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GALOIS ACTIONS ON NÉRON MODELS OF
JACOBIANS

by Lars H. HALLE (*)

Abstract. — Let X be a smooth curve defined over the fraction field K of a
complete discrete valuation ring R. We study a natural filtration of the special fiber
of the Néron model of the Jacobian of X by closed, unipotent subgroup schemes.
We show that the jumps in this filtration only depend on the fiber type of the
special fiber of the minimal regular model with strict normal crossings for X over
R, and in particular are independent of the residue characteristic. Furthermore, we
obtain information about where these jumps occur. We also compute the jumps
for each of the finitely many possible fiber types for curves of genus 1 and 2.

Résumé. — Soit X une courbe lisse définie sur le corps des fractions K d’un
anneau de valuation discrète R. Nous étudions une filtration naturelle sur la fibre
spéciale du modèle de Néron de la Jacobienne deX par des sous-schémas en groupes
fermés unipotents. Nous démontrons que les sauts de cette filtration ne dépendent
que du type de la fibre spéciale du modèle minimal régulier à croisements normaux
stricts de X sur R. En particulier, les sauts sont indépendants de la caractéristique
résiduelle. Ensuite, nous obtenons des informations plus précises sur les sauts, et
nous les calculons pour chaque type de fibre possible pour les courbes de genre 1
et 2.

1. Introduction

Let X be a smooth, projective and geometrically connected curve of
genus g(X) > 0, defined over the fraction field K of a complete discrete
valuation ring R, with algebraically closed residue field k. By a model for
X over R, we mean an integral and normal scheme X that is flat and
projective over S = Spec(R), and with generic fiber XK ∼= X. The special
fiber Xk of such a model is called a reduction of X.

Keywords: Models of curves, tame cyclic quotient singularities, group actions on coho-
mology, Néron models.
Math. classification: 14D06.
(*) I would like to thank Bas Edixhoven for suggesting this subject to me, and generously
sharing his ideas. I would also like to thank my thesis advisor Carel Faber for discussing
the material in this paper with me.
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The semi-stable reduction theorem, due to Deligne and Mumford [5,
Corollary 2.7], states that there exists a finite, separable field extension
L/K such that XL admits a semi-stable model over the integral closure RL
of R in L.

In order to study reduction properties of X, it can often be useful to
work with the Jacobian J/K of X. The question whether X has semi-
stable reduction over S = Spec(R) is reflected in the structure of the Néron
model J /S (cf. [2]) of J . In fact, X has semi-stable reduction over S if and
only if J 0

k , the identity component of the special fiber, has zero unipotent
radical [5, Proposition 2.3].

In general, it is necessary to make ramified base extensions in order for X
to obtain semi-stable reduction. If the residue characteristic is positive, it
can often be difficult to find explicit extensions over which X obtains stable
reduction. In the case where a tamely ramified extension suffices one can
do this by considering the geometry of suitable regular models for X over S
(cf. [10]). In this paper we study, among other things, how the geometry of
the Néron model contains information that is relevant for obtaining semi-
stable reduction for X.

1.1. Néron models and tame base change

Let K ′/K be a finite, separable and tamely ramified extension of fields,
and let R′ be the integral closure of R in K ′. Then R′ is a complete discrete
valuation ring, with residue field k. Furthermore, K ′/K is Galois, with
group G = µn, where n = deg(K ′/K).

Let J ′/S′ be the Néron model of the Jacobian of XK′ , where S′ =
Spec(R′). Due to a result by B. Edixhoven [8, Theorem 4.2], it is possible
to describe J /S in terms of J ′/S′, together with the induced G-action
on J ′. Namely, if W denotes the Weil restriction of J ′/S′ to S (cf. [2,
Chapter 7]), one can let G act on W in such a way that J ∼= WG, where
WG denotes the scheme of invariant points. In particular, one gets an
isomorphism Jk ∼= WGk . By [8, Theorem 5.3], one can use this description
of Jk to define a descending filtration

Jk = F 0
n ⊇ . . . ⊇ F in ⊇ . . . ⊇ Fnn = 0

of Jk by closed subgroup schemes.
In [8, Remark 5.4.5], a generalization of this setup is suggested. If we

define F i/n = F in, where F in is the i-th step in the filtration induced by the
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extension of degree n, one can consider the filtration

Jk = F0 ⊇ . . . ⊇ Fa ⊇ . . . ⊇ F1 = 0,

with indices in Z(p) ∩ [0, 1]. The construction of Fa is independent of the
choice of representatives i and n for a = i/n.

The filtration {Fa} contains significant information about J . For in-
stance, the subgroup schemes Fa are unipotent for a > 0, so in a natural
way, this filtration gives a measure on how far J /S is from being semi-
abelian.

One way to study the filtration {Fa} is to determine where it jumps.
This will occupy a considerable part of this paper. The jumps in the filtra-
tion often give explicit numerical information about X. For instance, if X
obtains stable reduction after a tamely ramified extension, we show that
the jumps occur at indices of the form i/ñ, where ñ is the degree of the
minimal extension that realizes stable reduction for X.

It follows from Edixhoven’s theory that to determine the jumps in the
filtration {F in} induced by an extension of degree n, one needs to com-
pute the irreducible characters for the representation of µn on the tangent
space TJ ′

k
,0. We shall use such computations for infinitely many integers n

to describe the jumps of the filtration {Fa} with rational indices.

1.2. Néron models for Jacobians

Contrary to the case of general abelian varieties, Néron models for Jaco-
bians can be constructed in a fairly concrete way, using the theory of the
relative Picard functor (cf. [2, Chapter 9]). The following property will be
of particular importance to us: If Z/S′ is a regular model for XK′/K ′, then
there is a canonical isomorphism

Pic0
Z/S′
∼= (J ′)0,

where Pic0
Z/S′ (resp. (J ′)0) is the identity component of PicZ/S′ (resp. J ′).

It follows that there is a canonical isomorphism

H1(Zk,OZk) ∼= TJ ′
k
,0.

We shall work with regular models Z of XK′ that admit G-actions that
are compatible with the G-action on J ′. It will then follow that the rep-
resentation of G on TJ ′

k
,0 can be described in terms of the representation

of G on H1(Zk,OZk).

TOME 60 (2010), FASCICULE 3
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1.3. Models and actions

In order to find an S′-model for XK′ with a compatible G-action, we
take a model X of X over S, and consider its pullback XS′ to S′. Let
Y → X ′ → XS′ be the composition of the normalization with the minimal
desingularization. Then Y is a model of XK′ with an action of G that lifts
the obvious action on XS′ . TheG-action restricts to the special fiber Yk, and
in particular,G will act on the cohomology groupsHi(Yk,OYk), for i = 0, 1.

In order to understand the G-action on Hi(Yk,OYk), we need a good
description of the geometry of Y and of the G-action on Y. For this pur-
pose, we demand that the model X has good properties. To begin with,
we shall require that X is regular, and that the special fiber is a divisor
with strict normal crossings. Furthermore, we shall always require that any
two irreducible components of Xk, whose multiplicities are both divisible
by the residue characteristic, have empty intersection. This condition is
automatically fulfilled if X obtains stable reduction after a tamely ramified
extension, but holds also for a larger class of curves.

Under these assumptions, it turns out that the normalization X ′ of XS′
has at most tame cyclic quotient singularities (cf. [4, Definition 2.3.6] and
[10, Paper I, Proposition 4.3]). These singularities can be resolved explicitly,
and it can be seen that Y is a strict normal crossings model for XK′ .

We shall also only consider the case where n = deg(K ′/K) is relatively
prime to the multiplicities of all the irreducible components of Xk. With
this additional hypothesis, it turns out that we can describe the combina-
torial structure of the special fiber Yk (i.e., the intersection graph of the
irreducible components, their genera and multiplicities), in terms of the
corresponding data for Xk.

If all the assumptions above are satisfied, it follows that all irreducible
components of Yk are stable under the G-action on Y, and that all inter-
section points in Yk are fixed points. We can explicitly describe the action
on the cotangent space of Y at these intersection points, and the restriction
of the G-action to each irreducible component of Yk.

Next, we study the representation of G = µn on H1(Yk,OYk). In par-
ticular, we would like to compute the irreducible characters for this repre-
sentation. So for every g ∈ G, we want to compute the trace of the endo-
morphism of H1(Yk,OYk) induced by g, and then use this information to
find the characters.

There are some technical problems that need to be overcome in order to
do this. First, since we allow the residue characteristic to be positive, just
knowing the trace for each g ∈ G may not give sufficient information to
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compute the characters. Instead, we have to compute the so called Brauer
trace for every g ∈ G (cf. [18, Chapter 18]). This means that we have
to lift the eigenvalues and traces from characteristic p to characteristic 0.
From knowing the Brauer trace for every g ∈ G we can compute the irre-
ducible Brauer characters, and then the ordinary characters are obtained
by reducing the Brauer characters modulo p. Second, the special fiber Yk
will in general be singular, and even non-reduced. This complicates trace
computations considerably.

To deal with these problems, we introduce in Section 6 a certain filtration
of the special fiber Yk by effective subdivisors, where the difference at the
i-th step is an irreducible component Ci of Yk. Since Y is an SNC-model,
each Ci is a smooth and projective curve, and with our assumption on n, the
G-action restricts to each Ci. Furthermore, to each step in this filtration,
one can in a natural way associate an invertible G-sheaf Li, supported
on Ci.

We apply the so called Lefschetz-Riemann-Roch formula [7, Corollary
5.5], in order to get a formula for the Brauer trace of the endomorphism
induced by each g ∈ G on the formal difference H0(Ci,Li) − H1(Ci,Li).
An important step is to show that our description of the action on Y is
precisely the data that is needed to obtain these formulas. Then we show
that these traces add up to give the Brauer trace for the endomorphism
induced by each g ∈ G on the formal difference H0(Yk,OYk)−H1(Yk,OYk).
In particular, we give in Theorem 7.9, one of the main results in this work,
a formula for this Brauer trace, and show that it only depends on the
combinatorial structure of Xk.

Let us also remark that in our situation, we already know the character
for H0(Yk,OYk), and hence we will be able to compute the irreducible
characters for H1(Yk,OYk) in this way.

1.4. Conclusions and computations

If now X/S is the minimal regular model with strict normal crossings
for X/K, we prove in Theorem 8.1 that the irreducible characters for the
representation of G = µn on H1(Yk,OYk) only depend on the combinato-
rial structure of the special fiber Xk, as long as n is relatively prime to l,
where l is the least common multiple of the multiplicities of the irreducible
components of Xk.

Let J be the Néron model of the Jacobian of X. Then it follows from
Theorem 8.1 that the jumps in the filtration {FaJk} only depend on the

TOME 60 (2010), FASCICULE 3
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combinatorial structure of Xk (Corollary 8.2). This is due to the fact that
Z(pl) ∩ [0, 1] is “dense” in Z(p) ∩ [0, 1]. Furthermore, in Corollary 8.3, we
draw the conclusion that the jumps are actually independent of p, and that
the jumps can only occur at finitely many rational numbers of a certain
kind, depending on the combinatorial structure of Xk.

For a fixed genus g > 1, there are only a finite number of possible com-
binatorial structures for Xk, modulo a certain equivalence relation. In case
g = 1 or g = 2, one has complete classifications (cf. [13] for g = 1 and [16],
[17] for g = 2). In Section 8 we compute the jumps for each possible fiber
type for g = 1 (which were also computed by Schoof in [8]) and for g = 2.

2. Néron models and tamely ramified extensions

Let R be a discrete valuation ring, with fraction field K and residue
field k, and let A be an abelian variety over K. There exists a canonical
extension of A to a smooth group scheme A over S = Spec(R), known as
the Néron model [2, Theorem 1.4/3]. The Néron model is characterized by
the following universal property: for every smooth morphism T → S, the
induced map A(T )→ A(TK) is bĳective.

2.1.

We assume from now on that R is strictly henselian. Let K ′/K be a
finite, separable extension of fields, and let R′ be the integral closure of R
in K ′. Let A′/S′ denote the Néron model of the abelian variety AK′/K

′,
where S′ = Spec(R′). In general, it is not so easy to describe how Néron
models change under ramified base extensions. However, in the case where
K ′/K is tamely ramified, one can relate A′/S′ and A/S in a nice way,
due to a result by B. Edixhoven [8, Theorem 4.2]. We will in this section
explain this relation, following the treatment in [8]. We refer to this paper
for further details.

Assume now that K ′/K is tamely ramified. Then K ′/K is Galois with
group G = µn, where n = [K ′ : K]. Let G act on

AK′ = A×Spec(K) Spec(K ′)

(from the right), via the action on the right factor. By the universal prop-
erty of A′, this G-action on AK′ extends uniquely to a right action on A′,
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such that the morphism A′ → S′ is equivariant. The idea in [8] is to re-
construct A as an invariant scheme for this action. However, since A is an
S-scheme, it is necessary to “push forward” from S′ to S.

The Weil restriction of A′ to S is the functor ΠS′/S(A′/S′) defined by
assigning, to any S-scheme T , the set

ΠS′/S(A′/S′)(T ) = A′(TS′)

(cf. [2, Chapter 7]). This functor is representable by an S-scheme, which
we will denote by ΠS′/S(A′/S′).

In [8], an equivariant G-action on ΠS′/S(A′/S′) is defined, corresponding
to the G-action on A′. Furthermore, there is a canonical morphism

A → ΠS′/S(A′/S′),

which, according to [8, Theorem 4.2], is a closed immersion, and induces
an isomorphism

(2.1) A ∼= (ΠS′/S(A′/S′))G,

where (ΠS′/S(A′/S′))G denotes the scheme of invariant points for this G-
action.

2.2. Filtration of Ak

One can use Isomorphism (2.1) to study the special fiber Ak in terms
of A′k, together with the G-action. Indeed, let R ⊂ R′ = R[π′]/(π′n − π)
be a tame extension, where π is a uniformizing parameter for R. Then we
have that R′/πR′ = k[π′]/(π′n). For any k-algebra C, it follows that

Ak(C) ∼= XGk (C) ∼= Xk(C)G ∼= A′(C[π′]/(π′n))G,

where X = ΠS′/S(A′/S′).
In [8, Chapter 5] this observation is used to construct a filtration of Ak.

To do this, let us first consider an R-algebra C. From Isomorphism (2.1)
one gets a map

A(C)→ A′(C ⊗R R′),
which further gives

A(C)→ A′(C ⊗R R′)→ A′(C ⊗R R′/(π′i)),

for any integer i such that 0 6 i 6 n. Define functors F iAk by

F iAk(C) = Ker(A(C)→ A′(C ⊗R R′/(π′i))),

TOME 60 (2010), FASCICULE 3



860 Lars H. HALLE

for any k = R/(π)-algebra C. The functors F iAk are represented by closed
subgroup schemes of Ak, and give rise to a descending filtration

(2.2) Ak = F 0Ak ⊇ F 1Ak ⊇ . . . ⊇ FnAk = 0.

The successive quotients of Filtration (2.2) can be described quite accu-
rately: Let GriAk denote the quotient

F iAk/F i+1Ak, for i ∈ {0, . . . , n− 1}.

Then, according to Theorem 5.3 in [8], we have that Gr0(Ak) = (A′k)µn ,
and for 0 < i < n, we have that

GriAk ∼= TA′
k
,0[i]⊗k (m/m2)⊗i,

where m ⊂ R′ is the maximal ideal, and where TA′
k
,0[i] denotes the subspace

of TA′
k
,0 where ξ ∈ µn acts by multiplication by ξi. In particular, we note

that the group schemes F iAk are unipotent for i > 0.
The filtration jumps at the index i ∈ {0, . . . , n− 1} if GriAk 6= 0. Since

TA′
k
,0[0] = (TA′

k
,0)µn = T(A′

k
)µn ,0

(use [8, Proposition 3.2]), it follows that the jumps are completely deter-
mined by the representation of µn on TA′

k
,0. In particular, it follows that

there are at most dim(A) jumps, since dimkTA′
k
,0 = dim(A).

2.3. Filtration with rational indices

Let a ∈ Z(p) ∩ [0, 1]. If a = i/n, then we define FaAk = F inAk, where
F inAk denotes the i-th step in the filtration induced by the tame extension of
degree n. This definition does not depend on the choice of representatives i
and n for a = i/n [10, Lemma 2.3]. The following proposition is immediate:

Proposition 2.1. — The construction above gives a descending filtra-
tion

Ak = F0Ak ⊇ . . . ⊇ FaAk ⊇ . . . ⊇ F1Ak = 0
of Ak by closed subgroup schemes, where a ∈ Z(p) ∩ [0, 1].

Let x ∈ [0, 1] be a real number, and let (xj)j (resp. (xk)k) be a sequence
of numbers in Z(p) ∩ [0, 1] converging to x from above (resp. from below).
We will say that {FaAk} jumps at x if FxkAk ) FxjAk for all j and k.
It is natural to ask how many jumps there are, and where they occur. It
is easily seen that since every discrete filtration {F inAk} jumps at most
g = dim(A) times, the filtration {FaAk} can have at most g jumps.

ANNALES DE L’INSTITUT FOURIER
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Consider a positive integer n that is not divisible by p, and let {F inAk}
be the filtration induced by the extension of degree n. Let us assume that
this filtration has a jump at some i ∈ {0, . . . , n − 1}. Then we can say
that {FaAk} has a jump in the interval [i/n, (i + 1)/n]. By computing
jumps in this way for increasing n, we get finer partitions of the interval
[0, 1], and increasingly better approximations of the jumps in {FaAk}.

It follows that one can compute the jumps of {FaAk} by computing
the jumps for the filtrations {F inAk} for “sufficiently” many n that are not
divisible by p. This would for instance be the case for a multiplicatively
closed subset U ⊂ N such that Z[U−1] ∩ [0, 1] is dense in Z(p) ∩ [0, 1].

In the case where A/K obtains semi-abelian reduction over a tamely
ramified extension K ′ of K, the jumps of {FaAk} have an interesting
interpretation, which we will now explain. Let K̃ be the minimal extension
over which A aquires semi-abelian reduction (cf. [6, Théorème 5.15]), and
let ñ = deg(K̃/K). Then we shall see below that the jumps occur at rational
numbers of the form k/ñ, where k ∈ {0, . . . , ñ− 1}. This is essentially due
to the following observation:

Lemma 2.2. — Let K̃/K be the minimal extension over which A/K

obtains semi-abelian reduction, and let ñ = deg(K̃/K). Consider a tame
extension K ′/K of degree n, factoring via K̃, and let m = n/ñ. Let A′/S′
be the Néron model of AK′ .

Then we have that the jumps in the filtration {F inAk} induced by S′/S
occur at indices i = kn/ñ, where 0 6 k 6 ñ− 1.

Proof. — Let Ã/S̃ be the Néron model of A
K̃

. By assumption, both A′

and Ã are semi-abelian. Since ÃS′ is smooth, andA′ has the Néronian prop-
erty, we get a canonical morphism ÃS′ → A′, extending the identity map
on the generic fibers. Since ÃS′ is semi-abelian, it follows from Proposition
7.4/3 in [2] that this morphism induces an isomorphism (Ãk)0 ∼= (A′k)0. In
particular, we get that TÃk,0 = TA′

k
,0.

Consider now the filtration {F imÃk} of Ãk induced by the extension S′/S̃.
Since Ã is semi-abelian, we have that F imÃk = 0 for all i > 0. Therefore,
we get that

Ãk = F 0
mÃk = Gr0

mÃk = (A′k)µm .

But now
(TA′

k
,0)µm = T(A′

k
)µm ,0 = TA′

k
,0,

and so it follows that µm acts trivially on TA′
k
,0.

Let us now consider the filtration {F inAk} induced by the extension S′/S.
The jumps in this filtration are determined by the µn-action on TA′

k
,0.

TOME 60 (2010), FASCICULE 3
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Assume that TA′
k
,0[i] 6= 0, for some i ∈ {0, . . . , n − 1}. On this subspace,

every ξ ∈ µn acts by multiplication by ξi. We can identify µm with the
ñ-th powers in µn, and since we established above that µm acts trivially,
it follows that ξñi = 1. So therefore ñi = kn for some k ∈ {0, . . . , ñ − 1},
and we get that i = kn/ñ. �

Using this lemma, one gets the following result:

Proposition 2.3. — If A obtains semi-abelian reduction over a tame
extension of K, then the jumps in the filtration {FaAk} occur at indices
k/ñ, where k ∈ {0, . . . , ñ − 1}, and where ñ is the degree of the minimal
extension K̃/K that realizes semi-abelian reduction for A.

Proof. — Let us consider the sequence of integers (ñm)m, where m runs
over the positive integers that are not divisibe by p. For the extension of
degree n = ñm, Lemma 2.2 gives that the jumps of {F inAk} occur at indices
i = kn/ñ, where 0 6 k 6 ñ − 1. It follows that the jumps of {FaAk} will
be among the limits of the expressions i/n = k/ñ, as m goes to infinity,
and the result follows. �

The next proposition shows that the jumps come in “simultaneously
reduced” form.

Proposition 2.4. — Let us assume that A/K obtains semi-abelian re-
duction over a tamely ramified minimal extension K̃/K, and that

ñ = [K̃ : K] > 1.

Let i1/ñ, . . . , ig/ñ be the jumps in the filtration {FaAk}.
Assume that m is a positive integer such that m divides il for all l, and

that m divides ñ. Then it follows that m = 1.

Proof. — Let us assume to the contrary that m > 1. Then it follows that
the subgroup H ⊆ µñ consisting of ñ/m-th powers acts trivially on TÃk,0

.
We now claim that H acts trivially also on Ã0

k. To see this, we first observe
that

TÃk,0
∼= (TÃk,0)H ∼= TÃH

k
,0.

Furthermore, since p does not divide the order of H, we have that ÃHk is
smooth, and that the canonical inclusions

ÃHk ⊆ Ãk and (ÃHk )0 ⊆ Ã0
k

are closed immersions. Hence, dim((ÃHk )0) = dim((Ãk)0), and so it follows
that (ÃHk )0 = (Ã0

k)H = Ã0
k. Therefore, H acts trivially on Ã0

k. But, by
Lemma 5.16 in [6], this contradicts the minimality of K̃/K. �
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GALOIS ACTIONS ON NÉRON MODELS OF JACOBIANS 863

2.4. The case of Jacobians

Let X/K be a smooth, projective and geometrically connected curve of
genus g > 0. Let J ′ = JK′ denote the Jacobian of XK′ , and let J ′/S′ be
the Néron model of J ′ over S′.

We can let G act on XK′ via the action on the second factor. Let Y/S′
be a regular model of XK′ such that the G-action on XK′ extends to Y. Ac-
cording to [2, Theorem 9.5/4], there is, under certain hypotheses, a canon-
ical isomorphism

Pic0
Y/S′
∼= J ′0,

where J ′0 is the identity component of J ′, and where Pic0
Y/S′ is the identity

component of the relative Picard functor PicY/S′ . Hence, on the special
fibers, we get an isomorphism

Pic0
Yk/k
∼= J ′0k .

By [2, Theorem 8.4/1], it follows that we can canonically identify

(2.3) H1(Yk,OYk) ∼= TJ ′
k
,0.

We are interested in computing the irreducible characters for the repre-
sentation of µn on TJ ′

k
,0. With the identification in 2.3 above, we see that

this can be done by computing the irreducible characters for the represen-
tation of µn on H1(Yk,OYk).

By combining the discussion in this section with properties of the repre-
sentation of µn on H1(Yk,OYk), we obtain in Corollary 8.3 a quite precise
description of the jumps of the filtration {FaJk}.

3. Tame extensions and Galois actions

Throughout the rest of this paper, R will denote a complete discrete
valuation ring, with fraction field K, and with algebraically closed residue
field k.
X/K will be a smooth, projective, geometrically connected curve over K,

of genus g(X) > 0.

Definition 3.1. — A scheme X is called a model of X over S =
Spec(R) if X is integral and normal, projective and flat over S, and with
generic fibre XK ∼= X.

TOME 60 (2010), FASCICULE 3
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It is well known that we can always find a regular model for X/K (see
for instance [15]). By blowing up points in the special fiber, we can even
ensure that the irreducible components of the special fiber are smooth, and
intersect transversally. Such a model will be called a strict normal crossings
model for X/K, or for short, an SNC-model.

3.1.

Let X/S be an SNC-model for X/K. Let K ⊂ K ′ be a finite, separable
field extension, and let R′ be the integral closure of R in K ′. Since R

is complete, we have that R′ is a complete discrete valuation ring [19,
Proposition II.3]. Making the finite base extension

S′ = Spec(R′)→ S = Spec(R),

we obtain a commutative diagram

Y

��

ρ // X ′

��

f // X

��
S′

id // S′ // S,

where X ′ is the normalization of the pullback XS′ = X×SS′ (XS′ is integral
by Lemma 3.2 below), and ρ : Y → X ′ is the minimal desingularization.
The map f : X ′ → X is the composition of the projection XS′ → X with
the normalization X ′ → XS′ .

Lemma 3.2. — With the hypotheses above, the following statements
hold:

(1) The pullback XS′ is an integral scheme.
(2) f : X ′ → X is a finite morphism.

Proof. — (i) Let us first note that the generic fiber of XS′ is the pullback
XK ⊗K K ′, where XK is the generic fiber of X . By assumption XK is
smooth and geometrically connected over K, so in particular the generic
fiber of XS′ is integral. Now, since XS′ → S′ is flat, it follows from [15,
Proposition 4.3.8] that XS′ is integral as well.

(ii) Since R′ is a complete discrete valuation ring it is excellent [15,
Theorem 8.2.39]. As XS′ is of finite type over S′, it follows that XS′ is
an excellent scheme, and hence the normalization morphism X ′ → XS′ is
finite [15, Theorem 8.2.39]. The projection XS′ → X is finite, since it is the
pullback of the finite morphism S′ → S. So the composition f of these two
morphisms is indeed finite. �
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Let us now assume that the field extension K ⊂ K ′ is Galois with
group G. Every σ ∈ G induces an automorphism of R′ that fixes R, and
we have furthermore that R′G = R. So there is an injective group homo-
morphism G→ Aut(S′), and we may view S′ → S as the quotient map.

We can lift the G-action to XS′ , via the action on the second factor. So
there is a group homomorphism G → Aut(XS′). For any element σ ∈ G,
we shall still denote the image in Aut(XS′) by σ. Proposition 3.3 below
states that this action lifts uniquely both to the normalization X ′ and to
the minimal desingularization Y of X ′.

Proposition 3.3. — With the hypotheses above, the following state-
ments hold:

(1) The G-action on XS′ lifts uniquely to the normalization X ′.
(2) The G-action on X ′ lifts uniquely to the minimal desingulariza-

tion Y.
(3) For any σ ∈ G, let σ denote the induced automorphism of X ′,

and let τ be the unique lift of σ to Aut(Y). Then we have that
τ(ρ−1(Sing(X ′))) = ρ−1(Sing(X ′)). That is, the exceptional locus
is mapped into itself under the G-action on Y.

Proof. — This is straightforward from the universal properties of the
normalization and of the minimal desingularization. For a detailed proof,
we refer to [10]. �

We shall throughout the rest of the paper make the assumption that
n = [K ′ : K] is not divisible by the residue characteristic p. Since k is
algebraically closed it has a full set µn of n-th roots of unity, and as R is
complete, we may lift all n-th roots of unity to R. We can choose a uni-
formizing parameter π ∈ R such that K ′ = K[π′]/(π′n−π). The extension
K ⊂ K ′ is Galois, with group G = µn. Also, R′ := R[π′]/(π′n − π) is the
integral closure of R in K ′, and π′ is a uniformizing parameter for R′.

3.2. Assumptions on X

Throughout the rest of this paper, we shall make two assumptions in the
situation considered in Section 3.1:

Assumption 1. — Let x ∈ X be a closed point in the special fiber
such that two irreducible components C1 and C2 of Xk meet at x, and let
mi = mult(Ci). We will always assume that at least one of the mi is not
divisible by p.
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With this assumption, we can find an isomorphism

ÔX ,x ∼= R[[u1, u2]]/(π − um1
1 um2

2 )

(cf. [4, proof of Lemma 2.3.2]).

Assumption 2. — Let l denote the least common multiple of the multi-
plicities of the irreducible components of Xk. We assume that gcd(l, n) = 1.

When Assumptions 1 and 2 are valid, the following facts can be proved
using the computations in [10]:

• Let x ∈ X be a closed point in the special fiber. Because of Assump-
tion 2, there is a unique point x′ ∈ X ′k that maps to x. The local
analytic structure of X ′ at x′ depends only on n = [K ′ : K] and
on the local analytic structure of X at x. If x belongs to a unique
component of Xk, then x′ belongs to a unique component of X ′k,
and X ′ is regular at x′. If x is an intersection point of two distinct
components, then the same is true for x′, and X ′ will have a tame
cyclic quotient singularity at x′.
• The minimal desingularization Y of X ′ is an SNC-model. Further-

more, the structure of Y locally above a tame cyclic quotient sin-
gularity x′ ∈ X ′ is completely determined by the structure locally
at x = f(x′) and the degree n of the extension. The inverse image
of x′ consists of a chain of smooth and rational curves whose mul-
tiplicities and self intersection numbers may be computed from the
integers n,m1 and m2.
• For every irreducible component C of Xk, there is precisely one com-

ponent C ′ of X ′k that dominates C. The component C ′ is isomorphic
to C, and we have that multX ′

k
(C ′) = multXk(C). It follows that

the combinatorial structure of Yk is completely determined by the
combinatorial structure of Xk and the degree of S′/S.

3.3.

We will now begin to describe the G-action on X ′ and Y in more detail.
Assumptions 1 and 2 will impose some restrictions on this action.

Proposition 3.4. — Let ρ : Y → X ′ be the minimal desingularization.
Then the following properties hold:

(1) Let D be an irreducible component of Yk that dominates a com-
ponent of Xk. Then D is stable under the G-action, and G acts
trivially on D.
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(2) Let x′ ∈ X ′ be a singular point, and let E1, . . . , El be the excep-
tional components mapping to x′ under ρ. Then every Ei is stable
under the G-action, and every node in the chain ρ−1(x′) is fixed
under the G-action.

Proof. — Let us first note that the map XS′ → X is an isomorphism on
the special fibers. Moreover, the action on the special fiber of XS′ is easily
seen to be trivial, so every closed point in the special fiber is fixed. Since
the action on X ′ commutes with the action on XS′ , it follows that every
point in the special fiber of X ′ is fixed. In particular, every irreducible
component C ′ of X ′k is stable under the G-action, and the restriction of
this action to C ′ is trivial. Since the action on Y commutes with the action
on X ′, it follows that the same is true for the strict transform D of C ′ in Y.
This proves (i).

For (ii), we observe that since x′ is fixed, we have that ρ−1(x′) is stable
under the G-action. But also the two branches meeting at x′ are fixed.
Let D be the strict transform of any of these two branches. From part (i),
it follows that the point where it meets the exceptional chain ρ−1(x′) must
be fixed. So if E1 is the component in the chain meeting D̃, then E1 must
be mapped into itself. Let E2 be the next component in the chain. Then
the point where E1 and E2 meet must also be fixed, so E2 must also be
mapped to itself. Continuing in this way, it is easy to see that all of the
exceptional components are stable under the G-action, and that all nodes
in ρ−1(x′) are fixed points. �

Corollary 3.5. — Let 0 6 Z 6 Yk be an effective divisor. Then the
G-action restricts to Z.

Proof. — Since Z is an effective Weil divisor, we can write Z =
∑
C rCC,

where C runs over the irreducible components of Yk, and rC is a non-
negative integer for all C. But Proposition 3.4 states that all irreducible
components C of Yk are stable under the G-action, and hence we get that
the same holds for Z. In other words, the action restricts to Z. �

From Proposition 3.4 above, it follows that every node y in Yk is a fixed
point for the G-action on Y. Hence there is an induced action on OY,y and
on the cotangent space my/m

2
y, where my ⊂ OY,y is the maximal ideal. In

order to get a precise description of the action on the cotangent space, we
will first describe the action on the completion ÔY,y.

Since, by Proposition 3.4, every irreducible componentD of Yk is mapped
to itself under the G-action, it follows that the G-action restricts to D and
that the points where D meets the rest of the special fiber are fixed. In the
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case where G acts non-trivially on D, we will see in Proposition 4.1 that
the fixed points for the G-action on D are precisely the points where D
meets the rest of the special fiber. In particular, we wish to describe the
action on D locally at the fixed points.

4. Desingularizations and actions

In this section, we study how one can explicitly describe the action on
the minimal desingularization ρ : Y → X ′. Since we are only interested in
this action locally at fixed points or stable components in the exceptional
locus of ρ, we will begin with showing that we can reduce to studying
the minimal desingularization locally at a singular point x′ ∈ X ′. This is
an important step, since we have a good description of the complete local
ring ÔX ′,x′ . In particular, we can find a nice algebraization of this ring,
with a compatible G-action. It turns out that it suffices for our purposes to
study the minimal desingularization of this ring, and the lifted G-action.

In the second part of this section, we study the desingularization of an
algebraization of ÔX ′,x′ . We use the explicit blow up procedure in [4] in
order to describe how the G-action lifts. In particular, we describe the
action on the completion of the local rings at the nodes in the exceptional
locus, and the action on the exceptional components. These results are
collected in Proposition 4.1.

4.1.

If x′ ∈ X ′ is a singular point, we need to understand how G acts on
ÔX ′,x′ . In order to do this, we consider the image f(x′) = x of x′ under
the morphism f : X ′ → X . Then x is a closed point in the special fiber,
and we have that

ÔX ,x ∼= R[[v1, v2]]/(π − vm1
1 vm2

2 ),

where m1 and m2 are positive integers. Let n be the degree of R′/R, which
by assumption is relatively prime to m1 and m2. In the discussion that
follows we will use some properties that were proved in [10].

We let G = µn act on XS′ via its action on the second factor. We point
out that we here choose the action on R′ given by [ξ](π′) = ξπ′ for any
ξ ∈ µn. Choosing this action is notationally convenient when we work with
rings. However, the natural right action on XS′ is the inverse to the one
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we use here. In particular, the irreducible characters for the representation
of µn on H1(Yk,OYk) induced by the action chosen here on XS′ will be
the inverse characters to those induced by the right action.

Let also x denote the unique point of ∈ XS′ mapping to x ∈ X . The map
OX ,x → OXS′ ,x associated to the projection XS′ → X can be described by
the tensorization

OX ,x → OX ,x ⊗R R′,
and the G-action on OXS′ ,x = OX ,x⊗RR′ is induced from the action on R′.

Since OX ,x → OX ,x⊗RR′ is finite, completion commutes with tensoring
with R′, so we get that

ÔXS′ ,x = ÔX ,x ⊗R R′,

and hence the G-action on ÔXS′ ,x is induced from the action on R′ in the
second factor. It follows that

ÔXS′ ,x ∼= R′[[v1, v2]]/(π′n − vm1
1 vm2

2 ),

and that the G-action can be described by

[ξ](π′) = ξπ′ and [ξ](vi) = vi,

for any ξ ∈ µn.
Let X ′ → XS′ be the normalization. There is a unique point x′ mapping

to x, and the induced map ÔXS′ ,x → ÔX ′,x′ is the normalization of ÔXS′ ,x.
Furthermore, the G-action on ÔX ′,x′ induced by the action on X ′ is the
unique lifting of the G-action on ÔXS′ ,x to the normalization ÔX ′,x′ .

Let ρ : Y → X ′ be the minimal desingularization, and consider the fiber
diagram

Ŷ

ρ̂

��

φ // Y

ρ

��
Spec(ÔX ′,x′) // X ′.

Then ρ̂ is the minimal desingularization of Spec(ÔX ′,x′) (cf. [14, Lemma
16.1], and use the fact that Y is minimal), and hence the G-action on
Spec(ÔX ′,x′) lifts uniquely to Ŷ.

The projection φ induces an isomorphism of the exceptional loci ρ̂−1(x′)
and ρ−1(x′). Let E be an exceptional component. Then the G-action re-
stricts to E, and it is easily seen that φ, when restricted to E, is equivariant.

Furthermore, for any closed point y ∈ ρ−1(x′), we have that φ induces
an isomorphism ÔY,y ∼= ÔŶ,y (one can argue in a similar way as in the
proof of [15, Lemma 8.3.49]). If y is a fixed point, it is easily seen that
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this isomorphism is equivariant. We therefore conclude that in order to
describe the action on Y locally at the exceptional locus over x′, it suffices
to consider the minimal desingularization of Spec(ÔX ′,x′).

In order to find an algebraization of ÔX ′,x′ , we consider first the poly-
nomial ring

V = R′[v1, v2]/(π′n − vm1
1 vm2

2 ).
We let G act on V by [ξ](π′) = ξπ′ and [ξ](vi) = vi for i = 1, 2, for any
ξ ∈ G. Note that the maximal ideal p = (π′, v1, v2) is fixed, and hence there
is an induced action on the completion V̂p = R′[[v1, v2]]/(π′n − vm1

1 vm2
2 ),

given as above. This gives a G-equivariant algebraization of ÔXS′ ,x.
Consider the R′-algebra homomorphism

V = R′[v1, v2]/(π′n − vm1
1 vm2

2 )→ T = R′[t1, t2]/(π′ − tm1
1 tm2

2 ),

given by vi 7→ tni . We let µn act on T , relatively to R′, by

[η](t1) = ηt1, [η](t2) = ηrt2,

where r is the unique integer 0 < r < n such thatm1+rm2 ≡n 0. (Note that
this is an ad hoc action introduced to compute the normalization, which
must not be confused with the natural G-action). Arguing as in [10], one
can show that the induced map V → U := Tµn is the normalization of V .
Furthermore, it is easily seen that there is a unique maximal ideal q ⊂ U

mapping to p, corresponding to the "origin" (π′, t1, t2) in T .
It is shown in [10, Lemma 4.1] that U is an equivariant algebraization

of ÔX ′,x′ . Let ρU : Z → Spec(U) be the minimal desingularization. Then
we have a fiber diagram

Ŷ

ρ̂

��

// Z

ρU

��
Spec(ÔX ′,x′) // Spec(U),

where all maps commute with the various G-actions. We conclude, by sim-
ilar argumentation as in Section 4.1, that in order to describe the G-action
on Ŷ locally at fixed points or components in the exceptional locus, it
suffices to compute the corresponding data for Z.

4.2.

Proposition 4.1 below gives a description of the G-action on Z. Having
this description will be important in later sections, when we consider the G-
action on the cohomology groups Hi(Yk,OYk). For a proof, we refer to [10,
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Proposition 4.3]. In order to state this result, and for future reference, we list
some properties associated to the resolution of the singularity Z = Spec(U)
(see [4] for proofs).

We call the integers m1, m2 and n the parameters of the singularity. Let r
be the unique integer with 0 < r < n such that m1 + rm2 = 0 modulo n.
Write nr = [b1, . . . , bl, . . . , bL]JH for the Jung-Hirzebruch expansion. The
exceptional locus of ρU consists of a string of smooth and rational curves
C1, . . . , CL, with self intersection numbers C2

l = −bl and multiplicities µl,
for all l ∈ {1, . . . , L}.

There are two series of numerical equations associated to the singularity.
We have

(4.1) rl−1 = bl+1rl − rl+1,

for 0 6 l 6 L− 1, where we put r−1 = n and r0 = r. Furthermore, we have

(4.2) µl+1 = blµl − µl−1,

which is valid for 1 6 l 6 L. Here we define µ0 = m2 and µL+1 = m1.
We also have the equation m1 +rm2 = nµ1 (see [4, Corollary 2.4.3]). To-

gether with Equations (4.1) and (4.2), this equation enables you to compute
the branch multiplicities.

Proposition 4.1. — The minimal desingularization Z of Z = Spec(U)
can be covered by the affine charts Spec(Ul), where

Ul = R′[zl−1, wl−1]/(zµll−1w
µl−1
l−1 − π

′),

for l ∈ {1, . . . , L+ 1}.
These charts are G-stable, and the G-action is given by

[ξ](π′) = ξπ′, [ξ](zl−1) = ξα1rl−2zl−1

and
[ξ](wl−1) = ξ−α1rl−1wl−1,

where αi denotes an inverse to m1 modulo n, for all l ∈ {1, . . . , L+ 1}, and
for any ξ ∈ G.

Let Cl be the l-th exceptional component. On the chart Spec(Ul), we
have that the affine ring for Cl is k[wl−1], and G acts by

[ξ](wl−1) = ξ−α1rl−1wl−1,

for any ξ ∈ G. On the chart Spec(Ul+1), the affine ring for Cl is k[zl], and
G acts by [ξ](zl) = ξα1rl−1zl.

The following corollary is immediate from Proposition 4.1:
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Corollary 4.2. — The irreducible components Cl of the exceptional
locus are stable under the G-action. Furthermore, if ξ ∈ µn is a primitive
root, then the automorphism of Cl induced by ξ is non-trivial, for all l ∈
{1, . . . , L}, with fixed points precisely at the two points where Cl meets the
rest of the special fiber.

Let us finally remark that the cotangent space to Z at the fixed point
that is the intersection point of Cl and Cl+1 is generated by (the classes) of
the local equations zl and wl for the curves. Therefore, Proposition 4.1 gives
a complete description of the action on the cotangent space. Furthermore,
we can also read off the eigenvalues for the elements of this basis. Hence
we immediately get an explicit description of the action on the cotangent
space to the minimal desingularization of X ′ at the corresponding fixed
point.

Example 1. — Consider the singularity with parameters (m1,m2, n) =
(1, 3, 7). From the equation m1 + r0m2 = nµ1 we easily compute that
r0 = 2 and µ1 = 1. From the equation n = r−1 = b1r0 − r1 we find that
b1 = 4 and that r1 = 1. So we get that L = 2, and hence there are two
exceptional curves C1 and C2. In order to compute µ2, we use the equation
µ0 + µ2 = b1µ1, and find that µ2 = 1.

We conclude this example with writing out the G-action on C1, and
the G-action on the cotangent space to Z at the point y1 = C1 ∩ C2. In
the notation of Proposition 4.1, C1 and C2 are generically contained in
the G-stable open affine Spec(U2). We can immediately read off that the
cotangent space is generated by (the classes of) z1 and w1. Furthermore, we
have that the G-action is given by [ξ](z1) = ξα1r0z1 = ξ2z1 and [ξ](w1) =
ξ−α1r1w1 = ξ6w1, for any ξ ∈ µ7. The affine ring for C1 on this chart is
k[z1], and the action is given by [ξ](z1) = ξ2z1.

5. Computing traces

We will now study of theG-action on the vectorspacesHi(Yk,OYk). Since
the residue characteristic is (possibly) positive, we have to introduce the
concept of Brauer characters. This roughly amounts to lifting all eigenvalues
to characteristic zero.

A second problem is the fact that Yk in general is singular. Therefore, we
shall first consider the case of a group acting on the cohomology groups of
an invertible sheaf on a smooth projective curve. For such situations, one
can write down trace formulas in terms of local data at the fixed points.
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Later, in Section 6, we shall use such computations in order to compute
the characters for the action by G on Hi(Yk,OYk).

5.1.

We begin this section with recalling some generalities about coherent
sheaf cohomology, and establish notation and terminology that will be used
throughout the rest of the paper.

Let g : X → Y be a morphism of schemes, and let F be an OY -module.
The morphism g induces a natural and canonical homomorphism

Hp(g) : Hp(Y,F)→ Hp(X, g∗F),

for all p > 0.
Consider now the case where Y = X, so that g : X → X is an en-

domorphism, and where F is a sheaf of OX -modules. Assume in addition
that we are given a homomorphism u : g∗F → F of OX -modules. By
functoriality, u induces a homomorphism

Hp(u) : Hp(X, g∗F)→ Hp(X,F),

for all p > 0.

Definition 5.1. — Let g : X → X be morphism, let F be a sheaf of
OX -modules, and let u : g∗F → F be a homomorphism of OX -modules.
The endomorphism

Hp(g, u) : Hp(X,F)→ Hp(X,F)

induced by the couple (g, u) is defined as the composition of the maps
Hp(g) and Hp(u).

Remark 5.2. — In case F = OX , there is a canonical isomorphism
g∗OX ∼= OX , associated to the morphism g. So we get naturally an endo-
morphism of the cohomology groups

Hp(g) : Hp(X,OX)→ Hp(X,OX),

for all p > 0.
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5.2.

Let G be a finite group acting on X, and let F be a coherent OX -module.
An isomorphism u : g∗F → F is called a covering homomorphism. We say
that F is a G-sheaf if there exist, for every g ∈ G, covering homomorphisms
ug such that uh ◦ h∗ug = ugh, where g, h ∈ G.

Remark 5.3. — Let G be a finite group acting on a projective scheme
X/Spec(k), and let F be a G-sheaf on X. The compatibility conditions
ensure that Hp(X,F) is a k[G]-module for all p > 0.

Let u′ : g∗F ′ → F ′ be a second covering homomorphism. A map of
covering homomorphisms is a map φ : F → F ′ of OX -modules such that
φ ◦ u = u′ ◦ g∗φ. A map of G-sheaves F and F ′ is a map of OX -modules
respecting the respective G-sheaf structures. The category of G-sheaves
on X is in fact an abelian category. For this, and further properties of
G-sheaves, we refer to [12, Chapter 1].

Consider a short exact sequence

0→ (F1, u1)→ (F2, u2)→ (F3, u3)→ 0
of coverings. It is straight forward to check that this gives a commutative
diagram

(5.1) . . . // Hp(X,F2) //

Hp(g,u2)

��

Hp(X,F3) δ //

Hp(g,u3)

��

Hp+1(X,F1) //

Hp+1(g,u1)
��

. . .

. . . // Hp(X,F2) // Hp(X,F3) δ // Hp+1(X,F1) // . . . .

Similarly, if G acts on the projective scheme X/k, one checks that a short
exact sequence of G-sheaves gives a long exact sequence of k[G]-modules
in cohomology.

If X is projective over a field k, and F is a coherent OX -module, the
cohomology groups Hp(X,F) are finite dimensional k-vector spaces, and
the trace Tr(Hp(g, u)) of the endomorphism Hp(g, u) is defined.

If F is a G-sheaf, we let [Hp(X,F)] denote the element associated to
Hp(X,F) in the representation ring RG(k).

5.3.

In the case where p = char(k) > 0, we let W (k) denote the ring of Witt
vectors for k [19, Chap. II, par. 5]. Recall that W (k) is a complete discrete
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valuation ring, p is a uniformizing parameter in W (k) and the residue field
is k. The fraction field FW (k) of W (k), however, has characteristic 0.

There exists a unique multiplicative map w : k →W (k) that sections the
reduction mapW (k)→ k. The map w is often referred to as the Teichmüller
lifting from k to W (k).

Since we assume k = k, it follows that k has a full set of n-th roots of
unity, for any n not divisible by p. As W (k) is complete, these lift uniquely
to W (k), and reduction modulo p induces an isomorphism of µn(W (k))
onto µn(k).

A few facts regarding Brauer characters are needed, and are stated here
in the case where G = µn. We refer to [18, Chap. 18] for details.

If E is a k[G]-module, we let gE denote the endomorphism of E induced
by g ∈ G. Since the order of g divides n, and n is relatively prime to p, it fol-
lows that gE is diagonalizable, and that all the eigenvalues λ1, . . . , λe=dimE
are n-th roots of unity. The Brauer character is then defined by assigning

φE(g) =
e∑
i=1

w(λi).

It can be seen that the function φE : G → W (k) thus obtained is a class
function on G. We shall call the element φE(g) ∈ W (k) the Brauer trace
of gE . The ordinary trace is obtained from the Brauer trace by reduction
modulo p.

An important property of the Brauer character is that it is additive on
short exact sequences. That is, if E′ → E → E′′ is a short exact sequence
of k[G]-modules, then φE = φE′ + φE′′ . A useful consequence is that if

0→ E0 → . . .→ Ei → . . .→ El → 0

is an exact sequence of k[G]-modules, we get that
∑l
i=0(−1)iφEi(g) = 0.

Notation 1. — If V is a finite dimensional vector space over k, and
ψ : V → V is an automorphism, we will use the notation Trβ(ψ) for the
Brauer trace of ψ.

5.4.

We now consider a smooth, connected and projective curve C over k,
with an invertible sheaf L on C. Let g : C → C be an automorphism,
and let u : g∗L → L be a covering map. We would like to compute the
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alternating sum
1∑
p=0

(−1)p Trβ(Hp(g, u)).

Let us first consider the case when the automorphism g : C → C is
trivial, i.e., g = idC . Then Hp(g) is the identity, so we need only consider
u : L = g∗L → L. Hence

Hp(g, u) = Hp(u) : Hp(C,L)→ Hp(C,L),

where u ∈ AutOC (L). Since AutOC (L) = k∗, we have that u is multiplica-
tion with some element λu ∈ k∗.

Proposition 5.4. — Let us keep the hypotheses above. Then the fol-
lowing equality holds in W (k):

1∑
p=0

(−1)p Trβ(Hp(u)) = w(λu) · (degC(L) + 1− pa(C)).

Proof. — Using Čech cohomology, it is straightforward to see that Hp(u)
is multiplication by λu, for all p. Applying the Riemann-Roch formula then
gives the result. �

Let now g ∈ Autk(C) be a non-trivial automorphism of finite period n

(i.e. gn = idC), where n is not divisible by the characteristic of k.
In this situation, the so called Lefschetz-Riemann-Roch formula [7, The-

orem 5.4, Corollary 5.5] gives a formula for the Brauer trace of Hp(g, u) in
terms of local data at the fixed points of g.

Let z ∈ C be a fixed point, and let iz : {z} ↪→ C be the inclusion. Pulling
back u via iz gives

u(z) = i∗zu : i∗zg∗L = i∗zL → i∗zL,

a k-linear endomorphism of L(z). We let λu(z) denote the (unique) eigen-
value of u(z)

Since z ∈ C is a fixed point, there is an induced automorphism

dg(z) : mz/m
2
z → mz/m

2
z

of the cotangent space of C at z. We let λdg(z) denote the (unique) eigen-
value of dg(z).

The Lefschetz-Riemann-Roch then comes out as follows:

Proposition 5.5. — Let C, L, g and u be as above, and denote by Cg
the (finite) set of fixed points of g. Then the following equality holds
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in W (k):

1∑
p=0

(−1)p Trβ(Hp(g, u)) =
∑
z∈Cg

w(λu(z))/(1− w(λdg(z))).

Proof. — See Proposition 5.8 in [10]. �

Remark 5.6. — The reader might want to compare Proposition 5.5 with
the Woods-Hole-formula [9, Exp. III, Cor. 6.12], that gives a formula for the
ordinary trace, instead of the Brauer trace, but with weaker assumptions
on the automorphism g.

Remark 5.7. — Throughout the rest of the text we will, when no con-
fusion can arise, continue to write λ instead of w(λ) for the Teichmüller lift
of a root of unity λ.

6. Action on the minimal desingularization

Recall the set-up in Section 3. We considered an SNC-model X/S, and
a tamely ramified extension S′/S of degree n that is prime to the least
common multiple of the multiplicities of the irreducible components of Xk.
The minimal desingularization of the pullback XS′/S′ is an SNC-model
Y/S′, and the Galois group G = µn of the extension S′/S acts on Y.

Our goal is to compute the irreducible characters for this representation
on H1(Yk,OYk). To do this, we would ideally compute the Brauer trace of
the automorphism of H1(Yk,OYk) induced by g, for every group element
g ∈ G. This information would then be used to compute the Brauer char-
acter. However, we can not do this directly. Instead we will compute the
Brauer trace of the automorphism induced by g on the formal difference
H0(Yk,OYk) −H1(Yk,OYk), for any g ∈ G. In our applications, we know
the character for H0(Yk,OYk), so this would suffice in order to determine
the character for H1(Yk,OYk).

The fact that Yk is not in general smooth, prevents us from using Propo-
sitions 5.4 and 5.5 directly. On the other hand, the irreducible components
of Yk are smooth and proper curves. So we shall in fact show that it is pos-
sible to reduce to computing Brauer traces on each individual component
of Yk, where Propositions 5.4 and 5.5 do apply. The key step in obtaining
this is to introduce a certain filtration of the special fiber Yk.
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6.1.

Let {Cα}α∈A denote the set of irreducible components of Yk, and let mα
denote the multiplicity of Cα in Yk. Then Yk can be written in Weil divisor
form as

Yk =
∑
α

mαCα.

Definition 6.1. — A complete filtration of Yk is a sequence

0 < Zm < . . . < Zj < . . . < Z1 = Yk
of effective divisors Zj supported on Yk, such that for each 1 6 j 6 m− 1
there exists an αj ∈ A with Zj − Zj+1 = Cαj . So m =

∑
αmα.

Loosely speaking, such a filtration of Yk is obtained by removing the
irreducible components of the special fiber one at the time (counted with
multiplicity).

At each step Z ′ < Z of a complete filtration, we can construct an exact
sequence of sheaves.

Lemma 6.2. — Let 0 6 Z ′ < Z 6 Yk be divisors such that Z−Z ′ = C,
for some irreducible component C of Yk. Denote by IZ and IZ′ the corre-
sponding ideal sheaves in OY . Let iZ , iZ′ and iC be the canonical inclusions
of Z, Z ′ and C in Y. Furthermore, let L = i∗C(IZ′). We then have an exact
sequence

0→ (iC)∗L → (iZ)∗OZ → (iZ′)∗OZ′ → 0
of OY -modules.

Proof. — The inclusions IZ ⊂ IZ′ ⊂ OY give rise to an exact sequence

0→ K → OY/IZ → OY/IZ′ → 0,

where K = IZ′/IZ denotes the kernel. We need to determine K.
Consider the surjection IZ′ → IZ′/IZ . Pulling back with i∗C , we get a

surjection
i∗C(IZ′)→ i∗C(IZ′/IZ),

and we claim that this map is an isomorphism. Indeed, let U = Spec(A) ⊂
Y be an open affine set. Then A is a regular domain, and the ideal sheaves
IC , IZ and IZ′ restricted to U correspond to invertible modules IC , IZ
and IZ′ in A. Since Z = Z ′ + C, we have that IZ = ICIZ′ . So

IZ′/IZ = IZ′/ICIZ′ = IZ′ ⊗A A/IC .

From this observation, it follows easily that the map above is an isomor-
phism on all stalks, and therefore an isomorphism. �
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The filtrations we have introduced are G-equvariant.

Lemma 6.3. — Let 0 6 Z 6 Yk be an effective divisor, with ideal
sheaf IZ . Then we have that IZ is a G-subsheaf of OY .

Proof. — Let g ∈ G be any group element. Applying the exact func-
tor g−1 to the inclusion IZ ⊂ OY gives an inclusion g−1IZ ⊂ g−1OY .
Composing this inclusion with the canonical map g] : g−1OY → OY , we
obtain a map g−1IZ → OY . Now, let J be the sheaf of ideals generated by
the image of g−1IZ in OY . We have that J is the ideal sheaf of g−1(Z).
But in our case g−1(Z) = Z, and therefore J = IZ .

The inclusion above induces an injective map g∗IZ → g∗OY ∼= OY of
OY -modules, whose image is IZ = g−1IZ · OY [11, II.7.12.2]. Hence we
obtain an isomorphism uZ : g∗IZ → IZ .

It is easy to check that the isomorphisms g∗IZ → IZ for various elements
g ∈ G satisfy the compatibility conditions, and commute with the G-sheaf
structure on OY . �

Proposition 6.4. — Let us keep the hypotheses and notation from
Lemma 6.2. The sequence

0→ (iC)∗L → (iZ)∗OZ → (iZ′)∗OZ′ → 0

is an exact sequence of G-sheaves.

Proof. — Let IZ ⊂ IZ′ ⊂ OY be the inclusions of the ideal sheaves.
From Lemma 6.3, it follows that these maps are maps of G-sheaves. The
result now follows from the fact that the category of G-modules on Y is an
abelian category [12, Lemma 1.3]. �

In particular, Proposition 6.4 implies that for any g ∈ G, there are cov-
ering maps u (resp. v, v′) of (iC)∗L (resp. (iZ)∗OZ , (iZ′)∗OZ′) giving an
exact sequence

(6.1) 0→ ((iC)∗L, u)→ ((iZ)∗OZ , v)→ ((iZ′)∗OZ′ , v′)→ 0

of covering maps.
The maps u, v and v′ induce, for every p > 0, automorphisms Hp(g, u),

Hp(g, v) and Hp(g, v′) that commute with the differentials in the long exact
sequence in cohomology asociated to Sequence (6.1). That is, we obtain,
for every g ∈ G, an automorphism of this long exact sequence.

Note that all the sheaves appearing in the exact sequence above are sup-
ported on the special fiber of Y. We will next explain how we can “restrict”
the endomorphisms Hp(g, u), Hp(g, v) and Hp(g, v′) to the support of the
various sheaves.
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6.2.

Let X and Y be schemes, and let i : X → Y be a closed immersion.
Assume also that an automorphism g : Y → Y is given, that restricts to
an automorphism f = g|X : X → X.

Note that if F is a quasi-coherent sheaf on X, then the push-forward i∗F
is a quasi-coherent sheaf on Y , since i is a closed immersion. The following
lemma is straightforward, yet tedious to prove, so we omit the proof.

Lemma 6.5. — Keep the hypotheses above. Let F be a quasi-coherent
sheaf on X, and let u : g∗i∗F → i∗F be a homomorphism of OY -modules.
Then there is induced, for every p > 0, a commutative diagram

Hp(Y, i∗F)
Hp(g,u) //

Hp(i)
��

Hp(Y, i∗F)

Hp(i)
��

Hp(X, i∗i∗F)
Hp(f,i∗u) // Hp(X, i∗i∗F),

where the vertical arrows are isomorphisms.

Proof. — See Proposition 6.7 in [10]. �

The closed immersions iC , iZ and iZ′ induce isomorphisms

Hp(Y, (iC)∗L) ∼= Hp(C,L),

Hp(Y, (iZ)∗OZ) ∼= Hp(Z,OZ)
and

Hp(Y, (iZ′)∗OZ′) ∼= Hp(Z ′,OZ′),
for all p > 0. Here we have identified L with (iC)∗(iC)∗L (and likewise for
OZ and OZ′).

Since C, Z and Z ′ are projective curves over k, and since L, OZ and OZ′
are coherent sheaves, the cohomology groups above are finite dimensional
k-vector spaces, and nonzero only for p = 0 and p = 1. So the long exact
sequence in cohomology associated to Sequence (6.1) is simply

(6.2) 0→ H0(C,L)→ H0(Z,OZ)→ . . .→ H1(Z ′,OZ′)→ 0.

Proposition 6.6. — (6.2) is an exact sequence of k[G]-modules. Fur-
thermore, we get an equality

1∑
p=0

(−1)p[Hp(Z,OZ)] =
1∑
p=0

(−1)p[Hp(Z ′,OZ′)] +
1∑
p=0

(−1)p[Hp(C,L)]

of (virtual) k[G]-modules.
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Proof. — Denote by gC the restriction of g to C. By Lemma 6.5, restric-
tion to C gives a commutative diagram

Hp(Y, (iC)∗L)

Hp(g,u)
��

∼= // Hp(C,L)

Hp(gC ,i∗Cu)
��

Hp(Y, (iC)∗L)
∼= // Hp(C,L).

Also, we get similar diagrams for Hp(gZ , i∗Zv) and Hp(gZ′ , i∗Z′v′).
Having made these identifications, we see that Hp(gC , i∗Cu), Hp(gZ , i∗Zv)

and Hp(gZ′ , i∗Z′v′), for p = 0, 1, fit together to give an automorphism of
Sequence (6.2) above. One checks that Sequence (6.2) is an exact sequence
of k[G]-modules, and from this fact, the second statement immediately
follows. �

6.3.

Let us write Yk =
∑
αmαCα, where α ∈ A, and put m =

∑
αmα. Fix a

complete filtration

0 < Zm < . . . < Zj < . . . < Z2 < Z1 = Yk,

where Zj−Zj+1 = Cj for some Cj ∈ {Cα}α∈A, for each j ∈ {1, . . . ,m−1}.
At each step of this filtration, Lemma 6.2 asserts that there is a short exact
sequence

0→ (iCj )∗Lj → (iZj )∗OZj → (iZj+1)∗OZj+1 → 0,

where i? : ? ↪→ Y is the canonical inclusion. Note in particular that Zm =
Cm, for some Cm ∈ {Cα}α∈A, so it makes sense to write OZm = Lm.

Proposition 6.6 has the following nice consequence:

Proposition 6.7. — We have an equality

(6.3)
1∑
p=0

(−1)p[Hp(Yk,OYk)] =
m∑
j=1

1∑
p=0

(−1)p[Hp(Cj ,Lj)]

of k[G]-modules.

Proof. — Follows easily by induction from Proposition 6.6. �

Let φpg (resp. φpg,j) be the automorphism induced by the element g ∈ G
on Hp(Yk,OYk) (resp. Hp(Cj ,Lj)). The following corollary is immediate:

TOME 60 (2010), FASCICULE 3



882 Lars H. HALLE

Corollary 6.8. — For any g ∈ G, the following equality holds in
W (k):

1∑
p=0

(−1)p Trβ(φpg) =
m∑
j=1

1∑
p=0

(−1)p Trβ(φpg,j).

The importance of Corollary 6.8 is that it reduces the problem of com-
puting the alternating sum of the Brauer traces of the endomorphisms

φpg : Hp(Yk,OYk)→ Hp(Yk,OYk)

to instead computing the same data for the endomorphisms

φpg,j : Hp(Cj ,Lj)→ Hp(Cj ,Lj)

for certain invertible sheaves Lj , supported on the smooth irreducible com-
ponents Cj of Yk. The main benefit is that for the latter computations,
we can apply the Lefschetz-Riemann-Roch formulas in Proposition 5.4 and
5.5. In what follows, we will explain how this can be done.

We keep the notation from Lemma 6.2, hence we have

0 6 Z ′ < Z 6 Yk,

where Z−Z ′ = C. We let g ∈ G be an element corresponding to a primitive
root of µn. From Proposition 4.1, we see that the fixed points of the auto-
morphism g : C → C are precisely the two points where C meets the other
components of Yk. Let y ∈ C be one of the fixed points, and let dgy denote
the cotangent map at y. The eigenvalue of dgy can easily be computed
using Proposition 4.1.

We will also need to compute the eigenvalue of the induced automorphism

uy : L(y)→ L(y).

To do this, let C ′ be the other component of Yk that passes through y.
Then we can write

IZ′ = I⊗aC ⊗ I
⊗a′
C′ ⊗ I0,

where I0 is the ideal sheaf of an effective Cartier divisor not containing C
or C ′.

Since C and C ′ intersect transversally at y, the fibers IC(y) and IC′(y)
generate the cotangent space to Y at y. The eigenvalues λ and λ′ of these
generators can easily be computed using Proposition 4.1, since they corre-
spond to the two coordinates locally at y. The following lemma is an easy
computation (cf. [10, Section 6.10]):

Lemma 6.9. — Keep the notation from the discussion above. The unique
eigenvalue of the automorphism uy : L(y)→ L(y) is λaλ′a′ .
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7. Special filtrations for trace computations

Let X/S be an SNC-model, and let S′ → S be a tame extension of
degree n, where n is prime to the least common multiple of the multiplicities
of the irreducible components of Xk. Let X ′ be the normalization of XS′ ,
and let Y be the minimal desingularization of X ′.

This section is devoted to computing, for any g ∈ G = µn, the Brauer
trace of the automorphism induced by g on H0(Yk,OYk) − H1(Yk,OYk).
Hence a lot of our previous work will come together in this section.

Our assumption on the degree of S′/S makes it possible to describe Yk
in terms of Xk. In particular, since every component of Yk either is an
exceptional curve, or dominates a component of Xk, it is natural to stratify
the combinatorial structure of Yk according to the combinatorial structure
of Xk.

This stratification proves to be very convenient for our trace computa-
tions. The section concludes with Theorem 7.9, which gives a formula for
the trace mentioned above as a sum of contributions associated in a natural
way to the combinatorial structure of Xk.

7.1.

We will associate a graph Γ(Xk) to Xk in the following way: The set
of vertices, V, consists of the irreducible components of Xk. The set of
edges, E , consists of the intersection points of Xk, and two distinct vertices
υ and υ′ are connected by Card({Dυ ∩Dυ′}) edges, where Dυ denotes the
irreducible component corresponding to υ.

We define two natural functions on the set of vertices V. First, let the
genus

g : V → N0,

be defined by g(υ) = pa(Dυ). We also let the multiplicity

m : V → N,

be defined by m(υ) = multXk(Dυ). The graph Γ(Xk), together with the
functions g and m, encode all the combinatorial and numerical properties
of Xk.

Let S denote the set of irreducible components of Yk. If C ∈ S, then we
have either:

(1) C dominates a component Dυ of Xk, or
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(2) C is a component of the exceptional locus of the minimal desingu-
larization ρ : Y → X ′.

In the first case, we have that pa(C) = g(υ), and multYk(C) = m(υ).
Furthermore, G acts trivially on C. Since C is the unique component of Yk
corresponding to υ, we write C = Cυ.

In the second case, we have that C is part of a chain of exceptional curves,
corresponding uniquely to an edge ε ∈ E . Hence pa(C) = 0. By choosing
an ordering (or direction) of this chain, we can index the components in
the chain by l, for 1 6 l 6 L(ε), where L(ε) is the length of the chain. So
we can write C = Cε,l, for some l ∈ {1, . . . , L(ε)}. By Proposition 4.1, G
acts nontrivially on C, with fixed points exactly at the two points where C
meets the rest of the special fiber.

The special fiber Yk can now be written, as an effective divisor on Y, in
the form

Yk =
∑
ε∈E

L(ε)∑
l=1

µε,lCε,l +
∑
υ∈V

mυCυ,

where µε,l denotes the multiplicity of the component Cε,l, and mυ is the
multiplicity of Cυ.

7.2.

We will now consider special filtrations of Yk, inspired by the partition
of the set of irreducible components of Yk introduced above.

Let us choose an ordering of the elements in V. We can then define the
following sequence:

0 < . . . < ZE =: Zυ|V|+1 < Zυ|V| < . . . < Zυi < . . . < Zυ1 = Yk,

where ZE := Yk −
∑
υ∈V mυCυ. The Zυi are defined inductively, for every

i ∈ {1, . . . , |V|}, by the refinements

Zυi+1 = Z
mυi+1
υi < . . . < Zjυi < . . . < Z1

υi = Zυi ,

where Zj+1
υi = Zυi − jCυi for every j ∈ {0, . . . ,mυi}.

Next, we choose an ordering of the elements in E . We can then define
the following sequence:

0 =: Zε|E|+1 < Zε|E| < . . . < Zεi < . . . < Zε1 := ZE .

The Zεi are defined inductively, for any i ∈ {1, . . . , |E|}, by the refinements

Zεi+1 := Zεi,L(εi)+1 < . . . < Zεi,l < . . . < Zεi,1 := Zεi ,
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which in turn are defined inductively, for every l ∈ {1, . . . , L(εi)}, by the
further refinements

Zεi,l+1 := Zµl+1
εi,l

< . . . < Zjεi,l < . . . < Z1
εi,l := Zεi,l,

where Zj+1
εi,l

:= Zεi,l − jCεi,l, for every j ∈ {0, . . . , µl}.

Example 2. — Let X/S be an SNC-model with special fiber

Xk = 3D4 +D1 +D2 +D3,

where Di meets D4 in a unique point for i ∈ {1, 2, 3}, and with no further
intersection points. Let R′/R be a tame extension of degree 7, and let Y/S′
be the minimal desingularization of the normalization X ′ of XS′ .

The singularities of X ′ are formally isomorphic to σ = (1, 3, 7). From
Example 1 we know that the exceptional locus of the resolution of σ con-
sists of two components of multiplicity 1. Let us write C1

i and C2
i for the

components corresponding to the edge εi = (Di, D4).
We can now write

Yk =
4∑
i=1

miCi +
3∑
j=1

(C1
j + C2

j ).

The first part of a special filtration is then

ZE := Yk −
4∑
i=1

miCi < . . . < Yk − (C1 + C2) < Yk − C1 < Yk,

and the second part looks like

0 < C2
3 < C1

3 + C2
3 < . . . < ZE − (C1

1 + C2
1 ) < ZE − C1

1 < ZE .

In the rest of this paper, we shall always choose complete filtrations of Yk
that are of the form

(7.1) 0 < . . . < Zεi < . . . < Zε1 = ZE < . . . < Zυi < . . . < Zυ1 = Yk,

where Zυi+1 < Zυi and Zεi+1 < Zεi are subfiltrations as described above.
We shall soon see that the chosen orderings of the sets E and V are irrele-
vant.

The nice feature of working with filtrations like this becomes evident
when one wants to do trace computations à la Section 6. Then we may
actually reduce to considering subfiltrations Zυi+1 < Zυi , which we inter-
pret as contributions from the vertices of Γ, and subfiltrations Zεi+1 < Zεi ,
which we interpret as contributions from the edges.
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7.3.

Let us fix a vertex υ ∈ V. We shall now define and calculate the contri-
bution to the trace from υ. To do this, we choose a filtration of Yk as in
Section 7.2 above. Then there will be a subfiltration of the form:

ZE 6 Zmυ+1
υ < . . . < Zkυ < . . . < Z1

υ = Zυ 6 Yk,

where
Zkυ − Zk+1

υ = Cυ, for all 1 6 k 6 mυ.

The invertible sheaf associated to the k-th step in this filtration is

Lkυ := j∗υ(IZk+1
υ

),

where jυ : Cυ ↪→ Y is the canonical inclusion.
We will use the following easy lemma, whose proof is omitted.

Lemma 7.1. — Assume that S′/S is a nontrivial extension. If C1 and C2
are two distinct components of Yk, corresponding to elements in V, then
they have empty intersection.

In what follows, we will suppress the index υ, to simplify notation.
Let D1, . . . , Df be the irreducible components of Z that intersect C non-
trivially, and that are not equal to C. Let ai denote the multiplicity of Di.
It follows from Lemma 7.1 that the Di are exceptional components. More-
over, it follows from the way we constructed the filtration that the Di
are precisely the components of Yk different from C that have non-empty
intersection with C. We can then write

Zk+1 = (m− k)C + a1D1 + . . .+ afDf + Z0,

where all components of Z0 have empty intersection with C. So we get that

(7.2) Lk = j∗IZk+1 = (IC |C)⊗m−k ⊗ (ID1 |C)⊗a1 ⊗ . . .⊗ (IDf |C)⊗af .

Let g be an element of G = µn, corresponding to a root of unity ξ. Note
that the restriction of the automorphism g to C is idC . Let

φpg,k : Hp(C,Lk)→ Hp(C,Lk)

be the automorphism induced by g.

Definition 7.2. — We define the contribution to the trace from the
vertex υ ∈ V as the sum

Trυ(ξ) =
m∑
k=1

1∑
p=0

(−1)p Trβ(φpg,k).
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The proposition below gives an effective formula for the contribution
from a vertex υ:

Proposition 7.3. — The contribution to the trace from the vertex υ

is given by the formula

Trυ(ξ) =
m−1∑
k=0

(ξαm)k((m− k)C2 + 1− pa(C)),

where αm is an inverse to m modulo n.

Proof. — By Proposition 5.4, we have that
1∑
p=0

(−1)p Trβ(φpg,k) = λk(degC(Lk) + 1− pa(C)),

where λk is the eigenvalue of the automorphism L(y) → L(y), for any
point y ∈ C. The proof will consist of specifying precisely the terms ap-
pearing in this formula.

Let us first compute degC(Lk). Since IC = OY(−C), it follows that

degC(IC |C) = degC(OY(−C)|C) = −degC(OY(C)|C) = −C2.

Furthermore, for any i ∈ {1, . . . , f}, we have that IDi = OY(−Di), and
hence

degC(IDi |C) = degC(OY(−Di)|C) = −1.

It then follows from Equation (7.2) that

degC(Lk) = −(m− k)C2 − (a1 + . . .+ af ).

On the other hand, we have that −C2 = (a1 + . . .+ af )/m, and therefore
we get that degC(Lk) = kC2.

We now claim that λk = (ξαm)m−k. To see this, let D be one of the
components of Yk meeting C, and denote by y the unique point where they
intersect. Then D is part of a chain of exceptional curves. Denote by L the
length of this chain. Using the notation and computations in Proposition
4.1, with C = CL+1 and D = CL, we can identify the fiber of IC at y = yL
with < zL+1 >. The eigenvalue of zL+1 for the automorphism induced by ξ
was precisely equal to ξαm , so it follows that λk = (ξαm)m−k. The result
follows by re-indexing. �

Remark 7.4. — In particular, it is clear that this formula is independent
of how we have chosen to order the elements in V.
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7.4.

Let us now choose an edge ε ∈ E . In the filtration of Yk, we can find a
subfiltration 0 < Zε 6 ZE < Yk, with the refinements

Zε,L(ε)+1 < . . . < Zε,l < . . . < Zε,1 = Zε,

for any l ∈ {1, . . . , L(ε)}, and further refinements

Zε,l+1 = Zµl+1
ε,l < . . . < Zkε,l < . . . < Z1

ε,l = Zε,l,

where Zkε,l − Z
k+1
ε,l = Cε,l, for any k ∈ {1, . . . , µl}.

As we are working with a fixed ε, we will for the rest of this section
suppress the index ε, to simplify the notation. Take now an integer

l ∈ {1, . . . , L− 1},

and let jl : Cl ↪→ Y be the canonical inclusion. Consider then the subfiltra-
tion involving the component Cl:

. . . < Zµl+1
l < . . . < Zkl < . . . < Z1

l < . . . .

At the k-th step in this filtration, we have Zkl −Z
k+1
l = Cl for all 1 6 k 6 µl.

The associated invertible sheaf at the k-th step is

(7.3) Lkl := j∗l (IZk+1
l

) = (ICl |Cl)⊗µl−k ⊗ (ICl+1 |Cl)⊗µl+1 .

For l = L, we note that since all components in ZL other than CL have
empty intersection with CL, we get instead

LkL := j∗L(IZk+1
L

) = (ICL |CL)⊗µL−k.

Let g ∈ G be a group element corresponding to a primitive root of
unity ξ. The restriction g|Cl has fixed points exactly at the two points yl
and yl−1 where Cl meets the rest of the special fiber. We need to compute
the fibers at yl and yl−1 of Lkl , and the corresponding eigenvalues for the
automorphisms induced by g at these fibers.

Let g ∈ G correspond to a root of unity ξ ∈ µn, and let

φk,pl : Hp(Cl,Lkl )→ Hp(Cl,Lkl )

be the automorphism induced by g. We can then define the expression

Trkl (ξ) :=
1∑
p=0

(−1)p Trβ(φk,pl ).

Notation 2. — Since ξα1 appears so frequently in our formulas, we
introduce the notation χ = ξα1 .
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Proposition 7.5. — For a primitive root ξ, the expression Trkl (ξ) can
be computed in the following way:

(1) If l ∈ {2, . . . , L− 1}, we have that

Trkl (ξ) = χrl−2(µl−k)

1− χ−rl−1
+ χ−rl(µl−k)+rl−1µl+1

1− χrl−1
,

for any k = 1, . . . , µl.
(2) If l = 1, we get

Trk1 (ξ) = 1
1− χ−r0

+ χ−r1(µ1−k)+r0µ2

1− χr0
for any k = 1, . . . , µ1.

(3) Finally, if l = L, we get

TrkL(ξ) = χrL−2(µL−k)

1− χ−rL−1
+ 1

1− χrL−1

for any k = 1, . . . , µL.

Proof. — We will give the proof in case (ii), when l ∈ {2, . . . , L − 1},
and we will use the notation and results from Section 4. Recall also that
Lkl = j∗l IZk+1

l
, where

IZk+1
l

= I⊗µl−kCl
⊗ I⊗µl+1
Cl+1

⊗ I0,

and where I0 has support away from Cl and Cl+1.
The fixed points of the automorphism g : Cl → Cl are the two points

yl−1 and yl where Cl meets the other components of Zk. The fibers of Lkl
in the fixed points are

Lkl (yl−1) = IZk+1
l

(yl−1) = I⊗µl−kCl
(yl−1) =< zl−1 >

⊗µl−k,

and

Lkl (yl) = I⊗µl−kCl
(yl)⊗ I

⊗µl+1
Cl+1

(yl) =< wl >
⊗µl−k ⊗ < zl >

⊗µl+1 .

Using Proposition 4.1, we compute the eigenvalue for the automorphism
on Lkl (yl−1) (resp. Lkl (yl)) to be

(χrl−2)µl−k (resp. (χ−rl)µl−k(χrl−1)µl+1).

Let dg(y?) be the automorphism of the cotangent space to Cl at the fixed
point y? induced by g. Using Proposition 4.1 again, we compute that the
eigenvalue of dg(yl−1) (resp. dg(yl)) is χ−rl−1 (resp. χrl−1).

We can therefore use Proposition 5.5 to conclude that

Trkl (ξ) = χrl−2(µl−k)

1− χ−rl−1
+ χ−rl(µl−k)+rl−1µl+1

1− χrl−1
.
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�

We can then make the following definition:

Definition 7.6. — Let

(7.4) Trε(ξ) :=
L(ε)∑
l=1

µl∑
k=1

Trkε,l(ξ).

We say that Trε(ξ) is the contribution to the trace from ε ∈ E .

Remark 7.7. — Let us note that Trε(ξ) is defined entirely in terms
of the intrinsic data of the singularity associated to ε. Furthermore, this
expression does not depend on the order in which we chose ε. It is also
clear that this expression does not depend on the chosen subfiltration of
the divisor

∑L(ε)
i=1 mεiCεi .

Remark 7.8. — It is also easy to see that since Trε(ξ) is in fact a poly-
nomial in ξ, the same formula is valid for any (possibly non-primitive) root
of unity.

We will now show that we obtain a formula for
1∑
p=0

(−1)p Trβ(φpg),

where φpg is the automorphism of Hp(Yk,OYk) induced by g, in terms of
the vertex and edge contributions discussed above.

Theorem 7.9. — Let g ∈ G be a group element corresponding to a
root of unity ξ ∈ µn. Then we have that

1∑
p=0

(−1)p Trβ(φpg) =
∑
υ∈V

Trυ(ξ) +
∑
ε∈E

Trε(ξ).

Furthermore, this expression depends only on the combinatorial data Γ(Xk),
g and m associated to Xk.

Proof. — We begin with choosing a special filtration

0 < . . . < Zεi < . . . < Zε1 = ZE < . . . < Zυi < . . . < Zυ1 = Yk.

It then follows from Proposition 6.7 that
1∑
p=0

(−1)p Trβ(φpg) =
∑
υ∈V

Trυ(ξ) +
∑
ε∈E

Trε(ξ),

where Trυ(ξ) is the expression defined in Definition 7.2 and Trε(ξ) is the
expression defined in Definition 7.6.
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It follows from Proposition 7.3 that Trυ(ξ) only depends on the combi-
natorial structure of Xk. Likewise, Proposition 7.5 gives that Trε(ξ) only
depends on the combinatorial structure of Xk. Therefore, the same is true
for the sum of these expressions. �

7.5. An explicit trace formula

In [10], an explicit formula for Trε(ξ) is obtained. We present this formula
here, without proof. Let us assume that ε is analytically isomorphic to the
singularity σ = (m1,m2, n), with notation as in Section 4.

Before giving the formula, we will first need to note a certain regularity
of the minimal resolution of σ = (m1,m2, n), when n runs through positive
integers prime to p, and with the same residue class modulo M .

Proposition 7.10 ([10], Proposition 7.10). — Let m1,m2 be positive
integers, let m = gcd(m1,m2), and let M = lcm(m1,m2). Let us further-
more fix a positive integer n0 that is not divisible by p and that is relatively
prime to M . Then the following properties hold:

(1) There exists an integer K � 0, such that the multiplicities of
the components in the minimal resolution of the singularity σ =
(m1,m2, n), where n = n0 +KM , satisfy

µ0 > µ1 > . . . > µl0 = . . . = m = . . . = µL+1−l1 < . . . < µL < µL+1,

where L denotes the length of the singularity σ.
(2) The integers µ2, . . . , µl0 are uniquely determined by µ0 and µ1,

and similarly µL+1−l1 , . . . , µL−1 are uniquely determined by µL and
µL+1.

(3) For any extension of degree n′ = n+kM , where k > 0, we have that
the multiplicities µ′l of the components in the minimal resolution of
the singularity σ′ = (m1,m2, n

′) will only differ from the sequence
of multiplicities associated to σ by inserting m’s “in the middle”.

In other words, for all n sufficiently big and with a fixed residue class
modulo M , we have that the multiplicities of the irreducible components of
the exceptional components of the desingularization of σ = (m1,m2, n) are
of the form as in part (i) of the proposition above. Increasing n will only
increase the length of the part of the components with constant multiplicity
equal to m.

Example 3. — Consider the singularity (m1,m2, n) with

m1 = 3,m2 = 4

TOME 60 (2010), FASCICULE 3



892 Lars H. HALLE

and where n ≡12 5. We will use the notation

(µL+1, µL, µL−1, . . . , µ1, µ0)n
for the multiplicities of the components in the resolution. Then we easily
compute the sequences (3, 2, 3, 4)5, (3, 2, 1, 2, 3, 4)17 and (3, 2, 1, 1, 2, 3, 4)29.
This illustrates Proposition 7.10 above, which then tells us that we have
the sequence (3, 2, 1, . . . , 1, 2, 3, 4)5+k·12, as soon as k > 1.

In the situation where ε corresponds to the singularity σ = (m1,m2, n),
where n� 0 with the interpretation above, it is proved in [10] that Trε =
Trσ, where Trσ is given by the formula below.

Theorem 7.11 ([10], Theorem 10.9). — Let σ = (m1,m2, n) be a sin-
gularity, where n � 0. Let m = gcd(m1,m2), and let αm (resp. αm1 ,
resp. αm2) be inverse to m (resp. m1, resp. m2) modulo n. For any root of
unity ξ ∈ µn, we have that Trσ(ξ) equals
µ0−1∑
r=0

(
µ1−
⌈
r
µ1

µ0

⌉)
(ξαm2 )r+

µL+1−1∑
r=0

(
µL−
⌈
r
µL
µL+1

⌉)
(ξαm1 )r−

m−1∑
r=0

(ξαm)r.

The coefficients in this expression depend only on the residue class of n
modulo lcm(m1,m2).

With this formula at hand, one can effectively compute traces. Indeed,
as long as n is large compared to the multiplicities of the irreducible com-
ponents of Xk, the expressions Trε can be computed using Theorem 7.11.
The demand that n should be ”large” is no setback in the applications in
the next section, where we are interested in the characters when n grows
to infinity.

Example 4. — Let m1 = 2 and m2 = 3. Then M = 6 and m = 1.
So there are two cases to consider, namely n ≡6 1 and n ≡6 5. In the first
case, one checks that the list of multiplicities is

(µL+1, . . . , µ0) = (2, 1, . . . , 1, 2, 3)n,

and that Trσ(ξ) = 2 + ξα3 , where α3 is an inverse to 3 modulo n.
In the second case, where n ≡6 5, one finds instead that the list of

multiplicities is (2, 1, . . . , 1, 3)n, and that the formula gives Trσ(ξ) = 1.

8. Character computations and jumps

Let X/K be a smooth, projective and geometrically irreducible curve,
and let X/S be the minimal SNC-model of X. We have in previous sec-
tions studied properties of the action of µn on the cohomology groups
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Hi(Yk,OYk), where Y is the minimal desingularization of the pullback XS′
for some tame extension S′/S of degree n.

We will throughout this section make the following assumption:

Assumption 3. — For any g > 1, we assume that the greatest common
divisor of the multiplicities of the irreducible components of Xk is 1. If g = 1,
we assume in addition that X/K has a rational point.

Let J /S be the Néron model of the Jacobian of X. We will in this
section apply our results to the study of the filtration {FaJk}, where a ∈
Z(p)∩ [0, 1], that we defined in Section 2.3. We will first prove some general
properties for these filtrations, and then present some computations for
curves of genus g = 1 and g = 2.

We would at this point like to remark that in order to make the µn-action
on H1(Yk,OYk) compatible with the action on TJ ′

k
,0, we have to let µn act

on R′ by [ξ](π′) = ξ−1π′, for any ξ ∈ µn. We made the choice in previous
sections, when working with local rings, to let µn act by [ξ](π′) = ξπ′, in
order to get simpler notation. This means that the irreducible characters for
the representation on TJ ′

k
,0 are the inverse characters to those we compute

when using our formulas for the representation on H1(Yk,OYk).

8.1.

Theorem 7.9 states that the Brauer trace of the automorphism induced
by any group element ξ ∈ µn on the formal difference

H0(Yk,OYk)−H1(Yk,OYk)

only depends on the combinatorial structure of Xk. If Assumption 3 is valid,
we can improve this result, and get a similar result for the character of the
representation of µn on H1(Yk,OYk):

Theorem 8.1. — Let X/K be a smooth, projective and geometrically
connected curve having genus g(X) > 0, and assume that Assumption 3
holds. Let X be the minimal SNC-model of X over S. Furthermore, let
S′/S be a tame extension of degree n, where n is relatively prime to the
least common multiple of the multiplicities of the irreducible components
of Xk, and let Y/S′ be the minimal desingularization of XS′ .

Then the irreducible characters for the representation of µn on the vec-
torspace H1(Yk,OYk) only depend on the combinatorial data (Γ(Xk), g,m)
associated to Xk.
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Proof. — Let g ∈ G correspond to the root ξ ∈ µn. Then, by Theorem
7.9, we have that

1∑
p=0

(−1)p Trβ(φpg) =
∑
υ∈V

Trυ(ξ) +
∑
ε∈E

Trε(ξ),

where φpg is the automorphism induced by g on Hp(Yk,OYk). The contribu-
tions Trυ(ξ) can be computed using Proposition 7.3, and the contributions
Trε(ξ) can be computed by Proposition 7.5. In this way, we obtain a for-
mula for the Brauer trace of the automorphism induced by any ξ ∈ µn on
the formal difference H0(Yk,OYk)−H1(Yk,OYk).

Since Assumption 3 holds, we have that H0(Yk,OYk) = k [1, Lemma
2.6]. Furthermore, the µn-action on Yk is relative to the ground field k, so
it follows that the character for the representation of µn on H0(Yk,OYk)
is 1.

We therefore obtain the formula

Trβ(φ1
g) = 1− (

∑
υ∈V

Trυ(ξ) +
∑
ε∈E

Trε(ξ)).

Since the expressions Trυ(ξ) and Trε(ξ) only depend on the combinatorial
structure of Xk, the same is true for Trβ(φpg). This completes the proof,
since the Brauer character for the representation of µn on H1(Yk,OYk) is
determined by the Brauer trace for the group elements ξ ∈ µn. �

Let J /S be the Néron model of the Jacobian of X/K. Theorem 8.1 has
the following consequence for the filtration {FaJk}:

Corollary 8.2. — The jumps in the filtration {FaJk} with indices
in Z(p) ∩ [0, 1] depend only on the combinatorial data (Γ(Xk), g,m). In
particular, the jumps do not depend on the residue characteristic p.

Proof. — Let S′/S be a tame extension of degree n, where n is prime
to l, the least common multiple of the multiplicities of the irreducible com-
ponents of Xk. Let J ′/S′ be the Néron model of the Jacobian of XK′ .
Recall from Section 2.4 that we could make the identification

H1(Yk,OYk) ∼= TJ ′
k
,0.

The jumps in the filtration of Jk induced by the extension S′/S are deter-
mined by the irreducible characters for the representation of µn on TJ ′

k
,0.

However, this representation is precisely the representation of µn on H1

(Yk,OYk), if we let µn act onR′ by [ξ](π′) = ξ−1π′, for every ξ. By Theorem
8.1, the character for this representation only depends on the combinatorial
data (Γ(Xk), g,m).
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Since Z(lp) ∩ [0, 1] is dense in Z(p) ∩ [0, 1], we conclude that the jumps of
the filtration {FaJk} with indices in Z(p) ∩ [0, 1] only depend on Γ(Xk), g

and m. �

With the two results above at hand, we can draw some conclusions about
where the jumps occur in the case of Jacobians. Let us first recall the
following terminology from [10]: An irreducible component C of Xk is called
principal if either pa(C) > 0, or if C is smooth and rational and meets the
rest of the components of Xk in at least three points.

Corollary 8.3. — Let ñ be the least common multiple of the multi-
plicities of the principal components of Xk. Then the jumps in the filtration
{FaJk} occur at indices of the form i/ñ, where 0 6 i < ñ.

Proof. — Let us first recall that if X obtains semi-stable reduction over a
tame extension K ′/K, then the Jacobian of X obtains semi-abelian reduc-
tion over the same extension (see [5]). Furthermore, the minimal extension
that gives semi-abelian reduction is the unique tame extension K̃/K of
degree ñ [10, Paper I, Theorem 7.1]. So in this case, the statement follows
from Proposition 2.3.

Let us now assume that X needs a wildly ramified extension to obtain
semi-stable reduction. Consider the combinatorial data (Γ(Xk), g,m). It fol-
lows from [20, Corollary 4.3] that we can find an SNC-model Z/Spec(C[[t]]),
where the generic fiber of Z is smooth, projective and geometrically con-
nected, and where the special fiber of Z has the same combinatorial data
as Xk.

Let JZ be the Néron model of the Jacobian of the generic fiber of Z.
Then the jumps of the filtration {FaJZ,C} occur at indices of the form i/ñ,
where 0 6 i < ñ. The result follows now from Corollary 8.2. �

Let X/K be a smooth, projective and geometrically connected curve, and
let X/S be the minimal SNC-model of X/K. It is known that for a fixed
genus g > 2, there are only finitely many possibilities for the combinatorial
structure of the special fiber of X/S, modulo chains of (−2)-curves [1,
Theorem 1.6]. The same statement is, as we shall see below, also true for
elliptic curves.

Let J /S be the Néron model of the Jacobian of X. Since, by Corollary
8.2, the jumps of the filtration {FaJk} only depend on the combinatorial
structure of Xk, one can, for each g > 0, classify these jumps. In the next
sections, we will give the jumps for every fiber type of genus 1 and 2.

Remark 8.4. — It is not hard to see that chains of (−2)-curves do not
affect the jumps.
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8.2. Computations of jumps for g = 1

Let X/K be an elliptic curve, and let E be the minimal regular model
of X. It is a well known fact that there are only finitely many possibilities
for the combinatorial structure of the special fiber Ek, modulo chains of
(−2)-curves. The various possibilities were first classified in [13], and this
is commonly referred to as the Kodaira classification. For another treat-
ment of this theory, we refer to [15, Chapter 10.2]. If now X/S denotes
the minimal SNC-model of X, it follows that there are only finitely many
possibilities for the combinatorial structure of Xk, each one derived from
the Kodaira classification. The symbols I, II, . . . appearing in Table 8.1
below are known as the Kodaira symbols and refer to the fiber types in the
Kodaira classification.

Let J /S be the Néron model of J(X) = X. It follows from Corollary
8.2 and Corollary 8.3 that the (unique) jump in the filtration {FaJk} only
depends on the fiber type of X/S, and can only occur at finitely many
rational numbers. In Table 8.1 below, we list the jumps for the various
Kodaira types. Note that we obtain the same list as the one computed
in [8] by R. Schoof.

We would like to say a few words about how these computations are
done. For each fiber type, we consider an infinite sequence (nj)j∈N, de-
pending on the fiber type, where nj → ∞ as j → ∞. For each nj in
this sequence, let Rj/R be the tame extension of degree nj , and let πj
be a uniformizing parameter of Rj . Furthermore, let µnj act on Rj by
[ξ](πj) = ξπj . We can then use Theorem 7.9 to compute the character for
the induced representation of µnj on H1(Yjk,OYj

k
), where Yj denotes the

minimal desingularization of XSj , and where Sj = Spec(Rj). This charac-
ter is on the form χ(ξ) = ξi(j). In particular, when nj � 0, we obtain an
explicit formula for i(j), using Theorem 7.11.

The character for the representation of µnj on TJ j
k
,0 is the inverse of this

character, χ−1(ξ) = ξ−i(j). The jump of {FaJk} will then be given by the
limit of the expression [−i(j)]nj/nj as j →∞, where [−i(j)]nj ≡nj −i(j),
and 0 6 [−i(j)]nj < nj .

In Example 5 below, we explain in detail how these computations are
done for fiber type IV in the Kodaira classification.

Example 5. — Let X/S have fibertype IV . In this case, the combina-
torial data of Xk consists of the set of vertices V = {υ1, . . . , υ4}, where
m(υi) = 1 for i ∈ {1, 2, 3}, and m(υ4) = 3. Furthermore, we have that
g(υi) = 0 for all i. The set of edges is E = {ε1, ε2, ε3}, where εi corresponds
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to the unique intersection point of the components υi and υ4, for i = 1, 2, 3.
Let us choose the ordering (υi, υ4) for all i.

Let n � 0 be an integer relatively prime to p and to lcm({m(υi)}) = 3,
and let R′/R be a tame extension of degree n. Let µn act on R′ by [ξ](π′) =
ξπ′ for any ξ ∈ µn, where π′ is a uniformizing parameter for R′.

For any g ∈ G, corresponding to a root of unity ξ ∈ µn, Theorem 7.9
states that

1∑
p=0

(−1)p Trβ(φpg) =
∑
υ∈V

Trυ(ξ) +
∑
ε∈E

Trε(ξ).

Let σ be the singularity (1, 3, n). Then we have that Trεi(ξ) = Trσ(ξ)
for all i ∈ {1, 2, 3}. It suffices to consider the case where n ≡3 1. One
computes easily that µl = 1 for all l ∈ {1, . . . , L(σ)}. From Theorem 7.11,
we immediately get that Trεi(ξ) = 1, for all i.

Proposition 7.3 states that

Trυ(ξ) =
mυ−1∑
k=0

(ξαmυ )k((mυ − k)C2
υ + 1− pa(Cυ)),

for any υ ∈ V, where αmυmυ ≡n 1. As C2
υi = −1 for i ∈ {1, 2, 3}, we see

that Trυi(ξ) = 0 for these vertices, and since C2
υ4

= −1, it follows that
Trυ4(ξ) = −2− ξα3 . In total, we get

3 + (−2− ξα3) = 1− ξα3 .

We can therefore conclude that the character for the representation of µn
on H1(Yk,OYk) is χ(ξ) = ξα3 .

In order to compute the jump of the filtration {FaJk}, where J is the
Néron model of J(X) = X, we have to use the inverse character, which is

χ−1(ξ) = ξ[−α3]n ,

where [−α3]n = −α3 modulo n, and 0 6 [−α3]n < n. The jump will be
given by the limit of the expression ([−α3]n)/n as n goes to infinity over
integers n that are equivalent to 1 modulo 3.

Since n = 1 + 3 · h, for some integer h, we get that α3 = 1+2n
3 , where

0 < α3 < n. Therefore, the jump occurs at the limit of

([−α3]n)/n = n− 1
3n

which is 1/3.
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Table 8.1. Genus 1

Fibertype (I) (I)∗ (In) (In)∗ (II) (II)∗ (III)
Jumps 0 1/2 0 1/2 1/6 5/6 1/4

(III)∗ (IV ) (IV )∗
3/4 1/3 2/3

8.3. Computations of jumps for g = 2

Let X/K be a curve having genus equal to 2. Like in the case for elliptic
curves, there are finitely many possibilities, modulo chains of (−2)-curves,
for the combinatorial structure of the special fiber of the minimal regular
model of X. Moreover, there exists a complete classification of the various
possible fiber types. This classification is mainly due to A.P. Ogg [17], with
the exception of a few missing cases which were filled in by Y. Namikawa
and K. Ueno in [16]. We use the classification and notation in [16].

Let X/S be the minimal SNC-model of X, and let J /S be the Néron
model of the Jacobian of X. The jumps in the filtration {FaJk} depend
only on the combinatorial structure of Xk, and can occur only at a finite
set of rational numbers.

In order to compute the jumps for each fibertype, we proceed more or less
in the same manner as we did in the case of elliptic curves. In Example 6,
we explain in detail how this is done for fiber type V I in the classification
in [16].

The jumps for the various genus 2 fiber types are listed in tables 8.2
through 8.6 below.

Example 6. — We consider fiber type V I in the classification in [16]. In
this case, the set of vertices of Γ(Xk) is V = {υ1, . . . , υ7}, where g(υi) = 0
for all i. Furthermore, we have that m(υi) = 1 for i = 1, 7, m(υi) = 2 for
i = 2, 5, 6, m(υ3) = 3 and m(υ4) = 4. The set of edges is

E = {ε1, ε2, ε3, ε4, ε5, ε6},

where

ε1 = (υ1, υ2), ε2 = (υ2, υ3), ε3 = (υ3, υ4), ε4 = (υ5, υ4), ε5 = (υ6, υ4)

and
ε6 = (υ7, υ4).

We have that lcm({m(υi)}) = 12. Let n� 0 be any integer not divisible
by p, and such that n ≡12 1. Let R′/R be the extension of degree n, and
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let π′ be a uniformizing parameter of R′. Let Y be the minimal desingu-
larization of XS′ . We let µn act on R′ by [ξ](π′) = ξπ′, for any ξ ∈ µn.

Now, let ξ ∈ µn be a root of unity. For any υ ∈ V, Proposition 7.3 gives
that

Trυ(ξ) =
mυ−1∑
k=0

(ξαmυ )k((mυ − k)C2
υ + 1− pa(Cυ)).

As the computations are similar for all υ ∈ V, we only do this explicitly
for υ3. We have that pa(Cυ3) = g(υ3) = 0, so it remains only to com-
pute C2

υ3
. The edge ε2 corresponds to the singularity σ2 = (2, 3, n) and the

edge ε3 corresponds to the singularity σ3 = (3, 4, n). Denote by Cσ2
l the

exceptional components in the resolution of σ2, and by Cσ3
l the components

in the resolution of σ3. Then Cσ2
1 and Cσ3

L are the only two components of
Yk that meet Cυ3 (note the ordering of the formal branches in σ2 and σ3).
It is easily computed that µσ2

1 = 2 and that µσ3
L = 1. So it follows that

C2
υ3

= −1, and therefore

Trυ3(ξ) = −2− ξα3 .

For the other vertices, we compute that

Trυ1(ξ) = Trυ7(ξ) = 0,

Trυ2(ξ) = Trυ5(ξ) = Trυ6(ξ) = −1,
and

Trυ4(ξ) = −7 − 5ξα4 − 3(ξα4)2 − (ξα4)3.

Next, we must compute the contributions from the singularities. We will
only write out the details for ε3 = (υ3, υ4). In this case, we need to compute
Trσ3(ξ). It is easily computed that µσ3

1 = 3 and µσ3
L = 1. Theorem 7.11 then

gives that
Trε3(ξ) = Trσ3(ξ) = 3 + 2ξα4 + (ξα4)2.

For the contributions from the other edges, we compute in a similar fashion
that

Trε1(ξ) = Trε6(ξ) = 1,

Trε2(ξ) = 2 + ξα3 ,

and
Trε4(ξ) = Trε5(ξ) = 3 + ξα4 + (ξα4)2.

Summing up, we get
7∑
i=1

Trυi(ξ) +
6∑
i=1

Trεi(ξ) = 1− ξα4 − (ξα4)3.
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We can therefore conclude that the irreducible characters for the induced
representation of µn on H1(Yk,OYk) are

χ1(ξ) = ξα4 and χ2(ξ) = ξ3α4 .

The irreducible characters for the representation of µn on TJ ′
k
,0 induced

by the action [ξ](π′) = ξ−1π′ on R′ are the inverse characters of these,

χ−1
1 (ξ) = ξ−α4 and χ−1

2 (ξ) = ξ−3α4 .

It is easily seen that
[−α4]n = (n− 1)/4,

and that [−3α4]n = (3n − 3)/4. Hence the jumps occur at the limits 1/4
and 3/4 of these expressions as n goes to infinity.

Table 8.2. Genus 2, Elliptic type [1]

Fiber type I0−0−0 I∗0−0−0 II III IV V

Jumps 0 1/2 0, 1/2 1/3, 2/3 1/6, 5/6 1/6, 2/6
V ∗ V I V II V II∗ V III − 1 V III − 2

4/6, 5/6 1/4, 3/4 1/8, 3/8 5/8, 7/8 1/10, 3/10 3/10, 9/10
V III − 3 V III − 4 IX − 1 IX − 2 IX − 3 IX − 4
1/10, 7/10 7/10, 9/10 1/5, 3/5 1/5, 2/5 3/5, 4/5 2/5, 4/5

8.4. Final remarks and comments

It would be interesting to know, for a curve X/K, the significance of the
jumps in the filtration {FaJk}, where J is the Néron model of Jac(X).
For instance, the sum of the jumps seems to be closely related to the so-
called base change conductor defined in [3]. Furthermore, when k = C, and
g = 1 or 2, computations show that the jumps correspond to half of the
eigenvalues of the monodromy operator. It would be interesting to know if
this holds in general.

It would be nice, if possible, to have a closed formula for the irreducible
characters of the representation of µn on H1(Yk,OYk), where Y is the
minimal desingularization of XS′ , and n = deg(S′/S). Such a formula would
probably encode combinatorial properties of Xk.

We do not know if our results remain true in the case where distinct
components of Xk with multiplicities divisible by p intersect nontrivially.
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Table 8.3. Genus 2, Elliptic type [2]

I0 − I0 −m I∗0 − I∗0 −m I0 − I∗0 −m 2I0 −m 2I∗0 −m
0 1/2 0, 1/2 0, 1/2 1/4, 3/4

I0 − II −m I0 − II∗ −m I0 − IV −m I0 − IV ∗ −m
0, 1/6 0, 5/6 0, 1/3 0, 2/3

I∗0 − II −m I∗0 − II∗ −m I∗0 − II∗ − α I∗0 − IV −m
1/6, 3/6 3/6, 5/6 3/6, 5/6 1/2, 1/3

I∗0 − IV ∗ −m I∗0 − IV ∗ − α I0 − III −m I0 − III∗ −m
1/2, 2/3 1/2, 2/3 0, 1/4 0, 3/4

I∗0 − III −m I∗0 − III∗ −m I∗0 − III∗ − α 2II −m
1/4, 2/4 2/4, 3/4 2/4, 3/4 1/12, 7/12

2II∗ −m II − II −m II − II∗ −m II∗ − II∗ −m
5/12, 11/12 1/6, 1/6 1/6, 5/6 5/6, 5/6

II∗ − II∗ − α II − IV −m II − IV ∗ −m II∗ − IV −m
5/6, 5/6 1/6, 2/6 1/6, 4/6 2/6, 5/6
II∗ − IV − α II∗ − IV ∗ −m II∗ − IV ∗ − α 2IV −m

2/6, 5/6 4/6, 5/6 4/6, 5/6 1/6, 4/6
2IV ∗ −m IV − IV −m IV − IV ∗ −m IV ∗ − IV ∗ −m
2/6, 5/6 1/3, 1/3 1/3, 2/3 2/3, 2/3

IV ∗ − IV ∗ − α II − III −m II − III∗ −m II∗ − III −m
2/3, 2/3 2/12, 3/12 2/12, 9/12 2/12, 10/12

II∗ − III − α II∗ − III∗ −m II∗ − III∗ − α IV − III −m
3/12, 10/12 9/12, 10/12 9/12, 10/12 3/12, 4/12

IV − III∗ −m IV − III∗ − α IV ∗ − III −m IV ∗ − III∗ −m
4/12, 9/12 4/12, 9/12 3/12, 8/12 8/12, 9/12

IV ∗ − III∗ − α 2III −m 2III∗ −m III − III −m
8/12, 9/12 1/8, 5/8 3/8, 7/8 1/4, 1/4
III − III∗ −m III∗ − III∗ −m III∗ − III∗ − α

1/4, 3/4 3/4, 3/4 3/4, 3/4

The main problem is the lack of a good description of the minimal desin-
gularization of XS′ .

Finally, we think it would be interesting to study filtrations for Néron
models of abelian varieties that are not Jacobians. In that case, it is not so
clear what kind of data would suffice in order to determine the jumps. For
instance, is it true that all jumps are rational numbers?
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Table 8.4. Genus 2, Parabolic type [3]

In−0−0 In − I0 −m I0 − I∗n −m In − I∗0 −m I∗n−0−0
0 0 0 , 1/2 0 , 1/2 1/2 , 1/2

I∗0 − I∗n −m IIn−0 II∗n−0 II − In −m II∗ − In −m
1/2 , 1/2 0 , 1/2 0 , 1/2 0 , 1/6 0 , 5/6
IV − In −m IV ∗ − In −m II − I∗n −m II∗ − I∗n −m

0 , 1/3 0 , 2/3 1/6 , 3/6 3/6 , 5/6
II∗ − I∗n − α IV − I∗n −m IV ∗ − I∗n −m IV ∗ − I∗n − α

3/6 , 5/6 2/6 , 3/6 3/6 , 4/6 3/6 , 4/6
IV − IIn IV ∗ − IIn II − II∗n II∗ − II∗n III − In −m
0 , 1/3 0 , 2/3 1/6 , 3/6 3/6 , 5/6 0 , 1/4

III∗ − In −m III − I∗n −m III∗ − I∗n −m III∗ − I∗n − α
0 , 3/4 1/4 , 2/4 2/4 , 3/4 2/4 , 3/4

III − IIn III∗ − IIn III − II∗n III∗ − II∗n
0 , 3/4 0 , 3/4 1/4 , 2/4 2/4 , 3/4

Table 8.5. Genus 2, Parabolic type [4]

In−p−0 In − Ip −m I∗n−p−0 I∗n − I∗p −m In − I∗p −m
0 0 1/2 1/2 0, 1/2

2In −m 2I∗n −m In−p IIIn
0, 1/2 1/4 , 3/4 0, 1/2 1/4 , 3/4

Table 8.6. Genus 2, Parabolic type [5]

In−p−q I∗n−p−q IIn−p II∗n−p IIIn III∗n
0 1/2 0, 1/2 0, 1/2 1/3, 2/3 1/6, 5/6
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