)∨. �

Definition 4.12. — Let X be a definably normal, definably locally
compact definable manifold of dimension n with an orientation k-sheaf
OrX . By a k-orientation we understand an isomorphism

kX ' OrX
of k-sheaves. We shall say that X is k-orientable if a k-orientation exists
and k-unorientable in the opposite case.

Proposition 4.13. — Let X be a definably connected, definably nor-
mal, definably locally compact definable manifold of dimension n with an
orientation k-sheaf OrX . Then

(1) Hnc (X; kX) ' k if X is k-orientable.
(2) Hnc (X; kX) ' 0 if X is k-unorientable.

Proof. — Since X is definably normal and definably connected, Proposi-
tion 4.1 in [12] implies that H0(X; kX) = k and so (1) follows at once from
the Poincaré duality (Theorem 4.11).

For (2), suppose that Hnc (X; kX) 6= 0. Then by Theorem 4.11 there is a
non trivial section s of OrX over X. By our Definition 2.12, the support of
s is a closed subset of the o-minimal spectrum of X. Since OrX is locally
isomorphic to kX it follows that the support of s is also an open subset of
the o-minimal spectrum of X. But since the o-minimal spectrum of X is
connected (Theorem 2.5) it follows that the support of s is the o-minimal
spectrum of X. Thus OrX ' kX . �

Theorem 4.14 (Alexander duality). — Let X be a definably normal,
definably locally compact, k-orientable definable manifold of dimension n.
For Z a closed definable subset of X there exists an isomorphism

HpZ(X; kX) −→ Hn−pc (Z; kX)∨.

Proof. — By (4.4) we have HpZ(X; kX) ' Hp−nZ (X;D∗) '
Hp−nHom(kZ ,D∗). By Verdier duality (Theorem 4.5) with F∗ = kZ the
later is also isomorphic to Hn−pc (X; kZ)∨ ' Hn−pc (Z; kX)∨. �
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4.4. Duality in o-minimal expansions of fields

In this subsection we assume that the o-minimal structure M is an ex-
pansion of an ordered field.

LetX be a Hausdorff definable manifold of dimension n. Then has we saw
in Example 4.10 X is affine, definably normal with an orientation k-sheaf.

In o-minimal expansions of fields we have o-minimal singular homology
and cohomology theories satisfying the Eilenberg-Steenrod axioms adapted
to the o-minimal site ([14], [25]). By [14] the o-minimal singular cohomology
theory with coefficients in a field k is isomorphic to the o-minimal sheaf
cohomology theory with coefficients in the constant sheaf kX . Because of
this isomorphism, below we will use the standard notation from o-minimal
singular cohomology and write k for kA and

H∗(A,B; k) for H∗A\B(A; k)

where B ⊆ A ⊆ X are definable subsets of X.
O-minimal singular homology theory can be used to obtain an orien-

tation theory for definable manifolds ([2], [1]). (In the papers [2] and [1],
orientation is defined by taking homology with coefficients in Z but replac-
ing Z by k and considering homology groups as k-vector spaces one gets the
theory of k-orientations.) Our goal here is to show an Alexander duality
for homology and to conclude that the two orientation theories agree.

First observe that if B ⊆ A are definably locally closed definable subsets
of X, then

(4.5) H∗c (A \B; k) = lim−→
B⊆C⊆A, C closed, A\C∈c

H∗(A,C; k).

Let Λ be the directed system of definably locally closed subsets D of A such
that B ⊆ D ⊆ A and A \D ∈ c, directed by reverse inclusion. Since the
map that sends D ∈ Λ into D is cofinal (even surjective) in the directed
system of definable closed subsets C of A such that B ⊆ C ⊆ A and
A \ C ∈ c, directed by reverse inclusion, it follows that to prove (4.5) it is
enough to show that

H∗c (A \B; k) = lim−→
D∈Λ
H∗(A,D; k),

i.e., we have to show that the natural homomorphism

lim−→
B⊆U⊆A, A\U∈c

H∗(A,U ; k) −→ lim−→
D∈Λ
H∗(A,D; k)

is an isomorphism. But this is a consequence of the following. IfD ∈ Λ, then
there exists an open definable subset O of A such that D is closed in O. So,
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by [23] Chapter VIII, 3.3 and 3.4, there is an open definable neighborhood U
ofD in O such thatD is a definable deformation retract of U . Therefore, the
inclusion D −→ U induces an isomorphism H∗(A,U ; k) −→ H∗(A,D; k).

We are now ready to show the Alexander duality for o-minimal homology.
This is the o-minimal version of [10] Chapter VIII, Theorem 7.14 and the
generalization of Theorem 3.5 in [15].

Theorem 4.15. — Let X be a definable manifold of dimension n which
is k-orientable with respect to homology. Let L ⊆ K ⊆ X be closed defin-
able sets with K − L closed in X − L. Then there is an isomorphism

Hqc (K \ L; k) −→ Hn−q(X \ L,X \K; k)

for all q ∈ Z which is natural with respect to inclusions.

Proof. — Let K ′ = K \ L, X ′ = X \ L, A a definable closed subset of
K ′ such that K ′ \A ∈ c and C = K ′ \A. Then we have the following
commutative diagram

Hq(K ′, A; k)

��

// Hn−q(X ′ \A,X ′ \K ′; k)

��
Hq(K ′ ∩ C,A ∩ C; k)

∩ ζ′
K′∩C // Hn−q(X ′ \A ∩ C,X ′ \K ′ ∩ C; k).

where the vertical arrows are the inclusion homomorphisms which, by the
excision axiom, are isomorphisms. The bottom arrow is the isomorphism of
Theorem 3.5 in [15]. This diagram goes to the limit to give the isomorphism
of the theorem by (4.5) and

H∗(X ′, X ′ −K ′; k) = lim−→
A⊆K′, A closed, K′\A∈c

H∗(X ′ −A,X ′ −K ′; k)

(as X ′ = ∪{X ′ −A : A ⊆ K ′, A closed, K ′ \A ∈ c}). �

Combining Alexander duality for homology (Theorem 4.15) and for co-
homology (Theorem 4.14) we show:

Corollary 4.16. — Let X be a Hausdorff definable manifold. Then
X is k-orientable with respect to homology if and only if X is k-orientable
with respect to cohomology.

Proof. — Indeed, let X be a Hausdorff definable manifold of dimension
n. If X is k-orientable with respect to homology, then Theorem 4.15 implies
that for every definably connected, definably compact definable subset K
of X we have an isomorphism Hn(X,X \ K; k) ' k which is compatible
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with inclusions. Applying the dual universal coefficients theorem and go-
ing to the limit we obtain Hnc (X; k) ' k showing that X is k-orientable
(Proposition 4.13). If X is k-orientable with respect to cohomology, then
Theorem 4.14 applied to K and X implies that for every definably con-
nected, definably compact definable subsetK ofX we have an isomorphism
Hn(X,X\K; k) ' k which is compatible with inclusions. Applying the dual
universal coefficients theorem we get an isomorphism Hn(X,X \K; k) ' k
compatible with inclusions which allows us to define a k-orientation for X
relative to homology. �
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