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RATIONAL PERIODIC POINTS FOR QUADRATIC
MAPS

by Jung Kyu CANCI

Abstract. — Let K be a number field. Let S be a finite set of places of K
containing all the archimedean ones. Let RS be the ring of S-integers of K. In
the present paper we consider endomorphisms of P1 of degree 2, defined over K,
with good reduction outside S. We prove that there exist only finitely many such
endomorphisms, up to conjugation by PGL2(RS), admitting a periodic point in
P1(K) of order > 3. Also, all but finitely many classes with a periodic point in
P1(K) of order 3 are parametrized by an irreducible curve.

Résumé. — Soit K un corps de nombres. Soit S un ensemble fini de places
de K contenant toutes les places archimédiennes. Soit RS l’anneau des S-entiers
de K. Dans cet article on considère les endomorphismes de degré 2 de la droite
projective, définie sur K, avec bonne réduction en dehors de S. On démontre qu’il
n’existe qu’un nombre fini de tels endomorphismes, à conjugaison par l’action de
PGL2(RS) près, qui admettent un point périodique K-rationnel d’ordre > 3. De
plus, toutes les classes, sauf un nombre fini, ayant un point périodique K-rationnel
d’ordre 3, sont paramétrées par une courbe irréductible.

1. Introduction

For an integer d > 1, let Ratd denote the space of all rational maps (or
morphisms) P1 → P1 of degree d. Every morphism Φ ∈ Ratd, defined over
a field K, is given by a pair of homogeneous polynomials F,G ∈ K[X,Y ]
in the following way

Φ([X : Y ]) = [F (X,Y ) : G(X,Y )](1.1)

= [f0X
d + f1X

d−1Y + · · ·+ fdY
d :

g0X
d + g1X

d−1Y + · · ·+ gdY
d];

Keywords: Rational maps, moduli spaces, S-unit equations, reduction modulo p.
Math. classification: 11G99, 14G05, 14L30.



954 Jung Kyu CANCI

we suppose that F,G have no common roots in P1(K), where K denotes
the algebraic closure of K. This last requirement is equivalent to the con-
dition that the resultant Res(F,G) of the polynomials F and G is not zero.
The resultant Res(F,G) is a certain bihomogeneous polynomial in the coef-
ficients f0, f1, . . . , fd, g0, . . . , gd (e.g. see [10, Chapter IV.8]) so that Ratd is
parametrized by the Zariski open subset of P2d+1 defined by Res(F,G) 6= 0.

The group GL2 induces the following conjugation action on Ratd: Let
A =

(
α β
γ δ

)
∈ GL2 and let [A] be the canonical automorphism of P1 associ-

ated to A; for every map Φ = [F : G] ∈ Ratd we have

[A] ◦ Φ ◦ [A]−1 =
[
αF (δX−βY,−γX + αY ) + βG(δX−βY,−γX + αY ) :

γF (δX−βY,−γX + αY ) + δG(δX−βY,−γX + αY )
]
.

The action factors through PGL2 = GL2 /{λI2 | λ∈Gm}, where I2 =
(1 0

0 1
)
,

and we set Md = Ratd /PGL2.
J. Milnor in [12] proved that the moduli space M2(C) = Rat2(C)/

PGL2(C) is analytically isomorphic to C2. J.H. Silverman in [19] gener-
alized this result. For various reasons, he considered the action of SL2 and
he proved that the quotient space Ratd /SL2 exists as a geometric quotient
scheme over Z in the sense of Mumford’s geometric invariant theory and
that Rat2 /SL2 is isomorphic to A2

Z. Note that if Ω is an algebraically closed
field, then we have a projection SL2(Ω)→ PGL2(Ω) which is surjective with
kernel {±1}.

Throughout all the present paper, K denotes a number field with ring
of integers R. Let S be a fixed finite set of places of K containing all the
archimedean ones. Following the definition used in [20], an integer n is
called the exact (or primitive) period of a point P for a map Φ if n is the
minimal positive integer such that Φn(P ) = P , where Φn denotes the n-th
iterate of Φ. Given a positive integer n, we are interested in studying the
subset of Rat2(Q)/PGL2(Q) of classes containing a rational map, defined
over K with good reduction outside S, which admits a periodic point in
P1(K) with exact period equal to n. The notion of good reduction used in
the present paper is the following one: Let Φ : P1 → P1 be a rational map
defined over K as in (1.1). Let p be a non zero prime ideal of R, Rp the
local ring of R at the prime ideal p and let K(p) = R/p be the residue field.
Suppose that F,G have coefficients in Rp and that at least one coefficient is
a unit in Rp. Let F̃ and G̃ be the polynomials obtained by reducing modulo
p the coefficients of F and G. We shall say that Φ has good reduction at
the prime ideal p if the polynomials F̃ and G̃ do not have common roots
in P1(K(p)), where K(p) denotes the algebraic closure of K(p). Note that,
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by the assumption on the coefficients of F and G, the rational map Φ has
good reduction at the prime ideal p if the resultant of F and G is a p-unit.
We say that a rational map has good reduction outside S if it has good
reduction at every prime ideal p /∈ S.

We denote by RS the ring of S-integers and by R∗S the group of S-units
(see the next section for the definitions).

The group PGL2(RS), quotient of GL2(RS) modulo scalar matrices,
acts on P1. It is the group of automorphisms having good reduction out-
side S. It also acts by conjugation on the set of rational maps, defined
over K with good reduction outside S. Indeed, given an automorphism
[A] ∈ PGL2(RS) and a rational map Φ defined over K, the rational map
[A] ◦ Φ ◦ [A]−1 has good reduction outside S if and only if the map Φ
has good reduction outside S. Furthermore, it is clear that if the n-tuple
(P0, P1, . . . , Pn−1) is a cycle for the rational map Φ, then the n-tuple
([A](P0), [A](P1), . . . , [A](Pn−1)) is a cycle for the rational map [A] ◦ Φ ◦
[A]−1.

Definition 1.1. — We say that two n-tuples (P0, P1, . . . , Pn−1) and
(Q0, Q1, . . . , Qn−1) in P1(K) are equivalent if there exists an automorphism
[A] ∈ PGL2(RS) and an integer 0 6 h 6 n − 1 such that [A](Pi) = Qi+h
for every index 0 6 i 6 (n−1). For every index t > n, Qt denotes the point
Qt̄ ∈ {Q0, Q1, . . . , Qn−1}, where the integer t̄ is such that 0 6 t̄ 6 n − 1
and t̄ ≡ t (mod n).

By the above arguments, we are interested in the action of PGL2(RS)
rather than that of PGL2(Q). In this paper we shall prove the following
result:

Theorem 1.2. — Let n > 4 be a fixed integer. Then with respect to
the action of PGL2(RS), there are only finitely many conjugacy classes of
quadratic rational maps defined over K having good reduction outside S
and admitting a periodic point in P1(K) with exact period n.

By using a result obtained by Morton and Silverman it is possible to
improve on this statement. Indeed Morton and Silverman proved in [13]
that the maximal length of a cycle, for an endomorphism Φ defined over K
with good reduction outside S, can be bounded in terms of the cardinality
of the set S only. Therefore Theorem 1.2 becomes

Theorem 1.2′. — With respect to the action of PGL2(RS), there are
only finitely many conjugacy classes of quadratic rational maps defined
over K having good reduction outside S and admitting a periodic point in
P1(K) with exact period > 4.

TOME 60 (2010), FASCICULE 3
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From Theorem 1.2′ it follows that there are only finitely many inequiv-
alent n-tuples in P1(K) with n > 4 which are cycles for a rational map
defined over K with good reduction outside S. If we dropped the condition
on good reduction, Theorem 1.2 would be false, as the following example
shows:

Example 1.3. — For every non zero rational number a /∈ {−2, 0, 2, 4},
the following ordered 4-tuple

([0 : 1], [a : 1], [1 : 0], [2 : 1])

is a cycle for the quadratic rational map Φa([X : Y ]) = [(X − 2Y )(4X −
a2Y ) : 2(X − aY )(X − Y )]. Let n and d be coprime integers such that
a = n/d, then the rational map Φa has bad reduction at every prime ideal
that divides 2 · d · n(n− 4d)(n2 − 4d2). Furthermore, it is easy to see that,
given a fixed non zero rational number a /∈ {−2, 0, 2, 4}, there exist only
two rational numbers b such that the two ordered 4-tuples ([0 : 1], [a :
1], [1 : 0], [2 : 1]) and ([0 : 1], [b : 1], [1 : 0], [2 : 1]) are equivalent.

Remark 1.4. — The previous example describes an infinite family of
quadratic rational maps defined over Q, in which every element has a Q-
periodic point of exact period 4. It would be interesting to study the in-
tegers n 6= 4 such that all (or infinitely many) elements of the family in
Example 1.3 also have a Q-periodic point of exact period n. For example,
in the case n = 2 it is possible to see that there exist infinitely many values
of a ∈ Q such that the rational map Φa also admits a Q-periodic point of
exact period 2; we give a very brief proof of this fact, since it is beyond
the scope of this article. Let (a, t) ∈ Q2 such that a /∈ {−2, 0, 2, 4}. If the
point [t : 1] ∈ P1(Q) is a periodic point of exact period 2 for the rational
map Φa, then the pair (a, t) is a Q-rational point of the curve C defined by
2t2 − a2t+ 3at− 4t+ a2 − 4a = 0. The converse is not in general true, but
if the curve C has infinitely many Q-rational points, then there exist infin-
itely many values of a such that the rational map Φa admits a Q-periodic
point of exact period 2. Some calculations tell us that the curve C is an
affine piece of an elliptic curve E where the Mordell-Weil rank of E(Q) is
positive. Therefore the curve C has infinitely many Q-rational points.

The main tool for the proof of Theorem 1.2 is the S-Unit Equation
Theorem (see [8], [15], [16]). Other tools are some divisibility arguments,
such as Proposition 6.1 provided by Morton and Silverman in [14], and the
finiteness result on cycles proved in [4, Theorem 1]. Since the S-Unit Equa-
tion Theorem rests on the ineffective Subspace Theorem (see [16], [17]),
Theorem 1.2 is also ineffective.
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A section of this paper is dedicated to the case of periodic points of
exact period n = 3, more precisely, the case in which a class of quadratic
rational maps contains a map defined overK with good reduction outside S,
which admits a periodic point in P1(K) with exact period n = 3. We
have dedicated an entire section to this case since it makes use of extra
techniques. The main tools used in this section are some results proved
by Corvaja and Zannier in [5] in which they obtained the estimate, for
every fixed ε > 0, gcd(u− 1, v − 1) < max(H(u),H(v))ε for all but finitely
many multiplicatively independent S-units (where gcd denotes a suitable
notion of greatest common divisor on number fields and H(·) denotes the
multiplicative height). The results proved by Corvaja and Zannier in [5]
also rest on the Subspace Theorem.

Our result in this case is:

Theorem 1.5. — All but finitely many conjugacy classes of quadratic
rational maps defined over K, with respect to the action of PGL2(RS),
having good reduction outside S and admitting a periodic point in P1(K)
with exact period 3, are representable by a rational map of the form

(1.2) Φ([X : Y ]) = [(X − Y )(aX + Y ) : aX2]

where a ∈ R∗S .

At the end of the present paper we shall prove that the maps of the
family (1.2) represent an infinite set of elements in Rat2(Q)/PGL2(Q).

Recall that, by Silverman’s result in [19], the moduli space M2 is an affine
surface isomorphic to A2. Theorem 1.5 states that the set of elements in M2,
containing a map defined over K with good reduction outside S admitting
a periodic point in P1(K) with exact period 3, is not Zariski dense. More
precisely, it consists of a finite set, depending on S, plus an infinite family
contained in a curve parametrized by Gm. It is the family parametrized by
(1.2), and its elements, as stated in Theorem 1.5, have a point of period 3.

Theorem 1.2 and Theorem 1.5 also provide the following geometric in-
terpretation. Since char(K) = 0, following Milnor’s results ([12]), we see
that every class in M2 contains a rational function of the following form

(1.3) f(z) = z + 1
z

or fb,c(z) = z2 + bz

cz + 1
.

A rational map of the form fb,c has degree two if and only if bc 6= 1;
moreover for every given integer n the condition that a point x ∈ A1 is
a periodic point of order n for the rational function fb,c is an algebraic
condition. Therefore the set of triples (b, c, x) ∈ A3, where bc 6= 1 and x is
a periodic point of exact period n for the rational function fb,c, is a quasi
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projective surface Vn. If (b, c, x) is a S-integral point of Vn, then the asso-
ciate map fb,c has good reduction outside S. By elementary calculations,
it is possible to see that every class in M2 contains at most six rational
functions of the form as in (1.3). Moreover the number of periodic points
of exact period n for a quadratic rational map is bounded by a constant
which depends only on n. In general for a rational map of degree d this
bound is d + 1 for n = 1 and

∑
k|n µ

(
n
k

)
dk for n > 1, where µ is the

Möbius function (see Exercise 4.3 in [20]). Let n > 3 be a given integer. By
the above remarks, if Vn had infinitely many S-integral points, there would
be infinitely many classes in M2 containing a rational map defined over K
with good reduction outside S admitting a periodic point in P1(K) with
exact period n. Therefore by Theorem 1.2 the surface Vn has only finitely
many S-integral points. In a similar way we see that from Theorem 1.5 it
follows that the set of S-integral points of V3 is not Zariski dense.

This paper also contains a finiteness result on classes of cycles (see Def-
inition 1.1) for quadratic rational maps with good reduction outside S.

Theorem 1.6. — The set of classes modulo PGL2(RS) of cycles in
P1(K) of length > 3, for quadratic rational maps defined over K with
good reduction outside S, is finite.

The statement of Theorem 1.6 would be false if we considered cycles of
length 2. In the next section we shall give an infinity family of inequivalent
cycles (under the action induced by PGL2(RS)) of length 2 for monic poly-
nomial maps of degree 2 with coefficients in RS . These maps have good
reduction outside S.

Theorem 1.6 is a new and non trivial result because in Definition 1.1,
about equivalence relation on cycles, we consider the action induced by
PGL2(RS). Since the canonical action of PGL2(K) on P1(K) is 3-transitive,
if we considered the induced action of PGL2(K) on n-tuples, then the
statement of Theorem 1.6 would be trivially true for positive n 6 3 and for
n > 4 it would be an easy corollary of [4, Theorem 1].

The condition on the degree is quite important too; for instance the
statement of Theorem 1.6 does not hold for maps of degree 4 (see [4, The-
orem 2]). Clearly the condition of good reduction is also crucial, as shown
by Example 1.3.

Acknowledgments. — The present work was supported by a grant from
the Department of Mathematics and Computer Science at the University
of Udine. The subject treated in this article was suggested to me by Pietro
Corvaja. I would like to thank him for his useful advice and comments. I am
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also grateful to the referee for pointing out some gaps in the previous proofs
of Lemma 3.1 and Lemma 4.2 and for suggesting several improvements on
the presentation of the paper.

2. Notation and preliminary lemmas

Throughout the present paper K will be a number field, R the ring
of algebraic integers of K, p a non zero prime ideal of R; vp the p-adic
valuation on R corresponding to the prime ideal p (we always assume vp

to be normalized so that vp(K∗) = Z), S a fixed finite set of places of K
including all archimedean places.

We shall denote by

RS :=
{
x ∈ K | vp(x) > 0 for every prime ideal p /∈ S

}
the ring of S-integers and by

R∗S :=
{
x ∈ K∗ | vp(x) = 0 for every prime ideal p /∈ S

}
the group of S-units.

Let Φ : P1 → P1 be a rational map defined over K by Φ([X : Y ]) =
[F (X,Y ) : G(X,Y )] where F (X,Y ), G(X,Y ) are homogeneous polynomi-
als in R[X,Y ] of the same degree d. It is easy to see that the polynomials F
and G can be chosen with no polynomial common factors. We shall always
make such a choice.

If H(t1, . . . , tk) ∈ K[t1, . . . , tk] is a non zero polynomial we define vp(H)
as

(2.1) vp(H) = vp

(∑
I

a
I
ti11 · · · t

ik
k

)
= min

I
vp(a

I
)

where the minimum is taken over all multi-indices I = (ii, . . . , ik). That
is, vp(H) is the smallest valuation of the coefficients of the polynomial
H(t1, . . . , tk).

We denote the discriminant of the rational map Φ by Disc(Φ). It is the
ideal of R whose valuation at a prime ideal p is given by

vp(Disc(Φ)) = vp(Res(F,G))− 2d ·min{vp(F ), vp(G)},

where Res(F,G) denotes the resultant of the polynomials F and G. By the
properties of the resultant this definition is a good one, since it does not
depend on the choice of the homogeneous coefficients of the polynomials F
and G.

TOME 60 (2010), FASCICULE 3
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Definition 2.1. — We say that a morphism Φ : P1 → P1 defined
over K has good reduction at a prime ideal p if vp(Disc(Φ)) = 0.

Proposition 4.2 in [14] proves that Definition 2.1 is equivalent to the
notion of good reduction given in the introduction of this paper.

For every prime ideal p, Definition 2.1 provides a simple condition to
check whether a given rational map Φ has good reduction at a prime ideal p.

Now we fix some notation useful to give the statement of some known
results that we shall use in the sequel. Let P1 = [x1 : y1] , P2 = [x2 : y2]
be two distinct points in P1(K) and let p be a non zero prime ideal of R.
Using the notation of [14] we shall denote by

(2.2) δp (P1, P2) = vp (x1y2 − x2y1)−min
{
vp(x1), vp(y1)

}
−min

{
vp(x2), vp(y2)

}
the p-adic logarithmic distance; δp (P1, P2) is independent of the choice of
the homogeneous coordinates, i.e. it is well defined.

To every pair P,Q ∈ P1(K) of distinct points we associate the ideal

(2.3) I(P,Q) :=
∏
p/∈S

pδp(P,Q).

To every n-tuple (P0, P1, . . . , Pn−1) we can associate the (n− 1)-tuple of
ideals (I1, I2, . . . , In−1) defined by

(2.4) Ii :=
∏
p/∈S

pδp(P0,Pi) = I(P0, Pi).

A cycle of length n for a rational map Φ is an ordered n-tuple (P0, P1, . . . ,

Pn−1) of distinct points of P1(K) with the property that Φ(Pi) = Pi+1 for
every i ∈ {0, 1, . . . , n−2} and such that Φ(Pn−1) = P0. If (P0, P1, . . . , Pn−1)
is a cycle for a rational map with good reduction outside S, then Ii ·I−1

1 is
an ideal of RS for every index i ∈ {1, . . . , n − 1}. This last fact is an easy
consequence of Proposition 5.1 and Proposition 6.1 in [14]. Note that if two
n-tuples are equivalent, then they have the same associated (n − 1)-tuple
of ideals.

In [4] we proved the following:

[4], Theorem 1. — There exists a finite set IS of ideals of RS , depend-
ing only on S and K, with the following property: for any cycle (P0, P1, . . . ,

Pn−1), for a rational map of degree > 2 with good reduction outside the
finite set S, let (I1, I2, . . . , In−1) be the associated (n − 1)-tuple of ideals
as in (2.4); then

Ii · I−1
1 ∈ IS

ANNALES DE L’INSTITUT FOURIER
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for every index i ∈ {1, . . . , n− 1}.

In the particular case of quadratic rational maps, Theorem 1.6 is stronger
than the above statement. Indeed, [4, Theorem 1] states that if (I1, I2, . . . ,

In−1) is the (n − 1)-tuple of ideals associated to a cycle in P1(K) (for a
rational map with good reduction outside S), then there are only finitely
many possibilities for the ideal IiI

−1
1 of RS . Writing

(I1, . . . , In−1) = I1 · (RS , I2I
−1
1 , . . . , In−1I

−1
1 )

one has that for the factor (RS , I2I
−1
1 , . . . , In−1I

−1
1 ) there are only finitely

many possibilities. But, in the general case of rational maps of arbitrary
degree, as shown in [4, Theorem 2], there could exist infinitely many pos-
sibilities for the factor I1. Actually in [4, Theorem 2] we explicitly showed
that the ideal I1 has infinitely many possibilities, already for maps of de-
gree 4. In the present work we shall see that if one considers only quadratic
rational maps, then there are only finitely many possibilities also for the
factor I1, when the cycle has length > 3.

Note that for cycles with length n = 2 there exist infinitely many pos-
sibilities for I1, even in the case of quadratic rational maps. Indeed, it is
easy to see that every monic polynomial φ(x) ∈ RS [x] induces a ratio-
nal map Φ([X : Y ]) = [φ(X/Y ) : 1] which has good reduction outside
S. For instance, for every S-integer a the rational map Φ([X : Y ]) =[
(X − Y )(X − aY ) : Y 2] has good reduction at every prime ideal p /∈ S,

since Φ is induced by the monic polynomial (x− 1)(x− a), and the couple
([0 : 1], [a : 1]) is a cycle for Φ. If two integers a and a′ generate two distinct
principal ideals of RS , then the cycles ([0 : 1], [a : 1]) and ([0 : 1], [a′ : 1])
are not equivalent modulo the action induced by PGL2(RS).

Since a ring of S-integers is not always a principal ideal domain (P.I.D.),
we shall often use the arguments contained in the following:

Remark 2.2. — Up to enlarging the set S, we can suppose that RS is
a P.I.D. Note that this last condition only requires that we add a finite
number of prime ideals to S. Indeed, by a simple inductive argument it
follows that we have to add at most hS − 1 prime ideals, where hS is the
class number of RS which is a finite number (e.g. see [11, Chapter 5]).
Otherwise from “Dirichlet’s Theorem” (e.g. see [11, Chapter 8]), about the
uniform distribution of the prime ideals among the ideal classes, we obtain
that there exist two (actually infinitely many) finite sets S1 and S2 of places
of K such that S1 ∩ S2 = S and RS1 and RS2 are principal ideal domains.

The following will also be useful: By enlarging S to a finite set S so that
RS is a P.I.D., we have many technical advantages. For instance we can

TOME 60 (2010), FASCICULE 3
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define the greatest common divisor of two S-integers. Given two S-integers
a and b, every S-integer d such that a ·RS + b ·RS = d ·RS will be called a
greatest common divisor of a and b. Clearly this definition generalizes the
one on Z. If the S-integers a and b are such that a · RS + b · RS = RS, we
shall say that a and b are coprime. Furthermore, since RS is a P.I.D., the
group PGL2(RS) acts transitively on P1(K). We use this property to prove
a lemma which is elementary but often useful in the sequel.

Lemma 2.3. — Let RS be a P.I.D.. Let Ψ be a rational map defined over
K. If there exists an automorphism [B] ∈ PGL2(K) such that the rational
map [B] ◦ Ψ ◦ [B]−1 has good reduction outside S, then there exists an
automorphism [A] ∈ PGL2(K) of the shape [A] = [C] ◦ [B] for a suitable
[C] ∈ PGL2(RS) such that:

1. [A] fixes the point [0 : 1];
2. the rational map [A] ◦Ψ ◦ [A]−1 has good reduction outside S.

Proof. — The proof follows easily by taking as [C] an automorphism in
PGL2(RS) which sends the point [B]([0 : 1]) to the point [0 : 1]. Such an
automorphism [C] exists since the group PGL2(RS) acts transitively on
P1(K). �

The following will also be useful:

Lemma 2.4. — If two quadratic rational maps, defined over K with
good reduction outside S, belong to the same orbit, with respect to the
action of PGL2(K), then they belong to the same orbit with respect to the
conjugation action induced by PGL2(RS).

Proof. — See Proposition 3.1 in [1]. �

Notice that the statement of Lemma 2.4 would be false if we considered
maps of degree 1. By Lemma 2.4 we can prove Theorem 1.2 and Theo-
rem 1.5 considering the conjugation action induced by PGL2(K). Since
the canonical action of PGL2(K) on P1(K) is 3-transitive, every quadratic
rational map defined over K is PGL2(K)-equivalent to a map of the form

(2.5) Ψ([X : Y ]) =
[
(X − λY )(aX + bY ) : X(aX + cY )

]
for suitable λ ∈ K and a, b, c ∈ RS . Indeed, given a quadratic rational map
Φ defined over K, we take four distinct K-rational points η, α, β and γ such
that

η
Φ7−→ α

Φ7−→ β
Φ7−→ γ.

Let [A] ∈ PGL2(K) be the automorphism such that [A](α) = [0 : 1],
[A](β) = [1 : 0] and [A](γ) = [1 : 1]. Let λ ∈ K such that [A](η) = [λ : 1],
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then there exist a, b, c ∈ RS such that Ψ = [A] ◦ Φ ◦ [A]−1 has the form as
in (2.5). In the sequel we shall study whether a rational map of the form
as in (2.5) is conjugate, via an automorphism of PGL2(K), to a rational
map with good reduction outside S having [0 : 1] as a periodic point with
exact period > 3.

As already mentioned in the introduction of this paper, an important
tool for our proofs is the so called S-Unit Equation Theorem.

S-Unit Equation Theorem (See [8], [15], [16]). — The equation

a1x1 + a2x2 + · · ·+ anxn = 1,

where ai are fixed elements in K∗ for all indices i ∈ {1, 2, . . . , n}, has only
finitely many non-degenerate solutions (x1, x2, . . . , xn) ∈ (R∗S)n.

A solution is called non-degenerate if no subsum vanishes (i.e.
∑
i∈I

aixi 6= 0 for some nonempty subset I ( {1, 2, . . . , n}). This theorem will
be applied with n equals to 2 and 3. We shall also use the divisibility
argument stated in Proposition 6.1 in [14] and that we can write in the
following form:

[14], Proposition 6.1. — If (P0, P1, . . . , Pn−1) ⊂ P1(K) is a cycle for
a rational map, defined over K with good reduction outside S, then

Ii = I(P0, Pi) = I(Pk, Pk+i)

for all i 6= 0 and k in N, where Ii is an ideal defined as in (2.4).

If the ring RS is a P.I.D. we have a simple description of the ideals
defined in (2.3) . Given four S-integers x0, y0, x1, y1, if d0 is a greatest
common divisor of x0 and y0 and d1 is a greatest common divisor of x1 and
y1, then

I([x0 : y0], [x1, y1]) =
(
x0y1 − x1y0

d0d1

)
·RS .

In order to prove our theorems we begin by proving the following lemmas.

Lemma 2.5. — Let n > 4 be a fixed positive integer. There are only
finitely many n-tuples

(2.6) ([0 : 1], [1 : 0], [1 : 1], [λ3 : µ3], . . . , [λn−1 : µn−1]) ∈ P1(K)

that are cycles for a rational map Ψ, defined over K, for which there exists
an automorphism [A] ∈ PGL2(K) of P1 such that the rational map [A] ◦
Ψ ◦ [A]−1 has good reduction outside S.
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Proof of Lemma 2.5. — Up to enlarging S, we can suppose that the ring
RS is a principal ideal domain. Hence we choose λi, µi ∈ RS coprime for
all indices 3 6 i 6 (n− 1).

Let [A] ∈ PGL2(K) be an automorphism of P1 such that the rational
map [A] ◦Ψ ◦ [A]−1 has good reduction outside S. Since RS is a P.I.D., by
Lemma 2.3, we can suppose that the automorphism [A] is induced by the
matrix

A =
(
α 0
β γ

)
∈ GL2(K)

for suitable α, β, γ ∈ RS where min{vp(α), vp(β), vp(γ)} = 0 for all p /∈ S.
Clearly the n-tuple(

[A]([0 : 1]), [A]([1 : 0]), [A]([1 : 1]), [A]([λ3 : µ3]), . . . , [A]([λn−1 : µn−1])
)

equals to

(2.7)
(

[0 : 1], [α : β], [α : β + γ], [αλ3 : βλ3 + γµ3], . . . ,

[αλn−1 : βλn−1 + γµn−1]
)
,

which is a cycle for the rational map [A] ◦Ψ ◦ [A]−1.
Let d ∈ RS be a greatest common divisor of α and β so that the ideal

I1 of RS associated to the cycle (2.7) is (α/d) · RS . Let D ∈ RS be a
greatest common divisor of α and β + γ. The ideal I2 of RS associated
to the cycle (2.7) is (α/D) · RS . As seen before, Ii · I−1

1 is an ideal of
RS , hence α/d divides α/D. Hence we deduce that D | d, therefore D | α
and D | β. From D | (β + γ) it follows that D | γ. By the assumption
that min{vp(α), vp(β), vp(γ)} = 0 we have that D ∈ R∗S . By applying [14,
Proposition 6.1] to the cycle (2.7), since D ∈ R∗S , we see that

α

d
·RS = I([0 : 1], [α : β]) = I1 = I ([α : β], [α : β + γ]) = αγ

d
·RS

from which we deduce that γ ∈ R∗S . Therefore by replacing γ by 1, α/γ by
α and β/γ by β in (2.7), we can rewrite the cycle (2.7) as(
[0 : 1], [α : β], [α : β + 1], [αλ3 : βλ3 + µ3], . . . , [αλn−1 : βλn−1 + µn−1]

)
.

By [4, Theorem 1] we can enlarge the set S, by adding only finitely many
places, so that every ideal Ii · I−1

1 , associated to a cycle for a rational map
with good reduction outside S, is equal to RS and RS is a P.I.D. Therefore,
since α and β+ 1 are coprime, by considering the points [0 : 1], [α : β] and
[α : β + 1] we have that I2 · I−1

1 = d ·RS , thus, d is a S-unit.
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For an arbitrary index 3 6 i 6 n− 1, let t be a greatest common divisor
between the integers αλi and βλi + µi. By considering the points [α : β]
and [αλi, βλi + µi] we deduce that Ii−1 · I−1

1 = (µi/t) ·RS , hence

(2.8) µi
t
∈ R∗S .

By considering the points [0 : 1] and [αλi, βλi + µi] we deduce that
IiI
−1
1 = (dλi/t) ·RS = (λi/t) ·RS , hence

(2.9) λi
t
∈ R∗S .

Since λi and µi are coprime, by (2.8) and (2.9), we deduce that

(2.10) t, λi, µi ∈ R∗S
Now consider the points [α : β + 1] and [αλi, βλi + µi]; since the ideal

I1 = α ·RS (by our above assumption on S), it is easy to see that µi−λi ∈
R∗S . Therefore, by (2.10) and the S-Unit Equation Theorem, there are only
finitely many possibilities for the the point [λi : µi]. �

Actually the previous proof also gives the following:

Lemma 2.6. — Let RS be a P.I.D.. Let Ψ be a quadratic rational map,
defined over K, which admits a cycle as in (2.6) for suitable values of
λi, µi ∈ RS for all indices i ∈ {3, . . . , n−1}. If there exists an automorphism
[B] ∈ PGL2(K) such that the map [B]◦Ψ◦[B]−1 has good reduction outside
S, then there exist two S-integers α and β such that α and β+1 are coprime
and putting

A =
(
α 0
β 1

)
the rational map [A]◦Ψ◦ [A]−1 has good reduction outside S. Furthermore
the two ideals Disc([B]) and Disc([A]) of RS are equal.

The hypotheses in Lemma 2.6 are the same as in Lemma 2.3 with an
additional condition on cycles, so we obtain a refined conclusion.

Lemma 2.5 and the following Lemma 2.7 will be used to prove Theo-
rem 1.2 in the case of cycles of length > 5.

Lemma 2.7. — Let F be a field. Let n > 5. Given n − 3 fixed distinct
elements λ3, . . . , λn−1 ∈ F ∗, there exists at most one endomorphism Ψ of
P1, of degree two, defined over F , such that

(2.11) [0 : 1] Ψ7−→ [1 : 0] Ψ7−→ [1 : 1] Ψ7−→ [λ3 : 1] Ψ7−→ [λ4 : 1] Ψ7−→

· · · Ψ7−→ [λn−1 : 1] Ψ7−→ [0 : 1].
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Proof. — With every rational map Ψ : P1 → P1, defined over F , we
associate in the canonical way a rational function ψ ∈ F (z). By a change
of coordinate system of P1, we can assume that the cycle of ψ associated to
(2.11) has the first five points z1, . . . , z5 in F . Therefore we have to prove
that, given five distinct points z1, . . . , z5 in F , if two rational functions
f, g ∈ F (z), of degree two, are such that f(zi) = g(zi) for all indices
1 6 i 6 5, then they are equal. The rational function f − g has degree at
most 4 and five distinct roots in F , thus f ≡ g. �

3. Proof of Theorem 1.2

This section is dedicated to prove Theorem 1.2. Hence we are studying
the case of periodic points of exact period n > 4. From the previous lemmas,
it is easy to see that we have to prove Theorem 1.2 only in the case n = 4.
The next lemma will be useful also for the case n = 3.

Lemma 3.1. — Let λ, a, b, c ∈ RS , with min{vp(a), vp(b), vp(c)} = 0 for
every prime ideal p /∈ S, such that

1) the rational map

Ψ([X : Y ]) = [(X − λY )(aX + bY ) : X(aX + cY )]

has degree two,
2) the point [0 : 1] is a periodic point of exact period 3 or 4 for Ψ, and
3) there exists an automorphism [A] ∈ PGL2(K) such that the rational

map [A] ◦Ψ ◦ [A]−1 has good reduction outside S.
Then

(3.1) a, b, λ, aλ+ c ∈ R∗S .

Proof. — Note that if RS is not a P.I.D., it is sufficient to prove Lem-
ma 3.1 for an arbitrary enlarged set S such that RS is a P.I.D.. Indeed by
Remark 2.2 we may consider two enlarged sets S1 and S2 such that RS1

and RS2 are P.I.D. and S1 ∩ S2 = S. If Lemma 3.1 holds for RS1 and RS2

then Lemma 3.1 will be true also for S, since R∗S1
∩ R∗S2

= R∗S . Therefore,
by enlarging the set S if necessary, we can suppose that RS is a P.I.D..

By condition 1) we have that λ 6= 0, a 6= 0, b 6= 0, b 6= c and aλ 6= −c. If
λ = 1 then ([0 : 1], [1 : 0], [1 : 1]) is a cycle for Ψ; otherwise, by condition
2), ([0 : 1], [1 : 0], [1 : 1], [λ : 1]) is a cycle for Ψ so that

(3.2) [λ : 1] = [(1− λ)(a+ b) : (a+ c)].
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By Lemma 2.6 we can suppose that the automorphism [A] is induced by
the matrix

A =
(
α 0
β 1

)
for suitable S-integers α and β such that α and β+1 are coprime S-integers.
Clearly the automorphism [A]−1 is induced by the matrix

A−1 =
(

1 0
−β α

)
.

We set

(3.3) Φ([X : Y ]) := [A] ◦Ψ ◦ [A]−1 = [F (X,Y ) : G(X,Y )]

where

F (X,Y ) = α((1 + βλ)X − αλY )((a− bβ)X + αbY ),(3.4)
G(X,Y ) = β((1 + βλ)X − αλY )((a− bβ)X + αbY )(3.5)

+X((a− cβ)X + αcY ).

We rewrite the polynomials F,G in a way useful for the sequel:

F (X,Y ) = α(1+βλ)(a−bβ)X2+α2(2bβλ+b−aλ)XY−α3bλY 2,(3.6)

G(X,Y ) =
[
β(1 + βλ)(a− bβ) + a− cβ

]
X2 + α(2β2bλ+ βb(3.7)

− βaλ+ c)XY − α2bβλY 2.

Note that the S-integer α2 divides both the coefficients of the monomial
in Y 2 of F and G. Since Φ has good reduction outside S then α2 divides
all the coefficients of the polynomials F and G as represented in (3.6) and
(3.7). Hence we can choose

F (X,Y ) = (1 + βλ)(a− bβ)
α

X2 + (2bβλ+ b− aλ)XY − αbλY 2,(3.8)

G(X,Y ) = [β(1 + βλ)(a− bβ) + a− cβ]
α2 X2(3.9)

+ (2β2bλ+ βb− βaλ+ c)
α

XY − bβλY 2,

where the coefficients of all monomials in (3.8) and (3.9) are in RS and
(3.3) still holds.

Now it is easy to prove that b ∈ R∗S . Indeed, from the argument above
concerning α, it follows that the S-integer b divides the coefficients of the
polynomials F and G as represented in (3.8) and (3.9). By considering
the coefficient of the monomial in XY in (3.8) we see that b | a and
from the coefficient of XY in (3.9) we have b | c. By the assumption that
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min{vp(a), vp(b), vp(c)} = 0 for every prime ideal p /∈ S, we deduce that
b ∈ R∗S . To ease notation we replace a with a/b, b with 1 and c with c/b in
(3.8) and (3.9) obtaining that

F (X,Y ) = (1 + βλ)(a− β)
α

X2 + (2βλ+ 1− aλ)XY − αλY 2,(3.10)

G(X,Y ) = [β(1 + βλ)(a− β) + a− cβ]
α2 X2(3.11)

+ (2β2λ+ β − βaλ+ c)
α

XY − βλY 2

where, clearly, the equality (3.3) still holds and the polynomials in (3.10)
and (3.11) still have coefficients in RS . Therefore we have that

(1 + βλ)(a− β)
α

∈ RS ,(3.12)

β(1 + βλ)(a− β) + a− cβ
α2 ∈ RS ,(3.13)

2β2λ+ β − βaλ+ c

α
∈ RS .(3.14)

Moreover, again by good reduction of Φ outside S, we see that λ is a S-
unit. Indeed, note that λ divides the coefficient of the monomial Y 2 in
both (3.10) and (3.11). Hence λ has to divide 2βλ + 1 − aλ (which is the
coefficient of monomial XY in (3.10)), so λ is a S-unit.

The next step is to prove that a ∈ R∗S . First we shall see that α and
1+βλ are coprime. After that we shall prove that a and α are coprime and
that a ∈ R∗S .

Let λ = 1. By the assumption on A (see Lemma 2.6) we have that the
S-integers α and 1 + βλ = 1 + β are coprime. Let λ 6= 1, i.e. we are in the
case of cycle of length 4. Equation (3.2) gives

(3.15) (1− 2λ)a− λc = λ− 1.

Suppose that there exists a non zero prime ideal p which divides α and
1 + βλ so that

(3.16) βλ ≡ −1 (mod p).

By (3.12) and (3.13) p divides a− cβ, thus

(3.17) aλ+ c ≡ 0 (mod p).

By (3.14) and (3.16)

(3.18) − β + a+ c ≡ 0 (mod p).
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Now, by (3.17) and (3.18)

0 ≡ −β + a+ c ≡ −βλ+ aλ+ cλ ≡ 1 + aλ− aλ2 (mod p)

thus

(3.19) (λ2 − λ)a ≡ 1 (mod p).

By (3.17), the equality (3.15) gives

(λ− 1)2a ≡ λ− 1 (mod p).

From this by (3.19) we deduce that

λ(λ− 1) ≡ λ(λ− 1)2a ≡ λ− 1 (mod p),

which is equivalent to

(λ− 1)2 ≡ 0 (mod p).

But this last congruence contradicts the one in (3.19). We have proved that

(3.20) α and 1 + βλ are coprime S-integers.

From (3.12) we deduce

(3.21) a− β
α
∈ RS ,

and by (3.13) we obtain that (a − cβ)/α ∈ RS ; therefore by (3.10) and
(3.11) it follows that

F (X,Y ) = ((1 + βλ)X − αλY )
(
a− β
α

X + Y

)
(3.22)

G(X,Y ) = 1
α

[
β ((1 + βλ)X − αλY )

(
a− β
α

X + Y

)
(3.23)

+X

(
a− cβ
α

X + cY

)]
,

where
(
a− β
α

X + Y

)
and

(
a− cβ
α

X + cY

)
are polynomials with coeffi-

cients in RS .
Let ᾱ be a greatest common divisor of a and α. By (3.21) the S-integer

ᾱ divides β; since ᾱ divides the coefficients of Y 2 in (3.10) and (3.11) and
the map Φ has good reduction, ᾱ has to divide all the coefficients of F and
G as represented in (3.10) and (3.11). Thus

ᾱ | 2βλ+ 1− aλ ⇒ ᾱ | 1 ⇒ ᾱ ∈ R∗S .

This argument also proves that α and β are coprime S-integers. Indeed by
(3.21) every prime which divides α and β also divides a.
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Since the polynomials
(
a− β
α

X + Y

)
and

(
a− cβ
α

X + cY

)
belong to

RS [X,Y ], from the representation of polynomials F (X,Y ) and G(X,Y ) in
(3.22) and (3.23) and the good reduction of the rational map Φ outside S,
we deduce that every prime ideal p /∈ S which divides

(3.24)

∣∣∣∣∣∣∣
a− β
α

1
a− cβ
α

c

∣∣∣∣∣∣∣ = a(c− 1)
α

∈ RS

has to divide all the coefficients of the polynomials F and G as represented
in (3.10) and (3.11). Let p /∈ S be a prime ideal which divides a. Thus, since
α and a are coprime, p must divide all the coefficients of the polynomials F
and G as represented in (3.10) and (3.11), in particular p | αλ. But, since
λ ∈ R∗S , it contradicts the coprimality of α and a. Hence a ∈ R∗S . Note that
(3.24) also tells us that

(3.25) α | (c− 1).

Now, by the same above argument applied to the polynomials (1+βλ)X−

αλY and a− cβ
α

X+cY which compare in the representation of polynomials
F and G in (3.22) and (3.23), we see that

(3.26)

∣∣∣∣∣∣
1 + βλ −αλ
a− cβ
α

c

∣∣∣∣∣∣ = aλ+ c divides αλ.

Since λ ∈ R∗S , (3.26) tells us that aλ+ c divides α. Thus, by (3.21), aλ+ c

also divides a− β and by (3.25) aλ+ c | c− 1, so

aλ+ c | aλ+ c− c+ 1 = aλ+ 1 ⇒ aλ+ c | aλ+ 1− aλ+ βλ = 1 + βλ

therefore, by (3.26) and (3.20), it follows that aλ+ c ∈ R∗S . �

The next lemma concerns only cycles of length n = 4.

Lemma 3.2. — There exist only finitely many quadratic rational maps
Ψ : P1 → P1, defined over K, such that

i) there exists a point [λ : µ] ∈ P1(K) such that

(3.27) [0 : 1] Ψ7−→ [1 : 0] Ψ7−→ [1 : 1] Ψ7−→ [λ : µ] Ψ7−→ [0 : 1];

ii) there exists an automorphism [A] ∈ PGL2(K) of P1 such that the
rational map [A] ◦Ψ ◦ [A]−1 has good reduction outside S.
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Proof. — As already remarked, without less of generality we suppose
that S is enlarged so that RS is a principal ideal domain. Clearly if [λ : µ] ∈{

[1 : 0], [0 : 1], [1 : 1]
}

, then (3.27) does not hold for any endomorphism
Ψ. So that we can suppose that λµ 6= 0 and λ 6= µ. By Lemma 2.5 there
are only finitely many possibilities for [λ : µ] ∈ P1(K). Hence it is sufficient
to prove the lemma for such a given point [λ : µ]. Let (λ, µ) ∈ R2

S be
homogeneous coprime coordinates representing the point [λ : µ]. Thus, by
adding to S all the finitely many prime ideals which contain µ and λ, we
can suppose that µ and λ are S-units. By dividing by µ, we have that µ = 1
and λ 6= 1.

Since Ψ has to satisfy condition (3.27), there exist three S-integers a, b, c
without common divisors (i.e. min{vp(a), vp(b), vp(c)} = 0 for every p /∈ S)
such that

Ψ([X : Y ]) =
[
(X − λY )(aX + bY ) : X(aX + cY )

]
where a 6= 0, b 6= 0, b 6= c and aλ 6= −c. Therefore we are in the hypotheses
of Lemma 3.1 so (3.1) holds. Since λ 6= 1, (3.2) also holds, hence it follows
that

(3.28) (1− 2λ)a− λc = b(λ− 1).

We set aλ + c = v; by (3.1) the integers a, b, v are S-units. Therefore
(3.28) gives (1 − 2λ)a − λv + λ2a = b(λ − 1) which is equivalent to the
following S-unit equation

(λ− 1)a− λ

λ− 1
v = b

(recall that λ 6= 1 is fixed). By S-Unit Equation Theorem there are only
finitely many solutions (a/b, v/b) ∈ R∗S × R∗S . Clearly it follows that there
are only finitely many possibilities for [a : b : c] ∈ P2(K). This concludes
the proof. �

Proof of Theorem 1.2. — By Lemma 2.4 we can consider the action
of PGL2(K) instead of PGL2(RS). Therefore we are studying classes of
quadratic rational maps which contain a rational map Ψ of the form as in
(2.5), which admits [0 : 1] as a periodic point of exact period n, and an
automorphism [A] ∈ PGL2(K) such that the map [A] ◦Ψ ◦ [A]−1 has good
reduction outside S. If n > 5 then Lemma 2.5 and Lemma 2.7 give the
proof of Theorem 1.2. For the case n = 4 we are done, by Lemma 3.2. �

As already written in the introduction of this paper, to prove Theorem 1’
it is sufficient now to apply the bound proved by Morton and Silverman
in [13].
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4. Periodic points with exact period equal to 3

As already mentioned in the introduction, for the proof of Theorem 1.5
(the case n = 3), we need some results proved by P. Corvaja and U. Zannier
in [5] which were obtained via the so called Subspace Theorem proved by
W.M. Schmidt (e.g. see [17] or [16]). Actually the Corvaja and Zannier’s
results are used to prove a technical lemma which only involves divisibility
arguments. Hence we have dedicated a subsection to this preliminary result.
This technical lemma will be used in the second part of this section to
prove the following proposition which represents an important tool to prove
Theorem 1.5 and Theorem 1.6:

Proposition 4.1. — There exists a finite set B, depending only on S,
such that if Ψ is a quadratic rational map defined over K satisfying

(4.1) [0 : 1] Ψ7−→ [1 : 0] Ψ7−→ [1 : 1] Ψ7−→ [0 : 1]

and equivalent, with respect to the action of PGL2(K), to a rational map
with good reduction outside S, then there exist two S-integers a and c such
that the map Ψ has the form

(4.2) Ψ(X,Y ) = [(X − Y )(aX + Y ) : X(aX + cY )]

and
1) a ∈ R∗S and a+ c ∈ R∗S ;
2) a, c ∈ B or one of the following conditions holds:

i) a = −1,
ii) c = 0,
iii) c = 1− a.

Furthermore if an automorphism [A] is such that the rational map [A] ◦
Ψ ◦ [A]−1 has good reduction outside S, then the ideal Disc([A]) of RS has
only finitely many possibilities which only depend on S.

4.1. A technical lemma

We set the following notation:

log+ x := max{0, log x} , log− x := min{0, log x}, x > 0.

Let MK denote the set of places of K. For a place µ ∈MK , we shall denote
by | · |µ the corresponding absolute value normalized with respect to K so
that the product formula ∏

µ∈MK

|x|µ = 1
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holds for all x ∈ K r {0}. For any element x ∈ K, let H(x) denote the
absolute multiplicative height of the point [1 : x] ∈ P1(K)

H(x) =
∏
µ∈MK

max{1, |x|µ}.

We shall denote by h(x) the logarithmic height h(x) = logH(x).
Below we state three of the results, proved by P. Corvaja and U. Zannier

in [5], in a simpler form and adapted to our situation.

[5, Main Theorem]. — Let f(X,Y ) ∈ Q(X,Y ) be a rational function.
Suppose that 1 appears as a monomial in the numerator or in the denom-
inator of f(X,Y ). Then for every ε > 0 the Zariski closure of the set of
solutions (u, v) ∈ (R∗S)2 of the inequality

h(f(u, v)) < (1− ε) max
{

h(u)
2 degY f

,
h(v)

2 degX f

}
is a finite union of translates of proper subtori of G2

m.

[5, Proposition 1]. — Let f(X,Y ) ∈ K[X,Y ] be a polynomial with
f(0, 0) 6= 0. Then for every ε > 0, all but finitely many solutions (u, v) ∈
(R∗S)2 to the inequality∑

µ∈S
log− |f(u, v)|µ < −εmax {h(u), h(v)}

lie in the union of finitely many translates of 1-dimensional subtori of G2
m,

which can be effectively determined.

[5, Proposition 4]. — Let r(X), s(X) ∈ Q[X] be two non zero polyno-
mials. Then for every ε > 0, all but finitely many solutions (u, v) ∈ (R∗S)2

to the inequality∑
µ∈MKrS

log−max {|r(u)|µ, |s(v)|µ} < −εmax {h(u), h(v)}

lie in the union of finitely many translates of 1-dimensional subtori of G2
m,

which can be effectively determined.

These results are used to prove the following technical lemma:

Lemma 4.2. — There exists a finite set T of prime ideals of R, contain-
ing S, with the following property: if α is a non zero S-integer for which
there exist three S-units a, u and v such that

(4.3) uα2 = v − a− 1
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(4.4) α | (1 + a+ a2) in RS

and

(4.5) α | (1− v + v2) in RS ,

then α is a T -unit.

Proof. — If the right side term in equation (4.3) has a vanishing subsum,
then it is sufficient to take T = S. Therefore we suppose that the right side
term in equation (4.3) has no vanishing subsums. In order to use [5, Main
Theorem], [5, Proposition 1] and [5, Proposition 4], note that under (4.3),
(4.4), (4.5), v− a− 1 | (1 + a+ a2)2 and v− a− 1 | (1− v+ v2)2 in RS . To
ease notation we set

f(X,Y ) = Y −X − 1, r(X) = (1 +X +X2)2, s(X) = (1−X +X2)2,

so f(a, v) divides r(a) and s(v) in RS . Note that if x, y ∈ RS then

log− (|x|µ · |y|µ) = log− |x|µ + log− |y|µ

for all µ ∈ MK r S. Hence, since r(a)/f(a, v) and s(v)/f(a, v) belong to
RS , we have that

−
∑

µ∈MKrS
log−max

{
|r(a)|µ, |s(v)|µ

}
=

−
∑

µ∈MKrS
log− |f(a, v)|µ −

∑
µ∈MKrS

log−max

{∣∣∣∣ r(a)
f(a, v)

∣∣∣∣
µ

,

∣∣∣∣ s(v)
f(a, v)

∣∣∣∣
µ

}
thus

(4.6) −
∑

µ∈MKrS
log− |f(a, v)|µ 6 −

∑
µ∈MKrS

log−max
{
|r(a)|µ, |s(v)|µ

}
.

Now by the product formula we have that
∑
µ∈MK log |f(a, v)|µ = 0 and

by definition of the logarithmic height it follows that

h(f(a, v)) =
∑
µ∈MK

log+ |f(a, v)|µ.

Hence

−
∑

µ∈MKrS
log− |f(a, v)|µ = h(f(a, v)) +

∑
µ∈S

log− |f(a, v)|µ.

Since every point of (R∗S)2 is contained in a suitable translate of a 1-
dimensional subtorus of G2

m, by applying [5, Proposition 1] with ε = 1/4
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we obtain from the above identity that for all (a, v) ∈ (R∗S)2 outside a finite
union of finitely many translates of 1-dimensional subtori of G2

m

−
∑

µ∈MKrS
log− |f(a, v)|µ > h(f(a, v))− 1

4
max{|h(a), h(v)}.

By applying [5, Main Theorem] with ε = 1/4 to the last inequality we have

−
∑

µ∈MKrS
log− |f(a, v)|µ >

3
8

max
{
|h(a), h(v)

}
− 1

4
max

{
h(a), h(v)

}
(4.7)

= 1
8

max
{
h(a), h(v)

}
holds for all (a, v) ∈ (R∗S)2 outside a finite union of finitely many translates
of 1-dimensional subtori of G2

m.
Now applying [5, Proposition 4] with ε = 1/9 we obtain that for all

(a, v) ∈ (R∗S)2 outside a finite union of finitely many translates of 1-
dimensional subtori of G2

m,

(4.8) −
∑

µ∈MKrS
log−max

{
|r(a)|µ, |s(v)|µ

}
6

1
9

max
{
h(a), h(v)

}
.

Putting together (4.6), (4.7) and (4.8) we obtain that for all (a, v) ∈
(R∗S)2 outside a finite union of finitely many translates of 1-dimensional
subtori of G2

m

1
9

max
{
|h(a), h(v)

}
>

1
8

max
{
h(a), h(v)

}
holds, which means max{h(a), h(v)} = 0. Since there are only finitely many
algebraic numbers of bounded degree and bounded height (see for example
Theorem 1.6.8 in [3] or Theorem B.2.3 in [9]) , there are only finitely many
(a, v) ∈ (R∗S)2 which satisfy max

{
h(a), h(v)

}
= 0.

Therefore, by using again that every point of (R∗S)2 is contained in a
suitable translate of a 1-dimensional subtorus of G2

m, we can summarize all
the above arguments by saying that there exists a finite union of translates
of 1-dimensional subtori of G2

m which contains every pair (a, v) satisfying
the hypotheses of Lemma 4.2.

Recall that every translate of a proper subtorus of G2
m is either a point

or a curve defined by an equation of the form

ApV q = ω

for coprime p, q ∈ Z and nonzero ω ∈ K∗. By the above arguments, there
exist only finitely many coprime p, q ∈ Z and ω ∈ K∗ such that for every
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couple (a, v) ∈ (R∗S)2 satisfying the hypotheses of Lemma 4.2, one of the
following finitely many identities

(4.9) apvq = ω

holds. Without loss of generality we can suppose p > 0. By Dirichlet Unit
Theorem (e.g. see [9, pag. 273]) the group R∗S is finitely generated. Thus
there exists a finite extension F of K which contains all p-th roots of all
S-units. Since ap = ωv−q we can write the S-unit a in the following way

(4.10) a = λ(η)−q

where λ, η ∈ F are one of the p-th roots of ω and v respectively. Of course
we have to enlarge S by taking all places of the extension F which extend
all places in S. We shall denote this set by S. Moreover we add finitely
many prime ideals to S so that the ring of S-integers of F is a principal
ideal domain. The equality (4.3) becomes

(4.11) uα2 = ηp − λ(η)−q − 1.

If q < 0, then uα2 = f(η) where

(4.12) f(t) = tp − λt−q − 1 ∈ F [t].

If q > 0 then

(4.13) uηqα2 = ηp+q − ηq − λ

so uηqα2 = f(η) where

(4.14) f(t) = tp+q − tq − λ ∈ F [t].

Since there are only finitely many possibilities for p, q ∈ Z and ω ∈ K,
there are only finitely many possibilities for f(t).

Now we prove that there exists a finite set T such that α ∈ T -units.
Let ρ1 and ρ2 be the primitive cube roots of unity and ζ1 and ζ2 be the
primitive sixth roots of unity. We enlarge F and S so that the ring QS of
S-integers of F is a P.I.D. containing all 6-th roots of unity ρ1, ρ2, ζ1 and
ζ2. Let p be a prime ideal of QS which divides α. By (4.4) and (4.10)

0 ≡ 1 + λη−q + λ2η−2q ≡ (λη−q − ρ1)(λη−q − ρ2) (mod p)

hence

(4.15) λη−q ≡ ρi (mod p) with i = 1 or i = 2.

By (4.5)
0 ≡ η2p − ηp + 1 ≡ (ηp − ζ1)(ηp − ζ2) (mod p)
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hence

(4.16) ηp ≡ ζj (mod p) with j = 1 or j = 2.

Note that η 6≡ 0 (mod p). Now (4.15) and (4.16) give

(4.17) λpη−pq ≡ ρpi , λpη−pq ≡ λpζ−qj (mod p)

so
λp ≡ ρpi ζ

q
j (mod p),

i.e. the prime ideal p divides λp − ρpi ζ
q
j . We have proved that there exist

only finitely many possibilities for p unless ω = λp = ζqj ρ
p
i . Of course this

last equality implies that λ is a root of unity. We denote by T1 the set of
prime ideals defined by

T1 :=

{
p prime ideal

∣∣∣∣∣
p divides a non zero S-integer of the form ω−ζqj ρ

p
i ,

where (ω, p, q) ∈ R∗S × Z× Z is associated
to one of the finitely many identities (4.9)

}
.

Clearly T1 is a finite set. Therefore if any ω, which satisfies (4.9), is not a
root of unity we are done. Otherwise, if λ is a root of unity, then we prove
that any polynomial f(t) like (4.12) and (4.14) has a simple root. Actually
we prove the simple and more general result:

Lemma 4.3. — Let f(t) ∈ C[t] r C be a polynomial of the form tm +
λ1t
n + λ2 with |λ1| = |λ2| = 1, where | · | denotes the usual absolute value

on C. Then f(t) has at least one simple root.

Proof. — If m = n the lemma is trivial. Let m 6= n, without loss of
generality we can suppose that m > n. If ζ is a repeated root of the
polynomial f(t), then ζ is a root of f ′(t) = mtm−1 + λ1nt

n−1. Thus, since
ζ 6= 0, ζm−n = −λ1n/m. If f(t) had only repeated roots, then

|λ2| =
∣∣∣−λ1

n

m

∣∣∣ m
m−n

which is trivially false since |λ2| = |λ1| = 1, m/(m−n) 6= 0 and |n/m| 6= 1.
�

Now we prove a lemma which is a simple application of Siegel Theorem
about the finiteness of S-integral points of a curve of genus > 1 (e.g. see [18,
Chapter 7]).

Lemma 4.4. — Let f(t) ∈ F [t] be a polynomial which has at least one
simple root and does not vanish at zero. Then, the equation

(4.18) y2 = f(u)

has only finitely many solution (y, u) ∈ QS ×Q∗S.
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Proof. — Let C be the affine curve defined by the equation y2 = f(t).
For any double root a of the polynomial f , we can replace y by (t−a)y and
cancel (t− a)2. In this way we can assume that C is given by the equation
y2 = g(t) where g(t) ∈ F [t] r F has no repeated roots; thus C is an affine
smooth curve. Recall that the group of S-units Q∗S is a finitely generated
group, hence there exists a finite set U such that every S-unit u is such that
u = v ·w3, for suitable v ∈ U and w ∈ Q∗S. Therefore if (y, u) ∈ QS ×Q∗S is
a solution of (4.18), then

(4.19) y2 = g(u) = G(w)

where G ∈ F [t] is a polynomial with degree 3n > 3 without repeated roots
so that the curve defined by the affine equation y2 = G(t) has genus > 1.
By Siegel Theorem there are only finitely many solutions (y, w) ∈ QS×QS
to the equation (4.19) so that the lemma is proved. �

By (4.11) and (4.13) there exists an S-unit w (equal to u or uηq ) such that
wα2 = f(η), where f(t) is one of the finitely many polynomials described
in (4.12) and (4.14). If λ is a root of unity, then any such polynomial f(t)
satisfies the hypothesis of Lemma 4.3. Indeed any polynomials f(t) as in
(4.12) and (4.14) has degree > 1 since we have supposed that the right side
term in equation (4.3) has no vanishing subsums. Notice that there exists
a finite set V of S-units such that for every S-unit w we have w = s · l2 for
suitable l ∈ Q∗S and s ∈ V . So by Lemma 4.4 there are only finitely many
possibilities for uα2 and uηqα2.

We denote by T2 the following set of prime ideals of QS:

T2 =

p prime ideal

∣∣∣∣∣∣∣∣
p divides an S-integer α such that there exist
S-units a, v and a root of unity ω satisfying
the hypotheses of Lemma 4.2 and one of the
finitely many identities (4.9)

 .

The above arguments prove that T2 is a finite set. Now it is sufficient to
take T = {p ∩K | p ∈ S ∪ T1 ∪ T2} . �

4.2. Proof of Proposition 4.1

Note that every quadratic rational map, defined over K with good re-
duction outside S, which admits a cycle in P1(K) of length 3, is conjugate
via an automorphism in PGL2(K) to a map Ψ of the shape as in (2.5),
where λ = 1, satisfying (4.1). In the proof of Proposition 4.1 we shall use
Lemma 4.2 and the following lemma:
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Lemma 4.5. — Let Ψ be a quadratic rational map defined over K sat-
isfying (4.1). Let [A] ∈ PGL2(K). If the rational map [A] ◦ Ψ ◦ [A]−1 has
good reduction outside S, then there exist two S-integers a, c such that
(4.2) and part 1) of Proposition 4.1 hold; furthermore:

i) Disc([A])2 = (c− 1) ·RS ,
ii) Disc([A]) divides the ideals (1 + a + a2) · RS and (1 − (a + c) +

(a+ c)2) ·RS .

Proof. — As seen before in the proof of Lemma 3.1, up to enlarging S,
we can suppose that the ring RS is a P.I.D..

Let Ψ be a quadratic rational map satisfying (4.1); then there exist three
S-integers a, b, c such that (2.5) holds with λ = 1 and the hypotheses of
Lemma 3.1 are satisfied. Therefore by replacing b by 1, a/b by a and c/b

by c in (2.5), we see that (4.2) and part 1) of Proposition 4.1 are true.
By Lemma 2.6, without loss of generality, we can assume that

(4.20) A =
(
α 0
β 1

)
and A−1 =

(
1 0
−β α

)
for suitable S-integers α and β, where α and β + 1 are coprime in RS . We
have that Φ([X : Y ]) := [A] ◦ Ψ ◦ [A]−1 = [F (X,Y ) : G(X,Y )]; for the
readers’ convenience we rewrite the identities (3.6) and (3.7) in the case
λ = 1 since they will be useful in the sequel,

F (X,Y ) = α(1 + β)(a− β)X2 + α2(2β + 1− a)XY − α3Y 2(4.21)

G(X,Y ) = [β(1 + β)(a− β) + a− cβ]X2 + α(2β2 + β(4.22)

− βa+ c)XY − α2βY 2.

As in the proof of Lemma 3.1 we have that
(1 + β)(a− β)

α
∈ RS ,(4.23)

β(1 + β)(a− β) + a− cβ
α2 ∈ RS ,(4.24)

2β2 + β − βa+ c

α
∈ RS .(4.25)

Since the S-integers α and 1 + β are coprime, by (4.23) it follows that

(4.26) a− β
α
∈ RS ;

since a ∈ R∗S , α and β are coprime.
The next step is to prove that c−1 = uα2, for a suitable S-unit u, exploit-

ing the good reduction outside S of Φ. Since Φ = [A] ◦Ψ ◦ [A]−1 has good
reduction outside S, from Definition 2.1 it follows that vp(Disc(Φ)) = 0 for
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all prime ideals p /∈ S. We express Disc(Φ) by using the representation
Φ([X : Y ]) = [F (X,Y ) : G(X,Y )] with F (X,Y ), G(X,Y ) as in (4.21) and
(4.22). By direct calculation we see that

(4.27) Res(F,G) = −α6a(a+ c)(c− 1).

Otherwise, we can obtain (4.27) by application of the following lemma:

Lemma 4.6. — Let U(X,Y ) and V (X,Y ) be homogeneous polynomi-
als of degree D, let f(X,Y ) and g(X,Y ) be homogeneous polynomials of
degree d, and let

B(X,Y ) = U(f(X,Y ), g(X,Y )) and C(X,Y ) = V (f(X,Y ), g(X,Y ))

be their compositions. Then

Res(B,C) = Res(U, V )d · Res(f, g)D
2
.

Proof. — See Proposition 6.1 in [6] �

By (4.2) we have that Ψ(X,Y ) = [aX2 + (1− a)XY − Y 2 : aX2 + cXY ]
and by direct calculation we see that

Res(aX2 + (1− a)XY − Y 2, aX2 + cXY ) = −a(a+ c)(c− 1).

Moreover we have that [A](X,Y ) = [αX : βX+Y ] and Res(αX, βX+Y ) =
α, [A]−1(X,Y ) = [X : −βX + αY ] and Res(X,−βX + αY ) = α. Hence,
by applying two times Lemma 4.6 we obtain (4.27).

Recall that, as said at the beginning of this proof, the hypotheses of
Lemma 3.1 are satisfied, so in particular a ∈ R∗S . Hence, the S-integers α
and β are coprime because (4.26) holds.

Let β 6= 0. By (4.21), (4.22), (4.23), (4.24), (4.25) and the coprimality
of α and β, we see that min{vp(F ), vp(G)} = 2vp(α) for every prime ideal
p /∈ S. Otherwise, if β = 0, by (4.26) and a ∈ R∗S , it follows that α ∈ R∗S .
Hence, for all prime ideals p /∈ S we have vp(α) = 0. Therefore by (4.21)
it follows that min{vp(F ), vp(G)} = 2vp(α) still holds and is equal to zero.
Hence, by Definition 2.1, (4.27), part 1) of Proposition 4.1 and the good
reduction of Φ outside S we have that

0 = vp(Disc(Φ)) = vp(Res(F,G))− 4 ·min
{
vp(F ), vp(G)

}
= vp

(
α6(c− 1)

)
− 8vp(α)

holds for every p /∈ S. Now, we easily deduce that c−1 = uα2, for a suitable
u ∈ R∗S . We have proved part i) of the lemma, since Disc([A]) = α ·RS .

Now, to prove part ii) we note that from (4.26) and (4.25) the S-integer
α divides a2 + a+ c and, since α | c− 1, it follows that α divides 1 + a+ a2

in RS . To ease notation we set v = a+ c ∈ R∗S . Part i) of lemma reads as
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uα2 = v − a− 1, thus a ≡ v − 1 (mod α), so from α | 1 + a+ a2 in RS we
easily obtain that α divides 1− v + v2 in RS . �

Proof of Proposition 4.1. — By Lemma 4.5 it remains to prove only
part 2). Without loss of generality we can take an enlarged finite set S
so that RS is a P.I.D.. Let [A] ∈ PGL2(K) be an automorphism of P1
such that the rational map [A] ◦ Ψ ◦ [A]−1 has good reduction outside S.
By Lemma 2.6 we can assume that the automorphism [A] is induced by
a matrix A defined as in (4.20). Let a and c be the S-integers satisfying
(4.2) and part 1). Let v be the S-unit v = a + c and α an S-integer such
that Disc([A]) = α · RS . Lemma 4.5 implies that there exists an S-unit u
such that the above S-units a and v satisfy the hypotheses of Lemma 4.2.
Thus, there exists a finite set T containing S such that every S-integer α,
as above, is a T -unit. By applying the T -unit Equation Theorem to the
equation (4.3) we deduce that there are only finitely many possibilities for
non-degenerate solutions (a, v, uα2) ∈ R∗S × R∗S × RS of (4.3), obtaining
only finitely many possibilities for the ideal Disc([A]) = α · RS . Now it is
clear that we can choose B equal to{

a ∈ R∗S | there exist v, u ∈ R∗S α ∈ RS ,
such that (a, v, uα2) is a non deg. sol. of (4.3)

}
⋃{

v − a | a, v ∈ R∗S and there exist u ∈ R∗S , α ∈ RS ,
such that (a, v, uα2) is a non deg. sol. of (4.3)

}
,

which is a finite set.
We have degenerate solutions of (4.3) if and only if one of the following

conditions hold:
i) a = −1 and uα2 = v;
ii) v − a = 0 and uα2 = −1;
iii) v = 1 and uα2 = −a,

which proves part 2) of Proposition 4.1. In all cases i), ii) and iii) we have
that α ∈ R∗S . �

5. Proofs of the main theorems

Proof of Theorem 1.5. — By Lemma 2.4 we can consider the conjugation
action induced by PGL2(K). Every quadratic rational map, defined over
K with good reduction outside S and admitting a periodic point in P1(K)
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with exact period 3, is equivalent, via an automorphism of PGL2(K), to a
rational map Ψ defined over K which admits the following cycle

[0 : 1] Ψ7−→ [1 : 0] Ψ7−→ [1 : 1] Ψ7−→ [0 : 1].

Proposition 4.1 says that there are only finitely many possibilities for Ψ
or

i) Ψ([X : Y ]) = [(X − Y )2 : X(X − (v + 1)Y ] where v ∈ R∗S or
ii) Ψ([X : Y ]) = [(X − Y )(aX + Y ) : aX2] where a ∈ R∗S or
iii) Ψ([X : Y ]) = [(X −Y )(aX +Y ) : X(aX + (1−a)Y ] where a ∈ R∗S .

Let
B =

(
1 −1
1 0

)
.

The induced automorphism [B] = [X − Y : X] ∈ PGL2(K) has inverse
[B]−1 = [−Y : X − Y ]. By direct calculation we see that

[B]◦[(X−Y )2 : X(X−(v+1)Y ]◦[B]−1 = [(X−Y )(−v−1X+Y ) : −v−1X2]

which has the form as in ii) and

[B]−1 ◦ [(X − Y )(aX + Y ) : X(aX + (1− a)Y ] ◦ [B]

= [(X − Y )(−a−1X + Y ) : −a−1X2]

which still has the form as in ii). This concludes the proof. �

Now we prove that the set of maps of the form as in (1.2) represents an
infinite set of classes under the conjugation action induced by PGL2(Q).

Proposition 5.1. — For every a ∈ Gm, let Φa be the quadratic map
defined in (1.2). Each element of M2(Q) contains at most six maps of the
form Φa.

Proof of Proposition 5.1. — Let a ∈ Gm be fixed. We have to prove that
there exist at most six maps of the form Φb conjugate to the map Φa.
Notice that the rational map Φa admits at most two cycles of length 3 in
P1(Q). The ordered triple ([0 : 1], [1 : 0], [1 : 1]) is a cycle for Φa for every
integer a. Let (P0, P1, P2) be the “second” cycle of length 3 for Φa (it could
be equal to ([0 : 1], [1 : 0], [1 : 1])). If [A] ∈ PGL2(Q) is an automorphism
such that the map [A] ◦ Φa ◦ [A]−1 = Φb for some b ∈ Gm, then either

([A]([0 : 1]), [A]([1 : 0]), [A]([1 : 1])) = ([0 : 1], [1 : 0], [1 : 1])

or
([A](P0), [A](P1), [A](P2)) = ([0 : 1], [1 : 0], [1 : 1]).

Hence we deduce that there are only six possibilities for the automorphism
[A] ∈ PGL2(Q) and so there are only six possibilities for the map Φb. �
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To prove Theorem 1.6 we shall use the following result:

Proposition 5.2. — Let I be a given finite set of ideals of RS . Let
n be a fixed positive integer. There exist only finitely many inequivalent
n-tuples (P0, P1, . . . , Pn−1) such that

(5.1) I(Pi, Pj) ∈ I for all distinct 0 6 i, j 6 n− 1,

where the ideals I(Pi, Pj) are those defined in (2.3).

This proposition is a generalization of Proposition 2 in [4] where the set
I contains only the ideal RS . Actually the techniques to prove these two
propositions are the same. Therefore we give here a very brief proof, for
the details see the proof in [4].

Proof. — Let (P0, P1, . . . , Pn−1) be a n-tuple which satisfies (5.1). For
every index 0 6 i 6 (n− 1), since I is a finite set of ideals, by the finiteness
of the class number of RS , we can choose (xi, yi) ∈ R2

S as homogeneous
coordinates representing the point Pi = [xi : yi], such that for all 0 6 i, j 6
(n− 1) the equalities xiyj − xjyi = ri,jui,j hold, where ui,j ∈ R∗S and ri,j
belong to a finite set which can be chosen only depending on S and I. To
every n-tuple (P0, P1, . . . , Pn−1), and for every index 0 6 i 6 (n − 1), we
associate the following binary form

F (X,Y ) =
∏

06i6(n−1)

(xiX − yiY )

defining in this way a family of forms with discriminant

D(F ) = u

( ∏
06i<j6(n−1)

r2
i,j

)
where u is a suitable S-unit.

There exists a finite set W , only depending on S, such that for every S-
unit u we have that u = w·v2n−2 for suitable w ∈W and v ∈ R∗S . Therefore,
for every cycle (P0, P1, . . . , Pn−1) satisfying (5.1) there exists a S-unit v−1

such that by taking (v−1 · x0, v
−1 · y0) as homogeneous coordinates repre-

senting the point P0 = [x0 : y0], we can assume that the discriminant of
every binary form F (X,Y ) defined above belongs to a finite set which only
depends on S and I. Now it is sufficient to apply the result obtained by
Birch and Merriman in [2] on the finiteness of the classes of binary forms
with given degree and given discriminant. See [7] for an effective form of
the Birch and Merriman’s result. �

Proof of Theorem 1.6. — The case n > 4 is an immediate application
of Theorem 1.2′.
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Let n = 3. Let (P0, P1, P2) be a cycle in P1(K) for a quadratic ra-
tional map Φ defined over K with good reduction outside S. Let [C] ∈
PGL2(K) an automorphism which sends the ordered triple (P0, P1, P2)
into the ordered triple ([0 : 1], [1 : 0], [1 : 1]). The ordered n-tuple ([0 : 1],
[1 : 0], [1 : 1]) is a cycle for the quadratic rational map [C] ◦Φ ◦ [C]−1. We
set Ψ = [C] ◦ Φ ◦ [C]−1 and [A] = [C]−1. The rational map Ψ and the
automorphism [A] satisfy the hypothesis of Proposition 4.1. Furthermore
[A]([0 : 1]) = P0 and [A]([1 : 0]) = P1. Let

A =
(
a b

c d

)
be a matrix in M2×2(RS) which induces the automorphism [A]. We see im-
mediately that vp(Disc(A)) = vp(ad−cb)−2 min

{
vp(a), vp(b), vp(c), vp(d)

}
and P0 = [b : d] and P1 = [a : c] so that

vp(I1) = vp(I(P0, P1))

= vp(ad− cb)−min
{
vp(a), vp(c)

}
−min

{
vp(b), vp(d)

}
.

In this way we have proved that vp(I1) 6 vp(Disc(A)). Since Proposi-
tion 4.1 tells us that there are only finitely many possibilities for the ideal
Disc(A), the same holds also for the ideal I1. By [14, Proposition 6.1] we
have that I1 = I2, hence there exists a finite set I such that if (P0, P1, P2)
is a cycle for a quadratic rational map defined over K with good reduction
outside S, then

I(Pi, Pj) ∈ I for all distinct 0 6 i 6= j 6 2.

By applying Proposition 5.2 we obtain that the set of classes of 3-cycles,
for some quadratic rational maps defined over K with good reduction out-
side S, is finite. �

BIBLIOGRAPHY

[1] R. L. Benedetto, “Reduction, dynamics, and Julia sets of rational functions”, J.
Number Theory 86 (2001), no. 2, p. 175-195.

[2] B. J. Birch & J. R. Merriman, “Finiteness theorems for binary forms with given
discriminant”, Proc. London Math. Soc. (3) 24 (1972), p. 385-394.

[3] E. Bombieri & W. Gubler, Heights in Diophantine Geometry, New Mathematical
Monographs, no. 4, Cambridge University Press, Cambridge, 2006, 668 pages.

[4] J. K. Canci, “Cycles for rational maps with good reduction outside a prescribed
set”, Monatsh. Math. 149 (2007), no. 4, p. 265-287.

[5] P. Corvaja & U. Zannier, “A lower bound for the height of a rational function at
S-unit points”, Monatsh. Math. 144 (2005), no. 3, p. 203-224.

[6] L. DeMarco, “Dynamics of rational maps: Lyapunov exponents, bifurcations, and
capacity”, Math. Ann. 326 (2003), no. 1, p. 43-73.

ANNALES DE L’INSTITUT FOURIER



RATIONAL PERIODIC POINTS 985

[7] J.-H. Evertse & K. Győry, “Effective finiteness results for binary forms with given
discriminant”, Compositio Math. 79 (1991), no. 2, p. 169-204.

[8] J.-H. Evertse, “On sums of S-units and linear recurrences”, Compositio Math. 53
(1984), no. 2, p. 225-244.

[9] M. Hindry & J. H. Silverman, Diophantine Geometry, Graduate Texts in Mathe-
matics, vol. 201, Springer-Verlag, New York, 2000, An introduction, xiv+558 pages.

[10] S. Lang, Algebra, third ed., Graduate Texts in Mathematics, vol. 211, Springer-
Verlag, New York, 2002, xvi+914 pages.

[11] D. A. Marcus, Number fields, Springer-Verlag, New York, 1977, Universitext,
viii+279 pages.

[12] J. Milnor, “Geometry and dynamics of quadratic rational maps”, Experiment.
Math. 2 (1993), no. 1, p. 37-83, With an appendix by the author and Lei Tan.

[13] P. Morton & J. H. Silverman, “Rational periodic points of rational functions”,
Internat. Math. Res. Notices (1994), no. 2, p. 97-110.

[14] ——— , “Periodic points, multiplicities, and dynamical units”, J. Reine Angew.
Math. 461 (1995), p. 81-122.

[15] A. J. van der Poorten & H. P. Schlickewei, “The growth condition for recur-
rence sequences”, Rep. No. 82-0041, 1982.

[16] W. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785,
Springer, Berlin, 1980, x+299 pages.

[17] W. M. Schmidt, Diophantine approximations and Diophantine equations, Lecture
Notes in Mathematics, vol. 1467, Springer-Verlag, Berlin, 1991, viii+217 pages.

[18] J.-P. Serre, Lectures on the Mordell-Weil Theorem, third ed., Aspects of Math-
ematics, Friedr. Vieweg & Sohn, Braunschweig, 1997, Translated from the French
and edited by Martin Brown from notes by Michel Waldschmidt, with a foreword
by Brown and Serre, x+218 pages.

[19] J. H. Silverman, “The space of rational maps on P1”, Duke Math. J. 94 (1998),
no. 1, p. 41-77.

[20] ——— , The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol.
241, Springer, New York, 2007, x+511 pages.

Manuscrit reçu le 28 janvier 2008,
révisé le 16 février 2009,
accepté le 27 mars 2009.

Jung Kyu CANCI
Université Lille 1
Laboratoire Paul Painlevé, Mathématiques
59655 Villeneuve d’Ascq Cedex (France)
jungkyu.canci@math.univ-lille1.fr

TOME 60 (2010), FASCICULE 3

mailto:jungkyu.canci@math.univ-lille1.fr

	1. Introduction
	2. Notation and preliminary lemmas
	3. Proof of Theorem 1.2
	4. Periodic points with exact period equal to 3
	4.1. A technical lemma
	4.2. Proof of Proposition 4.1

	5. Proofs of the main theorems
	Bibliography

