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MORALES-RAMIS THEOREMS
VIA MALGRANGE PSEUDOGROUP

by Guy CASALE (*)

Abstract. — In this article we give an obstruction to integrability by quadra-
tures of an ordinary differential equation on the differential Galois group of varia-
tional equations of any order along a particular solution. In Hamiltonian situation
the condition on the Galois group gives Morales-Ramis-Simó theorem. The main
tools used are Malgrange pseudogroup of a vector field and Artin approximation
theorem.

Résumé. — Dans cet article, nous montrons que les équations variationnelles
le long d’une solution d’une équation différentielle intégrable par quadratures ont
un groupe de Galois différentielle virtuellement résoluble. Dans le cas particulier
des systèmes hamiltoniens intégrables au sens de Liouville la preuve redonne le
théorème de Morales-Ramis-Simó. La preuve consiste à montrer que le groupe de
Galois de l’équation variationnelle est un quotient d’un sous groupe d’un groupe
d’isotropie du pseudogroupe de Malgrange de l’équation non linéaire. On relie
ensuite les propriétés de ce groupe d’isotropie en un point spécial à celles du groupe
d’isotropie au point générique en utilisant le théorème d’approximation d’Artin.

Introduction

Morales-Ramis theorems give conditions for integrability in sense of Li-
ouville of a Hamiltonian system in terms of the differential Galois group
of the linearized system along a particular solution. First theorem of this
kind was obtained by Ziglin [28] in terms of monodromy of the variational
equation. Later this condition was translated in terms of differential Ga-
lois group. Following previous work of Churchill, Rod and Singer [9, 10],
Morales and Simó [19] and Morales and Ramis [21], Morales, Ramis and
Simó prove in [22] that the variational equations of any order of an inte-
grable Hamiltonian system have virtually abelian (= almost commutative)

Keywords: Differential Galois theory, variational equation, integrability.
Math. classification: 53A55, 34A34.
(*) This work was partially supported by ANR (project no JC05_41465).
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differential Galois groups. Several extensions of this theorem to other kind
of integrability (in Bogoyavlensky’s sense [4], in Jacobi’s sense [25], in non-
commutative sense [14] or for discrete dynamical systems [8]) give the same
abelianity condition.

In this article we prove the following generalization of these results in
algebraic setting for integrability by quadratures.

Definition 0.1. — Let E(t, y, y′, . . . y(n)) ∈ C[t, y′, . . . , y(n)] be an or-
der n differential equation given by an irreducible polynomial.

A Liouvillian solution is a solution f in a differential extension KN of
K0 = C(t) built by successive elementary extensions Ki−1 ⊂ Ki, 1 6 i 6
N , of the form Ki = Ki−1(ui) with ui algebraic over Ki−1 or u′i ∈ Ki−1 or
u′i
ui
∈ Ki−1.

The equation E is said to be integrable by quadrature if there is a Liou-
villian solution f with transc.deg. C(t, f, f ′, . . . , f (n−1))/C(t) = n.

Theorem 0.2. — If a rational differential equation is integrable by
quadratures then the Galois group of its variational equation of order q
along an algebraic solution is virtually solvable.

If N elementary extensions are needed to build the general solution then
the Nth derived Lie algebra of the Galois group is null.

The key arguments are the use of Malgrange pseudogroup (Galois D-
groupoid of [16]) of a vector field and Artin approximation theorem [2] (see
1.7 p 2599) to replace Ziglin Lemma as it is done in [22]. They are organized
as follow. First we prove that the Galois group of the variational equation is
a quotient of a subgroup of the isotropy group of Malgrange pseudogroup
at a generic point of the particular solution. The fact that the isotropy
group of Malgrange pseudogroup of an equation integrable by quadratures
at a generic point is virtually solvable is not very difficult to prove but a
generic point on a curve is not generic. To prove virtual solvability of the
isotropy group at a non generic point we use Artin approximation theorem.

In a first part, definitions and basic theorems about algebraic “Lie pseu-
dogroups” following [16, 24] are given. In a second part we recall the defini-
tions of Malgrange pseudogroup of a rational vector field and Galois group
of a linear differential equation. We give some relations between them by
means of variational equations. The main theorem is theorem 2.4. From
this theorem we get usual Galoisian obstructions to integrability and ex-
hibit new ones in the third part. Two examples of applications are given in
the fourth part.
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It would be interesting to insert in the setting decribed here results of
Zung [29] and Ito [13].

Results of this article originate from discutions with B. Malgrange. I
would like to thank him for his enthusiasm for sharing mathematical ideas
and good mood.

1. Definitions

Definitions and missing proofs of this section can be found in [12, 16, 15,
24, 26].

1.1. Frame bundles

Let V be the affine space over C with coordinates r1, . . . , rd and (Cd, 0)
be the germ of analytic space at 0 with coordinates x1, . . . , xd. An order q
frame on V is a q-jet

jqr =
∑
α∈Nd
|α|6q

rαi
xα

α!

of germ of biholomorphism r : (Cd, 0) → V . The space of q-frames is
denoted by RqV and its coordinate ring is

C[RqV ] = C
[
rαi ,

1
det(rε(j)i )

∣∣∣1 6 i 6 d, α ∈ Nd, |α| 6 q
]

where ε(j) is the multiindex (0, · · · , 1
jth
, · · · , 0). One gets projections πq+1

q :

Rq+1V → RqV from inclusions C[RqV ] ⊂ C[Rq+1V ] and projections πq :
RqV → V from identifications ri = r

(0,...,0)
i . Elementary properties of this

space can be found in [12] and [24, p. 285 with different notations]
The q-frames space is a principal bundle over V with structural group

Γq =
{
jqg | g : (Cd, 0)→ (Cd, 0) biholomorphism

}
acting by ‘source composition’: jqg · jqr = jq(r ◦ g).

Thanks to Faa di Bruno formulas, these groups and actions are algebraic.
Because of projections πq+1

q one can defined the formal frame bundle RV =
lim
←
RqV with structural group Γ = lim

←
Γq.

TOME 59 (2009), FASCICULE 7
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1.2. Groupoids

The algebraic variety

Autq V =
{
jqϕ | ϕ : (V, a)→ (V, b) biholomorphism

}
with coordinate ring

C[Autq V ] = C
[
ri, ϕ

α
j ,

1
det(ϕε(k)j )

∣∣∣1 6 i, j 6 d, α ∈ Nd, |α| 6 q
]

is a groupoid. The groupoid structure is given by the following morphisms
• sources and targets (s, t) : Autq V → V × V ,
• composition c : Autq V ×

sV t
Autq V → Autq V ;

c(jqϕ1, jqϕ2) = jq(ϕ1 ◦ ϕ2) ,
• inverse i : Autq V → Autq V ; i(jqϕ) = jqϕ

−1,
• identity id : V → Autq V ; id(r) = jq idr,

satisfying natural commutative diagrams [15], [24, p 270].
This groupoid acts on RqV by “target composition”:

◦ : RqV ×
V s

Autq V → RqV

jqr ◦ jqϕ = jq(ϕ ◦ r).
A subgroupoid Gq of Autq V is a closed algebraic subvariety such that

the induced morphisms give a groupoid structure on Gq [24, definition 2.2.].
A singular subgroupoid Gq with singularities on a closed subvariety S

of V is a closed subvariety of Autq V whose localisation with source and
target out of S gives a subgroupoid of Autq(V − S) [16, definition 4.1.1.].

A variant of Chevalley theorem [11, theorem 8.1.], [24, proposition 2.3.6.]
for this type of groupoids is the following.

Theorem 1.1. — Let Gq be a singular subgroupoid of Autq V . There
are H1, . . . ,Hn in C(RqV ) such that, out of its singular locus S,

Gq = {jqϕ | Hi( · ◦ jqϕ) = Hi(·)}.

Singular subgroupoids are essentially characterized by their field of ra-
tional invariants Fq ⊂ C(RqV ).

Groupoids Autq V have “Lie algebras” (usually called Lie algebroids)

autqV =
{
jqY | Y holomorphic vector field on (V, a)

}
.

We will not directly use the Lie algebroid structure of autqV but the fiber-
wise bracket

autqV ×
V

autqV → autq−1V

(jqY1, jqY2) 7→ jq−1[Y1, Y2]
.

ANNALES DE L’INSTITUT FOURIER
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The Lie algebra of a groupoid Gq will be described in next section.

1.3. Prolongations and invariants

Let ϕ : U1 → U2 be a biholomorphism between two open sets of V . It
induces a biholomorphism

Rqϕ : RqU1 → RqU2
jqr 7→ jq(ϕ ◦ r)

called the order q prolongation of ϕ.
Let X be a holomorphic vector field on an open set U of V . Prolongations

of its flows define a local 1-parameter action on RqU . The infinitesimal
generator of this action is RqX the prolongation of X.

These prolongations are defined by polynomial formulas and can be ex-
tend to formal biholomorphism ϕ̂ : V̂, a→ V̂, b (and to formal vector fields
on V̂, a). The prolongation is Rqϕ̂ : ̂(RqV,RqVa) → ̂(RqV,RqVb) a formal
biholomorphism from a formal neighborhood of frames at a ∈ V to formal
neighborhood of frames at b.

Cartan derivations are given by the action of ∂
∂xi

on C[RqV ], the ring of
PDE in d functions, r1, . . . , rd of d variables x1, . . . , xd in the neighborhood
of 0:

Di : C[RqV ] → C[Rq+1V ]
rαj 7→ r

α+ε(i)
j

.

The proof of the following lemma is left to the reader following [24, pp. 258–
270].

Lemma 1.2.
• Let ϕ : U1 → U2 be a local biholomorphism on V and (Rqϕ)∗ :

C[RqU2]→ C[RqU1] the induced isomorphism of rings then

Di ◦ (Rqϕ)∗ = (Rq+1ϕ)∗ ◦Di.

• Let X be a local holomorphic vector field U ⊂ V then

Di ◦ RqX = Rq+1X ◦Di.

• The order q prolongation of a vector field X =
∑
j aj

∂
∂rj

is

RqX =
∑

06j6d

α∈Nd

Dαaj
∂

∂rαj
.

TOME 59 (2009), FASCICULE 7
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Example 1.3. — Let V be the affine line over C with coordinate ring
C[r] the order q frame bundle is RqV = V × C∗ × Cq−1 with coordinate
ring C[r, r′, 1

r′ , . . . , r
(q)].

If ϕ : U1 → U2 is a biholomorphism between open sets of V its third
prolongation is R3ϕ : U1 ×C∗ ×C2 → U2 ×C∗ ×C2 and R3ϕ(r, r′, r′′, r′′′)
is

(ϕ(r), ϕ′(r)r′, ϕ′′(r)r′2 + ϕ′(r)r′′, ϕ′′′(r)r′3 + 3ϕ′′(r)r′r′′ + ϕ′(r)r′′′).

Example 1.4. — Let V be the affine space of dimension d over C with
coordinate ring C[r1, . . . , rd] the order 1 frame bundle is R1V = V ×GLd(C)
with coordinate ring C

[
r1, . . . , rd, r

1
1, . . . , r

d
d,

1
det(rj

i
)

]
.

If X =
∑
aj(r) ∂∂rj then

R1X =
∑

aj(r)
∂

∂rj
+
∑ ∂aj

∂ri
(r)rki

∂

∂rkj
.

When r(t) is a trajectory of X then the restriction of R1X above this
trajectory is

∂

∂t
+
∑ ∂aj

∂ri
(r(t))rki

∂

∂rkj
i.e., the first variational equation of X along r(t) in fundamental form.

Let Gq be a singular subgroupoid with invariants field Fq. Its first prolon-
gation Gq+1 is the singular subgroupoid defined by the subfield of C(Rq+1V )
generated by Fq and DiFq for all i.

The field of rational functions of any order C(RV ) = lim
→

C(RqV ) with
Cartan derivations is a differential field. The differential field F generated
by all the Fq defines a subvariety G of AutV = lim

←
Autq V by formulas of

theorem 1.1 whose projection on Autq V , (G )q can be smaller than Gq.
By a theorem of B. Malgrange [16, theorem 4.4.1.] the subvariety of

AutV defined by invariance of a differential subfield F of C(RV ) defines
for any q a singular subgroupoid with singularities on S independant of q.
Let F be a differential subfield of C(RV ) and Fq = F ∩ C(RqV ). Let us
define

Iso(F ) = {formal biholomorphism ϕ : V̂, a→ V̂, b | ∀q,∀H ∈ Fq,
H ◦Rqϕ = H}

whose “Lie algebra” is

iso(F ) = {formal vector field Y on V̂, a | ∀q,∀H ∈ Fq, RqY ·H = 0}

and Isoq, isoq the closure of their projections on order q jets spaces.

ANNALES DE L’INSTITUT FOURIER
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Theorem 1.5. — The subspace Iso(F ) of AutV is stable by composi-
tion and inversion. The subspace iso(F ) of autV is stable by Lie bracket.

This is a set theoretical stability. The proalgebraic variety Iso(F ) is sin-
gular subgroupoid and the singularities are unavoidable. But the theorem
says that the set of formal solutions is a set theoretical groupoid. Before
giving the proof let show an example.

Example 1.6. — V is the affine line A1, we look at formal diffeomor-
phisms preserving the 1-form dr

r (this gives an order 1 invariant). The differ-
ential equation satisfied by such transformations ϕ is E(r, ϕ) = r dϕdr−ϕ = 0.
E(r, ϕ1 ◦ ϕ2) is a consequence of E(r, ϕ2) and E(ϕ2, ϕ1) only after local-
isation of sources and targets out of 0. This is a singular groupoid with
singularity at 0 but invertible solutions are ϕ(r) = λr for λ ∈ C∗ and form
a groupoid (even a group !).

In many proofs of the third part and in the following proof of theorem 1.5
the following theorem is used

Artin approximation theorem [2] 1.7. — Consider an arbitrary sys-
tem of analytic equations

(E) f(x, y) = 0

where f(x, y) = (f1(x, y), . . . , fm(x, y)) are convergent series in the vari-
ables x = (x1, . . . , xn), y = (y1, . . . , yN ). Suppose that y(x) = (y1(x), ...,
yN (x)) are formal power series without constant term which solve (E) For
any integer q there exists a convergent series solution y(x) = (y1(x), ...,
yN (x)) of (E) such that for all i jq(yi(x)− yi(x)) = 0 .

Proof of Theorem 1.5. — By Malgrange theorem (above mentionned),
the theorem is clear if sources and targets of two composable elements
of Iso(F ) are not in the singular locus S. By analytic continuation, it is
also clear for convergent elements. This implies the theorem because of the
following.

Let ϕ1 and ϕ2 be a composable couple of elements of Iso(F ). For any
q and i = 1, 2, jq(ϕi) are formal sections of Isoq(F ) over V . By Artin
approximation theorem 1.7 there are holomorphic nonholonomic sections
ψi on neighborhoods U1 of a and U2 of ϕ1(a) such that jqψ1 = jq(jq(ϕ1))
at a and jqψ2 = jq(jq(ϕ2)) at ϕ1(a). These new sections ψi are no more
jets of sections.

For each ã ∈ U1, ψ1(ã) ∈ Autq V is an order q jet of biholomorphism
with source ã and target a point t(ψ1(ã)) near ϕ1(a). Because the q-jet of

TOME 59 (2009), FASCICULE 7
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t(ψ1) : U1 → V at a equals the q-jet of ϕ1 at a, U1 can be chosen small
enough so that t(ψ1)(U1) is an open set included in U2.

Then one can compose ψ2 ◦ψ1 pointwise. Because Isoq(F ) is a groupoid
out of some singular locus S, ψ2 ◦ ψ1 is a section of Isoq(F ) out of S.
Isoq(F ) is closed so ψ2 ◦ψ1 is a section of Isoq(F ) and in particular ψ2(a) ◦
ψ1(a) = jq(ϕ2 ◦ ϕ1) belongs to Isoq(F ). This is true for all integer q thus
ϕ2 ◦ ϕ1 ∈ Iso(F ).

Same arguments are used to prove the second part of the theorem. �

Remark 1.8. — Following B. Malgrange, one can give another proof
by using Ritt approximation theorem [26] of formal solutions of PDE by
convergent solutions (not defined at the same point) instead of Artin ap-
proximation theorem of these solutions by nonholonomic sections (defined
at the same point).

2. Galois theories

2.1. “Nonlinear” Galois theory

Let X be a rational vector field on V its field of order q differential
invariants is

Invq(X) = {H ∈ C(RqV ) | RqX ·H = 0}.

Let Inv(X) be the differential field of all differential invariant of any order
then Malgrange pseudogroup of a rational vector field X is

MalX = Iso(Inv(X))

whose Lie algebra is
malX = iso(Inv(X)).

For (a, b) ∈ V × V , MalX(a,b) is the subspace of formal biholomorphisms
with source a and target b. One gets the following corollary of theorem 1.5.

Corollary 2.1. — The formal solution of Malgrange pseudogroup at
a ∈ V

MalX(a,a) = {ϕ : (̂V, a)→ (̂V, a) | ϕ ∈ MalX}
is a group with Lie algebra

malX0
a = {Y on V̂, a | Y ∈ malX,Y (a) = 0}.

Remark 2.2. — These groups may be different depending on a belongs
to the singular locus S of MalX or not. However, as we will see in the last
section, they share lots of properties.

ANNALES DE L’INSTITUT FOURIER
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2.2. Linear Galois theory

2.2.1. Principal version

Let C be an algebraic curve over C, E π→ C a principal G-bundle, i.e.,
E ×

C
E ∼ E × G over E for the first projection and G is an algebraic

linear group. For a π-projectable, G-invariant rational vector field Y on E

with π∗Y 6≡ 0, PY denotes a closed minimal Y -invariant subvariety of E
dominating C and GalY its stabilizer in G.

• Two such PY are isomorphic under action of G and called Picard-
Vessiot varieties of Y . The field extension C(C ) ⊂ C(PY ) is usually
called the Picard-Vessiot extension for Y .
• The group GalY is well defined up to conjugation in G. It is the

Galois group of Y .
• Common level sets of all rational first integrals of Y in C(E) dom-

inating C are Picard-Vessiot varieties.
Malgrange pseudogroup of such a Y is simple to describe. Let Z1, · · · , ZN

be infinitesimal generators of the action of G then Y, Z1, . . . , ZN is a Y -
invariant rational parallelism of E i.e., a basis of the C(C ) vector space of
rational vector field on E such that [Y, Zi] = 0. Let C(E)Y be the field of
rational first integrals of Y . One has

MalY = {ϕ | ϕ∗Y = Y,∀i ϕ∗Zi = Zi,∀F ∈ C(E)Y F ◦ ϕ = F}.

The inclusion ‘⊂’ is clear from the definition. To prove the other inclusion
one remarks that Y and Z’s give rise to lots of order 1 invariants. Because
they form a basis, C(R1E) is generated over C(E) by these invariants.
This implies that C(RqE) is generated over C(E) by derivatives of these
invariants. Each new differential invariant for Y reduces modulo this field
of invariants to order 0 invariant i.e., to a rational first integral of Y .

Let MalYa be the restriction of this pseudogroup to the fiber Ea at
generic a ∈ C . The fiber Ea is isomorphic to G and one can choose this
isomorphism to send PYa on GalY .

This isomorphism conjugates the action of G on Ea to the left translation
on G. Because the action of MalY commutes to left translation on G each
ϕ ∈ MalYa is the restriction on some open set of right translation by a
gϕ ∈ G. But MalYa must preserve GalY so gϕ ∈ GalY . We have proved
the following theorem.

Theorem 2.3. — Under this isomorphism MalYa equals GalY as pseu-
dogroup generated by a subgroup of G.

TOME 59 (2009), FASCICULE 7
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2.2.2. Non principal version

Galois group can be defined for more general bundles with special kind
of connections. They are built from principal bundles by “fiber reduction”.

Let E → C be a G-principal bundle and F be an algebraic variety with
a left action of G with G a algebraic linear group. This group G acts on
F × E by g(p, e) = (pg−1, ge). The bundle P = (F × E)/G has structural
group G and fibers isomorphic to F . If Y is a π-projectable, G-invariant
rational vector field on E with π∗Y 6≡ 0 one defines Ỹ on F ×E such that
pr1∗Ỹ = 0 and pr2∗Ỹ = Y and YP on P by projection.

Galois group of YP is by definition the Galois group of Y and one can
prove that it is well defined. From [7] Malgrange pseudogroup of YP is
isomorphic to a subpseudogroup of Malgrange pseudogroup of Ỹ which is
itself isomorphic to the one of Y .

2.3. Variational equations

2.3.1. Principal variational equations

Let X be a rational vector field on V and C be a algebraic X-invariant
curve with X|C 6≡ 0. Its prolongations are rational vector fields RqX on
frames bundles RqV . The restriction of the frames bundles over C are Γq-
principal bundles over C with projectable Γq-invariant vector fields given
by the restrictions of RqX over C .

Because Rq+1X is πq+1
q -projectable on RqX, this is also true for Mal-

grange pseudogroup [7, lemme 4.6.] and Galois group. One has sujective
morphisms

Mal(Rq+1X|C ) � Mal(RqX|C ) and Gal(Rq+1X|C ) � Gal(RqX|C ).

One sets

Mal(RX|C ) = lim
←

Mal(RqX|C ) and Gal(RX|C ) = lim
←

Gal(RqX|C ).

Theorem 2.4. — Let a be a generic point on C , one gets

Gal(RX|C ) ⊂ MalX(a,a).

Proof. — Let Mal(RX|C )a be the restriction of Mal(RX|C ) on the fiber
RVa. The Γ-principal bundle RV |C is isomorphic to the subspace of Aut
V(a,C ) with source a ∈ C and target in C where Γ = lim

←
Γq is the group of

formal biholomorphisms from (V, a) to (V, a). Under this identification

ANNALES DE L’INSTITUT FOURIER
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• RVa is Γ,
• Gal(RX|C ) is a subgroup acting by left translation,
• Mal(RX|C )a is isomorphic to Gal(RX|C ) but acts by right trans-

lation.
The closed subvariety MalX(a,C ) with source a and target in C of Aut

V(a,C ) is
• RX-invariant because MalX is RX-invariant,
• dominates C because it contains flows of X along C .

These imply that Gal(RX|C ) preserves MalX(a,a) by left translation in
Γ thus Gal(RX|C ) ⊂ MalX(a,a). �

2.3.2. “Non principal” variational equations

Let AqV be the space of order q arcs on V : jqγ with γ : (C, 0) → V

holomorphic. This bundle is associated to the Γq principal bundle RqV by
the procedure of 2.2.2 with Γq acting on

Aq = {jqγ | γ : (C, 0)→ (Cd, 0)}

by target composition. Groupoid Autq V acts on AqV by composition. A
rational vector field X on V acts on AqV as a rational vector field AqX.
This vector field can be obtained from “fiber reduction” given in 2.2.2.
The restriction of this vector field over a X-invariant curve C is the usual
variational equation.

3. Corollaries

3.1. Abelianity

Abelianity of malX implies abelianity of the identity components of vari-
ational equations (see next section for a proof). In Hamiltonian context one
gets the following theorem, consequence of the “key” Lemma [3].

Theorem 3.1 (J.-P.Ramis [17]). — If X is a completely integrable Ha-
miltonian vector field on a symplectic algebraic variety over C by means of
rational first integrals then malX is Abelian.

Together with theorem 2.4 it implies Morale-Ramis-Simó theorem in al-
gebraic context.

TOME 59 (2009), FASCICULE 7
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Theorem 3.2 ([22]). — If X is a completely integrable Hamiltonian
vector field on a symplectic algebraic variety over C by means of rational
first integrals and C be an algebraic X-invariant curve with X|C 6≡ 0 then
identity component of the Galois group of the order q variational equation
is Abelian.

3.2. Solvability

Lemma 3.3. — If the Nth derived algebra of malX is null the same is
true for any variational equations.

Proof. — We have to prove that malXa satisfies this property for any
a ∈ V as soon at it is satified at any a out of an hypersurface S on V . We
follow the proof of theorem 1.5.

Let Y1, . . . Y2N be 2N formal vector fields at a solutions of malX. By Artin
Approximation theorem there are Ỹ1, . . . Ỹ2N be holomorphic nonholonomic
sections of malN+qX whose N + q jets at a are given by Y ’s. The iterated
fiberwise bracket in the Nth derived algebra of malX obtained from the
Ỹ ’s is zero out of S thus everywhere. It is determined at a by the q-jet of
the iterated Lie bracket of the formal vector fields. Because it is true for
any q it proves the lemma. �

Let say that differential equation over C(t) is integrable by quadratures
if the general solution belongs to a Liouvillian extension (with possibly new
constants).

Definition 3.4. — Let E(t, y, y′, . . . y(n)) ∈ C[t, y′, . . . , y(n)] be an or-
der n differential equation given by an irreducible polynomial.

A Liouvillian solution is a solution f in a differential extension KN of
K0 = C(t) build by successive elementary extensions Ki−1 ⊂ Ki, 1 6 i 6 N

of the form Ki = Ki−1(ui) with ui algebraic over Ki−1 or u′i ∈ Ki−1 or
u′i
ui
∈ Ki−1.

The equation E is said to be integrable by quadratures if there is a
Liouvillian solution f with transc.deg.C(t, f, f ′, . . . , f (n−1))/C(t) = n.

Remark 3.5. — It is important to allow new constant in order to get
y′′ = 0 integrable by quadratures.

Theorem 3.6. — If a rational ordinary differential equation is inte-
grable by quadratures then its variational equations along algebraic solu-
tions have solvable identity component of their Galois groups.
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Proof. — We have to prove that if X on V is a vector field given by the
equation on a phase space, malXa is solvable for a generic a ∈ V . Then
apply lemma 3.3 and theorem 2.4 and the proof is done. Let C(t) ⊂ K1 · · · ⊂
KN be a Liouvillian tower such that E has a transcendence degree d − 1
solution in KN over C(t). For simplicity let us assume that all extensions
are transcendental. Each Ki is the field of rational functions on some affine
space A1 × Ai with a vector field Xi = ∂

∂t +
∑i
j=1 u

′
j
∂
∂ui

projectable on
Xi−1. This means that, as derivation of Ki, Xi preserves the subfield Ki−1
and Xi|Ki−1

= Xi−1. Hypothesis of the theorem are:

• there is a dominant map V → A1 and X is projectable on ∂
∂t ,

• there is a dominant map from A1 × AN to V over A1 and XN is
projectable on X.

From [7, lemme 4.6.] if malXN is solvable so is malX.
Because of the structure of the tower of extension one can find N 1-

forms, θi = dui −XNuidt, 1 6 i 6 N , constant on XN satisfying dθi = 0
mod (θ1, . . . , θi−1). Because LXN θi = 0 mod (θ1, . . . , θi−1) same equations
are satisfied by vector field of malX. Let x1, . . . , xN be local (analytic)
coordinates such that dxi = θi mod (θ1, . . . , θi−1) then Y ∈ malX can be
written

Y = c1
∂

∂x1
+ c2(x1) ∂

∂x2
+ · · ·+ cN (x1, · · · , xN−1) ∂

∂xN
.

The Nth derived algebra of this type of Lie algebra of formal vector field
is zero. �

For instance, X on V is Jacobi integrable if it has d − 2 rational first
integrals and an invariant rational d-form. Morales-Ramis type theorem
for this kind of integrability was obtained by M. Przybylska in [25] in a
particular case. Theorem 2.4 gives the general situation. Computation of
vector fields in the Lie algebra of the Malgrange pseudogroup of such a
vector field is left to the reader. In suitable local (analytic) coordinates one
gets vector field of the form c1(x2, . . . , xn) ∂∂x1

+ c2(x3, . . . xn) ∂∂x2
. The first

derived algebra is Abelian.

Corollary 3.7. — IfX is a Jacobi integrable rational vector field on an
algebraic variety then identity components of Galois groups of variational
equations are solvable and their first derived Lie algebras are Abelian.
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3.3. Finiteness

Lemma 3.8. — Finiteness of the dimension of malX implies that the di-
mensions of Galois groups of variational equations are uniformely bounded.

Proof. — We have to prove that if malXa is finite dimensional at generic
a in V , it is finite dimensional at any a in V with smaller dimension. Then
theorem 2.4 can be used to conclude.

Let N be the generic dimension of malX. If X1, . . . , XN+1 are N +1 ele-
ments of malXa, by Artin approximation theorem, there are X̃1, . . . , X̃N+1
holomorphic nonholonomic sections of malqX whose q-jet at a are given by
X’s. For each a ∈ V − S the vectors X̃1(a), . . . , X̃N+1(a) are linearly de-
pendent. By analytic continuation it si also true for any a ∈ V and any
order q. This proves the lemma. �

From

Theorem 3.9 (B. Malgrange [18]). — If X is a completely integrable
Hamiltonian vector field on a symplectic algebraic variety over C by means
of rational first integrals then malX is finite dimensional.

One gets

Theorem 3.10. — In the situation of theorem 3.2 the sequence of di-
mensions

(dim Gal(RqX|C ))q∈N

is bounded uniformely in C .

There is no uniform bound for all algebraic Hamiltonians but it depends
on the geometry of the moment map. For instance if the moment map is
the restriction on some open set of an algebraically isotrivial fibration in
Abelian varieties then the bound should be the degree of freedom. If the
fibration is not isotrivial, e.g., for algebraic complete integrability [1], the
bound depend on the Gauss-Manin connexion of such a family.

4. Applications

4.1. Painlevé II equation

Irreducibility of these equations is proved in [23, 27] and implies that
these equations are not integrable by quadratures. Here is another proof
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of this weaker assertion in a particular case. These computations have bee
done in [20] to apply usual Morales-Ramis theorem.

Second Painlevé equation depends on a parameter

y′′ = 2y3 + xy + α for α ∈ C.

For α = 0, it is the vector field
∂

∂x
+ y′

∂

∂y
+ (2y3 + xy) ∂

∂y′

with first order (non principal) variational equation along C = {y = y′ = 0}
∂

∂x
+ r3

∂

∂r2
+ xr2

∂

∂r3

on TC3|C with induced coordinates (x, r1, r2, r3). The rank 2 subsystem
on r2, r3 is Airy equation with Galois group SL2(C). This group is not
solvable so Painlevé II equation is not integrable by quadratures when
α = 0. From Okamoto (see [23, 27]), we know that two Painlevé II equations
with parameter α and α+ n, n ∈ Z are isomorphic by a birational change
of coordinates on the phase space. Non integrability for α = 0 implies non
integrability for any interger values of α.

4.2. Lorenz system

Computations presented here originates from [6] where the non integra-
bility in sense of Liouville of a Hamiltonian form of this system is proved by
Morales-Ramis theorem. Lorenz system depends on 3 constants σ, ρ and β:

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz.

First assume β 6= 0. An invariant curve is the z-axis C and X|C = −βz ∂∂z .
Let us consider the following time dependent form of this equation on C3×C
with coordinates (x, y, z, t)

σ(x− y) ∂
∂x

+ (ρx− xz − y) ∂
∂y

+ (xy − βz) ∂
∂z
− βt ∂

∂t

an invariant curve is C = {x = y = z − t = 0} and the first variational
equation is the linear system

−βt d
dt
A =


−σ σ 0 0
ρ− z −1 0 0

0 0 −β 0
0 0 −β

A.
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The 2 × 2 subsystem given by the first block is equivalent to the second
order equation

β2t2
d2a

dt2
+ (β2 − βσ − β)tda

dt
+ σ(t− ρ+ 1)a = 0.

Applying [5] (or Maple 11), we get solution

t
σ+1
2β J

(
σ2 − 2σ + 1 + aσρ

β2 ,
2σ1/2

β
t1/2
)

where J(α, x) is any solution to Bessel equation x2 d2J
dx2 +xdJdx+(x2−α)J = 0.

The Galois group of this equation is SL2(C).
If σ 6= 0 then using the vector field

σ(x− y) ∂
∂x

+ (ρx− xz − y) ∂
∂y

+ (xy − βz) ∂
∂z
− σt ∂

∂t

an the invariant curve is C = {y = z−ρ = x−t = 0} we get the variational
equation

−σt d
dt
A =


−σ σ 0 0
0 −1 t 0
0 t −β 0
0 0 −σ

A.
From the middle 2× 2 subsystem we get the second order equation

σ2t2
d2a

dt2
− σ(t+ 1)tda

dt
+ ((1− β)t+ σ)a = 0.

Solutions are
t

1
2σ exp

(
t

2σ

)
W

(
1− 2β

2σ
,
σ − 1

2σ
,
t

σ

)
where W (k,m, x) is any solution of Whittaker equation x2 d2W

dx2 + x2 dW
dx +

(kx−m2 + 1/4)W = 0. Galois group of this equation is SL2(C).
If σ = β = 0 the Lorenz system is 2 × 2 linear system with constant

coefficients and a parameter x. Such systems can be explicitely solved by
exponentials. For any other values of parameters, Lorenz system is not
integrable by quadratures.
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