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ON DELIGNE-MALGRANGE LATTICES, RESOLUTION
OF TURNING POINTS AND HARMONIC BUNDLES

by Takuro MOCHIZUKI (*)

Abstract. — In this short survey, we would like to overview the recent devel-
opment of the study on Deligne-Malgrange lattices and resolution of turning points
for algebraic meromorphic flat bundles. We also explain their relation with wild
harmonic bundles. The author hopes that it would be helpful for access to his work
on wild harmonic bundles.

Résumé. — Nous donnons un sommaire du développement récent de l’étude sur
les réseaux de Deligne-Malgrange et la résolution des tournants pour les connexions
méromorphes plates algébriques. Nous expliquons également leur relation avec les
fibrés harmoniques sauvages. L’auteur espère que ce sera utile pour l’accès à son
travail sur les fibrés harmoniques sauvages.

1. Introduction

In this introduction, let us briefly describe an outline of the study on
Deligne-Malgrange lattices, resolution of turning points and their relation
with wild harmonic bundles. The precise definitions and statements will be
given later.

Deligne-Malgrange lattice. Let X be a complex manifold, and let D
be a simple normal crossing hypersurface with the irreducible decomposi-
tion D =

⋃
Di. Let (E ,∇) be a meromorphic flat bundle on (X,D), i.e., E is

a locally free OX(∗D)-module, and ∇ is a flat connection of E . If (E ,∇) has
regular singularity along D, it is well known (see [5]) that there uniquely
exists a locally free OX -submodule E ⊂ E with OX(∗D)E = E , such that
(i) ∇ is logarithmic with respect to E in the sense ∇(E) ⊂ E ⊗Ω1(logD),

Keywords: Harmonic bundle, meromorphic flat bundle, Deligne-Malgrange lattice.
Math. classification: 14J60, 32C38, 53C07.
(*) The author thanks Ministry of Education, Culture, Sports, Science and Technology
for partial support.



2820 Takuro MOCHIZUKI

(ii) the eigenvalues α of the residues ResDi(∇) satisfy 0 6 Re(α) < 1. Such
E is called the Deligne lattice of (E ,∇).

It is natural to ask what happens in the irregular case. B. Malgrange [12]
established the existence of a lattice E which generically has the property
generalizing (i) and (ii). (It will be reviewed in Subsection 2.3.) We call it
the Deligne-Malgrange lattice of (E ,∇). The existence of such a lattice is
quite significant in the study of meromorphic flat bundles. For example, it
makes possible to apply GAGA to meromorphic flat bundles on projective
varieties, as already remarked in [12].

Resolution of turning points. However, in general, there may ex-
ist some points of D, called turning points, around which the Deligne-
Malgrange lattice does not have the good property. As observed by C. Sab-
bah [20], the existence of turning points is a major obstacle in the as-
ymptotic analysis for meromorphic flat bundles ([11], [20]). So he proposed
a conjecture which claims the existence of resolution of turning points,
i.e., a projective birational morphism ϕ : (X ′, D′) −→ (X,D) such that
there does not exist any turning points for the Deligne-Malgrange lattice
of ϕ∗(E ,∇). It seems quite significant in the study of algebraic meromor-
phic flat bundles and algebraic holonomicD-modules. It might be compared
with resolution of singularity of algebraic varieties. He showed it in the case
dimX = 2 and rank E 6 5. Relatedly, Y. André [1] showed a conjecture
of Malgrange on the non-existence of confluence, motivated by Sabbah’s
conjecture.

Recently, there have been major developments in the study of such res-
olution of turning points. In [17], the author proved the existence of a
resolution of turning points for a meromorphic flat bundles on projective
surfaces. In [14], it is shown for those on a smooth proper algebraic variety
of arbitrary dimension. (See Theorem 2.12 below.) So we have a satisfactory
existence theorem in the algebraic case. The more general case, including
the non-algebraic case, has been studied by K. Kedlaya with a completely
different method. He established it in [8] for those on a general complex
(not necessarily algebraic) surface.

Remark 1.1. — See [13] for the asymptotic analysis in view of good
Deligne-Malgrange lattices or more generally good lattices, where we put
a stress on Stokes filtrations.

Harmonic bundle and a characterization of semisimplicity of
meromorphic flat bundles. Let (V,∇) be a flat bundle on a complex
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DELIGNE-MALGRANGE LATTICE 2821

manifold. Let h be a hermitian metric of V . Then, we have the decomposi-
tion ∇ = ∇u+ Φ, where ∇u is a unitary connection and Φ is a self-adjoint
section of End(E) ⊗ Ω1, with respect to h. We have the decompositions
∇u = ∂V + ∂V and Φ = θ + θ† into the (1, 0)-part and the (0, 1)-part.
We say that h is a pluri-harmonic metric of (V,∇), if (V, ∂V , θ) is a Higgs
bundle. In that case, (V,∇, h) is called a harmonic bundle.

According to K. Corlette [4], a flat bundle on a smooth projective variety
has a pluri-harmonic metric if and only if it is semisimple, i.e., a direct sum
of simple ones. Moreover, such a pluri-harmonic metric is essentially unique.
His result was generalized to the case of meromorphic flat bundles with
regular singularity. Namely, let X be a smooth proper algebraic variety,
and let D be a normal crossing hypersurface. Let (E ,∇) be a meromorphic
flat bundle on (X,D) with regular singularity. Then, it is semisimple, if and
only if (E ,∇)|X−D has a pluri-harmonic metric satisfying some condition
around D. Moreover, such a pluri-harmonic metric is essentially unique. In
the curve case, it was due to C. Simpson [22] with Sabbah’s observation
[19] that semisimplicity is related with parabolic polystability. In the higher
dimensional case, it can be shown by two methods. One is given by J. Jost
and K. Zuo [6] with a small and technically minor complement by the
author [16]. The other is given by using Kobayashi-Hitchin correspondence
for tame harmonic bundles [18].

We can establish such a characterization even in the irregular case by the
method of Kobayashi-Hitchin correspondence. (See Theorem 3.2 below.) In
the curve case, it was due to Sabbah [19]. (See also the related work due to
O. Biquard-P. Boalch [3].) In the higher dimensional case, it was done in
[14]. However, we should remark that there is a big difference between regu-
lar and irregular meromorphic flat bundles on higher dimensional varieties,
that is the existence of turning points, which prevents us from applying
Kobayashi-Hitchin correspondence directly.

Let us describe how it obscures us. For the construction of pluri-harmonic
metrics, at least in the surface case, we would like to use a general frame-
work in global analysis, i.e., (i) take an appropriate initial metric, (ii) de-
form it along the flow given by a heat equation, (iii) the limit of the heat
flow should be a Hermitian-Einstein metric, and it should be pluri-harmonic
under some condition. Simpson [21] established a nice general theory for
(ii) and (iii), which is valid once an appropriate initial metric is taken in
(i). To construct an appropriate initial metric, we would like to know the
local normal form of meromorphic flat bundles, which is obscured by the
existence of turning points. This is the main motivation for the author to
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2822 Takuro MOCHIZUKI

study resolution of turning points. (More precisely, it is difficult to use the
above framework directly in constructing a pluri-harmonic metric, even if
there are no turning points. Some difficulty is caused by the nilpotent parts
of the residues. We can overcome it by using a perturbation of parabolic
structure, which is explained in the introductions of [15] and [18].)

Outline of the proof. Actually, our proof proceeds as follows:

Theorem 2.12
dimX = 2

(1)=⇒ Theorem 3.4
dimX = 2

(2)=⇒ Theorem 3.4
dimX > 3

(3)=⇒ Theorem 2.12
dimX > 3

The steps (1)–(3) are done in [14]. The proof of Theorem 2.12 in the surface
case is given in [17]. (We can also apply the result due to Kedlaya in [8].)

As mentioned above, once we know the existence of resolution of turn-
ing points, we can use Kobayashi-Hitchin correspondence to establish the
characterization of semisimplicity, which is (1). And, (2) is rather easy to
show by using Mehta-Ramanathan type theorem, which is mentioned in
Subsection 2.3.2 below.

As explained above, the author studied Theorem 2.12 to show Theo-
rem 3.4. Interestingly, we can deduce Theorem 2.12 by assuming Theo-
rem 3.4, which is the argument used in (3). The brief idea is as follows. It
is rather easy to observe that we have only to consider any simple meromor-
phic flat bundle (E ,∇) to show Theorem 2.12. Then, Theorem 3.4 implies
that (E ,∇) is equipped with a nice pluri-harmonic metric h. Hence, we ob-
tain the Higgs field θ of (E ,∇)|X−D, whose “characteristic polynomial” is
meromorphic on (X,D). It can be shown that the turning points of (E ,∇)
coincide with the “turning points” of θ. (See Remark 3.5 for turning points
of θ.) Thus, we can replace the problem to find a resolution of turning
points of (E ,∇), with the problem to find a resolution of the turning points
of θ. The latter is much easier, for which we can use classical techniques in
algebraic or complex geometries. See [14] for more details.

For the proof of Theorem 2.12 in the surface case, we use in [17] mod
p-reduction and p-curvature, instead of the Higgs field associated to a har-
monic bundle. (See [7] for p-curvature.) The brief idea is similar to the
above. We reduce the problem to a control of the spectral manifold of the
p-curvature for the mod p-reductions, uniformly in p. We use an observa-
tion due to J. Bost–Y. Laszlo–C. Pauly [9], i.e., the spectral manifold of the

ANNALES DE L’INSTITUT FOURIER



DELIGNE-MALGRANGE LATTICE 2823

p-curvature is obtained as the pull back of some subvariety of the cotan-
gent bundle via Frobenius morphism. Since the family of such subvarieties
is bounded, we can control them uniformly in p. See [17] for more details.

Remark 1.2. — More precisely, we use the above strategy in the case
that X is projective. To generalize the result in the case that X is not
necessarily projective but proper algebraic, we apply the Hard Lefschetz
theorem for polarized wild pure twistor D-modules. (Theorem 21.1.1 of
[14].) By Chow’s lemma, we can take a projective birational morphism
π : X ′ −→ X such that X ′ is smooth projective. If (E ,∇) on X is simple,
π∗(E ,∇) is also simple, and it is equipped with a

√
−1R-good wild pluri-

harmonic metric h′. By using the Hard Lefschetz theorem for polarized
wild pure twistor D-modules, we obtain a

√
−1R-good wild pluri-harmonic

metric h for (E ,∇). See Section 22.4 of [14] for more details.

Acknowledgement. I owe much to the previous work due to Claude
Sabbah. I also thank him for his steady kindness. I thank Yoshifumi Tsuchi-
moto and Akira Ishii for their constant encouragement. This manuscript
is based on my talk in the conference “Partial differential equations and
differential Galois theory” in Marseille. I would like to express my gratitude
to the organizers on this occasion. I thank the referee for his careful reading
and pointing out some typos.

I hope that this work would please Bernard Malgrange, the father of the
study on Deligne-Malgrange lattices and many other attractive subjects.

Notation. When we are given a complex manifold X with a hypersur-
faces D, we will freely use the following notation.

M(X,D): the space of meromorphic functions on X whose poles are
contained in D.

H(X): the space of holomorphic functions on X.
D̂: the completion of a complex manifold X along a closed analytic

subspace D. (See [2].)
F|D̂: ι−1F ⊗ι−1OX OD̂ for any OX -module F , where ι denote the

inclusion D −→ X.

2. Deligne-Malgrange lattice

2.1. One dimensional case

We explain what is Deligne-Malgrange lattice in the curve case. Let X :={
z
∣∣ |z| < 1

}
and D := {0}. Let (E ,∇) be a meromorphic flat bundle on

TOME 59 (2009), FASCICULE 7
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(X,D). According to the classical Hukuhara-Turrittin theorem, there exist
an appropriate ramified covering ϕ : (X,D) −→ (X,D) given by ϕ(z) = ze

for some e > 0, a finite subset Irr(∇′) ⊂ M(X ′, D′)/H(X ′), and a formal
decomposition

(2.1) ϕ∗(E ,∇)|D̂′ =
⊕

a∈Irr(ϕ∗∇)

(Ê ′a, ∇̂′a),

such that each ∇̂reg
a := ∇̂′a−dã has regular singularity, where ã ∈M(X ′, D′)

is a lift of each a. We call Irr(ϕ∗∇) the set of irregular values of ϕ∗(E ,∇).
We implicitly assume that Ê ′a 6= 0 for each a ∈ Irr(ϕ∗∇). It is well known
that the decomposition (2.1) and Irr(ϕ∗∇) are uniquely determined for
ϕ∗(E ,∇). If we do not have to take a ramified covering, i.e., (E ,∇)|D̂ has
such a decomposition, it is called unramified.

Remark 2.1. — In this paper, we follow [11] to call the existence of the
decomposition (2.1) Hukuhara-Turrittin theorem.

We can take the Deligne lattices Ê′a for meromorphic flat bundles with
regular singularity (Ê ′a, ∇̂

reg
a ). We obtain the formal lattice:⊕

a∈Irr(ϕ∗∇)

Ê′a ⊂ ϕ∗(E)|D̂′ .

It determines the lattice E′ ⊂ ϕ∗E with the following property:
• We have the decomposition (E′, ϕ∗∇)|D̂′ =

⊕
a∈Irr(ϕ∗∇)(Ê′a, ∇̂′a).

• ∇̂′a − dã are logarithmic with respect to Ê′a for any a, and the
eigenvalues α of the residue satisfy 0 6 Re(α) < 1.

It is easy to observe that the lattice E′ is invariant under the action of
the Galois group of the ramified covering ϕ. Hence, we obtain the lattice
E ⊂ E as the descent of E′. This is the Deligne-Malgrange lattice in the
one dimensional case.

Any morphism of meromorphic flat bundles (E1,∇1) −→ (E2,∇2) on
(X,D) induces a morphism of their Deligne-Malgrange lattices, which can
be easily checked by using the argument for the uniqueness of unramifiedly
Deligne-Malgrange lattice in [10].

Example 1. Let (E ,∇) be a meromorphic flat bundle on P1 given as
follows:

E = OP1(∗0) · v1⊕OP1(∗0) · v2, ∇(v1, v2) = (v1, v2) ·
(

0 1
z−1 0

)
· d
(1
z

)
.

It has the singularity only at 0. (We regard it as a meromorphic flat bundle
on P1 for use in Example 2.)

ANNALES DE L’INSTITUT FOURIER



DELIGNE-MALGRANGE LATTICE 2825

Let ϕ(ζ) = ζ2 be a ramified covering Cζ −→ Cz. We set

w := ϕ∗v ·
(
ζ ζ

1 −1

)
.

We have the following:

ϕ∗∇w = w ·
((

1 0
0 −1

)
d
(2

3
ζ−3
)

+ 1
2

(
1 1
1 1

)
dζ

ζ

)
.

By a well-established argument, which is explained in [10] very clearly, we
can show that ϕ∗(E ,∇) is unramified, and it has the formal decomposition:

(2.2) ϕ∗(E ,∇)|{̂ζ=0} '
(
L
(2

3
ζ−3,

1
2

)
⊕ L
(
−2

3
ζ−3,

1
2

))
|{̂ζ=0}

.

Here, L(a, α) is a meromorphic line bundle OCζ (∗0) ·e with the connection
∇e = e ·

(
da + α · dζ/ζ

)
for a ∈ C[ζ−1] and α ∈ C. The set of irregular

values of ϕ∗(E ,∇) is

Irr(ϕ∗∇) =
{2

3
ζ−3, −2

3
ζ−3
}
.

Let E′ ⊂ ϕ∗E be the lattice generated byw, or equivalently
(
ζ ·ϕ∗v1, ϕ

∗v2
)
.

It is easy to show that E′ is Deligne-Malgrange lattice of ϕ∗(E ,∇). Hence,
the Deligne-Malgrange lattice E ⊂ E is generated by

(
z · v1, v2

)
around 0.

It is easy to observe that the isomorphism (2.2) is just formal but non-
convergent. Note that the monodromy of (E ,∇) is trivial, and that the
right hand side of (2.2) has non-trivial monodromy.

2.2. Good Deligne-Malgrange lattice

In the higher dimensional case, the existence of such a lattice is proved
by Malgrange. But, before recalling his result, we explain what is an ideal
generalization of the property, that is good Deligne-Malgrange lattice. We
remark in advance that a meromorphic flat bundle does not have a good
Deligne-Malgrange lattice, in general.

2.2.1. Good set of irregular values

We recall the notion of good set of irregular values. We use the partial
order 6Zn of Zn given by a 6Zn b⇐⇒ ai 6 bi (∀i). Let 0 denote the zero
in Zn. We also use 0n when we distinguish the dependence on n.

TOME 59 (2009), FASCICULE 7
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Let Y be a complex manifold. Let X := ∆`×Y , Di := {zi = 0}×Y and
D :=

⋃`
i=1 Di. We also put D` =

⋂`
i=1 Di, which is naturally identified

with Y . For any m = (mi | i = 1, . . . , `) ∈ Z`, we set zm :=
∏`
i=1 z

mi
i . For

any f ∈M(X,D), we have the Laurent expansion:

f =
∑

m∈Z`
fm

(
y
)
· zm

Here fm are holomorphic functions on D`. We often use the following
identification implicitly:

(2.3) M(X,D)
/
H(X) '

{
f ∈M(X,D)

∣∣∣ fm = 0, ∀m > 0
}
.

For any f ∈M(X,D), let ord(f) denote the minimum of the set{
m ∈ Z`

∣∣ fm 6= 0
}
∪ {0}

with respect to 6Z` , if it exists. It is always contained in Z`60, if it exists.
For any a ∈M(X,D)/H(X), we take any lift ã to M(X,D), and we set

ord(a) := ord(ã), if the right hand side exists. If ord(a) exists in Z` − {0},
ãord(a) is independent of the choice of a lift ã, which is denoted by aord(a).

A finite subset I ⊂ M(X,D)
/
H(X) is called a good set of irregular

values on (X,D), if the following conditions are satisfied:
• ord(a) exists for each a ∈ I, and aord(a) is nowhere vanishing on D`

for a 6= 0.
• For any two distinct a, b ∈ I, ord(a − b) exists in Z`60 − {0}, and

(a− b)ord(a−b) is nowhere vanishing on D`.
• The set T (I) :=

{
ord(a − b)

∣∣ a, b ∈ I} is totally ordered with
respect to the partial order on Z`.

The conditions do not depend on the choice of a holomorphic coordinate
such that D =

⋃`
i=1{zi = 0}.

2.2.2. Good Deligne-Malgrange lattice

Let X be a complex manifold. Let D be a simple normal crossing hy-
persurface of X with the irreducible decomposition D =

⋃
j∈Λ Dj , i.e.,

DJ :=
⋂
j∈J Dj are smooth for any J ⊂ Λ. Let (E ,∇) be a meromorphic

flat bundle on (X,D). Let E be a lattice of (E ,∇). We say that E is an
unramifiedly good Deligne-Malgrange lattice if the following holds at any
P ∈ D.

ANNALES DE L’INSTITUT FOURIER
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• Let XP be a small coordinate neighbourhood of P inX. Let I(P ) :=
{i |P ∈ Di}. We set DP := XP ∩D and DI(P ) := XP ∩

⋂
i∈I(P ) Di.

Then, we have a good set of irregular values

Irr(∇, P ) ⊂M(XP , DP )/H(XP )

and a decomposition

(2.4) (E,∇)|D̂I(P )
=

⊕
a∈Irr(∇,P )

(Êa, ∇̂a)

such that (i) ∇̂a−dã are logarithmic, where ã ∈M(XP , DP ) are lifts
of a, (ii) the eigenvalues α of the residues ResDi(∇̂a − dã) satisfy
0 6 Re(α) < 1. The decomposition (2.4) is called the irregular
decomposition at P .

We say that E is a good Delinge-Malgrange lattice, if the following holds
for any P ∈ D:

• If we take an appropriate ramified covering

ϕ : (X ′P , D′P ) −→ (XP , DP ),

there exists an unramifiedly good Deligne-Malgrange lattice E′ of
ϕ∗(E ,∇), and E|XP is the descent of E′.

(See Sections 5.1 and 5.7 of [14].) We should emphasize that (E ,∇) does not
have a good Deligne-Malgrange lattice, in general. (See Example 2, below.)
But, if they exist, they are uniquely determined. In the one dimensional
case, a Deligne-Malgrange lattice in Section 2.1 is always a good Deligne-
Malgrange lattice.

Remark 2.2. — We have the more general notions of unramifiedly good
lattice and good lattice for meromorphic flat bundles. See Sections 5.1 and
5.7 of [14]. In this paper, we adopt a simplified definition of good lattice.
See [13] for a review on good lattices and the related asymptotic analysis.

Remark 2.3. — In [20], Sabbah studied a closely related notion, i.e.,
good formal structure. If (E ,∇) has the good Deligne-Malgrange lattice, it
clearly has the good formal structure. At this moment, the converse is not
clear to the author except for the surface case. (See Section 5.6 of [14].)
However, we do not have to care it at least in the algebraic case, because
we can take resolutions (Theorem 2.12 below).

TOME 59 (2009), FASCICULE 7
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2.2.3. Formal decompositions

For simplicity, let X := ∆n, Di := {zi = 0}, D =
⋃`
i=1 Di and O =

(0, . . . , 0) ∈ X. We set ` := {1, . . . , `}. For any I ⊂ `, we set Ic := ` − I.
We put D(I) :=

⋃
i∈I Di and DI :=

⋂
i∈I Di. Let pI : M(X,D)/H(X) −→

M(X,D)/M(X, Ic) be the naturally defined projection. For any P ∈ D,
let XP , DP , I(P ) and DI(P ) be as in Section 2.2.2.

Let (E ,∇) be a meromorphic flat bundle on (X,D) with the unramifiedly
good Deligne-Malgrange lattice E. We set Irr(∇) := Irr(∇, O). We set
Irr(∇, I) := pI

(
Irr(∇)

)
.

Proposition 2.4. — There exist a neighbourhood U of O in X, and
formal flat decompositions for any I ⊂ `

(2.5) (E,∇)|D̂I∩U =
⊕

b∈Irr(∇,I)

(
IÊb,

I∇̂b

)
satisfying the following:

• Let b̃ ∈ M(X,D) be any lift of b ∈ Irr(∇, I). Then, the following
holds:

(2.6)
(
I∇̂b − db̃

)
· IÊb ⊂ IÊb ⊗

(
Ω1
X

(
logD(I)

)
+ Ω1

X

(
∗D(Ic)

))
• For any I ⊂ J ⊂ `, let pJ,I : Irr(∇, J) −→ Irr(∇, I) denote the

naturally defined map. Then,

(2.7) IÊ
b|D̂J∩U

=
⊕

c∈p−1
J,I

(b)

J Êc.

• The naturally defined map

M(X,D)/M
(
X,D(I(P )c)

)
−→M(XP , DP )/H(XP )

induces the bĳection Irr(∇, I(P )) ' Irr(∇, P ) for any P ∈ D ∩ U ,
and the restriction of (2.5) for I = I(P ) to D̂I(P ) gives the irregular
decomposition at P ∈ U ∩D.

Proof. — See Section 5.7 of [14]. Note that we adopt the simplified defi-
nition of good lattice in this paper. In contrast, in [14], we define the notion
of good lattice by the existence of the decompositions (2.5) satisfying (2.6),
from which the second and third conditions follow by the uniqueness. �

Remark 2.5. — By gluing the decompositions (2.5) with the relation
(2.7), we may take decompositions on D̂(I) in several levels. See Sec-
tion 5.1.2 of [14] for more details. It is useful in the study of asymptotic
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analysis. However, we may NOT have a decomposition on D̂ whose restric-
tion to D` is the same as (2.5) with I = `, in general, as remarked by
Sabbah [20].

2.3. Deligne-Malgrange lattice

2.3.1. Existence theorem due to Malgrange

LetX andD be as in Section 2.2.2. As already mentioned, a meromorphic
flat bundle (E ,∇) on (X,D) may not have the good Deligne-Malgrange
lattice, in general. Instead, Malgrange proved the following.

Theorem 2.6 ([12]). — There exists a unique lattice E ⊂ E such that
(i) E|X−Z is a good Deligne-Malgrange lattice of (E ,∇)|X−Z for some an-
alytic closed subset Z ⊂ D with codimX(Z) > 2, (ii) E is coherent and
reflexive as an OX -module.

He called this lattice the canonical lattice. But, we would like to call it
the Deligne-Malgrange lattice.

Definition 2.7. — Let E be the Deligne-Malgrange lattice of (E ,∇).
Let Z0 be the minimum among the closed analytic subsets of D such that
E|X−Z0 is the good Deligne-Malgrange lattice of (E ,∇)|X−Z0 . Each point
of Z0 is called a turning point of (E ,∇).

Example 2. Let ψ be the rational map from X := C2 to P1 given by
ψ(z, w) := [z : w]. We set D := {z = 0}. Let (E ,∇) be as in Example 1.
We obtain the meromorphic flat bundle (E1,∇1) := ψ∗(E ,∇) on (X,D):

∇1ψ
∗v = ψ∗v

(
0 1
w/z 0

)
· d
(w
z

)
.

Let X ′ := C2 =
{

(ζ, w)}, and let ϕ : X ′ −→ X be given by ϕ(ζ, w) =
(ζ2, w). We set D′ :=

{
ζ = 0

}
.

Let E1 ⊂ E1 be the lattice generated by z ·ψ∗v1 and ψ∗v2. Let E′1 ⊂ ϕ∗E1
be the lattice generated by ζ · ϕ∗ψ∗v1 and ϕ∗ψ∗v2. Let us observe that E1
and E′1 are the Deligne-Malgrange lattices for (E1,∇1) and ϕ∗(E1,∇1),
respectively. Since E1 is the descent of E′1, we have only to check the claim
for E′1.

Let P ∈ D′ − {(0, 0)}, and X ′P be a small neighbourhood of P in X ′.
We set D′P := X ′P ∩D′. For a ∈ M(X ′, D′) and α ∈ R, let L(a, α) denote
OX′(∗D′) · e with a flat connection ∇e = e · (da + α · dz/z). By choosing a
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branch of w1/2 on X ′P , we can take a morphism ψP : X ′P −→ Cζ such that
ϕ ◦ψP = ψ ◦ϕ given by ψP (ζ, w) = ζ ·w−1/2. Then, we have the following
flat decomposition obtained as the pull back of (2.2) via ψP :

(2.8) ϕ∗(E1)|D̂′
P

'
(
L
(2

3
ζ−3w3/2,

1
2

)
⊕ L
(
−2

3
ζ−3w3/2,

1
2

))
|D̂′
P

.

And, it is easy to see that E′1|X′
P

= ψ
∗
PE
′ gives the unramifiedly good

Deligne-Malgrange lattice of ϕ∗(E1,∇1)|X′
P

. Thus, we can conclude that
E′1 is the Deligne-Malgrange lattice for ϕ∗(E1,∇1).

Let us observe that (0, 0) is a turning point, and that the Deligne-
Malgrange lattice is not good in this case. The irregular values of ϕ∗(E ,∇)
are ±ζ−3 · w3/2. When we go around w = 0, the irregular values are ex-
changed, and hence the direct summands in (2.8) are exchanged. Hence,
we can conclude that (0, 0) is a turning point.

Deligne-Malgrange filtered sheaf. Let us explain a slightly refined
notion. We use the notation in Section 2.2.2. If (E ,∇) has the unramifiedly
good Deligne-Malgrange lattice, we can take the lattice aE

DM ⊂ E for any
a = (ai | i ∈ Λ) ∈ RΛ, such that we have a decomposition for each P ∈ D

(aE
DM ,∇)|D̂I(P )

=
⊕

a∈Irr(∇,P )

(aÊ
DM
a , ∇̂a),

such that (i) ∇̂a−dã are logarithmic with respect to aÊ
DM
a , (ii) the eigen-

values α of the residues ResDi(∇̂a − da) satisfy ai 6 Re(α) < ai + 1.
It is called unramifiedly good a-Deligne-Malgrange lattice in this paper.
If (E ,∇) has the good Deligne-Malgrange lattice, we can take the lattice
aE
DM ⊂ E for any a ∈ RΛ, such that the following holds for any P ∈ D:
• Take an appropriate ramified covering ϕ : (X ′P , D′P ) −→ (XP , DP )

such that ϕ∗(E ,∇) has the unramifiedly good Deligne-Malgrange
lattice. Let ei denote the ramification index of ϕ along Di for i ∈
I(P ). Let ϕ∗a :=

(
ei · ai | i ∈ I(P )

)
. Then, aE

DM
|XP is the descent of

unramifiedly good ϕ∗a-Deligne-Malgrange lattice of ϕ∗(E ,∇).
In the general case, we have the lattice aE

DM ⊂ E for each a ∈ RΛ such
that (i) aE

DM
|X−Z is the good a-Deligne-Malgrange lattice of (E ,∇)|X−Z ,

where Z is a closed analytic subset of D with codimX(Z) > 2, (ii) aE
DM

is coherent and reflexive as an OX -module. In the case a = (0, . . . , 0), we
prefer the symbol �EDM , which is the same as the Deligne-Malgrange lat-
tice in the previous sense. The increasing sequence of OX -modules EDM∗ :=(
aE
DM
∣∣a ∈ RΛ) is associated to (E ,∇), which is called the Deligne-

Malgrange filtered sheaf. (See also Section 5.1.5 of [14].)
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If we are given a morphism of meromorphic flat connections (E1,∇1) −→
(E2,∇2) on (X,D), we have the induced morphisms of a-Deligne-Malgrange
lattices, and hence EDM1∗ −→ E

DM
2∗ .

Remark 2.8. — In general, it is important to consider this kind of fil-
tered objects. As remarked below, the stability condition is defined for such
filtered objects on projective varieties, and Kobayashi-Hitchin correspon-
dence is formulated as the equivalence between stability and existence of
a nice metric adapted to this filtrations. See [15], [18] and [14] for more
details.

2.3.2. Some applications of the existence of Deligne-Malgrange lattice

Algebraicity of meromorphic flat bundles. One of the most im-
portant immediate consequences is the algebraicity of meromorphic flat
bundles on a projective variety. Namely, let (E ,∇) be a meromorphic flat
bundle on a projective variety X in the sense of complex analytic geome-
try. By GAGA, the Deligne-Malgrange lattice E of (E ,∇) is OX -coherent
in the senses of both complex analytic geometry and algebraic geometry.
Hence, we can conclude that (E ,∇) is algebraic, as was observed in [12].

Semisimplicity and poly-stability. Let X be a smooth projective
variety, and let D be a simple normal crossing hypersurface with the ir-
reducible decomposition D =

⋃
j∈Λ Dj . Let L be any ample line bundle

on X. In general, we have the notion of µL-stability, µL-semistability,
and µL-polystability for filtered flat sheaf (E∗,∇) on (X,D). Namely, the
parabolic slope µL(E∗) is attached to any filtered sheaf, and (E∗,∇) is
called µL-stable, if and only if µL(F ∗) < µL(E∗) holds for any subobject
(F ∗,∇) ⊂ (E∗,∇) such that 0 < rankF ∗ < rankE∗. (See Section 17.1 of
[14], for example.)

We can observe µL(EDM∗ ) = 0 for any meromorphic flat bundles on
projective varieties. Hence, (EDM∗ ,∇) is µL-stable, if and only if (E ,∇) is
simple, i.e., there does not exist any non-trivial (E ′,∇′) ⊂ (E ,∇) such that
0 < rank E ′ < rank E . (We can find this observation in Sabbah’s work [19].)
Note that we have the Mehta-Ramanathan type theorem for µL-stability
condition, and hence simplicity. (See Section 17.2 of [14].)

Proposition 2.9. — (E ,∇) is µL-stable if and only if the restriction
(E ,∇)|Y is µL-stable for a sufficiently ample generic hypersurface Y . Hence,
(E ,∇) is simple if and only if the restriction (E ,∇)|Y is simple.
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Remark 2.10. — In this paper (E ,∇) is called simple if there are no
non-trivial meromorphic flat sub-connections. In the context of Mehta-
Ramanathan type theorem, “simplicity” is also often used in the sense
that any non-trivial automorphism is a constant multiplication.

2.4. Resolution of turning points

To explain the motivation for the problem, we briefly recall classical as-
ymptotic analysis of meromorphic flat bundles on curves. Let X := ∆ and
D := {0}. Let (E ,∇) be a meromorphic flat bundle on (X,D). Assume
that the Deligne-Malgrange lattice E is unramified, and hence we have the
formal decomposition (E,∇)|D̂ =

⊕
a∈Irr(∇)(Êa, ∇̂a). This is just formal

and not convergent, in general. So we may not extend it to the decompo-
sition in a neighbourhood of D. But, we can lift it to a flat decomposition
on small sectors of X −D. Such a lifting is not unique, and the ambiguity
leads us to Stokes structure. (See a standard textbook [23], for example.)

Majima [11] initiated the systematic study on asymptotic analysis for
meromorphic flat bundles on higher dimensional varieties, and Sabbah [20]
revisited it with a different formulation. Briefly speaking, they established
the higher dimensional generalization of the lifting of formal decomposition
to flat decompositions on multi-sectors, and they studied the classification
of meromorphic flat bundles. However, we need a formal decomposition
in the beginning. In this sense, the existence of turning points prevents
us from applying their general result. To deal with this obstacle, Sabbah
proposed a conjecture which we state in a slightly generalized form.

Conjecture 2.11. — There exists a resolution of turning points for
(E ,∇). Namely, there exists a birational morphism ϕ : (X̃, D̃) −→ (X,D)
such that

(i) X̃ − D̃ ' X −D,
(ii) ϕ∗(E ,∇) has a good Deligne-Malgrange lattice.

Let us look at Example 2. We take a blow up X̃ = C̃
2

of X = C2 at
(0, 0). Then, we obtain the morphism ψ̃ : X̃ −→ P1, and the pull back
ψ̃∗(E ,∇). Since ψ is only a rational morphism which is not determined
at (0, 0), the pull back ψ∗(E ,∇) may have a bad property at (0, 0). But,
ψ̃ is a morphism, and it is easy to observe that ψ̃∗(E ,∇) has the good
Deligne-Malgrange lattice.

One of the main theorems in this survey is the following.
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Theorem 2.12 (Theorem 19.2.1 and Corollary 22.5.2 of [14]). — If X
is proper algebraic, we can take a resolution of turning points for (E ,∇).

Remark 2.13. — Kedlaya [8] established it without the algebraicity as-
sumption in the case dimX = 2.

3. Harmonic bundle

Let us recall the classical theorem due to Corlette.

Theorem 3.1 ([4]). — Let X be a complex projective manifold. Let
(E,∇) be a flat bundle. Then, the following conditions are equivalent.

• (E,∇) is semisimple in the category of flat bundles on X.
• There exists a pluri-harmonic metric h of (E,∇).

This is generalized to a characterization of semisimplicity for meromor-
phic flat bundles on projective varieties by the existence of pluri-harmonic
metric with some nice property around singularity, which we would like to
explain.
√
−1R-good wild harmonic bundle. Let X and D be as in Subsec-

tion 2.2.2. Let (E,∇, h) be a harmonic bundle on X − D. We have the
associated Higgs field θ. We say that (E,∇, h) is an unramifiedly

√
−1R-

good wild harmonic bundle on (X,D), if the following holds for any P ∈ D.
• Let (XP , z1, . . . , zn) be a small coordinate neighbourhood of P in
X such that D∩XP =

⋃`
i=1{zi = 0} =: DP . There exist a good set

of irregular values Irr(θ, P ) ⊂M(XP , DP )/H(XP ) and a decompo-
sition

(3.1) (E, θ)|XP−DP =
⊕

a∈Irr(θ,P )

(Ea, θa),

such that the eigenvalues of θa − dã are of the following form∑̀
i=1

αi
dzi
zi

+ τ,

where ã ∈M(XP , DP ) is a lift of a, αi ∈
√
−1R, and τ is a multi-

valued holomorphic one form.
We say that (E,∇, h) is a

√
−1R-good wild harmonic bundle, if the fol-

lowing holds for any P ∈ D:
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• There exist a small neighbourhood XP of P and a ramified cov-
ering ϕP : (X ′P , D′P ) −→ (XP , DP ) such that ϕ∗P (E,∇, h) is an
unramifiedly

√
−1R-good wild harmonic bundle on (X ′P , D′P ).

See Section 11.1 of [14] for a different formulation.

Prolongment of
√
−1R-good wild harmonic bundle. Let X and

D be as above. Let E be a holomorphic vector bundle on X − D with a
hermitian metric h. For any holomorphic local coordinate (U, z1, . . . , zn) of
X such that U ∩D =

⋃`
i=1{zi = 0}, we put

PE(U) :=
{
f ∈ E(U \D)

∣∣∣ |f |h = O
(∏̀
i=1
|zi|−N

)
∃N > 0

}

P0E(U) :=
{
f ∈ E(U \D)

∣∣∣ |f |h = O
(∏̀
i=1
|zi|−ε

)
∀ε > 0

}
.

By taking the sheafification, we obtain an OX(∗D)-module PE and an
OX -module P0E. Good Deligne-Malgrange lattice naturally appears in the
study of wild harmonic bundles, due to the following theorem.

Theorem 3.2. — Let (E,∇, h) be a
√
−1R-good wild harmonic bun-

dle.
• (PE,∇) is a meromorphic flat bundle on (X,D).
• P0E is the good Deligne-Malgrange lattice of PE.

Proof. — See Section 11.4 of [14] for the claims (i) P0E is locally free,
(ii) ∇ is meromorphic, (iii) (P0E,∇) is a good lattice of (PE,∇), which
particularly imply the first claim. By using the comparison of the KMS-
spectra in Section 12.2 of [14], we can show that P0E is the good Deligne-
Malgrange lattice. �

We give a refined statement. Let D =
⋃
j∈Λ Dj be the irreducible decom-

position. Let (U, z1, . . . , zn) be any holomorphic local coordinate of X such
that U ∩ D =

⋃`
i=1{zi = 0}. For i = 1, . . . , `, let j(i) ∈ Λ be determined

by Dj(i) ∩ U = {zi = 0}. Let E be a holomorphic vector bundle with a
hermitian metric h. For any a = (aj | j ∈ Λ) ∈ RΛ, we put

PaE(U) :=
{
f ∈ E(U \D)

∣∣∣ |f |h = O
(∏̀
i=1
|zi|−ε−aj(i)

)
∀ε > 0

}
.

By taking the sheafification, we obtain an OX -module PaE.

Theorem 3.3. — If (E,∇, h) is a
√
−1R-good wild harmonic bundle,

the filtered sheaf P∗E =
(
PaE
∣∣a ∈ RΛ) is equal to the Deligne-Malgrange
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filtered sheaf associated to the meromorphic flat bundle (PE,∇). Each
PaE is the a-good Deligne-Malgrange lattice.

Proof. — See Sections 11.4 and 12.2 of [14]. �

Characterization of semisimplicity. Let us assume moreover that
X is proper and algebraic. Let (E ,∇) be a meromorphic flat bundle on
(X,D). According to Theorem 2.6, there exists a closed subset Z ⊂ D

with codimX(Z) > 2 such that (E ,∇)|X−Z has a good Deligne-Malgrange
lattice. The following theorem is the other main result in this survey.

Theorem 3.4. — The following conditions are equivalent.
• (E ,∇) is semisimple in the category of meromorphic flat bundles.
• (E,∇) := (E ,∇)|X−D has a pluri-harmonic metric h such that (i)

(E,∇, h) is a
√
−1R-good wild harmonic bundle on (X−Z,D−Z),

(ii) PE|X−Z = E|X−Z .
• (E,∇) := (E ,∇)|X−D has a pluri-harmonic metric h such that
P∗E|X−Z = EDM∗|X−Z , where EDM∗ denotes the Deligne-Malgrange
filtered sheaf associated to (E ,∇).

Such a pluri-harmonic metric is unique up to positive constant multiplica-
tion on each simple summand.

Proof. — We give only some remarks. We can easily observe that the
third condition follows from the second condition, by using Theorem 3.3.
Note that the semisimplicity is preserved by birational morphism. As men-
tioned in Subsection 2.3.2, the semisimplicity of (E ,∇) on (X,D) is equiv-
alent to the polystability of (EDM∗ ,∇), if X is projective. Hence, we obtain
the first condition from the third one, by using Chow’s lemma and the
result in Section 17.6.1 of [14].

We give a complementary remark on an argument to show that the first
condition implies the second condition. Assume that (E ,∇) is semisimple.
By using Theorem 19.2.3 and Proposition 22.5.1 of [14], we can take a closed
analytic subset Z ′ ⊂ D and a pluri-harmonic metric h of (E ,∇) such that (i)
(E,∇, h) is

√
−1R-good wild on (X−Z ′, D−Z ′), (ii) PE|X−Z′ = E|X−Z′ .

Let us show that we may have Z = Z ′. We set Z0 := Z ∩ Z ′.
For any point P ∈ Z \Z ′, (E,∇, h) is

√
−1R-good wild around P by our

choice of Z ′. For any point P ∈ Z ′ \ Z, we can conclude that (E,∇, h) is√
−1R-good wild around P by using the results in Section 17.5.1 of [14].

Hence, (PE|X−Z0 ,∇) is a meromorphic flat bundle with the good Deligne-
Malgrange lattice P0E|X−Z0 . By using the reflexivity of the Deligne-Mal-
grange lattice, we may conclude that P0E|X−Z0 is the Deligne-Malgrange
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lattice of E|X−Z0 , and PE|X−Z0 = E|X−Z0 . Thus, we obtain the second
condition from the first condition. �

Remark 3.5. — Let X and D be as above. Let (E ,∇) be a meromorphic
flat bundle on (X,D). If it is semisimple, we have the pluri-harmonic metric
h as in the above theorem, and hence the corresponding Higgs field θ. We
say that a point P ∈ D is a turning point of θ, if (E,∇, h) does not have
a decomposition as in (3.1) around P . By the argument in the proof of the
above theorem, we can observe that the turning points of (E ,∇) coincide
with the turning points for θ.
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