
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Alexandru BUIUM & Santiago R. SIMANCA

Arithmetic differential equations in several variables
Tome 59, no 7 (2009), p. 2685-2708.

<http://aif.cedram.org/item?id=AIF_2009__59_7_2685_0>

© Association des Annales de l’institut Fourier, 2009, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2009__59_7_2685_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
59, 7 (2009) 2685-2708

ARITHMETIC DIFFERENTIAL EQUATIONS
IN SEVERAL VARIABLES

by Alexandru BUIUM & Santiago R. SIMANCA (*)

Abstract. — We survey recent work on arithmetic analogues of ordinary and
partial differential equations.

Résumé. — On présente des résultats récents sur les analogues arithmétiques
des équations différentielles ordinaires et aux dérivées partielles.

1. Introduction

In this paper, we survey some of the basic ideas, results, and applications
of the theory of arithmetic ordinary differential equations [6, 7, 8, 9, 11],
and we explain how some of these ideas can be extended to the case of
arithmetic partial differential equations [13, 14, 15, 12].

1.1. Classical analogies between functions and numbers

The analogies between functions and numbers played a key role in the
development of modern number theory. The most elementary example of
such an analogy is that between the ring C[x] of polynomial functions with
complex coefficients and the ring Z of integers. In C[x], any non-constant
polynomial is, in a unique way, a product of linear factors (the fundamen-
tal theorem of algebra), whereas in Z, any number different from −1, 0, 1
is, in a unique way and up to a sign, a product of prime numbers (the
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2686 Alexandru BUIUM & Santiago R. SIMANCA

fundamental theorem of arithmetic). This makes the primes in Z the ana-
logues of the linear polynomials in C[x], and the set {−1, 0, 1} in Z the
analogue of the field C of constant polynomials in C[x]. This analogy runs
deeper. Indeed the finite extensions of the field C(x) of rational functions,
called function fields, correspond to complex algebraic curves and should
be viewed as analogues of number fields, which are the finite extensions of
the field Q of rational numbers. The fundamental groups π1(X) of com-
plex algebraic curves X have, as arithmetic analogues, the absolute Galois
groups G(F a/F ) of number fields F . The divisor class groups Cl(X) of
complex algebraic curves have, as arithmetic analogues, the divisor class
groups Cl(F ) of the rings of integers in number fields. The intersection
theory on complex algebraic surfaces fibered over curves has, as an arith-
metic analogue, the Arakelov intersection theory on curves over number
fields. Cohomology of foliated spaces has a conjectural arithmetic analogue
proposed by Deninger [16]. All of these examples of analogies are in some
sense at the level of algebraic topology. But we could ask if the analogies
between functions and numbers manifest themselves at other levels as well,
such as that of differential calculus and differential equations, for instance.

1.2. Arithmetic analogue of differential equations

Going back to the analogy between the polynomial ring C[x] and the
integers Z, we may ask for an analogue of differential calculus and ordinary
differential equations in which the derivative operator ∂x := d

dx : C[x] →
C[x] with respect to x is replaced by an appropriate operator δp : Z → Z
playing the role of “derivative with respect to (a fixed prime) p.” Such a
theory was proposed by the first author in [6], where δp was taken to be
the Fermat quotient operator

(1.1)
Z

δp−→ Z

n 7−→ δpn := n− np

p
.

Notice that for p odd, we have that δpn = 0 if, and only if, n ∈ {−1, 0, 1};
this is consistent with the idea that {−1, 0, 1} plays the role of “set of
constants” in Z.

The theory in [6] was further developed by the first author in a series
of papers (cf. the monograph [9] for an account of this). Several purely
number theoretic applications of this theory have been found, such as
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ARITHMETIC DIFFERENTIAL EQUATIONS 2687

(1) an effective uniform bound for the number of torsion points on
curves over number fields [7],

(2) results on congruences of classical modular forms [8, 1, 20, 12],
(3) finiteness results for points on elliptic curves arising from special

points on modular and Shimura curves [10, 11].

With this theory in place, we could ask for a generalization to the par-
tial differential case. Starting all over again with our prototypical analogy
between C[x] and Z, we could ask for the arithmetic analogue of the ring
of polynomials C[x1, x2] ' C[x]⊗C C[x] in two variables. According to the
“myth of the field F1 with one element” (cf. [28, 24, 2, 16] and the bibli-
ographies therein), the analogue of C[x1, x2] should be a ring of the form
“Z⊗F1 Z.” The question of considering the latter is very worthwhile. Indeed,
one possible approach to the proof of the Riemann hypothesis could be to
imitate Weil’s proof of its analogue for curves X over finite fields, such as
Fp; Weil’s proof is based on the analysis of the two-fold product X ×Fp X

and hence has in its background the ring Fp[x1, x2]. This would make the
search for “Z⊗F1 Z” significant.

A different viewpoint on the two variable theory was suggested in [15].
Instead of viewing the elusive “Z⊗F1 Z” as an analogue of C[x1, x2], the au-
thors proposed to look at the triple (Z, δp1 , δp2) as an analogue of (C[x1, x2],
∂x1 , ∂x2), where ∂xi := ∂

∂xi
, i = 1, 2, and

(1.2)

Z
δp1 ,δp2−→ Z

n 7−→
δp1n := n− np1

p1
,

δp2n := n− np2

p2
.

This is consistent with a suggestion of J. Borger to see geometry over
lambda rings as the possible incarnation of the geometry over F1; cf. also
the first author’s suggestion, in the “one prime case,” in the Introduction
of [9]. For the theory of lambda rings and the related theory of Witt rings
we refer to [19, 21, 30, 2, 3].

There is yet another way of extending the ordinary theory to the partial
differential case; cf. [13, 14]. In this approach, the analogue of (C[x1, x2], ∂x1 ,
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2688 Alexandru BUIUM & Santiago R. SIMANCA

∂x2) is the triple (Z[q], δp, δq), where Z[q] is a polynomial ring in the inde-
terminate q, and

(1.3)

Z[q] δp,δq−→ Z[q]

∑
anq

n 7−→
δp(
∑
anq

n) := (
∑
anq

pn)− (
∑
anq

n)p

p
,

δq(
∑
anq

n) := q
d

dq

(∑
anq

n
)

=
∑

nanq
n .

We shall refer to the cases (1.1), (1.2), (1.3) above as the cases of 0 + 1,
0 + 2, and 1 + 1 variables, respectively. More generally, all of these cases
are subsumed by the case of d1 + d2 variables, where d1 is the number
of arithmetic variables and d2 is the number of geometric variables; cf.
section 2.2. Here, the variables we refer to are the independent variables; in
our discussion below, besides these, there will be yet another dimensional
parameter, the number of dependent variables appearing in our differential
equations.

Before going any further, it is worth stressing the important point that
the paradigm of arithmetic differential equations that we are going to ex-
plain here is quite different from the paradigm of Dwork’s theory of dif-
ferential equations over p-adic fields [17]. The easiest way to understand
the difference between the two theories is to look at the ordinary case. In
Dwork’s theory of ordinary differential equations, the solutions to the equa-
tions are functions u = u(x) (usually p-adic analytic functions u : Zp → Zp
or, more generally, u : Cp → Cp), and the operator applied to them is
the usual derivation operator u 7→ ∂xu = du

dx . In the theory of arithmetic
differential equations (which we are explaining here), the solutions to the
equations are numbers (typically p-adic numbers a ∈ Zp or, more generally,
a ∈ Ẑurp , cf. our discussion later in the paper), and the operator applied
to them is a Fermat quotient operator a 7→ δpa. In spite of this funda-
mental difference between these two paradigms, some crystalline aspects of
Dwork’s theory do play a role in our theory, as tools in some of our proofs.

1.3. Plan of the paper

In §2, we start by reviewing the framework of jet spaces in differential,
analytic, and algebraic geometry. We then proceed to define the arithmetic
analogues of these spaces; cf. [6, 9] for the ordinary case. In §3, 4, and 5, we
examine the main results in the case of 0+1 variables [6, 9], 0+2 variables
[15], and 1+1 variables [13]. In §6, we explain some difficulties in extending
the theory to the case of 1 + 2 variables.
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ARITHMETIC DIFFERENTIAL EQUATIONS 2689

2. Main concepts

2.1. Classical differential equations

For a (smooth, analytic, or algebraic) manifold M , we denote by O(M)
the ring of complex valued (smooth, analytic, or algebraic) functions on M .
Here, smooth manifolds are assumed to be real, while analytic and algebraic
manifolds are assumed to be complex. Given a submersion M → N of
(smooth, analytic, or algebraic) manifolds with dimN = d, dimM = d+d′,
let us assume, for simplicity, that we have global (smooth, analytic, or étale)
coordinates x on N and (x, y) on M , such that the submersion mapping
M → N is given by (x, y) 7→ x. Here x = (x1, . . . , xd), y = (y1, . . . , yd′),
where we view d as the number of independent variables, and we view d′ as
the number of dependent variables. We can consider jet spaces Jr(M/N)
of various orders r = (r1, . . . , rd) ∈ Zd>0, with local coordinates

{x, ∂sy : s 6 r} ,

where ∂s := ∂s1
x1
. . . ∂sdxd , s = (s1, . . . , sd), and s 6 r means that si 6 ri

for all i. A classical differential equation on M of order r is, by definition,
a (smooth, analytic, or algebraic) function on Jr(M/N), that is to say,
an element of O(Jr(M/N)). In the smooth or analytic case, and in the
coordinates above, a differential equation is simply a (smooth or analytic)
function

f(x, ∂sy) .

For each i, 1 6 i 6 d, we have an operator

(2.1) δxi : O(Jr(M/N))→ O(Jr+ei(M/N)) ,

where ei = (0, . . . , 1, . . . , 0) with the 1 on the i-th component; by definition,
in coordinates,

δxi := ∂

∂xi
+
∑
s,j

(∂s+eiyj)
∂

∂(∂syj)
.

Let M(N) denote the set of all (smooth, analytic, or algebraic) sections
of M → N . Any differential equation f ∈ O(Jr(M/N)) induces a map of
sets, still denoted by f ,

f : M(N)→ O(N) ,

which can be referred to as the (nonlinear) partial differential operator
attached to f . The sections in M(N) sent by f to 0 are interpreted as the

TOME 59 (2009), FASCICULE 7
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“solutions of f = 0.” In the smooth or analytic case, sections are given by
functions x 7→ (x, u(x)), and the map M(N)→ O(N) is given by

u = u(x) 7→ fu = f(x, ∂s(u(x))) .

There is a less refined, more familiar version of the above formalism in
which, for n ∈ Z>0, we consider the jet spaces Jn(M/N) of order n, with
local coordinates

{x, ∂sy : |s| 6 n} ,

where |s| := s1 + · · ·+ sd.
The constructions above can be globalized appropriately. Then the main

problems that arise in the theory are
(1) the classification of all differential equations (possibly invariant un-

der various group actions on M “over N”), and
(2) the description, for any such an equation f , of the space of solutions

of f = 0.
For the latter problem, we may hope to parameterize solutions by Cauchy

data along a given non-characteristic submanifold. But of course, even if
we start with smooth initial data, the solutions could develop singularities,
and the theory is soon pushed into the non-smooth realm of distributions.

If M → N is a group in the category of manifolds over N (that is to
say, there exists a multiplication µ : M ×N M → M with the expected
properties) then, in the smooth or analytic case, the differential equation
f will be called linear if for any open set N ′ ⊂ N , the induced nonlinear
differential operator f : M(N ′)→ O(N ′) is a group homomorphism. (Here,
M(N ′) is the set of sections of M → N above N ′ and O(N ′) is viewed as
a group with the usual addition of functions.) There is a corresponding
definition in the algebraic case. In all cases, the solutions of f = 0 form a
subgroup of M(N). The most familiar case of this paradigm is that where
M is a vector bundle over N ; in this case the linear differential equations
in the sense above coincide with what is classically understood by linear
partial differential operators. A subclass of these is constituted by the class
of operators u 7→ Pu with constant coefficients. Among these, the standard
examples are (in the case of d = 2 variables and order n 6 2):

(2.2)

Pu = ∂x1u− ∂x2u , the convection operator ,

Pu = ∂x1u− ∂2
x2
u , the heat operator ,

Pu = ∂2
x1
u− ∂2

x2
u , the wave operator ,

Pu = ∂2
x1
u+ ∂2

x2
u , the Laplace operator .
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Besides vector bundles, we can consider other groups M over N , such as
multiplicative tori M = N×T → N (where T = C××· · ·×C×), or families
of compact complex tori M → N (for example, abelian varieties). In the
case of families of abelian varieties, for instance, there is a fundamental
construction of differential equations due to Manin [25], which played a
key role in his proof of the function field analogue of the Mordell’s conjec-
ture. The case d = d′ = 1 of this construction (which Manin attributes to
Fuchs) says that if N is an affine algebraic curve (equipped with an étale
coordinate x, to simplify), and M → N is a smooth projective morphism
with a section whose fibers are elliptic curves, then there is a non-zero or-
der 2 differential equation ψ2 ∈ O(J2(M/N)) that is linear in the sense
of our definition above. Here and below, an upper index in a differential
equation, like the 2 in ψ2, indicates the order of the corresponding equa-
tion. (N.B. The expression for ψ2 in the affine coordinates of the cubic
defining the family of elliptic curves is far from being “linear” in the naive
sense!) This differential equation ψ2 is usually referred to as the Manin
map. A different construction of such maps (including the higher dimen-
sional case) was given in [4]. By the way, in the “degenerate” situation
where M = N ×E for E an elliptic curve, there is a natural order 1 differ-
ential equation ψ1 ∈ O(J1(M/N)) given by the “logarithmic derivative.” Of
course, an analogue of the latter exists also in the case M = N×C×, where
the corresponding differential equation ψ1 ∈ O(J1(M/N)) induces the dif-
ferential operator ψ1 : M(N) = O(N)× → O(N) defined by ψ1u = ∂xu/u.
There are analogues of Manin maps (and of logarithmic derivatives) in the
case of several (independent and dependent) variables. These can be used
to construct analogues of the operators (2.2) for the corresponding groups
M → N .

Let us mention that there is a notion of linearity that is related to groups
in a less obvious way; indeed, we can talk about linear partial differential
operators onM = N×S, where S is a modular curve or a Shimura curve (or,
more generally, a moduli space of appropriate abelian varieties). Cf. [14].
We will not discuss this in the present paper.

In what follows, we would like to consider an arithmetic analogue of the
theory above.

2.2. Arithmetic differential equations

Let Q = {q1, . . . , qd1} be a set of indeterminates and P = {p1, . . . , pd2} be
a set of primes in Z. The analogue of the manifold N in the previous section

TOME 59 (2009), FASCICULE 7
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is the scheme SpecA, where A = Z[q1, . . . , qd1 ]. Consider the operators
δP = {δp1 , . . . , δpd2

} and δQ = {δq1 , . . . , δqd1
} given by

(2.3)

Z[q1, . . . , qd1 ]
δpi ,δqj−→ Z[q1, . . . , qd1 ]

∑
anq

n 7−→
δpi(
∑
anq

n) := (
∑
anq

pin)− (
∑
anq

n)pi
pi

,

δqj (
∑
anq

n) := qj
∂

∂qj

(∑
anq

n
)
,

where d1 is the number of geometric variables q1, . . . , qd1 , d2 is the number
of arithmetic variables p1, . . . , pd2 , and for a multi-index n = (n1, . . . , nd1),
we set qn := qn1

1 · · · q
nd1
d1

. We shall refer to the situation above as the case
of d1 + d2 variables. From this perspective, the case of d+ 0 variables can
be referred to as the purely geometric case, and corresponds to the classical
case of differential calculus in d variables. By the same token, the case of
0 + d variables can be referred to as the purely arithmetic case.

The analogue of the manifold M is any scheme of finite type X over A.
The analogue of the set M(N) of sections of M → N is the set X(A) of
A-points of the scheme X. Let us assume firstly that X = SpecB is affine,
with B = A[y]/(f), y a tuple of variables and f a tuple of polynomials
in A[y]. For multi-indices α ∈ Zd2

>0, β ∈ Zd1
>0, we set δαP = δα1

p1
. . . δ

αd2
pd2

,
δβQ = δβ1

q1
. . . δ

βd1
qd1

, and consider the indeterminates δαPδ
β
Qy. The operators

(2.3) can be extended naturally to operators δpi , δqj on the polynomial ring
A[δαPδ

β
Qy : α, β > 0]; to do so, we need to use the natural commutation

relations among these operators on A. Then, we define the jet space of X
of order (a, b) ∈ Zd2

>0 × Zd1
>0 by

J
a,b
P,Q(X) = J

a,b
P,Q(X/A) = Spec

A[δαPδ
β
Qy : α 6 a, β 6 b]

(δαPδ
β
Qf : α 6 a, β 6 b)

.

There are induced operators

δpi : O(Ja,bP,Q(X))→ O(Ja+ei,b
P,Q (X)) ,

and
δqj : O(Ja,bP,Q(X))→ O(Ja,b+ejP,Q (X)) ,

which are analogous to (2.1). In the purely geometric case of d+0 variables,
this construction goes back to Ritt and Kolchin [23], and was the basis for
the first author’s work in [4, 5] in Diophantine geometry over function fields.
The purely arithmetic case of 0 + 1 variables was introduced in [6]. The
cases of 1+1 and 0+d variables (d > 2) were introduced in [13] and [15, 2],
respectively. We refer to these papers for details of the construction above.
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There are various variants of these definitions.
For instance, for n ∈ Z>0, we define the jet space of order n by

JnP,Q(X) = JnP,Q(X/A) = Spec
A[δαPδ

β
Qy : |α|+ |β| 6 n]

(δαPδ
β
Qf : |α|+ |β| 6 n)

.

Next, we can take (and later on will) other rings A in all of the definitions
above; for instance, we can replace the ring of polynomials by rings obtained
from it by taking étale extensions and/or completing with respect to various
ideals.

In the purely geometric case (d + 0 variables), there is a variant of the
construction above due to Vojta [29], in which the derivations δqj are re-
placed by Hasse-Schmidt derivations {“δnqj/n!”;n > 0}. Notice that the
Hasse-Schmidt derivations are still, morally, “differentiations in geometric
directions,” so Vojta’s jet spaces do not involve “differentiations in arith-
metic directions.” In particular, they do not involve operations that play
the role of our δpis.

Going back to our jet spaces J
a,b
P,Q(X), at this point we can attempt

to define differential equations on X as elements of the rings of global
functions O(Ja,bP,Q(X)). Such a definition works well in the purely geometric
case of d + 0 variables, where it can be generalized to nonaffine Xs and
leads to an interesting theory with applications to diophantine results over
function fields [4, 5]. In particular, in the case of 1+0 variables, we have the
natural Manin maps ψ2 ∈ O2(J2

q (X)) for any elliptic curve X over A. For
the multiplicative group Gm, or for elliptic curves X over A, there are also
analogues ψ1 of logarithmic derivatives that are defined over the ring of δq-
constants of A. But the definition of differential equations suggested above
is too naive to work in the case of d1 + d2 variables where d2 > 1. Indeed,
with this definition, if d2 > 1, in most cases there are no “interesting”
differential equations (in particular, for instance, there are no non-trivial
arithmetic analogues of linear differential operators!) Later on, however, we
shall be able to introduce a less naive definition of differential equations.
This will allow us to pass to the case where X is not necessarily affine
and then to introduce, for X equal to a group scheme, the notion of linear
differential equation on X, in which case the solutions form a group. There
is also a notion of linearity of differential equations in the case where X is
a modular or a Shimura curve (which we are not going to review in this
paper). Up to a point, we can consider these matters in general, but it will
be much more convenient to examine these issues separately in the cases
of 0 + 1, 0 + 2, and 1 + 1 variables. In the case of 0 + 2 variables, we will
encounter analogues of the Laplace operator, while in the case of 1 + 1

TOME 59 (2009), FASCICULE 7
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variables, we will encounter analogues of the convection, heat, and wave
equations. The cases of 0 + 2 and 1 + 1 variables can be easily generalized
to the cases of 0 + d and d+ 1 variables respectively. However, even in the
case of 1 + 2 variables, new ideas seem to be required to make the theory
work.

3. 0 + 1 variables

This theory was introduced in [6]. We assume that P = {p} consists of
one prime p > 5, and that Q = ∅. In this setting, the most natural variant
of the theory is that in which we take A to be the ring R := Ẑurp obtained
by p-adically completing the maximum unramified extension of the ring
of p-adic integers. (Here and below, for a fixed prime p, we denote by ̂
the p-adic completion of a ring or a scheme.) The elements of R can be
uniquely represented as power series

∑
n>0 ξnp

n, where the ξns are either
zero or roots of unity of order prime to p. The collection consisting of zero
and the roots of unity of order prime to p will be called the monoid of
constants of R. The ring R has a well-known automorphism, referred to as
the lift of Frobenius, defined by

R
φ−→ R∑

ξnp
n 7−→ φ(

∑
ξnp

n) =
∑
ξpnp

n .

We consider the “Fermat quotient operator” δ = δp : R→ R defined by

δa = φ(a)− ap

p
.

Note that a. = 0 if, and only if, a is in the monid of constants.
For any affine scheme of finite type X over R, we consider the jet spaces

Jnp (X), n ∈ Z>0 and we consider the formal schemes Jn(X) = Jnp (X) =
Jnp (X)̂ , the p-adic completions of the jet spaces. It is then a fact that,
if X is a scheme of finite type over R, and if X =

⋃
Xi is an affine open

cover, then the formal schemes Jn(Xi) naturally glue together to give a
formal scheme Jn(X), the p-jet space of X of order n [6, 7]. The reduction
mod p, Jn(X) ⊗ R/pR, of these p-jet spaces coincide with the Greenberg
transforms of X [18]. But notice that the Fermat quotient operators δ :
O(Jn(X))→ O(Jn+1(X)), which are the most salient feature of our theory,
do not survive after reduction mod p, that is, they do not survive on the
Greenberg transforms. We define a differential equation on X to be a formal
function f ∈ O(Jn(X)). Any such equation defines a map of sets, referred

ANNALES DE L’INSTITUT FOURIER
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to as the associated (nonlinear) differential operator, f : X(R) → R. The
set f−1(0) ⊂ X(R) is the set of solutions of f (or of f = 0). If X is a group
scheme over R, and f is a differential equation such that the operator
f : X(R) → R is a homomorphism, we say that f is linear, or that f is a
δ-character.

There is also a natural concept of linear differential equation (operator)
in the context of modular and Shimura curves [8, 9]. This leads to a theory
of what we call differential modular forms. We will not touch this subject in
this paper, although Theorem 3.3 below is an example of what this theory
can produce.

We now discuss some results about δ-characters. We start by noticing
that the logarithmic derivatives in the purely geometric case have an arith-
metic analogue:

Theorem 3.1. — [6]
(1) On the multiplicative group Gm over R there is a non-zero δ-

character ψ1 : Gm(R) = R× → R of order 1, unique up to mul-
tiplication by an an element of R; it is given by

ψ1u =
∑
n>1

(−1)n−1 p
n−1

n

(
δu

up

)n
.

(2) If E is an elliptic curve over R that has ordinary reduction and is a
canonical lift of its reduction, then there is a non-zero δ-character
ψ1 : E(R) → R of order 1, unique up to multiplication by an
element of R.

More remarkably, there is an arithmetic analogue of the Manin map:

Theorem 3.2. — [6] If E is any elliptic curve over R, then there is a
non-zero δ-character ψ2 : E(R) → R of order 2 whose group of solutions
contains ∩npnE(R) as a subgroup of finite index.

There is a modular analogue of this that can be roughly stated as follows:

Theorem 3.3. — [8] If S is a modular or a Shimura curve over R,
then there exists a Zariski open set S† ⊂ S and a differential operator
f [ : S†(R) → R of order 1, whose set of solutions is exactly the set of CL
(canonical lift) points.

Theorems 3.2 and 3.3 were recently applied to prove a finiteness result
in diophantine geometry over local fields:

Theorem 3.4. — [11] Let E be an elliptic curve and S a modular curve
over Q. Let Φ : X → E and Π : X → S be non-constant morphisms from
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a curve X over Q. Let p be a sufficiently large prime, let R = Ẑurp , and
consider the induced maps Φ : X(R) → E(R) and Π : X(R) → S(R). Let
CL ⊂ S(R) be the set of CL (canonical lift) points. Then there exists a
constant cp depending on p such that for any subgroup Γ 6 E(R) with
r := rank Γ := dimQ(Γ ⊗ Q) < ∞, the set Φ−1(Γ) ∩ Π−1(CL) is finite of
cardinality at most cppr.

The constant cp can be made entirely explicit if Π is the identity and Φ
is a modular parametrization. A stronger result is actually true, in which
r = rank Γ is replaced by

r := dimFp

(
Γ

Γ ∩ (E(R)tors + pE(R))

)
.

Theorem 3.4 has an analogue over number fields:

Theorem 3.5. — [10] Let E be an elliptic curve and S a modular curve
over Q. Let Φ : X → E and Π : X → S be non-constant morphisms
from a curve X over Q. Let Γ 6 E(Q) be a finite rank subgroup, and let
CM ⊂ S(Q) be the set of CM (complex multiplication) points. Then the
set Φ−1(Γ) ∩Π−1(CM) is finite.

The proof of Theorem 3.5 uses equidistribution arguments. In the spe-
cial case where Γ = E(Q)tors, restricting the attention to Heegner points
(when, in particular, Π is the identity and Φ is a modular parametrization),
Theorem 3.5 was proved using a different method in [26].

It is instructive to sketch the proof of Theorem 3.4 in the simple situation
when Γ = E(Q)tors and Π is the identity. Let us recall the differential
operators ψ2 and f [ in Theorems 3.2 and 3.3, respectively. We consider the
differential operator f ] : S†(R)→ R, defined by the composition

S†(R) ⊂ S(R) Φ−→ E(R) ψ2

−→ R .

Then the set Φ−1(Γ)∩CL is contained in the set of solutions of the system
of differential equations {

f [ = 0 ,
f ] = 0 .

The main idea of the proof is to show that the derivatives of the unknowns
in this system can be eliminated, in other words, that there exist nonlinear
differential operators h0, h1 : S†(R)→ R such that the operator

f ] − h0 · f [ − h1 · δ ◦ f [

has order 0, i.e., it is a formal function in usual (formal) algebraic geometry.
Such functions (on curves) have only finitely many zeroes, and the number
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of zeroes can be estimated. This leads to the finiteness and the estimate in
Theorem 3.4.

We can ask what differential operators we may obtain on projective
curves of genus 6= 1. The pictures for genus 0 and genus > 2 are entirely
different. Indeed we have the following results.

Theorem 3.6. — [7] Any differential operator P1(R)→ R of any order
is a constant map.

Theorem 3.7. — [7] If X is a smooth projective curve of genus > 2,
then for any n > 1 the formal scheme Jn(X) is affine. In particular there
exist differential operators f1, . . . , fN : X(R)→ R of order 1 such that the
map (f1, . . . , fN ) : X(R)→ RN is injective.

Incidentally, Theorem 3.7 has a purely number theoretic application,
which is the following effective bound for the Manin-Mumford conjecture.
Manin and Mumford conjectured that the intersection of a smooth projec-
tive curve of genus > 2 with the torsion subgroup of its Jacobian is finite.
This was proved by Raynaud [27]. A different proof, plus an effective bound
on the cardinality of this intersection, was provided in [7]; this was done
via an argument involving Theorem 3.7. Here is the result:

Theorem 3.8. — [7] If X is a smooth projective curve of genus g > 2
defined over a number field K, and if X ⊂ A is the Abeli-Jacobi embedding
of X into its Jacobian A (corresponding to a given point on X), then the
set X(C) ∩ A(C)tors has cardinality 6 c(g, p), where c(g, p) is an explicit
constant that depends only on the genus g and on the smallest prime p
that is unramified in K, and for which there is a place of K over p where
X has good reduction.

Roughly speaking, the idea of the proof of Theorem 3.8 is as follows. By a
result of Coleman, the problem can be reduced to a problem over R = Ẑurp .
Then, taking “jets of points,” we can show that the intersection X(R) ∩
A(R)tors can be embedded into an intersection of the form J1(X)(R/pR)∩
B(R/pR), where B is an abelian subvariety of J1(A)⊗R/pR. Now J1(X)⊗
R/pR is affine (by Theorem 3.7) while B is projective. So the intersection
J1(X)(R/pR) ∩ B(R/pR) is finite, with cardinality easily estimated by
Bézout’s theorem. This ends the proof of Theorem 3.8.

For more applications of the 0 + 1 variable theory, we refer the reader
to [9]. In that monograph, a systematic study was made of differential
operators f : X(R) → R on curves X with the property that f is “invari-
ant” under the action of various “arithmetically flavored” correspondences
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Y ⊂ X × X. The problem of determining all such fs should be viewed
as an arithmetic analogue of the problem in geometry and/or theoretical
physics of determining all Lagrangians (functions on jet spaces Jn(M/N))
that are invariant under a group of symmetries acting on M “over N .”

Other applications of the 0 + 1 variable theory involve congruences be-
tween classical modular forms [8, 1, 12]. We shall not discuss these appli-
cations here.

4. 0 + 2 variables

In this section we follow [15]. Passing from the case of one prime to the
case of several primes (in particular, the 2 we consider here) requires new
ideas. We let P = {p1, p2}, Q = ∅. The natural choice for A in this section is
the semi-local ring A = Z(p1) ∩Z(p2) ⊂ Q. The first difficulty we encounter
now is that the jet spaces JrP(X) above were only defined for A-schemes X
that are affine, and the gluing procedure which would extend this definition
to the nonaffine case is not straightforward. The problem of defining the jet
spaces for nonaffine Xs was solved independently in [15] and [2]. In [2], the
approach is via algebraic spaces and works in full generality. In [15], a more
naive approach is taken which nevertheless suffices for the applications we
have in mind here; in the discussion below we follows [15].

Let X be any quasiprojective scheme over A, and let X = ∪Xi be an
affine cover. Then the schemes JrP(Xi) can be glued together to give a
scheme JrP(X). The trouble here is that the latter genuinely depends on
the covering we started with, and in particular, the construction is not
functorial in X. What turns out to be true, however, is that for each k =
1, 2, the ring of global functions O(JrP(X)p̂k) on the pk-adic completion
JrP(X)p̂k of JrP(X) does not depend on the covering, and is functorial in X.

Now the single prime theory provides, in interesting situations, interest-
ing formal functions fk ∈ O(JrP(X)p̂k), k = 1, 2. Obviously, the next puzzle
comes then from the fact that we would like to “glue together” pairs of
these elements f1, f2. This cannot be done directly since, for instance, in
the case case where X is affine, each fk is a function on the “tubular neigh-
borhood” Spf O(JrP(X))p̂k of Spec O(JrP(X)) ⊗ Fpk in Spec O(JrP(X)), and
these tubular neighborhoods are disjoint. This puzzle was solved in [15].
What we proposed there was to declare that f1 and f2 can be “analytically
continued” along a section P : SpecA → X of X → SpecA if there is an
element f0 in the P r-adic completion of O(JrP(X)) (where P r ∈ JrP(X)(A)
is the natural prolongation of P ∈ X(A)) such that, for each k = 1, 2, fk
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and f0 coincide in the (pk, P r)-adic completion of O(JrP(X)). (As is, such a
definition makes sense only in the affine case, but can be easily extended to
the quasiprojective case.) Then we declare that a differential equation on
X (of order r) is a pair (f1, f2), fk ∈ O(JrP(X)p̂k), that can be analytically
continued along a given section. The section is kept fixed throughout, but
in most cases there is a preferred section anyway: for instance if X is a
group scheme over A, then the section should be taken to be the identity
section. In the group scheme situation, there is a natural notion of linear
differential equation also called δP-character: we simply ask that f1 and f2
be linear.

Again, there is a concept of linear differential equation (operator) in the
context of modular and Shimura curves [12]. This leads to a theory of what
we call Igusa differential modular forms. We will not touch this subject in
this paper.

Here are our main results about δP-characters.

Theorem 4.1. — [15] Let X = Gm := SpecA[x, x−1] be the multi-
plicative group scheme over A. There exists, up to a unit in A, a unique
δP-character ψ(1,1) of order (1, 1) on X. Every other δP-character is ob-
tained (in an appropriate sense) from ψ(1,1).

Theorem 4.2. — [15] Let X be an elliptic curve over A with ordinary
reduction at p1 and p2. There exists, up to a unit inA, a unique δP-character
ψ(2,2) of order (2, 2) on X. Every other δP-character on X is obtained (in
an appropriate sense) from ψ(2,2).

The δP-character ψ(1,1) can be explicitly described as follows. First, let
us observe that

(4.1) O(J(1,1)
P (Gm)) = A[x, x−1, φp1(x−1), φp2(x−1), φp1φp2(x−1),

δp1x, δp2x, δp1δp2x],

where φpku := upk + pkδpku. Then, let us consider the series

(4.2)
f1 :=

(
1− φp2

p2

)
ψ1
p1
∈ O(J(1,1)

P (Gm))p̂1 ,

f2 :=
(

1− φp1
p1

)
ψ1
p2
∈ O(J(1,1)

P (Gm))p̂2 ,

where

ψ1
pk

:=
∞∑
n=1

(−1)n−1 p
n−1
k

n

(
δpkx

xpk

)n
, k = 1, 2 .

It is an easy exercise to see that f1, f2 can be analytically continued along
the identity, thus giving rise to our equation ψ(1,1); essentially this amounts
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to noticing that after substituting T + 1 for x in the series fk, k = 1, 2, we
obtain series in

Qpk [[T, δp1T, δp2T, δp1δp2T ]]
coming from one and the same series

−
(

1− φp1

p1

)(
1− φp2

p2

)∑
(−1)n−1T

n

n
∈ Q[[T, δp1T, δp2T, δp1δp2T ]] .

By the way, this ψ(1,1) should be viewed as an arithmetic analogue of a
partial differential operator in analysis, which we now describe. Let N ⊂ C
be a disk, viewed as a (real) smooth manifold, and let M = N×C× (viewed
again as a real smooth manifold). Then our ψ(1,1) should be viewed as the
arithmetic analogue of the partial differential operator

ψ
(1,1)
zz̄ : M(N) = C∞(N,C×)→ O(N) = C∞(N,C) ,

defined by
ψ

(1,1)
zz̄ (u) := 1

4
∆ log u = ∂z∂z̄ log u ,

where z = x + iy is the complex coordinate in N , and ∆ = ∂2
x + ∂2

y is
the Euclidean Laplacian. (Here, ∂x, ∂y, ∂z, ∂z̄ are the corresponding partial
derivative operators.) Like our arithmetic ψ(1,1), the operator ψ(1,1)

zz̄ is a
group homomorphism, and has the “Dirac decomposition”

ψ
(1,1)
zz̄ (u) = ∂z

(
∂z̄u

u

)
= ∂z̄

(
∂zu

u

)
,

which is analogous to the decompositions of f1 and f2 in (4.2) into products
of equations of lower order. In what follows, such a decomposition will be
loosely referred to as a Dirac decomposition

The equation ψ(2,2) for elliptic curves can be constructed similarly (al-
though not explicitly). The factors

(
1− φpk

pk

)
in the Gm case have to be

replaced by the corresponding Euler factors in the L-series of the elliptic
curve. As in the case of Gm, there is a partial differential operator in anal-
ysis (a “double Laplacian” applied to the logarithm of a family of elliptic
curves M → N) that renders ψ(2,2) as its analogue; cf. the Introduction of
[15] for details.

5. 1 + 1 variables

In this section we follow [13, 14]. We let P = {p} consist of one prime
p > 5, and we let Q = {q} consist of one variable q. Then we let A := R[[q]],
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where R = Ẑurp , and we consider the operators

R[[q]] δp,δq−→ R[[q]]

∑
anq

n 7−→
δp(
∑
anq

n) := (
∑
φp(an)qpn)− (

∑
anq

n)p

p
,

δq(
∑
anq

n) := q
d

dq

(∑
anq

n
)

=
∑

nanq
n .

where φp = φ : R→ R is the lift of Frobenius. As in the case of 0 + 1 vari-
ables, for any affine scheme of finite typeX over A we consider the jet spaces
Jnpq(X), n ∈ Z>0. Consider the formal schemes Jnpq(X) = Jnpq(X)̂ , the p-
adic completions of the jet spaces. If X is a scheme that is not necessarily
affine, and if X =

⋃
Xi is an affine open cover, then the formal schemes

Jnpq(Xi) naturally glue together to give a formal scheme Jnpq(X). We define
a differential equation on X to be a formal function f ∈ O(Jnpq(X)). Any
such equation defines a map of sets, referred to as the associated (nonlin-
ear) differential operator, f : X(A) → A. The set f−1(0) ⊂ X(A) is the
set of solutions of f (or of f = 0). If X is a group scheme over A, we say
that a differential equation f is linear, or that f is a {δp, δq}-character, if f
defines a homomorphism (of group objects in the category of formal p-adic
schemes) from Jnpq(X) to the additive group; if this is the case, then the
induced map X(A) → A is a homomorphism, and the solution set f−1(0)
is a group.

And once again, there is a concept of linear differential equation (oper-
ator) in the context of modular curves [14]. We will not touch upon this
subject in this paper.

Going back to {δp, δq}-characters, the first task we face is the classifica-
tion of all such objects on a given group scheme. This was done in [13] for
the groups Ga, Gm, and any elliptic curve E over A. The salient features
of this classification are roughly stated in the Theorems below; for further
details and more precise statements, we refer the reader to [13].

Theorem 5.1. — [13]
(1) For Ga, all {δp, δq}-characters are given by polynomials in φp and

δq.
(2) For Gm, all {δp, δq}-characters are obtained (in an appropriate

sense) from the differential equations ψ1
p and ψ1

q , where ψ1
p is the δp-

character described in (1) of Theorem 3.1, and ψ1
q is the logarithmic

derivative ψ1
qu = δqu/u.

Theorem 5.2. — [13] For a “sufficiently general” elliptic curve E over
A, the following hold:
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(1) There are no non-zero δp-characters ψ1
p of order 1, and no non-zero

δq-characters ψ1
q of order 1.

(2) There is a non-zero {δp, δq}-character ψ1
pq of order 1. This character

is essentially unique.
(3) All {δp, δq}-characters on E can be obtained (in an appropriate

sense) from ψ1
pq, ψ2

p, and ψ2
q , where ψ1

pq is the character in (2)
above, ψ2

p is the arithmetic analogue of the Manin map in Theorem
3.2, and ψ2

q is the classical Manin map. Also, there exists a relation
of the form

ψ2
q + λψ2

p = ψ1
pq,a ◦ ψ1

pq

where λ ∈ A, and ψ1
pq,a is a linear polynomial in φp and δq.

The character ψ1
pq can be viewed as an analogue of a convection equation

on E, and its existence is sort of a surprise. The character ψ2
q +λψ2

p can be
viewed as an analogue of a wave equation on E. In a suitable sense, both
of these objects are canonical.

Theorem 5.3. — [13] Assume that E is a sufficiently general elliptic
curve over R. Then all the {δp, δq}-characters on E are obtained (in an
appropriate sense) from ψ1

q and ψ2
p, where ψ1

q is the logarithmic derivative
with respect to δq, and ψ2

p is the arithmetic analogue of the Manin map.

The linear combinations ψ = ψ1
q +λψ2

p can then be viewed as arithmetic
analogues of the heat equation on E.

Let us now assume, for simplicity, that our groups X/A are actually de-
fined overR (this is automatic, of course, for Ga,Gm). Let ψ : X(A)→ A be
a linear differential operator. A solution u ∈ ψ−1(0) will be called station-
ary if u ∈ X(R). (The terminology comes from viewing q as an exponential
of “time.”) Then the next question addressed in [13] is the characterization
of all {δp, δq}-characters on Ga,Gm, E that admit nonstationary solutions.
For the results, we refer the reader to [13]. Let us just note here that what
we encounter is a “quantization phenomenon” that can be nicely illustrated
in the case of the heat equations referred to after Theorem 5.3. Indeed, we
can prove that the ψ = ψ1

q +λψ2
p above has nonstationary solutions if, and

only if, λ is a Z-multiple of a certain invariant of E (which we refer to as an
arithmetic Kodaira-Spencer class). As we shall explain presently, a similar
phenomenon occurs for Gm and the “convection equation” ψ = ψ1

q + λψ1
p.

Finally, there is an intriguing analogy between the theory of fundamen-
tal solutions in the classical theory of linear partial differential operators,
and the arithmetic counterpart that we are discussing here. Indeed, let us
assume we are in the framework of the classical theory, and that we are
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given a linear partial differential operator in 2 variables,

u = u(x1, x2) 7→ Pu =
∑

ci1i2∂
i1
x1
∂i2x2

u

with constant coefficients. Then, given a “well-posed” boundary value prob-
lem for P , there is a way to describe the space of solutions {u : Pu = 0} as
a “free module of finite rank” over the “ring” of functions of x; here, the ring
multiplication and module structure are given by convolution. (The quota-
tion marks above indicate the fact that the ring and the module structures
are not “everywhere defined,” as convolution is only defined under some
restrictions.) The rank of this module is closely related to the symbol of P ,
which is the polynomial

σ(ξ1, ξ2) =
∑

(
√
−1)i1+i2ci1i2ξ

i1
1 ξ

i2
2 ∈ C[ξ1, ξ2].

An analogue of this description can be given in the arithmetic case. Roughly
speaking, the result is the following:

Theorem 5.4. — Let ψ : X(A) → A be the operator associated to
a “non-degenerate” {δp, δq}-character on X = Ga,Gm, E. (Here “non-
degeneracy” is a condition defined in terms of a well-defined “symbol”
µ(ξp, ξq) ∈ A[ξp, ξq] of ψ, where ξp, ξq are 2 variables.) Let ψ−1(0)1 be
the group of solutions in ψ−1(0) that vanish at q = 0. Then there is a nat-
ural R-module structure on ψ−1(0)1 (given by a “convolution” operation)
such that ψ−1(0)1 is a finitely generated free R-module. The rank of this
module is the number of positive integers that are roots of the polynomial
µ(0, ξq).

It is instructive to give an explicit example of this theory; we choose
the simplest of the non-trivial ones, that of the multiplicative group Gm.
In this case, any {δp, δq}-character of order 1 is, up to multiplication by
an element of A, an A-linear combination of ψ1

p and ψ1
q , and any such

linear combination can be viewed as an arithmetic analogue of a convection
equation. Let us restrict attention to linear combinations of the form ψ =
ψ1
q + λψ1

p, λ ∈ R×. Then the symbol of ψ turns out to be the linear
polynomial

µ(ξp, ξq) = ξq + λξp − λ .

So the set of positive integers that are roots of µ(0, ξq) is either {κ}, if
λ = κ ∈ Z>0, or ∅, if λ 6∈ Z>0. In the second case, the space ψ−1(0)1
vanishes. In the first case, the space of solutions ψ−1(0)1 is a free R-module
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(under a certain convolution operation) of rank 1, with basis

uκ := exp

qκ
κ

+
∑
n>1

(−1)n qκp
n

κpn(p− 1)(p2 − 1) · · · (pn − 1)

 .
Notice that this series is a sort of hybrid between the Artin-Hasse expo-
nential and the quantum exponential in [22], p. 30; the integrality of this
series is a consequence of the Dwork-Dieudonné lemma.

The example above illustrates the quantization phenomenon alluded to
above: the space ψ−1(0)1 is non-zero if, and only if, λ ∈ Z>0.

6. 1 + 2 variables

As of now, there is no theory available for the case of 1 + 2 variables. We
could hope to tackle such a case by combining the ideas used in the cases
of 0 + 2 and 1 + 1 variables, respectively. However, the natural attempts to
proceed in this manner lead to difficulties that we explain next.

Indeed, we may attempt to construct linear differential equations on Gm

in 1 + 2 variables by using the idea of “Dirac decompositions” from the
case of 0 + 2 variables, but replacing the 0 + 1 variable equations ψ1

pk

there by appropriate 1 + 1 variable equations. This fails in order 2. If the
order is increased (or if the “Dirac decomposition” assumption is dropped),
then analytic continuation can be achieved; but in the examples we can
construct, there seem to be no nonstationary solutions.

For let P = {p1, p2}, Q = {q}, A0 = Z(p1) ∩ Z(p2), and A = A0[[q]]. We
consider Gm := SpecA[x, x−1]. Then the ring O(JnP,Q(Gm)) identifies with
the ring

A[x, x−1, φp1(x−1), φp2(x−1), φp1φp2(x−1), δi1p1
δi2p2
δjqx : i1 + i2 + j 6 n] .

Consider the two elements

f1 ∈ O(JnP,Q(Gm))p̂1 ,

f2 ∈ O(JnP,Q(Gm))p̂2 .

Let us say that f1 and f2 can be analytically continued (along the identity)
if, after replacing x by T + 1, we get 2 series coming from the same series
in

Q[[δi1p1
δi2p2
δjqT : i1 + i2 + j 6 n]] .

This is a natural generalization of the construction in the case of 0 + 2
variables.
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We can derive then the following result, showing that if the order n is 2,
and if f1, f2 have “Dirac decompositions,” then the only instances where
analytic continuation holds are those coming from the cases of 1 + 0, 0 + 2,
and 1 + 1 variables, respectively. So morally speaking, there is no analytic
continuation in the genuine 1 + 2 variable case.

The “most general” form of f1, f2, of order 2, with “Dirac decomposi-
tion” is

(6.1)
f1 = (α2δq + β2φp2 + γ2)(µ1ψ

1
q + λ1ψ

1
p1

) ,
f2 = (α1δq + β1φp1 + γ1)(µ2ψ

1
q + λ2ψ

1
p2

) ,

where, for k = 1, 2, αk, βk, γk, µk, λk ∈ A0, and

ψ1
pk

:=
∑
n>1

(−1)n−1 p
n−1
k

n

(
δpkx

xpk

)n
ψ1
q := δqx

x
.

In order to state our result, let us assume that f1, f2 are non-zero, and let
us denote by Uk ∈ Q3, Vk ∈ Q2, (k = 1, 2), the unique vectors belonging
to the Q-linear spaces spanned by (αk, βk, γk) and (µk, λk), respectively,
having their first non-zero component equal to 1.

Proposition 6.1. — Assume that f1 and f2 are as in (6.1), and that
they can be analytically continued along the identity. Then one of the
following holds:

1) U1 = (1, 0, γ), U2 = (1, 0, γ), V1 = (1, 0), V2 = (1, 0) (1 + 0 case);
2) U1 = (1, 0, 0), U2 = (1,−γ, γ), V1 = (1, 0), V2 = (1,−γ) (1 + 1 case);
3) U1 = (1,−γ, γ), U2 = (1, 0, 0), V1 = (1,−γ), V2 = (1, 0) (1 + 1 case);
4) U1 = (0, 0, 1), U2 = (0, 0, 1), V1 = (1, 0), V2 = (1, 0) (1 + 0 case);
5) U1 = (0, 1,−1), U2 = (1, 0, 0), V1 = (0, 1), V2 = (1, 0) (1 + 1 case);
6) U1 = (1, 0, 0), U2 = (0, 1,−1), V1 = (1, 0), V2 = (0, 1) (1 + 1 case);
7) U1 = (0, 1,−p1), U2 = (0, 1,−p2), V1 = (0, 1), V2 = (0, 1) (0 + 2 case) .

Proof. — The image of f1 in

Qp1 [[q]][[δi1p1
δi2p2
δjqT : i1 6 1, i2 6 1, j 6 2]]

equals

(α2δq + β2φp2 + γ2)(µ1δq + λ1
φp1

p1
− λ1)

∑
n>1

(−1)n−1T
n

n

 ,
and a similar assertion holds for f2. So if f1 and f2 can be analytically
continued, we must have an equality

(α2δq+β2φp2+γ2)(µ1δq+λ1
φp1

p1
−λ1)=(α1δq+β1φp1+γ1)(µ2δq+λ2

φp2

p2
−λ2).
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Using the commutation relations δqφpk = pkφpkδq, we derive the following
system of equations:

γ2µ1 − α2λ1 = γ1µ2 − α1λ2 ,

α1µ2 = α2µ1 ,

β1µ2 = α2λ1 ,

β2µ1 = α1λ2 ,

β2λ1/p1 = β1λ2/p2 ,

β2λ1 = −γ1λ2/p2 ,

β1λ2 = −γ2λ1/p1 ,

γ2λ1 = γ1λ2 .

It is now an elementary task to show that the only solutions to this system
are of the form stated. �

The result above shows that there is no analytic continuation in 1 + 2
variables (that does not arise from fewer variables) if we insist that the
order n be 2 and that we have “Dirac decomposition.” However, we give
easy examples below showing that as soon as we relax either of these two
conditions, we can achieve analytic continuation.

Indeed, if n = 3, we can take

(6.2)
f1 = (φp2 − p2)[(φp1 − p1)ψ1

q + λψ1
p1

] ∈ O(J3
P,Q(Gm))p̂1 ,

f2 = (φp1 − p1)[(φp2 − p2)ψ1
q + λψ1

p2
] ∈ O(J3

P,Q(Gm))p̂2 ,

where λ ∈ A×0 . These f1, f2 have “Dirac decompositions,” and can be ana-
lytically continued.

Alternatively, if n = 2, and

(6.3)
f1 = ψ1

q + λ(φp2 − p2)ψ1
p1
∈ O(J2

P,Q(Gm))p̂1 ,

f2 = ψ1
q + λ(φp1 − p1)ψ1

p2
∈ O(J2

P,Q(Gm))p̂2 ,

with λ ∈ A×0 , then f1, f2 can be analytically continued. Of course, in this
case, f1 and f2 do not have “Dirac decompositions.”

We can raise the question of whether there exist values of λ such that the
f1, f2 in these two examples possess nonstationary solutions (i.e., solutions
that effectively depend on q). The answer is no for the f1, f2 in (6.2), cf.
Theorem 7.10 in [13]. We expect the answer to be no also in the case given
by the f1, f2 in (6.3). The question then arises as to whether there actually
exist equations f1, f2 in 1 + 2 variables (not coming from fewer variables)
that can be analytically continued and possess “nonstationary solutions.”
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If the answer to this question were to be yes, an interesting theory could
emerge. If the answer were to be no, we could be led to a generalization of
the notion of solution. Both prospects seem quite intriguing at this point.
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