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REPRESENTATION THEORY
FOR LOG-CANONICAL SURFACE SINGULARITIES

by Trond Stølen GUSTAVSEN & Runar ILE (*)

Abstract. — We consider the representation theory for a class of log-canonical
surface singularities in the sense of reflexive (or equivalently maximal Cohen-
Macaulay) modules and in the sense of finite dimensional representations of the
local fundamental group. A detailed classification and enumeration of the inde-
composable reflexive modules is given, and we prove that any reflexive module
admits an integrable connection and hence is induced from a finite dimensional
representation of the local fundamental group.

Résumé. — Nous considérons la théorie des représentations pour une classe des
singularités des surfaces log-canoniques dans le sens de modules réflexifs (ou d’une
manière équivalente, modules maximals de Cohen-Macaulay) et dans le sens de re-
présentations de dimension finie du groupe fondamental local. Une classification et
une énumération détaillées des modules réflexifs indécomposables sont données, et
nous montrons que n’importe quel module réflexif admet une connexion intégrable,
et par conséquent est induit par une représentation de dimension finie du groupe
fondamental local.

1. Introduction

A normal surface singularity (X,x) may be studied through its represen-
tations, and although a comprehensive understanding seems to be out of
reach, results have been obtained for classes of normal surfaces singulari-
ties both in terms of reflexive (or equivalently maximal Cohen-Macualay)
modules and in terms of finite dimensional representations of the local

Keywords: Surface singularity, maximal Cohen-Macaulay module, integrable connection,
elliptic curve, local fundamental group.
Math. classification: 13C14, 32S40, 14J17.
(*) The authors are grateful for financial support from RCN’s Strategic University
Program in Pure Mathematics at the Department of Mathematics, University of Oslo
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fundamental group πloc
1 (X,x). The case of quotient singularities is partic-

ularly transparent. For such a singularity there is a one-to-one correspon-
dence between the reflexive modules and the finite dimensional represen-
tations of the group, see [11, 2, 6]. The situation is much more compli-
cated for other classes of singularities, and we believe that the thesis of
Constantin P. M. Kahn is among the most comprehensive studies in this
direction, see [12]. He develops a technique involving a reduction cycle on
the minimal resolution, and applies it to the case of a simple elliptic sur-
face singularity where he uses Atiyah’s classification of vector bundles on
an elliptic curve to give a detailed classification of the reflexive modules.
Notably, he is able to show that any reflexive module is induced from a
representation of the local fundamental group. He also shows that a simple
elliptic surface singularity is of tame representation type with respect to re-
flexive modules while the local fundamental group is of wild representation
type.

It is known that a normal surface singularity (X,x) is log-canonical if and
only if πloc

1 (X,x) is finite or solvable, and that the class of log-canonical
surface singularities constitutes exactly of the quotient singularities, the
simple elliptic singularities, the cusp singularities, and finite quotients of
these, see [14] and [27]. Thus we find it natural to consider the class of
log-canonical surface singularities, and in the present article we consider a
quotient (X,x) of a simple elliptic surface singularity (Y, y). The elliptic
quotients contains a large class of rational surface singularities in addition
to the simple elliptic, see Theorem 4.1.

Among three main theorems, we regard the following as the most impor-
tant.

Theorem A. — Every reflexive module M on an elliptic quotient (X,x)
admits an integrable connection ∇ : DerC(OX,x)→ EndC(M).

By a Riemann-Hilbert correspondence proved in [10], this theorem im-
plies thatM is induced from a finite dimensional representation of πloc

1 (X,x)
and that it admits a DX,x-module structure where DX,x is the ring of dif-
ferential operators on (X,x). It should be noted that the ring DX,x is not
noetherian for elliptic quotients and is then of course far from being gener-
ated in degree one, see [4, 18]. Nevertheless, the first order structure given
by the integrable connection, induces a DX,x-module structure on M .

Kurt Behnke proved in [3] that the fundamental module on a cusp sin-
gularity admits an integrable connection and conjectured that all reflexive
modules on a cusp singularity admits a connection. We offer the following
extension.

ANNALES DE L’INSTITUT FOURIER



REPRESENTATIONS OF SURFACE SINGULARITIES 391

Conjecture. — Every reflexive module M on a log-canonical surface
singularity (X,x) admits an integrable connection ∇ : DerC(OX,x) →
EndC(M).

By Theorem A the conjecture is open for cusp singularities and their
quotients.

Theorem B. — Let (X,x) be an elliptic quotient that is not simple el-
liptic. If the log-index m divides r, there is a finite number of one-parameter
families of reflexive modules of rank r on (X,x). If m does not divide r
there are finitely many reflexive modules. In particular; if (r,m) = 1, there
are exactly r |det(CiCj)| indecomposable reflexive modules of rank r where
(CiCj) is the intersection matrix of the minimal resolution.

The formulation in Theorem B is a simplified version of the classification
in Theorem 4.7. A reflexive module M is an invariant module if there exists
a finite covering π : (Y, y) → (X,x) such that the double dual of the pull
back, (π∗M)∨∨ , is a free module, or, equivalently, if it corresponds to a
profinite representation of the local fundamental group. As a consequence
of the full classification, we also obtain an identification of the invariant
modules. When the rank divides the log-index, we enumerate the families
containing invariant modules. For each such family there is a map E → C ∼=
P1 from an elliptic curve to the parameter space C, and the dense image of
the torsion points parameterizes the invariant modules. In the case r does
not divide m we enumerate the finitely many invariant modules.

All elliptic quotients are quasi-homogenous, so we may consider graded
reflexive modules on an elliptic quotient. In fact, we are only able to prove
Theorem A and Theorem B for graded modules. Fortunately, we also ob-
tain:

Theorem C. — Every reflexive module M on (X,x) is gradable.

The paper is organized as follows: In Section 2 we give preliminaries. In
particular we review important results from the thesis of Kahn, see [12]. In
order to obtain our detailed classification, we need to extend Atiyah’s classi-
fication of vector bundles on an elliptic curve to vector bundles with action
of a finite group G acting without translations. This is done in Section 3.
In Section 4 we prove that any reflexive module on (X,x) is gradable, and
carry through the classification of the reflexive modules. In Section 5 we
prove that every reflexive module M on (X,x) admits an integrable con-
nection. For this we need to extend a part of Weil’s theorem to show that
indecomposable vector bundles on an elliptic curve E of degree 0 with com-
patible G-action admits a G-equivariant integrable connection. In Section 6

TOME 60 (2010), FASCICULE 2



392 Trond Stølen GUSTAVSEN & Runar ILE

we give details in an example with the two dimensional representations of
the local fundamental group worked out in an appendix.

We remark that [5] also has a classification of reflexive modules on elliptic
quotients. Our classification in Theorem 4.7 is however more explicit, and in
particular our formula for the number of indecomposable reflexive modules
in ranks not divisible by the log index, is new.

2. Notation and preliminaries

In this section we fix notation that will be used throughout the paper,
and review important results from the thesis of Kahn, see [12].

We work over the field C of complex numbers, and denote by (X,x)
the germ of a normal complex analytic space of dimension two. Choosing
a representative X of (X,x) ⊂ (Cn, 0), then for a small ball Bε in Cn
of radius ε, the link of (X,x), defined as L := X ∩ ∂Bε, is a smooth,
compact, connected and oriented real 3-manifold and is independent of ε
up to diffeomorphism, see [21]. The local fundamental group is defined as
πloc

1 (X,x) := π1(L), and since (X,x) is homeomorphic to the cone over L
after interchanging X with X ∩Bε, one has πloc

1 (X,x) = π1(X \ {x}). We
will always assume that X is such a representative and that X \ {x} is
smooth.

The local ring of germs of holomorphic functions will be denoted by
OX,x, and OX denotes the sheaf of holomorphic functions on the complex
space X.

Let M be a coherent OX,x-module. Recall that a coherent OX,x-module
M is reflexive if the canonical map M →M∨∨ of the module into its double
dual is an isomorphism. Since (X,x) is a normal surface singularity, M is
reflexive if and only if M is maximal Cohen-Macaulay, i.e., depthM = 2.
We will denote by RefX,x, the category of reflexive OX,x-modules.

The C-vector space EndC(M) of C-linear maps is an OX,x-bi-module,
and a connection on M is an OX,x-linear map ∇ : DerC(OX,x)→ EndC(M)
which for all f ∈ OX,x, m ∈ M and D ∈ DerC(OX,x) satisfy the Leibniz
rule

(2.1) ∇(D)(fm) = D(f)m+ f∇(D)(m).

A morphism ϕ : (M1,∇1) → (M2,∇2) is an OX,x-module homomorphism
ϕ : M1 → M2 such that ϕ∇1(D) = ∇2(D)ϕ for all D ∈ DerC(OX,x) (ϕ is
a horizontal map). A connection ∇ : DerC(OX,x)→ EndC(M) is said to be
integrable if it is a C-Lie-algebra homomorphism.
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REPRESENTATIONS OF SURFACE SINGULARITIES 393

The thesis [12] of Constantin P. M. Kahn (see also his paper [13]) contains
several results of importance for the present work. To fix notation and for
the convenience of the reader, we briefly summarize some of these results.

Kahn develops a method to classify reflexive modules on a normal sur-
face singularity using full sheaves and a reduction cycle which he applies
to a class of normal surface singularities: (Y, y) is said to be simple ellip-
tic of type El(b) if the exceptional divisor in the minimal resolution is a
smooth elliptic curve E with E2 = −b and b > 1, see [25] and [15]. Kahn’s
classification of reflexive modules on a simple elliptic surface singularity re-
lies on Atiyah’s classification of vector bundles on an elliptic curve, see [1].
There are bĳective maps αr,d : Pic0 E → Bind(r, d) where Bind(r, d) is the
set of indecomposable vector bundles of rank r and degree d, and for the
classification of reflexive modules on a simple elliptic surface singularity,
Kahn proves the following theorem, where 1 ∈ Pic0 E denotes the neutral
element.

Theorem 2.1 ([12, 5.16]). — Let p : Ỹ → Y be the minimal resolution
of a simple elliptic surface singularity (Y, y) of type El(b) and let E =
p−1(y). Every reflexive module N on Y gives a vector bundle R(N) :=
(p∗N)∨∨ ⊗OE . The images of indecomposable reflexive modules under R
are up to isomorphism the following

α′r,d(λ) :=


αr,d(λ) if d < br or d = br and λ 6= 1;
OE ⊕ αr−1,b(r−1)(1) if d = br and λ = 1;
OnE ⊕ αr−n,b(r−n)+n(λ) if d = br + n, 0 < n < r.

By a theorem of Grauert the minimal resolution is isomorphic to the
total space of any line bundle of degree −b on E, see [8] and [25]. The
elliptic curve E is given as the zero section and Ỹ \ E is a principal C∗-
bundle s : Ỹ \E → E. Since Ỹ \E ∼= Y \{y} we may identify s with a map
s : Y \ {y} → E.

The reflexive modules corresponding to the vector bundles α′r,d(λ) in
Theorem 2.1 are related to the αr,d(λ) in the following way.

Proposition 2.2 ([12, 5.18, 5.19]). — Let N be an indecomposable
reflexive module on a simple elliptic surface singularity (Y, y). If (p∗N)∨∨⊗
OE ∼= α′r,d(λ), then

(p∗N)∨∨|
Ỹ \E

∼= N |Y \{0} ∼= s∗αr,d(λ).

Moreover, the set

{(r, d, λ) ∈ N× N× Pic0 E | r 6 d < (b+ 1)r}

TOME 60 (2010), FASCICULE 2



394 Trond Stølen GUSTAVSEN & Runar ILE

is in one-to-one correspondence with the set of isomorphism classes of
indecomposable reflexive modules on (Y, y) through the map (r, d, λ) 7→
(i∗(s∗αr,d(λ))) where i : Y \ {y} → Y is the inclusion.

For a simple elliptic surface singularity of type El(b) Kahn finds that
the local fundamental group is given as πloc

1 (Y, y) = Hb where Hb is the
discrete Heisenberg group generated by three elements α, β and γ subject
to the following relations:

[α, γ] = 1, [β, γ] = 1 and [α, β] = γb.

He gives the following classification of the finite dimensional representations
of πloc

1 (X,x). Assume 1 6 r 6 d < (b + 1)r and that (r, d) = 1. Define
τr,d : Hb → GL(r,C) by

τr,d(α)=



1 0 0 · · · 0
0 ζb 0 · · · 0

0 0 ζ2b ...
...

...
. . . 0

0 0 · · · 0 ζ(r−1)b

, τr,d(β)=



0 0 · · · 0 1
1 0 · · · 0 0

0 1 0
...

...
. . . . . .

...
0 · · · 0 1 0


and τr,d(γ) = ζIr where ζ = e−2πid/br. We denote by Unip(r,C) ⊂ GL(r,C)
the subgroup of unipotent upper triangular matrices of rank r.

Theorem 2.3 ([12, 6.13]). — We have that
(1) To every indecomposable representation ρ : Hb → GL(n,C) there

is a character χ : Hb → C∗ with χ(γ) = 1, a representation τr,d
as above where r is a divisor of n and a representation σ : Hb →
Unip(h,C) where h = n/r such that ρ is conjugate to χ⊗ τr,d ⊗ σ.

(2) Two indecomposable representations χ⊗ τr,d⊗σ and χ′⊗ τ ′r′,d′⊗σ′
are conjugate if and only if r = r′, d = d′, χr = χ′r and σ and σ′

are conjugate.
(3) A representation χ⊗ τr,d ⊗ σ is indecomposable if and only if σ is

indecomposable.

To each representation ρ there is by Proposition 2.2 a vector bundle Fρ
on E which corresponds to the local system Vρ on Ỹ \E corresponding to ρ,
i.e., Fρ := s∗Fρ = Vρ⊗COỸ \E . If ρ = χ⊗τr,d⊗σ then Fρ = Fχ⊗Fτr,d⊗Fσ.
Kahn shows that every α′r,d(λ) is obtained as Fχ⊗Fτr,d⊗Fσ, and uses this
to show that every vector bundle on Ỹ \ E up to isomorphism is given as
Fρ for some representation ρ, [12, 6.16].

ANNALES DE L’INSTITUT FOURIER



REPRESENTATIONS OF SURFACE SINGULARITIES 395

For any normal surface singularity (Y, y) there is an equivalence

Repπloc
1 (Y,y) → Ref∇Y,y

between the category of finite dimensional representations of the local fun-
damental group and the category of pairs (M,∇) where M is a reflexive
OX,x-module and ∇ is an integrable connection. The correspondence is
given by ρ 7→ ((i∗Fρ)∨∨,∇ρ) where i : Y \ {y} → Y is the inclusion and
∇ρ is naturally constructed, see [10, 3.1] for details. Thus we have:

Theorem 2.4. — Let (Y, y) be a simple elliptic surface singularity, and
let N be a reflexive module on (Y, y). Then N admits an integrable con-
nection

∇ : DerC(OY,y)→ EndC(N).

A surjective map of germs of normal surface singularities π : (Y, y) →
(X,x) is a Galois covering if it is finite, étale on the complement Y \
{y} → X \ {x} (for some choice of representatives) and G = G(Y/X) :=
Aut((Y, x)/(X, y)) acts freely on Y \ {y}. If π is a Galois covering, OGY,y =
OX,x (see also [10]). An S = OY,y-module N has an action of G = G(Y/X)
compatible with the action of G on S, if σ(sn) = σ(s)σ(n) for σ ∈ G.

The skew group ring S[G] is the free S-module with the elements of G as
basis and with multiplication given by (s1σ1)(s2σ2) = s1σ1(s2)σ1σ2, where
the si are in S and the σi are in G. It will be convenient to consider modules
with compatible G-action as modules over the skew group ring, and we will
denote the category of S[G]-modules that are reflexive as S-modules by
RefGY,y.

Proposition 2.5 ([10, 4.4]). — Let π : (Y, y) → (X,x) be a Galois
covering, with G = G(Y/X). Let R = OX,x and S = OY,y. The rank
preserving functor F : RefGY,y → RefX,x given by F (N) = π∗N

G is an
additive equivalence of categories, and an inverse equivalence is given by
F (−1)(M) = (S ⊗RM)∨∨.

By Theorem 2.4, M = F (N) has a connection ∇N if (Y, y) is simple
elliptic. A connection ∇M on M = NG is given by

∇N (D)(m) =
∑
g∈G

g∇N (D)(g−1m)

for D ∈ DerC(S)G = DerC(R), see [26]. It is however not clear in general
that this is an integrable connection, i.e., it is not clear that it is a Lie-
algebra homomorphism since it is not true in general that the quotient of a
flat bundle by a finite group is flat, see [16]. That there exists an integrable
connection on M is the content of Theorem 5.1.

TOME 60 (2010), FASCICULE 2



396 Trond Stølen GUSTAVSEN & Runar ILE

3. Vector bundles on elliptic curves with group action

In order to give a detailed classification of the reflexive modules on el-
liptic quotients, it turns out that we need to classify vector bundles on an
elliptic curve with group action, and in this section we do this by extending
Atiyah’s classification.

If G is a subgroup of the group of automorphisms of a ringed space
(Z,OZ), a compatible G-action on a sheaf of OZ-modules F is; for each
σ ∈ G a map σ#

F : F → σ∗F which isOZ-linear via the morphism of sheaves
of rings σ# : OZ → σ∗OZ , i.e., σ#

F (sf) = σ#(s)σ#
F (f) for s ∈ OZ(U)

and f ∈ F(U) with the following two properties: The action has to be
associative, i.e., for all σ, τ ∈ G, (τσ)#

F = (τ∗σ#
F )τ#
F , and the neutral

element e ∈ G has to act as the identity on F . The adjoint isomorphism
maps σ#

F to φσ ∈ HomOZ (σ∗F ,F) and the associativity condition becomes
φσ(σ∗φτ ) = φτσ, i.e., the diagram

(3.1) σ∗τ∗F
σ∗φτ //

∼=
��

σ∗F

φσ

��
(τσ)∗F

φτσ // F

commutes, and φe = id. We will use this equivalent description of a group
action on F .

A map f : (F , φ) → (F ′, φ′) of sheaves of OZ-modules with compatible
G-action is a map f : F → F ′ of sheaves of OZ-modules commuting with
the G-action; fφσ = φ′σ(σ∗f) : σ∗F → F ′ for all σ ∈ G. Let modGOZ
denote the resulting category. Even though OZ [G] in general is not even a
presheaf of rings (only well defined for G-invariant open sets), we will for
convenience call objects F of modGOZ for OZ [G]-modules. The homological
algebra in modGOZ was first considered by Grothendieck in [9, Chap. V].

If H is a subgroup of G, there is a functor IGH : modHOZ → modGOZ defined
by IGH(F) =

⊕
[σi]∈H\G σ

∗
iF where the G-action is defined as follows: Given

σ and i, there is a unique j and a unique τ ∈ H such that σiσ = τσj . Let
φσ restricted to σ∗(σ∗iF) be the composition σ∗(σ∗iF) ∼= σ∗j (τ∗F) → σ∗jF
where the last map is σ∗j (φHτ ).

Lemma 3.1. — Suppose G is a subgroup of the group of automorphisms
of a ringed space (Z,OZ), H is a subgroup of G and F is a sheaf of OZ-
modules. Let a(H,F) denote the set of isomorphism classes of H-actions
on F .

ANNALES DE L’INSTITUT FOURIER



REPRESENTATIONS OF SURFACE SINGULARITIES 397

(a) Let {σi} be a set of representatives for H\G (with σ1 = e) such
that i 6= j implies that HomOZ (σ∗iF , σ∗jF) = 0, let I(F) =

⊕
σ∗iF ,

and suppose a(H,F) 6= ∅. Then IGH induces a bĳection a(H,F) '−→
a(G, I(F)).

(b) IfOZ and theH-action on Z is k-linear for a field k and AutOZ (F) =
k×, then a(H,F), if non-empty, is a torsor for the character group
Ĥ = Hom(H, k×).

Proof. — For (a) let F ∈ modOZ and suppose φ is a G-action on I(F).
By the assumptions in (a) φτ : τ∗I(F) → I(F) restricted to τ∗F maps
solely into the direct summand F = σ∗1F for all τ ∈ H. Hence the G-action
on I(F) induces an H-action on F , denoted RHF (I(F), φ). If F ∈ modHOZ ,
clearly RHF (IGH(F)) = F .

Let (I(F), φ!) = IGH(RHF (I(F), φ)). By the assumptions in (a) φσk :
σ∗kI(F) → I(F) restricted to σ∗kF maps solely into the direct summand
σ∗kF . Let ζk ∈ AutOZ (σ∗kF) denote this restricted map. For φ! the corre-
sponding automorphism is the identity. Let f ∈ AutOZ (I(F)) be defined
by ξk = ζ−1

k on the summand σ∗kF . We claim that f induces a natural iso-
morphism f : (I(F), φ) '−→ (I(F), φ!). We have to show that f commutes
with φ and φ!, i.e., ξφσ = φ!

σσ
∗ξ for all σ ∈ G. Now σ = τσj for unique

j and τ ∈ H. By associativity φσ = φσj ◦ σ∗jφτ , and since φτ = φ!
τ , it is

sufficient to show commutativity for σ = σj . Restricting φσj to σ∗j (σ∗iF)
gives φσj : σ∗j (σ∗iF) → σ∗kF where σiσj = τσk for τ ∈ H. Consider the
following diagram of isomorphisms:

(3.2) σ∗j (σ∗iF)

σ∗kφτ

��

σ∗j (ζi) // σ∗j (σ∗iF)

φσj

��

σ∗j (ξi) // σ∗j (σ∗iF)

φ!
σj

��

σ∗k(τ∗F)=oo

σ∗kφτ

��
σ∗kF φσk=ζk

// σ∗kF ξk

// σ∗kF σ∗kF
φ!
σk

=id
oo

Since σ∗j (σ∗iF) = σ∗k(τ∗F) the left hand square commutes by the associa-
tivity condition. The right hand square commutes by definition of φ!. By
inspection it follows that the central square commutes (identify the two
outer vertical arrows).

For (b) let F be an OZ-module which admits an H-action. Then the
character group Ĥ acts on the set of isomorphism classes of H-actions on F ,
i.e., if φτ : τ∗F → F , τ ∈ H, defines an action on F , and χ ∈ Ĥ, then
(χφ)τ = χ(τ)φτ : τ∗F → F also defines anH-action Fχ on F . The action of
Ĥ is effective: An isomorphism f : F ∼= Fχ satisfies fφτ = χ(τ)φττ∗f , and
since f ∈ Aut(F) = k×, χ(τ) = 1 for all τ ∈ H. The action is also transitive:

TOME 60 (2010), FASCICULE 2



398 Trond Stølen GUSTAVSEN & Runar ILE

Given two H-actions φ and ψ on F , then χ(τ) := ψτφ
−1
τ ∈ Aut(F) = k×,

and χ : H → k× is a character by the associativity and identity conditions
on φ and ψ. �

Example 3.2. — Let Z be a smooth projective (holomorphic) variety
with G a subgroup of the automorphism group of Z and L a line bundle on
Z. Let H = G[L], the isotropy group of [L] ∈ PicZ. Then F = L satisfies
the conditions in Lemma 3.1 (a) and (b).

Remark 3.3. — In general it is not sufficient to have isomorphisms θτ :
τ∗F ∼= F for all τ ∈ H to define an H-action on F (and hence a G-action
on I(F)). Suppose AutOZ (F) = k×. The commutativity defect in (3.1)
gives a cocycle c : H ×H → k× with c(τ, σ) = θτσ(θσσ∗θτ )−1, and hence a
cohomology class [F ] ∈ H2(H; k×). D. Ploog shows that [F ] = 0 if and only
if F has an H-action. (Our Lemma 3.1 (b) is also contained in [23, Lemma
1].) In the case H is cyclic of order h, H2(H; k×) = k×/(k×)h. If σ generates
H, the only non-trivial relation is σh = e, so consider (σh)∗θσ ◦ · · · ◦σ∗θσ =
ζ ∈ k×. If there is a ξ ∈ k× with ξh = ζ then φσ := ξ−1θσ and iterating
defines an H-action on F .

Atiyah [1] classified vector bundles on an elliptic curve E (depending on
a choice of neutral element P0 ∈ E for the group law) by a two step pro-
cedure which gives a one-to-one correspondence between the set Bind(r, d)
of isomorphism classes of indecomposable vector bundles of rank r and de-
gree d and Pic0 E. For the first step, consider an indecomposable vector
bundle F of rank r and degree d. If 0 < d < r, then the natural map
µ : OE⊗H0(F )→ F is injective and the cokernel F ′ is an indecomposable
vector bundle of rank r − d and degree d. The map F 7→ F ′ sets up a
bĳection Bind(r, d) ∼= Bind(r−d, d). Twisting F by OE(P0) gives a bĳection
Bind(r, d) ∼= Bind(r, d+ r). Combined, the bĳections allow for an Euclidean
algorithm which gives a bĳection Bind(r, d) ∼= Bind(h, 0) where h = (r, d).
For the second step consider the indecomposable vector bundles Fr of rank
r and degree 0 inductively defined by the extensions OE → Fr → Fr−1
with F1 = OE . Tensorisation with Fr gives a bĳection Pic0 E ∼= Bind(r, 0).
The Atiyah map αr,d : Pic0 E → Bind(r, d) is the induced map.

Let G ⊆ Aut(E) be a subgroup which we will assume fixes P0. It is well-
known that G is a finite cyclic group. We now classify all vector bundles
F on E with a compatible G-action by extending Atiyah’s classification.
Suppose F =

⊕n
i=1 Fi, with Fi indecomposable as OE-module. If F is inde-

composable as anOE [G]-module, we may assume that σ∗Fi ∼= Fi+1 where σ
is a generator forG. Hence the rank and degree of Fi is constant for all i. Let
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B(r, d;n) (respectively BG(r, d;n)) denote the set of isomorphism classes of
OE-modules (respectively OE [G]-modules) F such that F ∼=

⊕n
i=1 Fi as

OE-modules, where Fi is an indecomposable vector bundle of rank r and
degree d for all i. Clearly G acts on B(r, d;n) by pullback. Let BGind(r, d;n)
denote the set of isomorphism classes of indecomposable OE [G]-modules in
BG(r, d;n). Forgetting the G-action gives a map BG(r, d;n) → B(r, d;n).
Since P0 is fixed by G, the inclusion of the ideal sheaf OE(−P0) ⊆ OE is
G-equivariant for any G-action on OE . The canonical action on OE hence
induces a canonical action on the dual OE(P0). Let Cn denote the cyclic
group of order n.

Proposition 3.4. — Suppose E is an elliptic curve with a faithful ac-
tion of a group G with a fixed point P0. Let |G| = m. For all r, n > 0 and
any d the following holds:

(i) The Atiyah map induces a G-equivariant bĳective map B(r, d;n)→
B(1, 0;n).

(ii) There is a canonical bĳective map BGind(r, d;n)→ BGind(1, 0;n) com-
muting with the map in (i).

(iii) Each non-empty fiber of the forgetful map BGind(r, d;n)→B(r, d;n)G
∼= B(1, 0;n)G is a torsor over the character group of the stabilizer
subgroup GP ∼= Cm/n for some P ∈ E. Moreover; if F is a vector
bundle with G-action which is indecomposable in modGOE , then its
isomorphism class is contained in BGind(r, d;n) for some n|m.

Proof. — The map in (i) is given by applying the Atiyah map to the
summands. Clearly F 7→ F⊗OE(P0) = F (P0) commutes with pullback
along σ ∈ G since in general σ∗OE(D) = OE(σ−1(D)) and P0 is G-fixed,
and hence B(r, d;n) ∼= B(r, d+r;n) G-equivariantly. With the canonical G-
action on OE(P0), a G-action on F naturally induces a G-action on F (P0)
and so twisting gives bĳections BG(r, d;n)→ BG(r, d+ r;n). Likewise the
map F 7→ F ′ = cokerµ with µ : OE⊗H0(F ) → F gives an equivariant
map B(r, d;n) → B(r − d, d;n) in the case 0 < d < r and so B(r, d;n) ∼=
B(h, 0;n) G-equivariantly where h = (r, d). Moreover, if F has a G-action,
the induced action on the global sections H0(F ) tensorized with the natural
G-action on OE makes µ OE [G]-linear and so induces a G-action on F ′.
For the converse, given a G-action on a vector bundle F ′ of degree d > 0
and rank r′. Then the universal extension

(3.3) 0→ OE⊗Ext1
OE (F ′,OE)∨ → F → F ′ → 0
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is a G-sequence since it corresponds to the identity under the natural iso-
morphisms

id ∈EndC(H0(F ′))G ∼= EndC(H1(F ′∨)∨)G

∼= H1(F ′∨⊗H1(F ′∨)∨)G ∼= Ext1
OE [G](F ′,OE⊗Ext1

OE (F ′,O)∨).

It follows from [1, Lemma 16] that this is the inverse operation to F 7→
cokerµ and so BG(r, d;n) ∼= BG(h, 0;n) for h = (r, d).

The last argument also applies to the sheaves Fr of degree 0. Hence there
is a standardG-action on the Fr induced by the standard action onOE such
that the defining sequence OE

µr−→ Fr → Fr−1 is a short exact sequence
of OE [G]-modules. In particular we have proved (i) since the isomorphism
σ∗Fr ∼= Fr for σ ∈ G implies that the map Pic0 E 3 L 7→ L⊗Fr commutes
with pullback along σ.

We define maps BGind(r, 0;n) → BGind(r − 1, 0;n): Let F =
⊕
Fi ∈ BGind

(r, 0;n). We may assume Fi = Li⊗Fr with φσ : σ∗Fi−1 ∼= Fi which implies
that σ∗Li−1 ∼= Li (by [1, Lemma 21] EndOE (Fr) ∼=

⊕
j>1 F2(r−j)+1 and

H0(L⊗Fr) = 0 for Pic0 E 3 L � OE). Since E is an elliptic curve, L0 ∼=
OE(P −P0) for some P ∈ E, we may hence assume Li = OE(σ−i(P )−P0)
for all i. The G-action, given by φσ : σ∗F ∼= F , induces a G-action on

⊕
Li

given by id⊗H0(φσ⊗ id) : σ∗Li−1⊗H0(σ∗Fi−1⊗L∨i ) ∼= Li⊗H0(Fi⊗L∨i ).
The natural map µ :

⊕
Li⊗H0(Fi⊗L∨i )→

⊕
Fi is G-equivariant, and we

get an induced G-action on the cokernel F ′ = cokerµ ∼=
⊕
Li⊗Fr−1. For

the inverse operation, a G-action on F ′ =
⊕
Li⊗Fr−1 induces by the same

argument a G-action on
⊕
Li. With these actions we find

Ext1
OE [G](⊕Li⊗Fr−1,⊕Lj)∨ ∼= (H1(⊕L∨i ⊗Lj⊗F∨r−1)∨)G

∼= (⊕ni=1 H0(Fr−1))G ∼= (Cn)G ∼= C,

where the action on Cn is given by cyclic permutation. The correspond-
ing extension gives the short exact G-sequence

⊕
Li →

⊕
Li⊗Fr →⊕

Li⊗Fr−1. Hence BGind(r, 0;n) → BGind(r − 1, 0;n) is bĳective. The com-
position of these gives the inverse of BGind(1, 0;n)→ BGind(r, 0;n) defined by
tensorisation with Fr (with its standard action).

By (i) and (ii) we have reduced (iii) to the case r = 1 and d = 0 and
Lemma 3.1 gives the rest of the statement. �

Remark 3.5. — Related results can be found in [17] and [24].
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Figure 3.1. Classification of elliptic quotients.
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4. Classification of reflexive modules on elliptic quotients

In this section we classify the reflexive modules on an elliptic quotient.
The elliptic quotients constitute an large subclass of the log-canonical sur-
face singularities.

Let ω = ωX,x be the canonical module on a log-canonical surface singu-
larity (X,x). Then ω[m] := (ω⊗m)∨∨ ∼= OX,x, for some m, and the log-index
is the smallest positive integer m such that ω[m] ∼= OX,x. The canonical
covering Y of X is defined as Y = Specan(⊕m−1

i=0 (ω⊗i)∨), see [28, 14], and
also [20]. Here Specan(⊕m−1

i=0 (ω⊗i)∨) denotes the analytic space associated
to the sheaf ⊕m−1

i=0 (ω⊗i)∨ of OX algebras, see II.§ 3 in [7]. We have that Y
is a normal surface singularity.

We say that (X,x) is an elliptic quotient if the canonical covering is sim-
ple elliptic and if (X,x) is not a quotient singularity. In particular (X,x)
is the quotient of the canonical covering (Y, y) under the covering group G.
In fact, the action of the group is induced by an action on the associated
elliptic curve E and on a line bundle L. We will need this stronger char-
acterization which follows from the next (essentially well known) theorem.
See [22] and [14].

Theorem 4.1. — Let (X,x) be an elliptic quotient with log-index m,

canonical covering Y and let G ∼= Cm be the covering group of Y over X.
Let p : (Ỹ , E)→ (Y, y) be the minimal (good) resolution of Y, and let L be
the conormal bundle of E in Ỹ , and let b = −degE L. Then the following
holds:

(1) Y is simple elliptic of type El(b), the action of G lifts to Ỹ and
induces an action on the elliptic curve E and on the line bundle L
on E.

(2) There is a G-equivariant isomorphism (Y, y) ∼= (Y ′, 0), where

Y ′ = Specan(⊕i>0 H0(E,Li))

with the natural action induced from the action on L over E.
(3) The log-index m = 1, 2, 3, 4 or 6. The action of G on E is non-free

at 3, 4 or 6 points Q(j)
i with orbits of length d = (d1, . . . , dn). The

Seifert partial resolution X ∼= Ỹ /G has n cyclic quotient singulari-
ties of type (di, ei). Let c = m

∑
ei/di and let a be determined by

ma = b+ c. The dual graph of (X,x) is Eqmc (a) in Figure 3.1. The
corresponding values of m, n, d and e are given in the following
table.
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m Graph Exceptional orbits n d, e
1 elliptic El(b) None 0
2 rational Eq2

4(a) {Q1}, {Q2}, {Q3}, {Q4} 4 (2, 2, 2, 2), (1, 1, 1, 1)

3 rational Eq3
c(a) {Q1}, {Q2}, {Q3} 3 (3, 3, 3),

(2, 2, 2)
(2, 2, 1)
(2, 1, 1)
(1, 1, 1)

4 rational Eq4
c(a) {Q1}, {Q2}, {Q3, Q

′
3} 3 (4, 4, 2),

(3, 3, 1)
(3, 1, 1)
(1, 1, 1)

6 rational Eq6
c(a) {Q1}, {Q2, Q

′
2}, {Q3, Q

′
3, Q

′′
3 } 3 (6, 3, 2),

(5, 2, 1)
(5, 1, 1)
(1, 2, 1)
(1, 1, 1)

Proof. — The theorem follows from [14, Th. 9.6.(3)] and [22]. To intro-
duce notation necessary in the (classification) Theorem 4.7 and for com-
pleteness, we sketch the proof.

The action on (Y, y) by G, extends to an action on the minimal resolution
(Ỹ , E), and hence on the conormal bundle L of E in Ỹ . The quotient of
Ỹ under this action, is the so-called Seifert partial resolution X of X, and
restricting the map π̃ : Ỹ → X, we get a ramified covering q : E → P1 with
covering group G. There is a fixed point for the action of the group on E, see
page 143 in [14]. It thus follows that G acts as stated. The Seifert partial
resolution X has one cyclic quotient singularity Pi for each exceptional
orbit {Q(j)

i }j ⊂ E where the action of G is not free. The type of Pi is
uniquely determined by the action of G on L, since locally on Ỹ the action
of G may be linearized. Let di be the ramification index of Q(j)

i . Then Pi is
of type (di, ei) for some ei with 1 6 ei < di and ei and di relatively prime.
By Hurwitz’s

∑n
i=1

di−1
di

= 2. Using these restrictions and that the dual
graphs of cyclic quotients are determined by developing diei as a continued
fraction, one derive the graphs in Figure 3.1.

On the other hand, given an elliptic quotient (X,x) with a dual graph
as in Figure 3.1, there is a central curve C in the exceptional set of the
minimal resolution X̃ → X. Let Pi be the intersection points with the other
exceptional components. Define diei as the continued fraction [bk1 , . . . , bkri ]
where bkj are the self intersection numbers of the exceptional components
in the chain intersecting C in Pi. Then there is a unique ramified covering
q′ : E′ → C = P1 such that the ramification index of any point Q(j)

i over Pi
is di and such that the order of the covering group is m as in the theorem.
Let D be a divisor on C of degree a, and let

D′ = (q′)−1(D)−
n∑
i=1

∑
j

eiQ
(j)
i .
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Let L′ = OE′(D′). It follows from [22] that (X,x) is the quotient of

Y ′ = Specan(⊕i>0 H0(E′, (L′)i))

by the natural action of G. Denote again by Y the canonical cover of X,
and let E, L and π be as defined above. Since E′ is uniquely determined
by the Pi and d, it follows that E = E′. The analytic type of a simple
elliptic surface singularity depends only on the isomorphism class of the
exceptional elliptic curve and the degree of the normal bundle since two line
bundles of the same degree differs by a translation, cf. [25]. One checks that
degL = deg L′. It follows that (Y, y) ∼= (Y ′, 0), and from Proposition 2.5
that there is a G-equivariant isomorphism (Y, y) ∼= (Y ′, 0). �

Remark 4.2. — From Theorem 9.6 in [14] it follows that any normal
surface singularity with a dual graph as in Figure 3.1 is an elliptic quotient.

Notation 4.3. — The notation in Theorem 4.1 and its proof is fixed and
will be used freely for the rest of this article. In particular, we identify
(Y, y) with (Y ′, 0). The natural action of C∗ on L, makes Ỹ \E → E into a
principal C∗-bundle, and we let s be the composition of the C∗-equivariant
isomorphism Ỹ \ E ∼= Y \{y} and the bundle map. Let π : Y → X be
the quotient map and choose a fixed point P0 ∈ E for the G-action. Put
S = OY,y and R = OX,x.

The situation is summarized in the following diagram:

C̃ ↪→ X̃ E ↪→ Ỹ ←↩ Ỹ \ E

C ↪→X Y
i←↩ Y \ {y}

X

∼=

π

π̃ ∼=
p

s

q

There is C∗-action on X so that the quotient map π is C∗-equivariant,
and s∗ induces an equivalence of categories between the category VectE of
vector bundles on E and the category VectC∗

Y \{y} of vector bundles on Y \{y}
with C∗-action. If i : Y \ {y} → Y is the inclusion, i∗ gives an equivalence
of the category VectC∗

Y \{y} with the category RefC∗
Y of reflexive sheaves on Y

with C∗-action. In fact, the C∗-action implies that N = i∗E is coherent for
any E in VectC∗

Y \{y}, and N∨∨ ∼= Hom(Hom(i∗E , i∗OY \{y}), i∗OY \{y}) ∼=
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i∗E ∼= N . Composing, we have an equivalence H : VectE → RefC∗
Y given by

H(F) = i∗s
∗F . An inverse equivalence is given by F (N ) = (s∗N|Y \{y})C∗ .

Proposition 4.4. — The functor F induces an equivalence

FGy : RefG×C∗
Y,y → VectGE

between the category of S[G×C∗]-modules reflexive as S-modules and the
category of vector bundles on E with G-action. An inverse equivalence HGy
is given by HGy (F) = (i∗s∗F)y.

Proof. — If N1 → N2 is a morphism in RefG×C∗
Y,y it is possible to choose

representatives N1 and N2 so that the map N1 → N2 is G×C∗-equivariant.
We define FGy (N1 → N2) := F (N1 → N2). Since s is G × C∗-equivariant,
it follows that F (N1 → N2) is G-equivariant. Likewise, if F1 → F2 is in
VectGE , it follows that (i∗s∗(F1 → F2))y is G×C∗-equivariant. Since F and
H are inverse equivalences, there are natural isomorphisms FGy (HGy (F)) ∼=
F of OE-modules and HGy (FGy (N)) ∼= N of S[C∗]-modules. It follows by
naturality that these isomorphisms respect the G-structures so that FGy
and HGy are inverse equivalences. �

Theorem 4.5. — A reflexive module on an elliptic quotient (X,x) is
gradable. Equivalently; every S[G]-module N (reflexive as an S-module) is
induced from an S[C∗ ×G]-module.

Proof. — Let M be a reflexive R-module. We may assume that M is in-
decomposable, hence N := (M⊗RS)∨∨ is an indecomposable S[G]-module,
see Proposition 2.5. We first claim that N admits a C∗-action and a (possi-
bly different) G-action compatible with the C∗-action, i.e., that N admits
an S[C∗ ×G]-structure.

Let p : (Ỹ , E)→ (Y, y) be the minimal resolution. Then the action of G
on Y extends to an action of G on Ỹ such that p is G-equivariant. If N
is a representative of N , we get that Ñ = (p∗N )∨∨ is an O

Ỹ
[G]-module

which is locally free as O
Ỹ

-module. Since E is a G-subspace of Ỹ , we
get that OE ⊗O

Ỹ

Ñ is a vector bundle on E which is an OE [G]-module.
Assume first that N is an indecomposable S-module. From Theorem 2.1
it follows that OE ⊗O

Ỹ

Ñ = α′r,d(λ) for some λ ∈ Pic0(E). Thus we have
that α′r,d(λ) admits an action of G. We claim that this implies that αr,d(λ)
also admits an action of G. In the case where α′r,d(λ) = αr,d(λ) this is
clear. In the other cases α′r,d(λ) = OnE ⊕ G, with G indecomposable, then
H0(G∨) = 0, and this implies that the restriction of an isomorphism φσ :
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σ∗(OE⊗O
Ỹ

Ñ ) ∼= OE⊗O
Ỹ

Ñ to the non-free summands, maps into the non-
free summands. Thus G is an OE [G]-submodule. From Proposition 3.4, we
get that λ admits a G-action. From Proposition 3.4 again, αr,d(λ) admits
a G-action. With F = αr,d(λ) we get from Proposition 2.2 that N = i∗s

∗F
where s : Y \ {y} → E. From Proposition 4.4, it follows that N is an
S[C∗ ×G]-module.

If N = ⊕Ni (and N = ⊕Ni correspondingly) as OY -modules then
F (Ni) = (s∗Ni|Y \{y})C∗ , all have the same rank and degree. From The-
orem 2.1 it follows that OE ⊗O

Ỹ

Ñ = OnE ⊕ G with H0(G∨) = 0, and this

again implies that the restriction of an isomorphism φσ : σ∗(OE⊗O
Ỹ

Ñ ) ∼=
OE ⊗O

Ỹ

Ñ to the non-free summands, maps into the non-free summands.
From Proposition 3.4, we get also in this case, that there is a vector bundle
F on E that admits a G-action, such that N = HGy (F) = (i∗s∗F)y. From
Proposition 4.4, it follows that N is an S[C∗ ×G]-module.

We have shown that N admits a C∗-action and a possibly different G-
action that is compatible with the C∗-action. But Lemma 4.6 below implies
that all compatible G-actions on N commute with the C∗-action if one of
them does. �

If N is an S[G]-module and χ is a character of G, then multiplication by
χ defines a new compatible G-action Nχ on N (i.e., σ(n)new := χ(σ)σ(n)old,

σ ∈ G,n ∈ N).

Lemma 4.6. — Assume N is an indecomposable reflexive S-module ad-
mitting a compatible G-action, and assume G is abelian. Then the action
of the character group Ĝ, on the set of isomorphism classes of compatible
G-actions on N, is transitive.

Proof. — Let Ni, i = 1, 2, be S[G]-module structures on N , and Mi :=
NGi . By Proposition 2.5 Ni ∼= (S⊗RMi)∨∨ as S[G]-modules. As R-modules
S ∼= ⊕

χ∈ĜS
G
χ by [2, Cor. 4.7], hence N ∼= ⊕

χ∈Ĝ

(
SGχ ⊗RMi

)∨∨
. It follows

from Proposition 2.5 that all
(
SGχ ⊗RMi

)∨∨ are indecomposable and by
Krull-Schmidt M2 ∼=

(
SGχ ⊗RM1

)∨∨ for some χ. Hence by Proposition 2.5,

N2 ∼= (S ⊗R SGχ ⊗RM1)∨∨ ∼= (Sχ ⊗RM1)∨∨ ∼= (Sχ ⊗S N1)∨∨ = (N1)χ.

�

Recall Notation 4.3, and denote by si = si(X,x) the number of orbits of
length i on E under the action of G. We have:

Theorem 4.7. — Assume that (X,x) is an elliptic quotient that is
not simple elliptic. If ∪Ci is the exceptional divisor of X̃ → X, let h =
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|det(CiCj)| and let Ψ be the set of intersection points of the central curve
C̃ ∼= C with the other Ci. Then the following holds:

(i) Every indecomposable reflexive R-module is given as M = NG

where N is an (any) indecomposable S[G]-module, reflexive as an
S-module. Every such N is given as:

N ∼= IGH(N ′) =
⊕
σ∈H\G

σ∗N ′

where N ′ is the S[H]-module N ′ := i∗s
∗(αr′,d′(OE(P −P0)χ))y for

some r′ and d′, H is the stabilizer of some P ∈ E and χ : H → C∗
is a character. Moreover; M = NG ∼= (N ′)H as R-modules.

Let r = rankM. There are two possibilities:
(ii) Either M is one of indr(X,x) isomorphism classes of isolated inde-

composable reflexive modules of rank r where rbm = rh
s1

and

indr(X,x) = rh

s1

n 6=m∑
n|(r,m)

sn
n2 .

This is the only possibility if m - r, and in this case H is non-trivial.
(iii) Or H is trivial, and M sits in one of rb/m = rhm−2s−1

1 flat families
of non-isomorphic indecomposable reflexive modules parametrized
by C\Ψ, i.e., there is a coherent sheafM ofOX×(C\Ψ)-modules such
that (pr2)∗M is OC\Ψ-flat, all fibers M⊗ k(t) are non-isomorphic
and M⊗ k(t0) ∼= M for some t0 ∈ C \Ψ.

Proof. — By Proposition 2.5 every indecomposable reflexive R-module
is given as M = NG. By Theorem 4.5 and Proposition 4.4 N = (i∗s∗F)y
for some F with a G-action and by Proposition 3.4 and Lemma 3.3 it
follows that F = ⊕σ∈H\Gσ∗αr′,d′(OE(P − P0)χ) for some r′ and d′. Thus
NG = (⊕σ∈H\Gσ∗(N ′))G. By definition, the σ∗N ′ are all isomorphic as
R-modules. Thus NG is a summand of N ′. Furthermore H acts on N ′,
so NG is a summand of (N ′)H . Since (N ′)H and NG have equal ranks as
R-modules, they are isomorphic. This proves (i).

By Proposition 2.5 there is a one-to-one-correspondence between the set
of isomorphism classes of indecomposable R-modules and the set of inde-
composable S[G]-modules. We have that B(1, 0;n) ∼= HilbnE . Let Un ⊂
HilbnE be the image of BGind(r, d;n) by the G-Atiyah-map, see Proposi-
tion 3.4. Let Ĥ be the character group of the subgroup H = 〈σn〉 of
G = 〈σ〉 and let Indn,r,G(Y, y) be the set of indecomposable S[G]-modules
that have rank r and n indecomposable S-summands. By Proposition 2.2,
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Theorem 4.5 and Proposition 4.4 there is an one-to-one-correspondence

Indn,r,G(Y, y)←→ {(d, λ, χ) ∈ N× Un × Ĥ | r/n 6 d < (b+ 1)r/n}

if n 6 m. When n < m, we have that the set Un of n-orbits in E is
finite, and one finds that Indn,r,G(Y, y) has (r/n)b(m/n)sn elements. In
particular bms1 gives the number of rank one reflexive modules on the
rational singularity (X,x) which is also given as h, see [21] or [19].

Let U = E minus the points with non-trivial stabilizer. In the case n = m

there is a map U → Un ∼= C \ Ψ, u 7→ {σu}σ∈G, which is unramified and
m-to-one. There is a sheaf F on E × U , flat over U, such that F ⊗ k(P ) ∼=
αr′,d′(OE(P − P0)). We define F = ⊕σ∈Gσ∗F. The family is then given as
(π∗(i∗s∗F))G on X × Un. There are rb/m = rhm−2s−1

1 such families. For
flatness, see comments on page 153 in [13]. �

5. Connections on reflexive modules over elliptic quotients

In this section we prove the following theorem.

Theorem 5.1. — Let (X,x) be an elliptic quotient surface singularity,
and let M be a reflexive R = OX,x-module. Then there exists an integrable
connection on M ;

∇ : DerC(R)→ EndC(M).

Keep the notation introduced in the previous section. Let N be an S[G]-
module, reflexive as an S-module, and recall that when N is indecompos-
able as S-module, it is given as (i∗s∗αr,d(λ))y, see Proposition 2.2.

The proof is organized as follows: We first note that we may reduce
to the two cases d = 0 and (r, d) = 1. When d = 0, αr,d(λ) admits an
integrable connection, we work on the elliptic curve and show that an action
of G descends to the local system. When (r, d) = 1 we show that N =
(i∗s∗αr,d(λ))y is an invariant module, see [10, Def. 5.6], i.e., there exists a
Galois covering π′ : (Y ′, y′)→ (Y, y) such that (π∗N)∨∨ is free.

Recall from Section 3, the rank r and degree 0 vector bundle Fr with
global sections on an elliptic curve.

Lemma 5.2. — Let G ⊂ Aut(E) act on E with at least one fixed point.
Then there is a sequence

(5.1) 0→ CE → Vr → Vr−1 → 0

of local systems on E with G-actions inducing the defining extension

0→ OE → Fr → Fr−1 → 0.
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Proof. — From Weil’s theorem we know that degree zero indecomposable
vector bundles admit integrable connections. We prove by induction that
there is a local system Vr on E with G-action such that Vr⊗COE ∼= Fr and
such that there are G-equivariant exact sequences (5.1). Define V1 = CE
and V0 = 0. The induction hypothesis is satisfied for r = 1. Assume that
it holds up to r. There is an exact sequence

(5.2) 0→ V∨r → F∨r
d⊗id−→ Ω1

E ⊗F∨r → 0

where OE ⊗C V∨r ∼= F∨r . We have Ω1
E
∼= ω ∼= OE . From the long exact

sequence in cohomology we get a surjection H1(F∨r ) � H2(V∨r ). Dualizing
(5.1) and taking cohomology we get

· · · → H2(V∨r−1)→ H2(V∨r )→ H2(CE)→ H3(V∨r−1)→ · · ·

Since H3(V∨r−1) = 0 and H2(CE) 6= 0 it follows that H2(V∨r ) 6= 0. Since
H1(F∨r ) ∼= C, the connecting map H1(F∨r ) → H2(V∨r ) from (5.2) is an
isomorphism, hence H1(V∨r )→ H1(F∨r ) is surjective. By Proposition 3.4, Fr
has a canonical G-action corresponding to the canonical G-action on OE . It
follows that (5.2) and its long exact sequence are G-sequences, and because
G is finite, H1(V∨r )G → H1(F∨r )G is surjective. Since Ext1

CE [G](Vr,CE) ∼=
H1(V∨r )G and Ext1

OE [G](Fr,OE) ∼= H1(F∨r )G, the result follows since we
have that H1(F∨r )G 6= 0 by the proof of Proposition 3.4. �

Proposition 5.3. — Assume that r and d are such that (r, d) = 1 and
that G is non-trivial. If N is an S[G]-module that is reflexive as S-module
and N ∼= (i∗s∗αr,d(λ))y as in Proposition 2.2, then N and M = NG are
invariant modules and M admits an integrable connection.

Proof. — Since (r, d) = 1, we may consider the representation τ = τr,d :
Hb = πloc

1 (Y, y)→ Gl(r,C), see Theorem 2.3. We claim that this represen-
tation is profinite, i.e., that it factors through a finite quotient. Because
of the group structure of Hb, it is enough to show that τr,d(α) and τr,d(β)
have finite orders, and this is easily checked. There is a corresponding vec-
tor bundle Fτ on E, see Proposition 2.2, with rank r and degree d such
that s∗Fτ = V⊗OY \{y} where V is the local system corresponding to τr,d.

We have that αr,d(λ) ∼= Fτ ⊗ L, ([1, Cor. 7.ii)]), where L is a line bun-
dle with degree 0. We prove that L is induced from a profinite charac-
ter χ : π1(E) → C∗. From Theorem 4.5 and Proposition 4.4, αr,d(λ)
and hence detαr,d(λ) ∼= detFτ ⊗ Lr admits a G-action. From Proposi-
tion 3.4, detαr,d(λ) corresponds to a fixed point in Pic0(E) ∼= E. Since
every σ ∈ G is an isogeny, the fixed points are closed under the group law
and thus form a finite group, and hence detαr,d(λ) has finite order. Since
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τ is profinite, det τ is profinite, and hence has finite order. It follows that
det(s∗Fτ ) ∼= s∗ det(Fτ ) has finite order. By Theorem 2.1, it follows that
det(Fτ ), and hence L, has finite order. If Ln = OE , it follows that L maps
to the the identity in H1(O∗E) n−→ H0(O∗E). The kernel is H1(µn) where
µn are the nth roots of 1. Thus there is a local system L on E such that
L ∼= OE⊗L where L corresponds to a profinite character χ. We can extend
χ to a character of Hb which corresponds to the local system s∗(L). Thus
τr,d⊗Cχ is a profinite representation and N = (i∗(V⊗s∗(L)⊗OY \{y}))y. By
Theorem 5.5 in [10], we conclude that N is an invariant module on Y with
G-action. Since the composition of two Galois coverings is Galois, it follows
that M = NG is an invariant R = SG-module. Hence by Theorem 5.5 in
[10], M admits an integrable connection. �

Proof of Theorem 5.1. — We may assume that M = NG is indecom-
posable. Hence N is indecomposable as S[G]-module, see Proposition 2.5.

First we assume that N is indecomposable as an S-module: From Propo-
sition 2.2, we know thatN ∼= i∗(s∗αr,d(λ))y, for some λ ∈ Pic0(E) and some
r and d > r > 1. From [1, Lemma 24], we have αr,d(λ) ∼= αr′,d′(λ) ⊗ Fh
where h = (r, d) and (r′, d′) = 1, hence N ∼= i∗(s∗αr′,d′(λ)) ⊗ s∗Fh)y ∼=
(i∗(s∗αr′,d′(λ))y ⊗ i∗(s∗Fh)y)∨∨. From Theorem 4.5 and Proposition 4.4,
we know that αr,d(λ) admits an action of G, and from Proposition 3.4 it
follows that αr′,d′(λ) has a unique G-action such that αr,d(λ) ∼= αr′,d′(λ)⊗
Fh in BG(r, d; 1) where Fh is assumed to have the canonical G-action in
Lemma 5.2. By Proposition 5.3, i∗(s∗αr′,d′(λ))y admits a G-equivariant in-
tegrable connection, and by Lemma 5.2, (i∗(s∗Fh))y admits aG-equivariant
integrable connection. From [10, Sec. 3.3] it follows that N admits a G-
equivariant integrable connection, and hence M = NG admits an integrable
connection.

Assume N is decomposable. From Theorem 4.7, M = (N ′)H for a sub-
group H of G and an indecomposable S-module N ′ that admits H-action.
By the first part of the proof we have that M admits an integrable connec-
tion ∇H : DerC(SH) → EndC(M). By [26], DerC(SH)G = DerC((SH)G) =
DerC(R) , so that DerC(R) is an R-summand of DerC(SH). An integrable
connection on M is obtained by restricting ∇H to DerC(R). �

Corollary 5.4. — Keep the notation of Theorem 4.7. If m|r, the dense
image under q : E → C of the torsion points, parametrizes the invariant
modules in φ( rm )hm−1s−1

1 of the rhm−2s−1
1 flat families, where φ is Euler’s

phi function. The other families do not contain invariant modules.
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The number of isolated invariant modules of rank r is

h

s1

n 6=m∑
n|(r,m)

φ( r
n

)sn
n
.

Proof. — By Theorem 4.7 any reflexive R-module M is given as M =
(N ′)H where H is a subgroup of G and N ′ is the S[H]-module N ′ =
i∗s
∗(αr′,d′(OE(P − P0)χ))y. Assume first that H is non-trivial. Then we

claim that N ′ is an invariant module if and only if (r′, d′) = 1. One direc-
tion follows from Proposition 5.3. Assume on the other hand that N ′ is an
invariant module. As in the proof of Theorem 5.1, N ′ ∼= (i∗(s∗αr′′,d′′(λ))y⊗
i∗(s∗Fh)y)∨∨ where (r′′, d′′) = 1. From the proof of Theorem 5.1 and from
Proposition 5.3, (i∗(s∗αr′′,d′′(λ))y is an invariant module. It follows from
Lemma 5.2 and Theorem 5.9 of [10] that i∗(s∗Fh)y is an invariant module
if and only if h = (r′, d′) = 1. We conclude that (r′, d′) = 1. This estab-
lishes the claim, and from this it follows that among the isolated reflexive
modules, it is precisely the modules corresponding to (r′, d′) = 1 that are
invariant modules, and we thus arrive at the number hs1

∑n 6=m
n|(r,m) φ( rn ) snn .

If H is trivial, M = N ′. We claim that N ′ = i∗s
∗(αr′,d′(OE(P −P0)χ))y

is an invariant module if and only if (r′, d′) = 1 and P is a torsion point:
If (r′, d′) 6= 1, then N ′ ∼= (i∗(s∗αr′′,d′′(λ))y ⊗ i∗(s∗Fh)y)∨∨ with h 6= 1. In
this case i∗(s∗Fh)y is not an invariant module, so N ′ cannot be an invariant
module. Hence; if N ′ is an invariant module, N ′ ∼= i∗(s∗αr′′,d′′(λ))y∨∨ with
(r′′, d′′) = 1. By Theorem 6 in [1], det s∗αr′′,d′′(λ) ∼= s∗(OE(P − P0)χ ⊗
OE(d′′P0)). Since a rank one reflexive module L is an invariant module if
and only if (L⊗n)∨∨ is trivial for some n, det(s∗αr′′,d′′(λ)) must have finite
order. By Theorem 2.1, s∗OE(d′′P0) has finite order, and this implies that
s∗OE(P − P0)χ has finite order. By Theorem 2.1, P is a torsion point.

So, assume that (r′, d′) = 1 and that P is a torsion point. Then as in the
proof of Proposition 5.3, N ′ = (i∗s∗αr′,d′(OE(P − P0)))∨∨y ∼= (i∗s∗(Fτ ⊗
L))∨∨y for some line bundle L on E . We have that det s∗αr′,d′(OE(P −P0))
has finite order, so det(s∗(Fτ ⊗ L)) has finite order. Since det(s∗Fτ ) has
finite order, it follows that L has finite order, and from this we conclude
that (i∗s∗L)∨∨y is an invariant module. Since (i∗s∗Fτ )∨∨y is an invariant
module, it follows that N ′ ∼= ((i∗s∗(Fτ )y ⊗ (i∗s∗L)y)∨∨ is an invariant
module. This establishes the claim, and from this we arrive at the stated
number of families satisfying (r′, d′) = 1. (Note r′ = r

m and d = d′). �
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6. An example

Example 6.1. — Let Y be the cone in C3 given by x3 + y3 + z3 = 0,
and let E be the elliptic curve in P2 given by the same equation. Let
G = Z/(3), and let ω 6= 1 be a third root of unity. Let G act on Y by
(x, y, z) 7→ (ωx, ω2y, ωz) and let X be the quotient of Y under this action.
The action on Y is compatible with the grading and so gives an action
on E.

The quotient X is an elliptic quotient and Y is the canonical covering.
The graph of X is Eq3

3(2), see Figure 3.1. On the quotient (X,x), the
isolated indecomposable reflexive modules of rank r are given as NG where
N is a reflexive module on (Y, y) given as N = i∗(s∗αr,d(λ)))y with λ ∈ EG,
see Theorem 4.7. There are three fixed points and three characters of G.
There are 3r possibilities for d, since r 6 d < (b+ 1)r = 4r. Thus we arrive
at 27r isomorphism classes of indecomposable reflexive modules of rank
r on (X,x), and we have that N , and hence NG, is an invariant module
if and only if (r, d) = 1. Among the 27r modules, the number of isolated
invariant modules is given as 27φ(r), where φ is Euler’s φ-function.

(1) If r 6≡ 0 mod 3 these are the only indecomposable reflexive modules
on X of rank r.

(2) If r ≡ 0 mod 3 there are in addition r one-parameter families (one
for each d satisfying r/3 6 d < 4r/3) of non-isomorphic indecom-
posable reflexive modules on X of rank r. The parameter space for
these one-parameter families is P1 \ {0, 1,∞}. Such a family con-
tains invariant modules if and only if (r/3, d) = 1, and in this
case the invariant modules are parameterized by the countable,
dense image of the torsion points U ∩Etors under the quotient map
U → U/G ∼= P1 \ {0, 1,∞} where U = {x ∈ E|Gx = (0)}.

From [21], πloc
1 (X,x) is generated by four elements a0, . . . , a3 subject to

the relations a0aj = aja0, a0 = a3
j , j = 1, 2, 3 and a2a1a3 = a2

0. Setting
a0 = a3

2 and a3 = a2
1a

2
2, one finds that πloc

1 (X,x) is the group given by
two generators a1 and a2 and the relations a3

1 = a3
2 = (a2

1a
2
2)3. In Ap-

pendix A, we find the representations of rank one and two. There are 27
characters and 54 rank two indecomposable representations. Thus in rank
one and two, there is a one-to-one correspondence between indecomposable
representations of the local fundamental group and indecomposable reflex-
ive modules. In particular; rank one and rank two reflexive modules admit
unique integrable connections. On (Y, y), in contrast, there is a positive di-
mensional family of connections on each indecomposable reflexive module,
see [12, Th. 6.30].

ANNALES DE L’INSTITUT FOURIER



REPRESENTATIONS OF SURFACE SINGULARITIES 413

Appendix A. Representations of a non-finite group

Proposition A.1. — Let G be the group given by two generators a1
and a2 and the relations a3

1 = a3
2 = (a2

1a
2
2)3. Then we have:

(1) The group of characters is Z/(3)⊕ Z/(9).
(2) There is exactly one simple two dimensional representation with

trivial determinant. This representation is profinite.
(3) There is exactly one non-simple, indecomposable two dimensional

representation with trivial determinant. This representation is not
profinite.

(4) There are exactly 27 simple two dimensional representations. These
are profinite.

(5) There are exactly 27 non-simple, indecomposable two dimensional
representations. These are not profinite.

Proof. — We leave the proof of (1) to the reader, and we first show that
(4) and (5) may be reduced to (2) and (3). Note that for y ∈ Z/(3)×Z/(9)
there exists x ∈ Z/(3)×Z/(9) such that 2x = y. Hence for any ρ : G →
Gl(2,C) there is a character ξ such that det(ρ⊗ξ) = id . Since also ρ⊗ξ = ρ

gives that ξ is trivial, we see that it is enough to prove (2) and (3).
If ρ : G→ Gl(2,C) is a representation, let Ai := ρ(ai) ∈ Gl(2,C). For ρ

to be indecomposable, A1 and A2 must have one-dimensional eigenspaces
where maximally one of these are common for A1 and A2. In particular
each Ai must have two distinct eigenvalues.

We prove that if A1 and A2 have one common eigenvector, we get (3),
and if not, we get (2).

Assume that A1 and A2 have one common eigenvector. Let v1 and v2
be the eigenvectors of A1, and let v1 and v3 be the eigenvectors of A2. We
may assume that v3 = v1 + v2, and assuming det(Ai) = 1, we have in the
basis {v1, v2},

A1 =
(
ω 0
0 ω−1

)
, A2 =

(
1 1
0 1

)(
λ 0
0 λ−1

)(
1 −1
0 1

)
=
(
λ λ−1 − λ
0 λ−1

)
for λ, ω ∈ C. From A3

1 = A3
2 we get ω3 = λ3 and λ6 = ω6 = 1. From

(A2
1A

2
2)3 = A3

1, we then get that λ3 = ω3 = 1 and from the (1, 2)-entry

ω−2λ−2 (ω2 + λ2ω2 + 1
)

(ω + 1) (ω − 1) (λ+ 1) (λ− 1) = 0.

We cannot have ω (resp. λ) equal to −1 or 1 since this would give ω = ω−1

(resp. λ = λ−1). Thus ω2 + λ2ω2 + 1 = 0. Since ω3 = 1, we get ω = λ =
− 1

2±
1
2 i
√

3. These two possibilities give however isomorphic representations.
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Moreover;

A1A2 =
(

1 1
2 i
√

3 + 3
2

0 1

)
has infinite order. Because of the common eigenvector it is not simple, but
it is indecomposable.

We now assume that the set of eigenvectors for A1 and A2 consists of
four different vectors. Choosing basis we may assume that e1 and e2 are
eigenvectors for A1 and that e1 + e2 and ae1 + e2 are the eigenvectors for
A2, a 6= 0, 1. Assuming det(Ai) = 1, we have

A1 =
(
ω 0
0 ω−1

)
, A2 =

(
1 a

1 1

)(
λ 0
0 λ−1

)(
1 a

1 1

)−1

.

Since the off-diagonal entries of A3
2 must be zero, it follows that λ6 = 1.

Substituting this in A3
2 = A3

1, we get
(
ω
λ

)3 = 1, i.e., λ = ω or λ = ω.

Since we cannot have ω = ±1, it follows that ω4 + ω2 + 1 = 0. Zero on the
off-diagonal entries of (A2

1A
2
2)3, implies f(λ, ω) = 0 where

f(λ, ω) :=
(
aλ4 + aω4 + λ2ω2 − λ4ω4 − aλ2ω2 − 1

)(
aλ4 + aω4 − λ2ω2 − λ4ω4 + aλ2ω2 − 1

)
.

Using ω4 + ω2 + 1 = 0 we find that f(ω, ω) = 3aω2 (a+ 2) and f(ω, ω) =
(−2a− 1)(−3). We thus get a = −2 if λ = ω and a = − 1

2 if λ = ω. Again
checking the relations, we get that ω3 = −1 (and thus ω = 1

2 ±
1
2 i
√

3)
in both cases. Straight forward simultaneous conjugations show however
that the four representations are isomorphic. Finally one checks that the
group generated by A1 and A2 is isomorphic to the group SL(2,F3) and
hence the representation is profinite and simple. An isomorphism from
SL(2,F3) =

〈
k, r | k6, r4, (kr)3〉 can for instance be given by

k =
(

0 2
1 1

)
7→ A1

r =
(

1 1
1 2

)
7→ A2

1A2.

�
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