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THE NEKRASOV-OKOUNKOV HOOK LENGTH
FORMULA: REFINEMENT, ELEMENTARY PROOF,

EXTENSION AND APPLICATIONS

by Guo-Niu HAN

Abstract. — The paper is devoted to the derivation of the expansion formula
for the powers of the Euler Product in terms of partition hook lengths, discovered by
Nekrasov and Okounkov in their study of the Seiberg-Witten Theory. We provide
a refinement based on a new property of t-cores, and give an elementary proof by
using the Macdonald identities. We also obtain an extension by adding two more
parameters, which appears to be a discrete interpolation between the Macdonald
identities and the generating function for t-cores. Several applications are derived,
including the “marked hook formula”.

Résumé. — Nekrasov et Okounkov ont obtenu une nouvelle formule pour le
développement des puissances du produit d’Euler, à l’aide des longueurs d’équerre
des partitions d’entiers, dans leur étude de la théorie de Seiberg-Witten. Nous
proposons un raffinement de cette formule reposant sur une propriété nouvelle
des t-cores, qui permet de donner une démonstration élémentaire en faisant usage
des identités de Macdonald. Nous obtenons aussi une extension, en ajoutant deux
paramètres supplémentaires, qui peut être considérée comme une interpolation
discrète entre les identités de Macdonald et la fonction génératrice des t-cores.
Plusieurs applications en sont déduites, y compris la “formule d’équerre pointée”.

1. Introduction

An explicit expansion formula for the powers of the Euler Product in
terms of partition hook lengths was discovered by Nekrasov and Okounkov
in their study of the Seiberg-Witten Theory [32] (see also [6], where a
Jack polynomial analogue was derived) and re-discovered by the author

Keywords: Hook length, hook formula, partition, t-core, Euler product, Macdonald
identities.
Math. classification: 05A15, 05A17, 05A19, 11P82, 17B22.



2 Guo-Niu HAN

recently [16] using an appropriate hook length expansion technique [17] (1) .
In the present paper we again take up the study of the Nekrasov-Okounkov
formula and obtain several results in the following four directions:

(1) We establish new properties on t-cores, which can be seen as a re-
finement of the Nekrasov-Okounkov formula. The proof involves a bĳection
between t-cores and integer vectors constructed by Garvan, Kim and Stan-
ton [13].

(2) We provide an elementary proof of the Nekrasov-Okounkov formula
by using the Macdonald identities for A(a)

` [28] and the properties on t-cores
mentioned in (1).

(3) We obtain an extension by adding two more parameters t and y, so
that the resulting formula appears to be a discrete interpolation between
the Macdonald identities and the generating function for t-cores (see Corol-
lary 5.3). Our extension opens the way to richer specializations, including
the generating function for partitions, the Jacobi triple product identity,
the Macdonald identity for A(a)

` , the classical hook length formula, the
marked hook formula [16], the generating function for t-cores, and the t-
core analogues of the hook formula and of the marked hook formula. We
also prove another extension of the generating functions for t-cores.

(4) As applications, we derive some new formulas about hook lengths,
including the “marked hook formula”. We also improve a result due to
Kostant [25]. A hook length expression of integer value is obtained by using
the Lagrange inversion formula.

The basic notions needed here can be found in ([29], p.1; [39], p.287;
[27], p.1; [23], p.59; [2], p.1). A partition λ is a sequence of positive integers
λ = (λ1, λ2, · · · , λ`) such that λ1 > λ2 > · · · > λ` > 0. The integers
(λi)i=1,2,...,` are called the parts of λ, the number ` of parts being the
length of λ denoted by `(λ). The sum of its parts λ1 + λ2 + · · · + λ` is
denoted by |λ|. Let n be an integer, a partition λ is said to be a partition
of n if |λ| = n. We write λ ` n. The set of all partitions of n is denoted by
P(n). The set of all partitions is denoted by P, so that

P =
⋃
n>0
P(n).

(1) The author has indeed deposited a paper on arXiv ([16]; April, 2008) that contained
an explicit expansion formula for the powers of the Euler Product in terms of partition
hook lengths. A few days later he received an email from Andrei Okounkov who kindly
pointed out that the expansion formula already appeared in his joint paper, which was
deposited on arXiv in Section “High Energy Physics - Theory” ([32]; June, 2003; 90
pages). Although the ultimate formula is the same in both papers, the methods of proof
belong to different cultures. The author’s original paper has remained on arXiv. The
present one contains parts of it, plus several new results.

ANNALES DE L’INSTITUT FOURIER



THE NEKRASOV-OKOUNKOV HOOK LENGTH FORMULA 3

Each partition can be represented by its Ferrers diagram. For example, λ =
(6, 3, 3, 2) is a partition and its Ferrers diagram is reproduced in Fig. 1.1.

Figure 1.1. Partition. Figure 1.2. Hook length.

2 1
4 3 1
5 4 2
9 8 6 3 2 1

Figure 1.3. Hook lengths.

For each box v in the Ferrers diagram of a partition λ, or for each box v
in λ, for short, define the hook length of v, denoted by hv(λ) or hv, to be
the number of boxes u such that u = v, or u lies in the same column as v
and above v, or in the same row as v and to the right of v (see Fig. 1.2).
The hook length multi-set of λ, denoted by H(λ), is the multi-set of all hook
lengths of λ. Let t be a positive integer. We write

Ht(λ) = {h | h ∈ H(λ), h ≡ 0( mod t)}.

In Fig. 1.3 the hook lengths of all boxes for the partition λ = (6, 3, 3, 2) have
been written in each box. We have H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1}
and H2(λ) = {2, 4, 4, 2, 8, 6, 2}.

Recall that a partition λ is a t-core if the hook length multi-set of λ does
not contain the integer t. It is known that the hook length multi-set of each
t-core does not contain any multiple of t ([23] p.69, p.612; [39], p.468; [19],
p.75). In other words, a partition λ is a t-core if and only if Ht(λ) = ∅.

Definition 1.1. — Let t = 2t′ + 1 be an odd positive integer. Each
vector of integers (v0, v1, . . . , vt−1) ∈ Zt is called V -coding if the following
conditions hold:

(i) vi ≡ i(mod t) for 0 6 i 6 t− 1;
(ii) v0 + v1 + · · ·+ vt−1 = 0.

The V -coding is implicitly introduced in [28]. It can be identified with
the set {v0, v1, . . . , vt−1} thanks to condition (i).

Our first result is the following property on t-cores, which can be seen as
a refinement of the Nekrasov-Okounkov formula. The proof of this prop-
erty involves a bĳection between t-cores and integer vectors constructed by
Garvan, Kim and Stanton [13].

TOME 60 (2010), FASCICULE 1



4 Guo-Niu HAN

Theorem 1.2. — Let t = 2t′ + 1 be an odd positive integer. There
is a bĳection φV : λ 7→ (v0, v1, . . . , vt−1) which maps each t-core onto a
V -coding such that

(1.1) |λ| = 1
2t

(v2
0 + v2

1 + · · ·+ v2
t−1)− t2 − 1

24
and

(1.2)
∏
v∈λ

(
1− t2

h2
v

)
= (−1)t′

1! · 2! · 3! · · · (t− 1)!
∏

06i<j6t−1
(vi − vj).

We will describe the bĳection φV and prove the two equalities (1.1) and
(1.2) in Section 2. An example is given after the construction of the bĳection
φV .

Next we provide an elementary proof of the following hook length for-
mula, discovered by Nekrasov and Okounkov in their study of the Seiberg-
Witten Theory ([32], formula (6.12)). Our proof is based on the Macdonald
identities for A(a)

` [28] and Theorem 1.2.

Theorem 1.3 (Nekrasov-Okounkov). — For any complex number z we
have

(1.3)
∑
λ∈P

x|λ|
∏
h∈H(λ)

(
1− z

h2

)
=
∏
k>1

(1− xk)z−1.

Then we prove the following (t, y)-extension of Theorem 1.3. When y =
t = 1 in (1.4) we recover the Nekrasov-Okounkov formula. This extension
unifies the Macdonald identities and the generating function for t-cores.

Theorem 1.4. — Let t be a positive integer. For any complex numbers
y and z we have

(1.4)
∑
λ∈P

x|λ|
∏

h∈Ht(λ)

(
y − tyz

h2

)
=
∏
k>1

(1− xtk)t

(1− (yxt)k)t−z(1− xk)
.

The proof of Theorem 1.4, given in Section 4, is based on the Nekrasov-
Okounkov formula (1.3) and on the properties of a classical bĳection which
maps each partition to its t-core and t-quotient ([29], p.12; [39], p.468; [19],
p.75; [13]). The following result has a similar proof.

Theorem 1.5. — For any complex number y we have

(1.5)
∑
λ∈P

x|λ|y#{h∈H(λ),h=t} =
∏
k>1

(1 + (y − 1)xtk)t

1− xk
.

ANNALES DE L’INSTITUT FOURIER



THE NEKRASOV-OKOUNKOV HOOK LENGTH FORMULA 5

Last, we derive several applications of Theorems 1.3 and 1.4. Let us single
out some of them in this introduction. See [16] (resp. Section 5) for other
applications of Theorem 1.3 (resp. Theorem 1.4).

Theorem 1.6 (marked hook formula). — We have

(1.6)
∑
λ`n

f2
λ

∑
h∈H(λ)

h2 = n(3n− 1)
2

n!,

where fλ is the number of standard Young tableaux of shape λ.

Theorem 1.6 will be proved in Section 5. The two sides of (1.6) can be
combinatorially interpreted (see [16]). However, a natural bĳection between
those two sides remains to be constructed. Theorem 1.6 is to be compared
with the following well-known formula, which is also a consequence of the
Robinson-Schensted-Knuth correspondence (see, for example, [23], p.49-59;
[39], p.324).

(1.7)
∑
λ`n

f2
λ = n!

The following theorem, proved in Section 6, improves a result due to
Kostant [25].

Theorem 1.7. — Let k be a positive integer and s be a real number
such that s > k2 − 1. Then (−1)kfk(s) > 0, where fk(s) is defined by∏

n>1
(1− xn)s =

∑
k>0

fk(s)xk.

In section 7 we study the reversion of the Euler Product and obtain, in
particular, the following result.

Theorem 1.8. — For any positive integers n and k the following two
expressions

(1.8)
∑
λ`n

∏
v∈λ

(
1 + k

h2
v

)
and

(1.9) 1
n+ 1

∑
λ`n

∏
v∈λ

(
1 + n

h2
v

)
are integers.

The following specializations have similar forms, namely, Corollaries 1.9,
1.10 and 1.11 on the one hand, Corollaries 1.12 and 1.13 on the other hand.
In fact, our motivation for Theorem 1.4 was to look for a formula that could
interpolate the following two formulas (1.10) and (1.11).

TOME 60 (2010), FASCICULE 1



6 Guo-Niu HAN

Corollary 1.9 (y = t = 1, z = t2 in Theorem 1.4). — We have

(1.10)
∑
λ

x|λ|
∏
h∈H(λ)

(
1− t2

h2

)
=
∏
k>1

(1− xk)t2

1− xk
,

where the sum ranges over all t-cores.

Corollary 1.10 (z = t or y = 0 in Theorem 1.4). — We have

(1.11)
∑
λ

x|λ| =
∏
k>1

(1− xtk)t

1− xk
,

where the sum ranges over all t-cores.

Note that identity (1.11) is the well-known generating function for t-
cores ([29], p.12; [39], p.468; [13]). It is also the special case y = 0 of
Theorem 1.5. The following identity is similar to the above two identities.
It is also a consequence of Theorem 1.5.

Corollary 1.11 (y = 2 in Theorem 1.5). — We have

(1.12)
∑
λ∈P

x|λ|2#{h∈H(λ),h=t} =
∏
k>1

(1 + xtk)t

1− xk
.

Corollary 1.12 (y = t = 1, z = 2 in Theorem 1.4). — We have

(1.13)
∑
λ∈P

x|λ|
∏
h∈H(λ)

(
1− 2

h2

)
=
∏
k>1

(1− xk).

Corollary 1.13 (t = 2, y = z = 1 in Theorem 1.4). — We have

(1.14)
∑
λ∈P

x|λ|
∏

h∈H2(λ)

(
1− 2

h2

)
=
∏
k>1

(1 + xk).

We end the introduction with some remarks. The right-hand side of (1.13)
can be expanded by using the Euler pentagonal theorem ([9]; [2], p.11)

(1.15)
∏
k>1

(1− xk) =
∞∑

m=−∞
(−1)mxm(3m+1)/2,

so that Corollary 1.12 says that

(1.16)
∑
λ`n

∏
h∈H(λ)

(
1− 2

h2

)
is equal to −1, 0, 1 depending on the numerical value of n.

ANNALES DE L’INSTITUT FOURIER
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The right-hand side of (1.14) is the generating function for partitions
with distinct parts, so that Corollary 1.13 says that

(1.17)
∑
λ`n

∏
h∈H2(λ)

(
1− 2

h2

)
is equal to the number of partitions of n with distinct parts.

For example, there are five partitions of n = 4 and two of them have
distinct parts.

1
2
3
4

1
2
4 1

2 1
3 2

1
4 2 1 4 3 2 1

Figure 1.4. The multi-set of hook lengths for P(4).

We have

2
(

1− 2
12

)(
1− 2

22

)(
1− 2

32

)(
1− 2

42

)
+2
(

1− 2
12

)(
1− 2

12

)(
1− 2

22

)(
1− 2

42

)
+
(

1− 2
12

)(
1− 2

22

)(
1− 2

22

)(
1− 2

32

)
= 0

and

2
(

1− 2
22

)(
1− 2

42

)
+2
(

1− 2
22

)(
1− 2

42

)
+2
(

1− 2
22

)(
1− 2

22

)
= 2

It would be interesting to explain directly why (1.16) and (1.17) are
integers.

2. New properties of t-cores

In this section we first describe the bĳection φV required in Theorem
1.2 and then prove equalities (1.1) and (1.2). Let t = 2t′ + 1 be an odd
positive integer. Each finite set of integers A = {a1, a2, . . . , an} is said to
be t-compact if the following conditions hold:

(i) −1,−2, . . . ,−t ∈ A;
(ii) for each a ∈ A such that a 6= −1,−2, . . . ,−t, we have a > 1 and

a 6≡ 0 mod t;
(iii) let b > a > 1 be two integers such that a ≡ bmod t. If b ∈ A, then

a ∈ A.

TOME 60 (2010), FASCICULE 1
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Let A be a t-compact set. An element a ∈ A is said to be t-maximal if
b 6∈ A for every b > a such that a ≡ bmod t. The set of t-maximal elements
of A is denoted by maxt(A). Let λ be a t-core. The H-set of the t-core λ is
defined to be

H(λ) = {hv | v is a box in the leftmost column of λ} ∪ {−1,−2, . . .− t}.

The notion of H-set is a variation of the β-numbers introduced by James
and Kerber, who also introduced the runners-beads-abacus model ([19],
p.75) in the study of t-cores. In this section we prefer to work directly on
the H-sets, as our goal is to prove identities (1.1) and (1.2).

Lemma 2.1. — For each t-core λ its H-set H(λ) is a t-compact set.

Proof. — Let c = tk + r (k > 1, 0 6 r 6 t − 1) be an element in H(λ)
and a be the maximal element in H(λ) such that a < t(k − 1) + r. We
must show that t(k − 1) + r is also in H(λ). If it were not the case, let
z > t(k − 1) + r, y1, y2, . . . , yd be the hook lengths as shown in Fig. 2.1,
where only the relevant horizontal section of the partition diagram has
been represented. We have y1 = c− a− 1 > tk + r − t(k − 1)− r = t and
yd = c− z + 1 6 tk+ r− t(k− 1)− r = t; so that there is one hook yi = t.
This is a contradiction since λ is supposed to be a t-core. �

a

z

c y1 y2 · · · yd

Figure 2.1. Hook length and t-compact set.

Construction of φV . Let λ be a t-core and H(λ) be its H-set. The U -
coding of λ is defined to be the set U := maxt(H(λ)), which can be identified
with the vector (u0, u1, . . . , ut−1) such that u0 = −t, ui > −t and ui ≡
imod t for 1 6 i 6 t− 1. Let

(2.1) S := u0 + u1 + · · ·+ ut−1.

The integer S is a multiple of t because

(2.2) S =
∑

ui =
∑

(tki + i) = t
∑

ki + t(t− 1)/2

(remember that t = 2t′ + 1 is an odd integer). The V -coding φV (λ) is the
set V obtained from U by the following normalization:

(2.3) φV (λ) = V := {u− S/t : u ∈ U}.

ANNALES DE L’INSTITUT FOURIER



THE NEKRASOV-OKOUNKOV HOOK LENGTH FORMULA 9

In fact, we can prove that S/t = `(λ)− t′− 1 (see (2.8)). The set V can be
identified with a vector V -coding because∑

vi =
∑

(ui − S/t) =
∑

ui − S = 0.

Example 2.2. — Consider the 5-core

λ = (14, 10, 6, 6, 4, 4, 4, 2, 2, 2).

The H-set of λ (see Fig. 2.2)

H(λ) = {23, 18, 13, 12, 9, 8, 7, 4, 3, 2,−1,−2,−3,−4,−5}

is 5-compact. The U -coding of λ is U = max5(H(λ)) = {23, 12, 9,−4,−5},
or in vector form

(u0, u1, u2, u3, u4) = (−5,−4, 12, 23, 9).

As S =
∑
ui = 35, the V -coding is given by

V = {−5− 7,−4− 7, 12− 7, 23− 7, 9− 7} = {−12,−11, 5, 16, 2},

or in vector form

φV (λ) = (v0, v1, v2, v3, v4) = (5, 16, 2,−12,−11).

2 2

3 3

4 4

7 0 1 2

8 3

9 4

12 0 1 2

13 3

18 4 0 1 2 3

23 4 0 1 2 3

0 -5

1 -4

2 -3

3 -2

4 -1

0

r = –2

r = –1

r = 0

r = 1

r = 2

r = 3

Figure 2.2. U -coding and N -coding of t-core.

TOME 60 (2010), FASCICULE 1
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We have

|λ| = 1
2t

(v2
0 + v2

1 + · · ·+ v2
t−1)− t2 − 1

24

= 1
2 · 5

(52 + 162 + 22 + (−12)2 + (−11)2)− 52 − 1
24

= 54.

and∏
v∈λ

(
1− 52

h2
v

)
= 1

1! · 2! · 3! · · · (t− 1)!
∏

06i<j6t−1
(vi − vj)

= (−11)(3)(17)(16) · (14)(28)(27) · (14)(13) · (−1)/288
= 60035976.

Notice that, as expected, the above two numbers are positive integers.

A vector of integers (n0, n1, . . . , nt−1) ∈ Zt is said to be an N -coding if
n0 +n1 + · · ·+nt−1 = 0. Garvan, Kim and Stanton have defined a bĳection
φN between N -codings and t-cores. We now recall its definition using their
own words ([13], p.3) (see also [4]).

Let λ be a t-core. Define the vector (n0, . . . , nt−1) = φN (λ) in the fol-
lowing way. Label the box in the i-th row and j-column of λ by j− imod t.
We also label the boxes in column 0 (in dotted lines in Fig. 2.2) in the
same way, and call the resulting diagram the extended t-residue diagram.
A box is called exposed if it is at the end of a row of the extended t-residue
diagram. The set of boxes (i, j) satisfying t(r − 1) 6 j − i < tr of the ex-
tended t-residue diagram of λ is called region and numbered r. In Fig. 2.2
the regions have been bordered by dotted lines. We now define ni to be the
maximum region r which contains an exposed box labeled i.

In Fig. 2.2 the labels of all boxes lying on the maximal border strip (but
the leftmost one) have been written in italic. This includes all the exposed
boxes: 3,3,3,2,4,3,2,4,3,2,4,3,2,1,0, when reading from bottom to top. We
have (n0, n1, n2, n3, n4) = (−2,−2, 1, 3, 0).

Theorem 2.3 (Garvan-Kim-Stanton). — The bĳection

φN : λ 7→ (n0, n1, . . . , nt−1)

has the following property:

(2.4) |λ| = t

2

t−1∑
i=0

n2
i +

t−1∑
i=0

ini.

Let t′ = (t− 1)/2 and let

φNV : (n0, n1, . . . , nt−1) 7→ (v0, v1, . . . , vt−1)

ANNALES DE L’INSTITUT FOURIER
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be the bĳection that maps each N -coding onto the V -coding defined by

(2.5) vi =

{
tni+t′ + i if 0 6 i 6 t′;
tni−t′−1 + i− t if t′ + 1 6 i 6 t− 1

or in set form

(2.6) {vi | 0 6 i 6 t− 1} = {tni + i− t′ | 0 6 i 6 t− 1}.

The bĳective property of the map φNV is easy to verify. More essentially,
the bĳection φV is the composition product of the two previous bĳections
as is now shown.

Lemma 2.4. — We have φV = φNV ◦ φN .

Proof. — Let (v0, . . . , vt−1) = φV (λ), (n0, . . . , nt−1) = φN (λ) and

(v′0, . . . , v′t−1) = φNV (n0, . . . , nt−1).

We need prove that vi = v′i. The number ni in the N -coding is defined to
be the maximum region r which contains an exposed box labelled i. This
exposed box is called critical italic box. In Fig. 2.2 a circle is drawn around
the label of each critical italic box. On the other hand, the U -coding is
defined to be the set maxt(H(λ)), where H(λ) is the H-set of λ. A box
in the leftmost column whose hook length is an element of the U -coding
is called critical roman box. In Fig. 2.2, a circle is drawn around the hook
length number of each critical roman box. Let us write the labels of all the
exposed boxes (the vector L = (Li)) with its region numbers (the vector
R = (Ri)) and the H-set of λ (the vector H = (Hi) = H(λ)), read from
bottom to top.

L = 3 3 3 2 4 3 2 4 3 2 4 3 2 1 0
R = 3 2 1 1 0 0 0 -1 -1 -1 -2 -2 -2 -2 -2
H = 23 18 13 12 9 8 7 4 3 2 -1 -2 -3 -4 -5

It is easy to see that Li ≡ (Hi − `(λ)) mod t and Ri = b(Hi − `(λ))/tc+ 1.
This means that Li has a circle symbol if and only if Hi has a circle symbol.
Define i(k) := max{i | Li = k}. Then

uk = Hi(k),

nk = Ri(k) = 1 + b(ui − `(λ))/tc,
k = Li(k) ≡ (Hi − `(λ)) mod t.

We then have a natural bĳection

(2.7) f : ui 7→ b(ui − `(λ))/tc+ 1 = n(ui−`) mod t

TOME 60 (2010), FASCICULE 1
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between the set {u0, . . . , ut−1} and {n0, . . . , nt−1}. By (2.6) and (2.7) we
have

{v′i} = {tni + i− t′}
= {tn(ui−`) mod t + (ui − `) mod t− t′}
= {t(b(ui − `)/tc+ 1) + (ui − `) mod t− t′}
= {ui − `+ t′ + 1}.

On the other hand, (v′i) is a V -coding, because v′i ≡ imod t and
∑
v′i =

t
∑
ni +

∑
i− t(t− 1)/2 = 0; so that

(2.8)
(∑
i

ui

)
/t = `− t′ − 1.

Hence

{v′i} = {ui − `+ t′ + 1} =
{
ui −

(∑
i

ui

)
/t
}

= {vi}.

�

Take again the same partition as in Example 2.2; the N -coding is

(n0, n1, n2, n3, n4) = (−2,−2, 1, 3, 0).

We verify that

(v′0, v′1, v′2, v′3, v′4)
= (1× 5 + 0, 3× 5 + 1, 0× 5 + 2, −2× 5− 2, −2× 5− 1).
= (5, 16, 2,−12,−11) = (v0, v1, v2, v3, v4).

Proof of (1.1) in Theorem 1.2. — From (2.6) we have∑
v2
i =

∑
(tni + i− t′)2

=
∑(

(tni)2 + 2tini − 2tt′ni + i2 + t′2 − 2it′
)

= t2
∑

n2
i + 2t

∑
ini + (t− 1)t(2t− 1)

6
+ tt′2 − t′t(t− 1)

= t2
∑

n2
i + 2t

∑
ini + t(t2 − 1)

12
.

Hence
1
2t
∑

v2
i = t

2
∑

n2
i +

∑
ini + t2 − 1

24
= |λ|+ t2 − 1

24
.

�

For proving (1.2) in Theorem 1.2, we first etablish the following two
lemmas.

ANNALES DE L’INSTITUT FOURIER



THE NEKRASOV-OKOUNKOV HOOK LENGTH FORMULA 13

Lemma 2.5. — For any t-compact set A we have

(2.9)
∏

a∈A,a>0

(
1− t2

a2

)
=

∏
a∈maxt(A),a6=−t

a+ t

a
.

Example 2.6. — Take t = 5. Then the set

A = {−5,−4,−3,−2,−1, 2, 3, 4, 7, 8, 9, 12, 13, 18, 23}

is 5-compact. We have maxt(A) = {−5,−4, 9, 12, 23}. Hence

(2.10)
∏

a∈A,a>0

(
1− 25

a2

)
= 1 · 14 · 17 · 28

(−4) · 9 · 12 · 23
.

Proof. — Write∏
a∈A,a>0

(
1− t2

a2

)
=

∏
a∈A,a>0

(a− t) · (a+ t)
a · a

,

then delete the common factors in numerator and denominator, as illus-
trated by means of Example 2.6.

1
−4

(a ≡ 1 mod 5)

2
−3

−3
2
× 7

2
2
7
× 12

7
7
12
× 17

12
(a ≡ 2 mod 5)

3
−2

−2
3
× 8

3
3
8
× 13

8
8
13
× 18

13
13
18
× 23

18
18
23
× 28

23
(a ≡ 3 mod 5)

4
−1

−1
4
× 9

4
4
9
× 14

9
(a ≡ 4 mod 5)

The product (a−5)(a+5)/a2 for a > 0 is reproduced in the row determined
by amod 5 in the above table, except for the leftmost column. But the
product of the factors in the leftmost column is equal to 1 because t is
an odd integer; so that the left-hand side of (2.10) is the product of the
factors in the above table. After deleting the common factors, it remains
the rightmost fraction in each row. �

Lemma 2.7. — Let λ be a t-core and (u0, u1, . . . , ut−1) be its U -coding
(defined in the body of the construction of φV ). Let λ′ be the t-core obtained
from λ by erasing the leftmost column of λ and (u′0, u′1, . . . , u′t−1) be its U -
coding. Then ∏

06i<j6t−1

ui − uj
u′i − u′j

=
t−1∏
j=1

uj + t

uj
.
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Example 2.8. — Take the 5-core λ given in Example 2.2. The U -coding
of λ is (u0, u1, u2, u3, u4) = (−5,−4, 12, 23, 9). We have

λ′ = (13, 9, 5, 5, 3, 3, 3, 1, 1, 1).

The U -coding of λ′ is (u′0, u′1, u′2, u′3, u′4) = (−5, 11, 22, 8,−1). Now, consider
the cyclic rearrangement

(u′′0 , u′′1 , u′′2 , u′′3 , u′′4) = (−1,−5, 11, 22, 8)

of (u′0, u′1, u′2, u′3, u′4). We have
∏

(u′i − u′j) =
∏

(u′′i − u′′j ) because t is an
odd integer. Moreover u′′i = ui − 1 for all 1 6 i 6 4. Hence∏

06i<j6t−1

ui − uj
u′′i − u′′j

=
t−1∏
j=1

u0 − uj
u′′0 − u′′j

= (−5 + 4)(−5− 12)(−5− 23)(−5− 9)
(−1 + 5)(−1− 11)(−1− 22)(−1− 8)

= (−4 + 5)(12 + 5)(23 + 5)(9 + 5)
(−4)(12)(23)(9)

.

Proof. — We suppose that λ contains δ parts equal to 1 (0 6 δ 6 t− 1).
Its H-set H(λ) (viewed as a vector in decreasing order if necessary) can be
split into six segments H(λ) = A1A2A3A4A5A6 defined by (see Fig. 2.3)

(i) a > δ + 2 for each a ∈ A1;
(ii) A2 = (δ, δ − 1, . . . , 3, 2, 1);
(iii) A3 = (−1,−2,−3, . . . , δ + 2− t);
(iv) A4 = (δ + 1− t);
(v) A5 = (δ − t, δ − 1− t, . . . , 1− t);
(vi) A6 = (−t).

On the other hand the H-set H(λ′) of λ′ is split into five segments
H(λ′) = A′1A

′
2A
′
3A
′
4A
′
5 defined by

(i’) A′1 = {a− δ − 1 : a ∈ A1};
(ii’) A′2 = {a− δ − 1 : a ∈ A2} = (−1,−2, . . . ,−δ);
(iii’) A′3 = (−δ − 1);
(iv’) A′4 = {a− δ − 1 : a ∈ A3} = (−δ − 2,−δ − 3, . . . ,−t+ 1);
(v’) A′5 = (−t).
Notice that some segments Ai and A′i may be empty. More precisely,

A2 = A5 = A′2 = ∅, if δ = 0;

A3 = A′4 = ∅, if δ = t− 2;

A3 = A4 = A′3 = A′4 = ∅, if δ = t− 1.
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– t
1 – t...

δ – 1 – t
δ – t – t

δ + 1 – t 1 – t
δ + 2 – t

...... – δ – 3
– 2 – δ – 2
– 1 – δ – 1
1 – δ
2

...... – 2
δ – 1

A6

A5

A5

A4

A4

A3

A3

A2 A2

A1 A1

Figure 2.3. Comparison of the hook lengths of λ and λ′.

The basic facts are:
(i) a 6∈ maxt(H(λ)) for every a ∈ A5; because {amod t : a ∈ A5} =
{amod t : a ∈ A3}. In other words the set A5 is masked by A3.

(ii) δ + 1 − t ∈ maxt(H(λ)); because a 6≡ 0 mod t for every a ∈ A′1
so that a 6≡ δ + 1 mod t for every a ∈ A1. It is easy to see that
a 6≡ δ + 1 mod t for every a ∈ A2 ∪A3.

(iii) −δ − 1 ∈ maxt(H(λ′)); because a 6≡ 0 mod t for every a ∈ A1 ∪ A2
so that a 6≡ −δ − 1 mod t for every a ∈ A′1 ∪A′2.

(iv) Since that a 7→ a − δ − 1 is a bĳection between A1 ∪ A2 ∪ A3 and
A′1∪A′2∪A′4, it is also a bĳection between maxt(H(λ))\{−t, δ−t+1}
and maxt(H(λ′)) \ {−t,−δ − 1}.

The above facts enable us to derive the U -coding of λ′ from the U -coding
of λ as follows. Let

(ui) = (u0 = −t, u1, u2, . . . , uk−1, δ + 1− t, uk+1, uk+2, . . . , ut−1)

be the U -coding of λ and define

(u′′i ) = (u′′0 = −δ − 1, u′′1 , u′′2 , . . . , u′′k−1,−t, u′′k+1, u
′′
k+2, . . . , u

′′
t−1)

where u′′i = ui − δ − 1 for i > 1. Then, the U -coding of λ′ is simply

(u′i) = (u′0 = −t, u′′k+1, u
′′
k+2, . . . , u

′′
t−1,−δ − 1, u′′1 , u′′2 , . . . , u′′k−1).
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We have
∏

(u′i − u′j) =
∏

(u′′i − u′′j ) because t is an odd integer. On the
other hand, u′′i − u′′j = ui − uj for all 1 6 i < j 6 t− 1. Hence

∏
06i<j6t−1

ui − uj
u′i − u′j

=
∏

06i<j6t−1

ui − uj
u′′i − u′′j

=
t−1∏
j=1

u0 − uj
u′′0 − u′′j

=
t−1∏
j=1

−t− uj
−δ − 1− u′′j

=
t−1∏
j=1

uj + t

uj
.

�

Proof of (1.2) in Theorem 1.2. — Because the U -coding and V -coding
of λ only differ by the normalization given in (2.3) and t is an odd integer,
we have

∏
(vi − vj) =

∏
(ui − uj). By Lemmas 2.7 and 2.5 we have∏

06i<j6t−1
(ui − uj) =

t−1∏
j=1

uj + t

uj
×

∏
06i<j6t−1

(u′i − u′j)

=
∏

a∈H(λ),a>0

(
1− t2

a2

)
×

∏
06i<j6t−1

(u′i − u′j)

= · · · = K ×
∏
v∈λ

(
1− t2

h2
v

)
.

Taking λ as the empty t-core, the U -coding of λ is (−t,−t + 1,−t +
2, . . . ,−3,−2,−1). We then obtain K = (−1)t′1! · 2! · 3! · · · (t− 1)! �

3. Expansion formula for the powers of the Euler Product

The powers of the Euler Product and the hook lengths of partitions are
two mathematical objects widely studied in the Theory of Partitions, in Al-
gebraic Combinatorics and Group Representation Theory. In this section
we give an elementary proof of Theorem 1.3, which establishes a new con-
nection by giving an explicit expansion formula for all the powers s of the
Euler Product in terms of partition hook lengths, where the exponent s is
any complex number. Recall that the Euler Product is the infinite product∏
m>0

(1 − xm). The following two formulas ([9]; [2], p.11, p.21) go back to

Euler (the pentagonal theorem)

(3.1)
∏
m>1

(1− xm) =
∞∑

k=−∞
(−1)kxk(3k+1)/2
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and Jacobi (triple product identity, see ([2], p.21; [23], p.20; [20]; [11]; [10])

(3.2)
∏
m>1

(1− xm)3 =
∑
m>0

(−1)m(2m+ 1)xm(m+1)/2.

Further explicit formulas for the powers of the Euler Product

(3.3)
∏
m>1

(1− xm)s =
∑
k>0

fk(s)xk

have been derived for certain integers

(3.4) s = 1, 3, 8, 10, 14, 15, 21, 24, 26, 28, 35, 36, . . .

by Klein and Fricke for s = 8, Atkin for s = 14, 26, Winquist for s = 10,
and Dyson for s = 24, . . . [43]; [8]. The paper entitled “Affine root systems
and Dedekind’s η-function”, written by Macdonald in 1972, is a milestone
in the study of powers of Euler Product [28]. The review of this paper
for MathSciNet, written by Verma [40], contains seven pages! It has also
inspired several followers, see ([21]; [31]; [24]; [25]; [30]; [1]; [7]; [35]). The
main achievement of Macdonald was to unify all the well-known formulas
for the integers s listed in (3.4), except for s = 1 and s = 26. He obtained
an expansion formula of

(3.5)
∏
m>0

(1− xm)dim g

for every semi-simple Lie algebra g. A variation of the Euler Product, called

the Dedekind η-function, is defined by

(3.6) η(x) = x1/24
∏
m>1

(1− xm).

We are ready to state the Macdonald identities for A(a)
` [28], which play a

fundamental role in the following proof of Theorem 1.3.

Theorem 3.1 (Macdonald). — Let t = 2t′ + 1 be an odd integer. We
have

(3.7) η(x)t
2−1 = c0

∑
(v0,...,vt−1)

∏
i<j

(vi − vj)x(v2
0+v2

1+···+v2
t−1)/(2t),

where the sum ranges over all V -codings (v0, v1, . . . , vt−1) (see Defini-
tion 1.1) and c0 is a numerical constant.

Consider the term of lowest degree in the above power series. We imme-
diately get

(3.8) c0 = (−1)t′

1! · 2! · 3! · · · (t− 1)!
.
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Proof of Theorem 1.3. — Using the following identity

(3.9)
∏
m>1

1
1− xm

= exp
(∑
k>1

xk

k(1− xk)
)
,

the right-hand side of equation (1.3) can be written:

(3.10)
∏
m>1

1
1− xm

× exp
(
−z
∑
k>1

xk

k(1− xk)

)
.

Let n > 0 be a positive integer. The coefficient Cn(z) of xn on the left-hand
side of (1.3) is a polynomial in z of degree n. The coefficient Dn(z) of xn
on the right-hand side of (1.3) is also a polynomial in z of degree n thanks
to (3.10). For proving Cn(z) = Dn(z), it suffices to find n + 1 explicit
numerical values z0, z1, . . . , zn such that Cn(zi) = Dn(zi) for 0 6 i 6 n by
using the Lagrange interpolation formula. The basic fact is that∏

v∈λ

(
1− t2

h2
v

)
= 0

for every partition λ which is not a t-core. By comparing Theorems 1.2 and
3.1 we see that equation (1.3) is true when z = t2 for every odd integer t,
i.e., ∑

λ∈P

x|λ|
∏
v∈λ

(
1− t2

h2
v

)
=

∏
m>1

(1− xm)t
2−1,

so that Cn(z) = Dn(z) for every complex number z. �

Note that Kostant already observed that Dn(z) is a polynomial in z, but
did not mention any explicit expression [25].

4. A unified hook formula via t-cores

In this section we prove Theorems 1.4 and 1.5 by using the properties of
a classical bĳection which maps each partition to its t-core and t-quotient
([29], p.12; [39], p.468; [19], p.75; [13]). Let W be the set of bi-infinite
binary sequences beginning with infinitely many 0’s and ending with in-
finitely many 1’s. Each element w of W can be represented by (bi)i =
· · · b−3b−2b−1b0b1b2b3 · · · , but the representation is not unique. Actually,
for any fixed integer k the sequence (bi+k)i also represents w. The canonical
representation of w is the unique sequence (ci)i = · · · c−3c−2c−1c0c1c2c3 · · ·
such that

#{i 6 −1, ci = 1} = #{i > 0, ci = 0}.
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We put a dot symbol “.” between the letters c−1 and c0 in the bi-infinite
sequence (ci)i when it is the canonical representation.

There is a natural one-to-one correspondence between P and W (see,
e.g. [39], p.468; [1] for more detail). Let λ be a partition. We encode each
horizontal edge of λ by 1 and each vertical edge by 0. Reading these (0,1)-
encodings from top to bottom and from left to right yields a binary word
u. By adding infinitely many 0’s to the left and infinitely many 1’s to the
right of u we get an element w = · · · 000u111 · · · ∈ W. Clearly the map
ψ : λ 7→ w is a one-to-one correspondence between P and W. The canon-
ical representation of ψ(λ) will be denoted by Cλ. For example, take λ =
(6, 5, 3, 3); we have u = 1110011010, so that w = · · · 0001110011010111 · · ·
and Cλ = (ci)i = · · · 0001110.011010111 · · ·

3 2 1

4 3 2

7 6 5 2 1

9 8 7 4 3 1

1 1 1

1 1

1

0

0

0

0

Figure 4.1. Partition and (0,1)-sequence.

Let t be a positive integer. It is known ([29], p.12; [39], p.468; [19], p.75;
[13]) that there is a bĳection Ω which maps a partition λ to (µ;λ0, λ1, . . . ,

λt−1) such that
(P1) µ is a t-core and λ0, λ1, . . . , λt−1 are partitions;
(P2) |λ| = |µ|+ t(|λ0|+ |λ1|+ · · ·+ |λt−1|);
(P3) {h/t | h ∈ Ht(λ)} = H(λ0) ∪H(λ1) ∪ · · · ∪ H(λt−1).

The vector (λ0, λ1, . . . , λt−1) is usually called the t-quotient of the parti-
tion λ. Let us briefly describe the bĳection Ω (see, e.g., [1]; [39], p.468).
We split the canonical representation Cλ = (ci)i of the partition λ into t
sections. This means that we form the subsequence wk = (cit+k)i for each
k = 0, 1, . . . , t− 1. The k-th entry λk of the t-quotient of λ is defined to be
the inverse image ψ−1(wk) of the subsequence wk. With the above exam-
ple and t = 2 we have w0 = · · · 00110111 · · · and w1 = 00010100111 · · · , so
that λ0 = (2) and λ1 = (2, 2, 1). Property (P3) holds since H(λ0) = {2, 1},
H(λ1) = {1, 3, 1, 4, 2} and H2(λ) = {2, 4, 2, 6, 2, 8, 4} (See Fig. 4.1-4.4). No-
tice that the subsequence wk defined by wk = (cit+k)i is not necessarily
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the canonical representation. For that reason we do not reproduce the dot
symbol “.” in the corresponding rows in the following tableau.

Cλ · · · 0 0 0 0 0 1 1 1 0 . 0 1 1 0 1 0 1 1 1 · · ·

w0 · · · 0 0 1 1 0 1 1 1 1 · · ·
v0 · · · 0 0 0 1 1 1 1 1 1 · · ·

w1 · · · 0 0 0 1 0 1 0 0 1 · · ·
v1 · · · 0 0 0 0 0 0 1 1 1 · · ·

Cµ · · · 0 0 0 0 0 0 0 1 0 . 1 0 1 1 1 1 1 1 1 · · ·

2 1

Figure 4.2. Partition λ0.

1
3 1
4 2

Figure 4.3. Partition λ1.

1
3 1

Figure 4.4. The 2-core µ.

For each subsequence wk we continually replace the subword 10 by 01.
The final resulting sequence is of the form · · · 000111 · · · and is denoted by
vk. The t-core of the partition λ is defined to be the partition µ such that
the t sections of the canonical representation Cµ are exactly v0, v1, . . . , vt−1.
For the above example we have µ = (2, 1). Properties (P2) and (P3) can
be derived from the following basic fact: each box of λ is in one-to-one
correspondence with the ordered pair of integers (i, j) such that i < j and
ci = 1, cj = 0. Moreover the hook length of that box is equal to j − i.

Proof of Theorem 1.4. — By the properties of the bĳection Ω we get
(4.1)∑
λ∈P

x|λ|
∏

h∈Ht(λ)

(
y − tyz

h2

)
=
∏
k>1

(1− xtk)t

1− xk

∑
λ∈P

xt|λ|
∏
h∈H(λ)

(
y − tyz

(th)2

)t

=
∏
k>1

(1− xtk)t

1− xk

∑
λ∈P

(yxt)|λ|
∏
h∈H(λ)

(
1− z/t

h2

)t .
By Theorem 1.3

(4.2)
∑
λ∈P

(yxt)|λ|
∏
h∈H(λ)

(
1− z/t

h2

)
=
∏
m>1

(1− (yxt)m)z/t−1.

We obtain (1.4) when reporting (4.2) into (4.1). �
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Proof of Theorem 1.5. — It is easy to see that∑
λ∈P

x|λ|y#{h∈H(λ),h=1} =
∏
m>1

1 + (y − 1)xm

1− xm
.

By the properties of the bĳection Ω we get∑
λ∈P

x|λ|y#{h∈H(λ),h=t} =
∏
k>1

(1− xtk)t

1− xk

(∑
λ∈P

xt|λ|y#{h∈H(λ),h=1}

)t

=
∏
k>1

(1− xtk)t

1− xk

∏
m>1

1 + (y − 1)xtm

1− xtm

t

=
∏
k>1

(1 + (y − 1)xtk)t

1− xk
.

�

5. Other Specializations

Some specializations are given in the introduction and in [16]. In this
section we collect other specializations of Theorem 1.4. When the special-
ization is easy to derive, a simple comment is written between brackets.

Corollary 5.1 (z = 0). — We have

(5.1)
∑
λ∈P

x|λ|y#Ht(λ) =
∏
k>1

(1− xtk)t

(1− (yxt)k)t(1− xk)
.

Corollary 5.2 (z = 0, y = −1). — We have

(5.2)
∑
λ∈P

x|λ|(−1)#Ht(λ) =
∏
k>1

(1− x4tk)t(1− xtk)2t

(1− x2tk)3t(1− xk)
.

Proof. — First, we have∏
k

1
1− (−x)k

=
∏
k

1
1− x2k

∏
k odd

1− xk

1− x2k

=
∏
k

1− x4k

(1− x2k)(1− x4k)
∏
k odd

1− xk

1− x2k

=
∏
k

1− x4k

(1− x2k)2

∏
k odd

(1− xk)

=
∏
k

(1− x4k)(1− xk)
(1− x2k)3 .
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By Corollary 5.1∑
λ∈P

x|λ|(−1)#Ht(λ) =
(∏
k>1

1
1− (−xt)k

)t ×∏
k>1

(1− xtk)t

1− xk

=
(∏
k>1

(1− x4tk)(1− xtk)
(1− x2tk)3

)t ×∏
k>1

(1− xtk)t

1− xk

=
∏
k>1

(1− x4tk)t(1− xtk)2t

(1− x2tk)3t(1− xk)
.

�

Corollary 5.3 (y = 1). — We have

(5.3)
∑
λ∈P

x|λ|
∏

h∈Ht(λ)

(
1− tz

h2

)
=
∏
k>1

(1− xtk)z

1− xk
.

Corollary 5.3 can be seen as a discrete interpolation between formulas
(1.10) and (1.11). For example, we have∑

λ

x|λ|
∏

h∈H1(λ)

(
1− 36

h2

)
=
∏
k>1

(1− xk)36

1− xk
;

∑
λ

x|λ|
∏

h∈H2(λ)

(
1− 36

h2

)
=
∏
k>1

(1− x2k)18

1− xk
;

∑
λ

x|λ|
∏

h∈H3(λ)

(
1− 36

h2

)
=
∏
k>1

(1− x3k)12

1− xk
;

∑
λ

x|λ|
∏

h∈H6(λ)

(
1− 36

h2

)
=
∏
k>1

(1− x6k)6

1− xk
,

where each sum is over all 6-cores λ.

Corollary 5.4 (z = −b/y, y → 0). — We have

(5.4)
∑
λ∈P

x|λ|
∏

h∈Ht(λ)

tb

h2 = ebx
t ∏
k>1

(1− xtk)t

1− xk
.

Proof. — Using identity (3.9) the right-hand side of (1.4) can be written:

(5.5)
∏
k>1

(1− xtk)t

(1− (yxt)k)t(1− xk)
exp

(
−z

∑
m>1

(yxt)m

m(1− (yxt)m)

)
.
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Since

exp
( b
y

∑
m>1

(yxt)m

m(1− (yxt)m)

)
= exp

( b
y

( yxt

1− yxt
+O(y2)

))
= ebx

t

+O(y),

we obtain (5.4) when z = −b/y and y → 0 in Theorem 1.4 under the form
(5.5). �

Corollary 5.5 (Compare the coefficients of bnxtn in (5.4)). — We
have

(5.6)
∑

λ`tn,#Ht(λ)=n

∏
h∈Ht(λ)

1
h2 = 1

tnn!
.

Formula (5.6) is a classical result (see, e.g., [39], p.469).

Corollary 5.6 (Compare the coefficients of bnxtn+m in (5.4) ). — We
have

(5.7)
∑

λ`tn+m,#Ht(λ)=n

∏
h∈Ht(λ)

1
h2 = ct(m)

tnn!
,

where ct(m) is the number of t-cores of size m.

Corollary 5.7 (Compare the coefficients of (−z)n−1xntyn). — We
have

(5.8)
∑

λ`nt,#Ht(λ)=n

∏
h∈Ht(λ)

1
h2

∑
h∈Ht(λ)

h2 = 3n− 3 + 2t
2(n− 1)! tn−1 .

Proof. — Let R be the right-hand side of (1.4). As R is equal to (5.5),
we have

[(−z)n−1xntyn]R

=[xntyn] 1
(n− 1)!

∏
k>1

(1− xtk)t

(1− (yxt)k)t(1− xk)

(∑
m>1

(yxt)m

m(1− (yxt)m)

)n−1

=[xty] 1
(n− 1)!

1
(1− yxt)t

( 1
(1− (yxt))

+ yxt

2(1− (yxt)2)

)n−1

=[xty] 1
(n− 1)!

(1 + tyxt)
(

(1 + yxt) + yxt

2

)n−1

= 1
(n− 1)!

(
(n− 1)3

2
+ t
)
.

�
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The above corollary is the t-core analogue of the marked hook formula
[16]. When t = 1 Formula (5.8) reduces to∑

λ`n

∏
h∈H(λ)

1
h2

∑
h∈H(λ)

h2 = 3n− 1
2(n− 1)!

.

We recover the marked hook formula (Theorem 1.6) thanks to the famous
hook formula due to Frame, Robinson and Thrall [12]

fλ = n!∏
v∈λ hv(λ)

,

where fλ is the number of standard Young tableaux of shape λ (see [39],
p.376; [23], p.59; [26]; [44]; [15]; [14]; [33]; [34]).

Corollary 5.8 (y = 1; compare the coefficients of z). — . We have

(5.9)
∑
λ∈P

x|λ|
∑

h∈Ht(λ)

1
h2 = 1

t

∏
m>1

1
1− xm

∑
k>1

xtk

k(1− xtk)
.

Proof. — Let y = 1. Using (3.9) we have

∑
λ∈P

x|λ|
∏

h∈Ht(λ)

(
1− tz

h2

)
=
∏
k>1

1
(1− xk)

exp

−z∑
m>1

xtm

m(1− xtm)

.
Comparing the coefficients of z in the above identity yields (5.9). �

Corollary 5.9. — We have

(5.10)
∑
λ∈P

x|λ|
∑

h∈H(λ),h odd

1
h2 =

∏
m>1

1
1− xm

∑
k>1

x2k + 2xk

2k(1− x2k)
.

Proof. — Let t = 1 and t = 2 in Corollary 5.8. We obtain respectively

(5.11)
∑
λ∈P

x|λ|
∑
h∈H(λ)

1
h2 =

∏
m>1

1
1− xm

∑
k>1

xk

k(1− xk)
.

(5.12)
∑
λ∈P

x|λ|
∑

h∈H2(λ)

1
h2 = 1

2
∏
m>1

1
1− xm

∑
k>1

x2k

k(1− x2k)
.

Taking the difference between identities (5.11) and (5.12) yields (5.10). �

Remark 5.10. — Identity (5.11) has a direct proof, which makes use of
an elegant result on multi-sets of hook lengths and multi-sets of partition
parts obtained by Stanley, Elder, Bessenrodt, Bacher and Manivel et al.
[5], [3], [18], [38], [22], [41], [42]. See [16] for more details and applications.
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6. Improvement of a result due to Kostant

Let

(6.1)
∏
n>1

(1− xn)s =
∑
k>0

fk(s)xk.

Kostant proved the following result ([25], Th. 4.28).

Theorem 6.1 (Kostant). — Let k and m be two positive integers such
that m > max(k, 4). Then fk(m2 − 1) 6= 0.

The condition m > 1 in the original statement of Kostant’s Theorem
should be replaced by m > 4, as, for example, f3(8) = 0 (see Theorem 6.2).
Our Theorem 1.7 extends Kostant’s result in two directions: first, we claim
that (−1)kfk(s) > 0 instead of fk(s) 6= 0; second, s is any real number
instead of an integer of the form m2 − 1.

Proof of Theorem 1.7. — By identity (1.3) we may write

(6.2) (−1)kfk(s) =
∑
λ`k

W (λ),

where

(6.3) W (λ) =
∏
v∈λ

(
s+ 1
h2
v

− 1
)

=
∏
v∈λ

(
s+ 1− h2

v

h2
v

)
.

For each λ ` k and v ∈ λ we have hv(λ) 6 k, so that W (λ) > 0. This
means that there is no cancellation in the sum (6.2). If s > k2 − 1, then
W (λ) > 0. If s = k2 − 1 > 15, we have k > 4. In that case there is at
least one partition λ, whose hook lengths are strictly less than k. Hence
W (λ) > 0. �

Here is another result of Kostant ([25], Th.4.27) on which we will make
some comments.

Theorem 6.2 (Kostant). — We have
f4(s) = 1/4! s(s− 1)(s− 3)(s− 14);
−f3(s) = 1/3! s(s− 1)(s− 8);
f2(s) = 1/2! s(s− 3).

Even though we do not see how to factorize each fk(s), the occurrences
of some factors in the above formulas have some relevance in terms of hook
lengths. Every partition contains one hook length hv = 1, so that fk(s)
(for k > 1) has the factor s + 1 − h2

v = s (see (6.3)). Every partition of 3
contains a hook length hv = 3, so that f3(s) has the factor s − 8. Every
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partition of 2 or 4 has a hook length hv = 2, so that s − 3 is a factor of
f2(s) and f4(s). Note that Lehmer’s conjecture claims that 24 is never a
root of fk(s) for any positive integer k (see [36]).

7. Reversion of the Euler Product

Let y(x) be a formal power series satisfying the following relation

(7.1)
x = y(1− y)(1− y2)(1− y3) · · ·

= y − y2 − y3 + y6 + y8 − y13 − y16 + · · ·

The first coeficients of the reversion series in (7.1) are the following

(7.2) y(x) = x+ x2 + 3x3 + 10x4 + 38x5 + 153x6 + 646x7 + · · ·

They are referred to as the first values of the sequence A109085 in The
On-Line Encyclopedia of Integer Sequences [37].

Theorem 7.1. — We have the following explicit formula for the rever-
sion of (7.1) in terms of hook lengths:

(7.3) y(x) =
∑
n>1

xn

n

∑
λ`n−1

∏
v∈λ

(
1 + n− 1

h2
v

)
.

Proof. — Rewrite (7.1) as y = xφ(y) where φ(y) =
∏
m>1

(1 − ym)−1. By

the Lagrange inversion formula and identity (7.3) we have

y = 1
n

[xn−1] φ(x)n

= 1
n

[xn−1]
∏
m>1

(1− ym)−n

= 1
n

[xn−1]
∑
λ∈P

∏
v∈λ

(
1 + n− 1

h2
v

)
x

= 1
n

∑
λ`n−1

∏
v∈λ

(
1 + n− 1

h2
v

)
.

�

Proof of Theorem 1.8. — The first part of Theorem 1.8 is easy to verify
by using identity (7.3). As the coefficients of y(x) defined by (7.1) are all
positive integers, the above theorem implies that the expression

1
n+ 1

∑
λ`n

∏
v∈λ

(
1 + n

h2
v

)
is a positive integer. �
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