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GROUP SCHEMES OVER ARTINIAN RINGS AND
APPLICATIONS

by Ioan BERBEC (*)

Abstract. — Let n be a positive integer and A′ a complete characteristic zero
discrete valuation ring with maximal ideal m, absolute ramification index e < p−1
and perfect residue field k of characteristic p > 2. In this paper we classify smooth
finite dimensional formal p-faithful groups over A′n = A′/mnA′, i.e. groups on
which the “multiplication by p” morphism is faithfully flat, in particular p-divisible
groups. As applications, we prove that p-divisible groups over k, and the morphisms
between them, lift canonically toA′/pA′, and we study liftings to characteristic zero
of certain connected p-divisible groups of dimension d and height h over k = k, with
d and h coprime. When e = 1, we classify finite flat group schemes over A′/p2A′ of
p-power order and prove that a finite flat group scheme over A′/pnA′ of p-power
order, having flat pi-torsion for every i > 1, lifts to A′.

Résumé. — Soit n un entier positif et A′ un anneau de valuation discrète com-
plet de caractéristique zéro avec idéal maximal m, indice de ramification absolu
e < p− 1 et corps résiduel parfait k de caractéristique p > 2. Dans cet article nous
classifions les groupes formels lisses p-fidèles de dimension finie sur A′n = A′/mnA′,
i.e. les groupes sur lesquels le morphisme “multiplication par p ” est fidèlement
plat, en particulier les groupes p-divisibles. Comme application, nous prouvons que
les groupes p-divisibles sur k, et les morphismes entre eux, se relèvent canonique-
ment à A′/pA′, et nous étudions les relèvements en caractéristique zéro de certains
groupes p-divisibles connexes de dimension d et hauteur h sur k = k, ou d et h
sont étrangers. Quand e = 1, nous classifions les schémas en groupes finis et plats
sur A′/p2A′ d’ordre une puissance de p et nous prouvons que tous les schémas en
groupes finis et plats sur A′/pnA′ d’ordre une puissance de p, avec pi-torsion plate
pour chaque i > 1, se relèvent à A′.

Introduction

Let p > 2 be a prime. Let A′ be a complete characteristic 0 discrete val-
uation ring with absolute ramification index e = e(A′) < p− 1 and perfect

Keywords: Group scheme, p-divisible group, almost canonical lifting.
Math. classification: 14L15, 14L05.
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residue field of characteristic p. Let m be its maximal ideal, k = A′/m and
n a positive integer. In this paper we classify smooth finite dimensional
(commutative) formal p-faithful groups, i.e. groups on which the “multi-
plication by p” morphism is faithfully flat, in particular p-divisible groups,
over A′n = A′/mnA′, and use it to derive other classification results and
some applications.

Fontaine classified smooth p-groups over A′, cf. Theorem 1.11 below. We
use his work to achieve the classification of smooth p-groups over A′n, cf.
Theorem 2.8. We associate to any such group a so-called smooth Honda
system over A′n, i.e. linear algebra data constructed from the Dieudonné
module of the special fiber of the group. In general, we can prove that this
correspondence is essentially surjective and full. In order to prove that this
correspondence is also faithful, and thus achieve our classification, we have
to restrict to p-faithful groups. While essential surjectivity follows more or
less easily from Fontaine’s work, fully faithfulness is nontrivial, reflecting
phenomena specific to groups over A′n, cf. Lemma 2.10. In the end, we
prove that our classification is compatible with Fontaine’s. More precisely,
we prove that if a p-faithful group Γ over A′ is classified, via Fontaine, by the
pair (L,M) then its base change Γn to A′n is classified by (L/mn−1L,M),
cf. Proposition 2.12.

In the case n = e, from the algebraic properties of the Honda system as-
sociated to a p-divisible group over A′e, we deduce the following proposition.
It is implied by Proposition 2.17 and Corollary 2.18.

Proposition. — For every p-divisible group Γ over k there exists a
canonical p-divisible group Γcan over A′e such that Γcan × Spec k ' Γ.
Moreover, any morphism f : Γ→ Γ′ between p-divisible groups over k lifts
canonically to a morphism f can : Γcan → (Γ′)can of p-divisible groups over
A′e. In particular, any abelian variety (resp. finite group scheme) over k lifts
canonically to an abelian scheme (resp. finite flat group scheme) over A′e.

We apply our classification to the study of liftings to characteristic zero
of Manin’s groups Gd,h−d, cf. Remark 4.1, where d < h are coprime and k

is algebraically closed. The group Gd,h−d is a connected p-divisible group
of dimension d and absolute height h over k. All connected p-divisible
groups of height h and dimension 1 are isomorphic to G1,h. In general, all
p-divisible groups of dimension d and height h are isogeneous to Gd,h−d,
cf. [13], p. 3. We prove, cf. Theorem 4.4, the following result.

Theorem 1. — Let d < h be two coprime positive integers, let k be an
algebraically closed field of characteristic p, let O be the ring of integers in
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GROUPS OVER ARTINIAN RINGS 2373

a degree h extension K of Qp, with absolute ramification index e < p− 1,
and let A′ be the ring of integers in a degree e, totally ramified extension
of the fraction field of the Witt ring W (k), which contains the maximal
unramified extension of O.

There exists a p-divisible group Γ over A′ such that Γ×Spec k ' Gd,h−d
and EndA′−gr(Γ) = O if and only if h > ed. In this case:

(i) There are exactly ed/g isomorphism classes of such Γ’s, where g is the
number of automorphisms of K which fix its maximal unramified subex-
tension.

(ii) For every such Γ and every n > 1

EndA′n−gr(ΓA′n) = O + πn−1 Endk−gr(Γk)

where ΓA′n (resp. Γk) is the base change to A′n (resp. k) of Γ and π is a
uniformizer of O.

We refer the reader to Section 4 for details concerning this result. This
Theorem, via Honda systems, becomes a beautiful, yet nontrivial, exercise
in semilinear algebra. Over bases with low ramification, Part (i) of the
Theorem generalizes to arbitrary dimension results of Lubin, [10], Theo-
rem 4.3.2, and Part (ii) generalizes results of Gross, [6], §3, and Yu, [15],
Section 14.

Another application of our classification of p-divisible groups over A′n
is the study of finite flat group schemes over A′n of p-power order, finite
groups in the sequel, in the case e = 1. Our main tool is Oort’s result, cf.
Theorem 3.1, which states that any finite group embeds into a p-divisible
one.

Fontaine associated to a finite group over A′ a so-called finite Honda sys-
tem (L,M) over A′ that classifies the group, with M being the Dieudonné
module of the special fiber of the group, cf. [3], Theorem 1.4. We associate
to a finite group over A′n a finite Honda system over A′n, consisting of a
triple (Ln, Ln,M), with (Ln,M [pn−1]) and (Ln,M/pn−1M) being finite
Honda systems over A′, cf. Definition 3.6 and Proposition 3.7. In the case
n = 2 we are able to prove that this correspondence classifies finite groups
over A′/p2A′, cf. Corollary 3.10. For general n we can prove that this cor-
respondence classifies a certain class of finite groups over A′n among which
are the truncated Barsotti-Tate groups of level s > 1, cf. Remark 3.11 (2).

One of the main differences between the situation over A′ and the situa-
tion over A′n is that the “special fiber” functor from finite groups over A′n
to finite groups over k is not faithful. This implies, in particular, that the
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2374 Ioan BERBEC

category of finite groups over A′n is not abelian, cf. Remark 3.11 (1). Nev-
ertheless, we are able to prove, cf. Theorem 3.16, that the “special fiber”
functor is faithful on the morphisms that lift to A′n+m for m large enough.

We also prove, cf. Theorem 3.13, the following result.

Theorem 2. — Suppose A′ is unramified. Let G be a finite flat group
scheme over A′/pnA′ of p-power order.

(i) If the pi-torsion subgroup G[pi] is flat for every i > 1 then G lifts
to A′.

(ii) The torsion subgroup G[pi] is flat for i between 1 and some positive
integer r if and only if G lifts to A′/pn+rA′.

A future generalization of this paper would be to include higher (e >
p − 1) ramification on the base. We think that Breuil’s techniques, cf. [2],
can be used to achieve this.

Here is the structure of this paper: in Section 1 we introduce notations
and we review concepts and results of Fontaine and Conrad that we will use
in our paper. In Section 2 we classify smooth formal p-groups. In Section 3
we study finite groups. In Subsection 3.1 we show how most of the results
can be carried out mutatis mutandis in the case of finite groups over A′n
with e > 2 and n of the form qe + 1. In Section 4 we study liftings to
characteristic zero of Manin’s groups and their endomorphisms mod mn.

Acknowledgement. — I would like to thank Professor Robert Coleman
for suggesting the motivating problem behind this paper to me and for his
guidance throughout my graduate studies. I also thank Brian Conrad for
helpful suggestions, which lead to some of the applications in this paper,
and the referee for very useful comments.

1. Notations and Preliminaries

The main references for this paper are Fontaine’s book [5] and Conrad’s
article [3]. For the convenience of the reader we review here all the defini-
tions and results we use from the above papers.

Throughout this paper:
n > 2 is a positive integer.
p > 3 is a fixed prime number.
k is a perfect field of characteristic p.
A = W (k) is the ring of Witt vectors of k. We let (A′,m) be the valu-
ation ring of a finite totally ramified extension K ′ of the fraction field
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GROUPS OVER ARTINIAN RINGS 2375

K of A, with e = e(A′) the absolute ramification index of A′, and
A′n = A′/mn. We fix a uniformizer π of A′.

If R (resp. R) is an A′ (resp A′n) algebra, we denote by Rk (resp. Rk)
the special fiber R⊗A′ k (resp. R⊗A′n k) of R (resp. R) and by RK′ = RK
the generic fiber R⊗A′ K of R.
Dk = A[F, V ] is the Dieudonné ring, i.e. the variables satisfy FV =

V F = p, Fα = σ(α), V α = σ−1(α), for all α ∈ A, where σ : A→ A is the
Frobenius morphism.

For us, a group is a group scheme, formal or finite.
A pseudo-compact ring S is a separated and complete linearly topolo-

gized ring such that the ring S/I is artinian for all open ideals I of S.
Obviously k with the discrete topology, A′ and A′n with the p-adic topol-
ogy are pseudo-compact.

Definition 1.1. — Let (S,m) be a local pseudo-compact ring with
residue characteristic p.

1. A formal S-group functor F is a functor defined on finite S-algebras
with values in abelian groups. Thus all our groups are commutative.

2. A formal S-group is a pro-representable formal S-group functor. A
formal p-group G over S is a formal S-group G such that G ' lim−→G[pi].
We say that a formal S-group G is smooth if for all finite S-algebras R and
all square zero ideals I of R the canonical map from G(R) to G(R/I) is
surjective.

3. We say that a smooth formal p-group G over S is p-faithful if the
“multiplication by p” morphism [p] : G→ G is faithfully flat.

4. We say that a p-faithful group G over S is p-divisible of height h if
G[pi] has order pih for all i > 1.

5. A finite flat group scheme of p-power order over S is a formal p-group
which is a finite flat scheme over S.

A profinite S-module M is a linearly topologized S-module such that
for any open submodule M ′ the quotient M/M ′ is an S-module of finite
length. A profinite S-algebra B is an S-algebra such that B is a profinite
S-module.

We briefly review the theory of Witt covectors from [5], Chapter II, §§1-4.
For any commutative ring S (the reader should have in mind k, A or

An finite algebras as a typical example) we define the S-valued Witt cov-
ectors CW (S) to be the set of sequences a = (. . . , a−i, . . . , a0) of ele-
ments a−i ∈ S verifying the condition: there is an integer r > 0 such
that the ideal of S generated by the a−i’s for i > r is nilpotent. Letting
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Sm ∈ Z[X0, . . . , Xm, Y0, . . . , Ym] denote the mth addition polynomial for
Witt vectors, cf. [5], pp. 71–72, and choosing a and b in CW (S), the nilpo-
tence condition ensures that the sequence{

Sm(a−i−m, . . . , a−i, b−i−m, . . . , b−i)
}
m>0

is stationary. Denoting the limit by c−i it is true that c = (c−i) is in
CW (S), cf. [5], Chapter II, Proposition 1.1. Defining

a + b = c

makes CW (S) into a commutative group with identity (. . . , 0, . . . , 0), cf. [5],
Chapter II, Proposition 1.4.

We refer the reader to [5], Chapter II, §1.6 for the natural topology
of CW (S). We note that CW (S) is complete and separable with respect
to this topology and that CWu(S) = {a; a−i = 0 for large i} is a dense
subgroup. Moreover, for every morphism of commutative rings ϕ : S → S′

the map
CW (ϕ) : CW (S)→ CW (S′)

defined by

CW (ϕ)
(
(. . . , a−i, . . . , a0)

)
=
(
. . . , ϕ(a−i), . . . , ϕ(a0)

)
is continuous. Thus, CW is a functor from the category of commutative
rings to the category of topological groups. It can be extended in an obvious
way to the category of separable, complete linearly topologized commuta-
tive rings, cf. [5], Chapter II, §1.7.

Now we specialize to k-algebras S. In this case, CWk(S) = CW (S)
admits a unique structure of topological module over A, such that for all
x in k, with Teichmüller lift [x] = (x, 0, . . . , 0, . . .) ∈ A, we have

[x] · a =
(
. . . , xp

−i
a−i, . . . , x

p−1
a−1, a0

)
.

The operations F, V : CWk(S)→ CWk(S) given by

F (a) = (. . . , ap−i, . . . , a
p
0), V (a) = (. . . , a−i−1, . . . , a−1)

are additive, continuous and satisfy the relations FV = V F = p, Fα =
σ(α), V α = σ−1(α), with α ∈ A. In other words, CWk(S) is a topological
Dk-module. This is all functorial in S.

The group functor CWk on finite k-algebras is pro-representable.We de-
note by ĈWk the group scheme that represents it, cf. [5], Chapter II, §4.2.

For any formal p-group G over k we define its Dieudonné module

M (G) = Homk−gr(G, ĈWk)

as the group of formal k-group morphisms from G to ĈWk.

ANNALES DE L’INSTITUT FOURIER
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Remark 1.2. — By viewing morphisms of formal group schemes between
G and ĈWk as morphisms of schemes, we obtain an embedding

M (G) ↪→ Homk−sch(G, ĈWk) ' CWk(R)

where R is the affine algebra of G. Moreover, if ∆ is the comultiplication
of R then

M (G) =
{

a ∈ CWk(R); CW (∆)(a) = a⊗̂1 + 1⊗̂a
}
.

This allows us to view M (G) as a closed topological Dk-submodule of
CWk(R).

All of the standard properties of the classical Dieudonné module theory
are proven in [5], Chapter III based on this definition. The main result of
this theory, [5], Theorem 1, p. 127, is comprised in the following theorem.

Theorem 1.3. — The functor M sets up a duality of abelian categories
between formal p-groups over k and certain topological Dk-modules.

Now, for any separable, complete linearly topologized A-algebra S, in
particular for An-algebras, CW (S) has a natural structure of topological
A-module, which is uniquely determined by

[x] · a =
(
. . . , σ−i([x])a−i, . . . , σ−1([x])a−1, [x]a0

)
for every x ∈ k and every a = (. . . , a−i, . . . , a0) ∈ CWu(S), cf. [5], Chap-
ter II, §2.4. We denote this A-module by CWA(S).

Recall from [5], Chapter II, §5 and Chapter IV, §3 the following defini-
tions and notations:

Definition 1.4.
(i) A p-adic A′-algebra R is a separable, complete linearly topologized

A′-algebra, with the topology being the p-adic one, such that p is not a
zero divisor in R.

(ii) A special A′-algebra R is a profinite formally smooth A′-algebra
locally of finite dimension, i.e. a profinite A′-algebra whose every local
component is isomorphic to a power series ring in a finite number of in-
determinates with coefficients in the ring of integers of a finite unramified
extension of K ′.

For a p-adic A-algebra R one can construct a continuous A-linear map

(1.1) ŵR : CWA(R)→ RK

TOME 59 (2009), FASCICULE 6
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the topology on RK being the p-adic one, defined by

ŵR
(
(. . . , â−i, . . . , â0)

)
=
∞∑
i=0

p−i(â−i)p
i

which induces an A-linear continuous map

(1.2) wR : CWk(Rk)→
RK
pR

defined by

wR
(
(. . . , a−i, . . . , a0)

)
=
∞∑
i=0

p−i(â−i)pi

where â−i ∈ R is an arbitrary lift of a−i, cf. [5], Chapter II, §§5.1-2.
If (R,m) is a local special A′-algebra then we let R̂anK be the separable

completion of RK with respect to the ideals Js =
∑∞
i=1 p

−i+1mis, for s > 1,
i.e. R̂anK = lim←−RK/Js. If R is an arbitrary special A′-algebra and if R =∏
Rm is the decomposition of R into local components, we let R̂anK be∏
(Rm)anK , where Rm is lim←−(R/I)m/I , with I running through all open

ideals ofR contained in the open maximal ideal m. Let us denote by ΩA′(R)
(resp. ΩA′(R̂anK )) the module of continuousA′-differentials ofR (resp. R̂anK ).
We let

(1.3) P (R) =
{
α ∈ R̂anK ; d(α) ∈ ΩA′(R)

}
where d : R̂anK → ΩA′(R̂anK ) is the canonical morphism.

For a special A-algebra R one can construct an A-linear continuous map

(1.4) ŵR : CWA(R)→ R̂anK
defined by the same formula as (1.1) above, whose image is P (R), cf. [5],
Chapter II, Proposition 5.5, and which induces an A-linear continuous iso-
morphism

(1.5) wR : CWk(Rk)→
P (R)
pR

defined as (1.2) above.

1.1. Group schemes over discrete valuation rings

In this Subsection we review Fontaine’s classification of smooth p-groups
and Conrad’s classification of finite flat groups over discrete valuation rings
with ramification index e < p− 1.
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Definition 1.5. — Let M be a Dk-module.
(i) Let M (1) be the Dk-module, whose underlying space is M , with A-

action given by a · x := σ−1(a)x, for every a ∈ A and x ∈ M , and with F

and V acting as before. Thus F and V can be seen as A-linear maps

M
V // M (1) , M M (1)Foo .

(ii) Define MA′ to be the direct limit of the following diagram of A′-
modules

m⊗AM
V1 //

ϕ0

��

p−1m⊗AM (1)

A′ ⊗AM A′ ⊗AM (1)
F1

oo

ϕ1

OO

where the vertical maps are the obvious “inclusions”, V1(λ⊗ x) = p−1λ⊗
V (x) and F1(λ⊗ x) = λ⊗ F (x), with F , V the usual operators.

(iii) It is obvious how to associate to a Dk-morphism ϕ : M → M ′ an
A′-morphism ϕA′ : MA′ →M ′A′ .

Remark 1.6.
(i) More explicitly, MA′ is the quotient of A′ ⊗AM ⊕ p−1m⊗AM (1) by

the submodule

{(ϕ0(u)− F1(w), ϕ1(w)− V1(u));u ∈ m⊗AM,w ∈ A′ ⊗AM (1)}.

In particular, it is easy to see that any element in MA′ can be written as
(1⊗m0,

∑e−1
i=1 p

−1πi ⊗mi), cf. also [3], Lemma 2.2.
(ii) We denote the image of the natural morphism p−1m⊗AM (1) →MA′

by MA′ [1].
(iii) In the case A′ = A there is a canonical isomorphism between M

and M ′A, via which MA′ [1] corresponds to FM . The reader should read M
instead of MA and FM instead of MA[1] in this case, in all the statements
we make.

We have the following basic result, cf. [5], Chapter IV, Proposition 2.3.

Proposition 1.7. — The natural map M/FM → MA′/MA′ [1], given
by [x] 7→ [(1⊗ x, 0)], is an isomorphism of k-vector spaces.

Let R be an A′-special algebra. We defined, cf. (1.4), an A-linear mor-
phism ŵR :CWA(R)→P (R). It is clear that ŵR(CWA(mR))⊂mR (e<p−1),
hence ŵR induces a morphism w′R : CWk(Rk) → P (R)/mR, which in

TOME 59 (2009), FASCICULE 6



2380 Ioan BERBEC

turn, via extension of scalars, induces a morphism w′′R : A′⊗ACWk(Rk)→
P (R)/mR. Now, A′ ⊗A CWk(Rk) surjects onto(

CWk(Rk)
)
A′

=: CWk,A′(Rk),

cf. [5], Chapter IV, Proposition 2.5. Fontaine proved that w′′R induces an
A′-linear map

(1.6) wR : CWk,A′(Rk)→
P (R)
mR

which is an isomorphism, cf. [5], Chapter IV, Proposition 3.2.
For future reference, we note that for a p-adic A′-algebra S we can con-

struct, as in the case of A′-special algebras, an A′-linear map

(1.7) wS : CWk,A′(Sk)→
SK
mS

starting with ŵS : CWA(S)→ SK , cf. (1.1) above.
Now let G be a smooth formal p-group over A′ and let R be its affine

algebra. Then Gk = G × Spec k, its special fiber, has affine algebra Rk.
Let M = M (Gk) be the Dieudonné module of Gk. We denote by ∆ the
comultiplication of R and by ∆̂ the extension of ∆ to R̂anK . Let δ(α) :=
α⊗̂1 + 1⊗̂α− ∆̂(α) for α ∈ R̂anK . Let:

(1.8) L1 =
{
α∈P (R); δ(α) ∈ mR⊗̂A′R

}
and L =

{
α∈P (R); δ(α) = 0

}
.

Fontaine proved the following result.

Proposition 1.8.
(i) The natural morphism MA′ → CWk,A′(Rk), induced by the inclusion

M ⊂ CWk(Rk), is an injection.
(ii) The map wR, cf. (1.6) above, induces an isomorphism w between

MA′ and L1/mR.

Remark 1.9. — Conrad proved, cf. [3] last part of Lemma 2.7, that
MA′ is an A′-submodule of CWk,A′(Rk) also in the case when M is the
Dieudonné module of a finite group.

We now take some time to describe the map wR on the less obvi-
ous part of MA′ , namely on MA′ [1] = Im(p−1m ⊗A M (1) → MA′). Let
x = (0, p−1πi ⊗ a) be in MA′ [1], where a = (. . . , a−j , . . . , a0) ∈ M (1) ⊂
CWk(Rk)(1) and i is between 1 and e−1. Then, as an element of CWk,A′(Rk)
via the natural inclusion MA′ ↪→ CWk,A′(Rk), x is equal to (πi ⊗ b, 0),
where b = (. . . , a−j , . . . , a0, a1) with a1 ∈ Rk an arbitrary element. This is
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GROUPS OVER ARTINIAN RINGS 2381

so because p−1πi⊗a = V1(πi⊗b) in p−1m⊗ACWk(Rk)(1), cf. Definition 1.5
(ii) and Remark 1.6 (i). Therefore

(1.9) wR(x) = πi
∞∑
j=0

p−j−1(â−j)pj+1 = πiβ ∈ L1

mR

where â−j ∈ R is any lift of a−j .
Before we introduce the category of classifying objects, we note that a

profinite Dk-module M is a Dk-module M which is A-profinite and is such
that its open Dk-submodules form a fundamental system of neighborhoods
of 0. Now, the category of classifying objects ΛlA′ , cf. [5], Chapter IV, §4.3,
is defined as follows:

Definition 1.10.
1)
a. The objects are triples (L,M, ρ), where

i) M is a profinite Dk-module on which the action of F is injective
such that the quotient M/FM is a finite dimensional k-vector
space,

ii) L is a free A′-module of finite rank,
iii) ρ : L → MA′ is A′-linear such that the induced morphism

ρ : L/mL → MA′/MA′ [1] ∼−→ M/FM is an isomorphism of k-
vector spaces.

b. A morphism u : (L,M, ρ) → (L′,M ′, ρ′) is a couple (uL, uM ) with
uL : L → L′ (resp. uM : M → M ′) an A′ (resp. Dk) linear morphism
such that uM,A′ ◦ ρ = ρ′ ◦ uL.

2) The category of smooth Honda systems HdA′ over A′ has as objects
pairs (L,M) with M and L as in 1(a) and with L included in MA′ . The
morphisms are the obvious ones.

3) We denote by SFA′ the category of smooth finite dimensional formal
p-groups over A′.

Fontaine defined a functor LMA′ (resp. LMdA′) from the category SFA′
(resp. of p-divisible groups over A′) to the category ΛlA′ (resp. HdA′) by
LMA′(G) = (L,M, ρ) (resp. LMdA′(G) = (ρ(L),M)), with ρ the composi-
tion

(1.10) L ↪→ L1 →
L1

mR
∼−→MA′

where L, L1 and M are as in (1.8) above.
Then he proved, cf. [5], Chapter IV, Theorem 2 (resp. Proposition 5.1),

the following theorem.
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Theorem 1.11. — The functor LMA′ (resp. LMdA′) induces a duality of
categories between the category SFA′ (resp. of p-divisible groups over A′)
and the category ΛlA′ (resp. HdA′).

We now review Conrad’s classification of finite flat group schemes overA′.

Definition 1.12.
1) Let SHfA′ be the category of finite Honda systems over A′ whose

objects are triples (L,M, j) where:
i) M is a Dk-module with finite A′-length,
ii) L

j→MA′ is a morphism of A′-modules such that the natural k-linear
map L/mL→MA′/MA′ [1] is an isomorphism of k-vector spaces and
such that V ◦ j is injective, where

V : MA′ → A′ ⊗AM (1)

is induced by the maps

id⊗V : A′ ⊗AM → A′ ⊗AM (1),

p⊗ id : p−1m⊗AM (1) → A′ ⊗AM (1).

A morphism u : (L,M, j) → (L′,M ′, j′) is a pair u = (uL, uM ), with
uM : M → M ′ a continuous Dk-linear morphism and uL : L → L′ an A′-
linear morphism such that uM,A′ ◦ j = j′ ◦ uL.

2) We denote by FFA′ the category of finite flat group schemes over A′
of p-power order.

Let G be a finite flat group scheme over A′ of p-power order, with affine
A′-algebra R. Let M = M (Gk) be the Dieudonné module of Gk and let
L ⊆MA′ denote the kernel of the A′-linear composite map

(1.11) MA′ ↪→ CWk,A′(Rk)
wR−→ RK

mR

where wR is the map (1.7) above.
Conrad defined, cf. [3], §3, a functor

LMA′ : FFA′ → SHfA′

by LMA′(G) := (L,M). Moreover, he proved, cf. [3], Theorem 3.6, the
following theorem.

Theorem 1.13. — The functor LMA′ is fully faithful and essentially
surjective.
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2. Smooth p-groups

In this Section we classify smooth p-faithful groups over A′n. We start by
defining the category of classifying objects.

Definition 2.1.
1) Let ΛA′n be the category whose objects are triples (Ln,M, ρ) where:

i) M is a profinite Dk-module on which the action of F is injective such
that the quotient M/FM is a finite dimensional k-vector space;

ii) Ln is a free A′n−1-module;
iii) ρ : Ln → MA′/m

n−1MA′ is A′n−1-linear such that the induced mor-
phism

ρ : Ln
mLn

→ MA′

mMA′
→ MA′

MA′ [1]
→ M

FM

is an isomorphism of k-vector spaces.
A morphism u : (Ln,M, ρ)→ (L′n,M ′, ρ′) is a pair (uL, uM ), with uL : Ln →
L′n (resp. uM : M → M ′) an A′n−1 (resp. Dk) linear morphism, for which
the following diagram is commutative

Ln
uL−→ L′nyρ yρ′

MA′
mn−1MA′

uM,A′−→ M ′
A′

mn−1M ′
A′

where uM,A′ is induced by uM,A′ .

2) Let ΛfA′n be the full subcategory of ΛA′n of objects (Ln,M, ρ) such that
the “multiplication by p” map [p] : M →M is injective.

3) We denote by SFA′n (resp. SFFA′n) the category of smooth finite
dimensional formal p-groups (resp. p-faithful groups) over A′n. Recall, cf.
Definition 1.1, that a smooth formal p-group is p-faithful if the “multipli-
cation by p” morphism is faithfully flat.

Now we want to construct a functor

LMn : SFA′n → ΛA′n .

For this, let G be a smooth formal p-group over A′n and let R be its affine
algebra. Then Gk = G×Spec k, its special fiber, has affine algebra Rk. Let
M = M (Gk) be the Dieudonné module of Gk. Let R be a smooth A′-lift
of R. We know it is unique up to non-unique isomorphism. We denote by
∆ (resp. ∆k) the comultiplication of R (resp. Rk). Let ∆̂ : R→ R⊗̂A′R be
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an A′-algebra morphism that lifts ∆. We also denote by ∆̂ the extension
of ∆̂ to R̂anK . For n > r > 1 define:

(2.1) Lr =
{
α ∈ P (R); δ(α) ∈ mrR⊗̂A′R

}
with P (R) and δ as in (1.3) and (1.8) above, respectively.

Remark 2.2. — Our L1 is Fontaine’s MHA′(G), cf. [5], pp. 166–167 and
p. 202.

Lemma 2.3. — The sets Lr are independent of the lift ∆̂, i.e. they only
depend on G and the lift R.

Proof. — Suppose ∆̂ and ∆̂1 : R → R⊗̂A′R are two A′-lifts of ∆ which
are uniquely extended to R̂anK . Let δ and δ1 be the corresponding mor-
phisms. For every α ∈ R we have ∆̂(α) ≡ ∆̂1(α) (mod mnR⊗̂R), that is
∆̂ (α) = ∆̂1 (α) + πnx with x ∈ R⊗̂A′R. Therefore, since ∆̂ and ∆̂1 are
morphisms of algebras,

(2.2) ∆̂ (αp
i

) = (∆̂ (α))p
i

= (∆̂1(α))p
i

+ piπny = ∆̂1(αp
i

) + piπny

with y ∈ R⊗̂A′R. So p−i∆̂ (αpi) ≡ p−i∆̂1(αpi) (mod mnR⊗̂R) for all
integers i > 0. In the unramified setting every element of P (R) is an
infinite sum of elements of the form p−iβ p

i with β ∈ R, cf. (1.4). In the
ramified setting the situation is similar, because A′ ⊗A CWA(R) surjects
on P (R), cf. (1.6). Hence every element of P (R) is an A′-combination of
infinite sums of elements of the form p−iβp

i with β ∈ R. Therefore we get
that δ(α)− δ1(α) ∈ mnR⊗̂R. �

Let ρ̃ be the composition

P (R) proj.−→ P (R)/mR
w−1
R−→ CWk,A′(Rk)

where wR is the map (1.6) above.
The following Lemma follows directly from [5], Chapter IV, Lemmas 1.2

and 4.3.

Lemma 2.4. — Let r be an integer between 1 and n− 1 and let α ∈ Lr.
There exists an element γ ∈ L1 such that ρ̃(γ) ∈MA′ [1] and (α−πr−1γ) ∈
Lr+1.

Let ρ̃0 be the composition

(2.3) Ln ↪→ L1
proj.−→ L1/mR

w−1

−→MA′
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where, w is the map in Proposition 1.8 (ii) above, and let ρ0 be the induced
map

(2.4) ρ0 : Ln
mn−1L1

→ MA′

mn−1MA′
.

Note that these maps depend only on G and the lift R.
We have the following key result.

Lemma 2.5.
(i) The morphism ρ0 induces a map

ρ0 : Ln
mLn + mn−1L1

'
Ln

mn−1L1

m · Ln
mn−1L1

→
MA′

mn−1MA′

m · MA′
mn−1MA′

proj.−→ MA′

MA′ [1]
∼−→ M

FM

which is an isomorphism of k-vector spaces.

(ii) Ln/mn−1L1 is a free A′n−1-module.

Proof.
(i) Since the surjectivity of ρ0 : Ln/(mLn + mn−1L1)→MA′/MA′ [1] fol-

lows from Lemma 2.4, cf. also [5], Chapter IV, Proposition 1.1, all we have
to prove is that it is injective. For this, we need to prove that ρ̃−1(MA′ [1])∩
Ln = mLn + mn−1L1 (we can view ρ0 as being induced by ρ̃ : P (R) →
CWk,A′(Rk)).

“⊆” Let α ∈ Ln such that ρ̃(α) ∈ MA′ [1]. This means, cf. (1.9), that
α = πβ for some β ∈ P (R). Since α is in Ln it follows that β is in Ln−1.
On the other hand, from Lemma 2.4 we know there is a γ ∈ L1 such that
ρ̃(γ) ∈MA′ [1] and (β − πn−2γ) ∈ Ln. Hence

α = πβ = π(β−πn−2γ+πn−2γ) = π(β−πn−2γ)+πn−1γ ∈ mLn+mn−1L1.

This proves the first inclusion. Since the other inclusion “⊇” is obvious, it
follows that ρ0 is injective.

For future reference, we observe that ρ̃ induces a surjective morphism,
also denoted ρ̃

(2.5) ρ̃ : Ln �
MA′

MA′ [1]
∼−→ M

FM
.

(ii) First of all, from (i) and some linear algebra follows that Ln/mn−1L1
is a finite A′ (hence A′n−1)-module. From (2.5) above, it follows that ρ̃
induces a surjective morphism ρ1 : Ln/mLn−1 → M/FM . Since mLn +
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mn−1L1 ⊂ mLn−1 we have a commutative diagram

Ln
mLn−1

ρ1 // M
FM

Ln
mLn+mn−1L1

OOOO

ρ̄0

88 88ppppppppp

.

Since ρ̄0 is an isomorphism, in particular injective, it follows that ρ1 is in-
jective, hence an isomorphism since it was already surjective. It also follows
that the vertical arrow in the above diagram is an isomorphism. Therefore
Ln/mLn−1 = Ln/(mLn + mn−1L1).

Now, let {α1, α2, . . . , αd} ⊂ Ln/mn−1L1 be a lift of a basis of Ln/(mLn+
mn−1L1). We claim that πn−2 · αj 6= 0 in Ln/mn−1L1, for all j between
1 and d. Indeed, suppose πn−2 · αj = 0 in Ln/mn−1L1 for some j. Then
it follows that πn−2αj ∈ mn−1L1. Hence πn−2αj = πn−1β for some β in
L1. So αj = πβ and it follows that β ∈ Ln−1, because αj ∈ Ln. Therefore
αj ∈ mLn−1 and [αj ] = [0] in Ln/mLn−1 = Ln/(mLn + mn−1L1) which is
a contradiction since [αj ] is part of a basis of Ln/(mLn + mn−1L1).

From the above claim, the fact that Ln/mn−1L1 is a finite A′-module
and the structure of modules over a principal ideal domain, it follows that
Ln/mn−1L1 is A′n−1-free. �

With the previous Lemma we got really close to the definition of our
classifying functor LMn. We are not there yet because all the objects we
constructed depend on the lift R. So our goal in the sequel is to embed
Ln/mn−1L1 in an object depending only on G. This is rather technical and
will follow from the following lemma.

Lemma 2.6.
(i) There is a natural surjective map

A′⊗̂ACWA(R)→ P (R)/mn−1P (R)

of A′-modules, whose kernel K does not depend on the lift R.
(ii) There is a natural injective map

Ln
mn−1L1

→ A′⊗̂ACWA(R)
K

whose image Ln does not depend on the lift R and is “functorial”, i.e. there
is a functor Ln : SFA′n → A′n−1-Mod such that Ln(G) = Ln.

(iii) Let ρ : Ln → MA′/m
n−1MA′ be induced by ρ0 (Ln/mn−1L1 and

Ln are isomorphic). Then for every morphism f : G → G′ in SFA′n the
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diagram

(2.6)
Ln

Ln(f)−→ L′nyρ yρ′
MA′

mn−1MA′

M (f)−→ M ′
A′

mn−1M ′
A′

is commutative, where M is the Dieudonné module functor and M (f) is
induced by M (f)A′ : MA′ →M ′A′ .

Proof. — This Lemma is quite straightforward. All we will do is draw
some diagrams which will make everything clear.

(i) We have the following diagram of A-modules with exact columns

CWA(mnR) //
� _

��

mn−1P (R)� _

��
CWA(R) ŵR //

����

P (R)

����
CWA(R) P (R)/mn−1P (R)

where ŵR is the map (1.4) above and the top horizontal map is the restric-
tion of ŵR. Actually ŵR(CWA(mnR)) ⊂ mnR ⊂ mn−1P (R). From the
above diagram we get an induced morphism

w′n(R) : CWA(R)→ P (R)/mn−1P (R)

of A-modules, which yields, via extension of scalars, an A′-morphism

wn(R) : A′⊗̂ACWA(R)→ P (R)/mn−1P (R).

Now for any other A′-liftR1 of R there exists a non-unique A′-isomorphism

R
ϕ // R1 . It is easy to see that we have the following commutative

diagram

(2.7) P (R)/mn−1P (R)

ϕ∗

��
A′⊗̂ACWA(R)

wn(R) 22ffffffff

wn(R1)
,,XXXXXXXX

P (R1)/mn−1P (R1)

where ϕ∗ is induced by ϕ. This shows that the A′-module

K = ker(wn(R)) = ker(wn(R1))

does not depend on the lift R. This proves (i).
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(ii) Since Ln ∩mn−1P (R) = mn−1L1 we get a canonical map

Ln/mn−1L1 ↪→ P (R)/mn−1P (R),

which induces an injective map

(2.8) Ln
mn−1L1

↪→ P (R)
mn−1P (R)

∼−→ A′⊗̂ACWA(R)
K

.

Now, a diagram similar to (2.7) above, with (A′⊗̂ACWA(R))/K instead of
A′⊗̂ACWA(R) and with Ln/mn−1L1 (resp. L′n/mn−1L′1) instead of
P (R)/mn−1P (R) (resp. P (R′)/mn−1P (R′)) will convince the reader that
the image of (2.8) does not depend on the lift R, where the objects L′1 and
L′n correspond to R′.

We are left with defining the functor Ln : SFA′n → A′n−1-Mod. Since we
said how it acts on objects, Ln(G) = Ln = image of (2.8), we only have
to define it on morphisms. Let f : G′ → G be a morphism in SFA′n , let
ϕ : R → R′ be the induced morphism of A′n-algebras, and let φ : R → R′
be a lift of ϕ where R (resp. R′) is an A′-special lift of R (resp. R′). We
also denote by φ the unique extension of φ to R̂anK and its restriction to
P (R). It is obvious that φ(Lr) ⊂ L′r for all 1 6 r 6 n. If φ : Ln/mn−1L1 →
L′n/mn−1L′1 is induced by φ we define Ln(f) : Ln → L′n to be the induced
morphism. Recall that Ln ' Ln/mn−1L1 and L′n ' L′n/mn−1L′1. It is clear
that this construction is functorial. This proves (ii).

(iii) We want to prove that the diagram (2.6) is commutative. We keep
the same notations as in the proof of (ii) above. The commutativity of (2.6)
follows from the following enlarged diagram

Ln

Ln(f)
��

∼ // Ln
mn−1L1

� � //

φ
��

L1
mn−1L1

φ
��

// // L1
mR+mn−1L1

∼ //

φ
��

MA′
mn−1MA′

M (f)��

L′n
∼ // L′n

mn−1L′1
� � // L′1

mn−1L′1
// // L′1

mR′+mn−1L′1
∼ // M ′

A′
mn−1M ′

A′

in which all the squares are commutative and in which the composition of
the maps on the top (resp. bottom) row is ρ (resp. ρ′). Here we used the fact
that L1/mR

∼ //MA′ , cf. Proposition 1.8 (ii), to get the isomorphisms
between the fourth and the fifth column in the above diagram. �

Now we are able to make the following definition.

Definition 2.7. — Define the functor LMn : SFA′n → ΛA′n as follows:
i) for an object G of SFA′n we let

LMn(G) := (Ln,M, ρ)
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where M is the Dieudonné module of Gk and Ln and ρ are as in Lemma 2.6;
ii) for a morphism f : G→ G′ in SFA′nwe let

LMn(f) = (Ln(f),M (f))

where Ln is as in Lemma 2.6.

Remark. — Lemmas 2.5 and 2.6 guarantee that the functor LMn is
well defined. Also, it is clear that by restricting LMn to SFFA′n we get a
functor

LMfn : SFFA′n → ΛfA′n .

The main result of this Section is the following theorem.

Theorem 2.8.
A. The functor LMn is essentially surjective and full.
B. The functor LMfn induces a duality of categories between the category

SFFA′n of smooth finite dimensional p-faithful groups over A′n and the
category ΛfA′n .

Proof.
A. We first prove that LMn is essentially surjective. The reader who is

familiar with the proof of the main result of Fontaine, cf. Theorem 1.11
above, will realize that our proof of essential surjectivity is built on his,
cf. [5], §1 and §4.8. Let (Ln,M, ρ) be an object in SFA′n . From Theorem 1.3
we know there exists a smooth formal p-group Gk of finite dimension over
k such that its Dieudonné module M0 = M (Gk) is isomorphic to M . We
fix such an isomorphism iM : M ' M0. Let Rk be the affine k-algebra of
Gk, let R be an A′-special lift of Rk and let R = R/mnR. Note that R is
unique up to non-unique isomorphism. As in Lemma 2.3, the set L1 = {α ∈
P (R); δ(α) ∈ mR⊗̂R} ⊂ P (R) is well defined and depends only on Rk.
Since Ln is A′n−1-free, we can embed it into L1/m

n−1L1 ⊂ P (R)/mn−1L1.
We choose an isomorphism iL : Ln → L0 of Ln onto an A′n−1-submodule
of L1/m

n−1L1 such that the following diagram

Ln

ρ

��

iL // L0
� � // L1

mn−1L1

��
MA′

mn−1MA′

iM // (M0)A′
mn−1(M0)A′

is commutative. Here iM is induced by (iM )A′ and the right vertical arrow
is induced by the isomorphism

P (R)
mR

⊃ L1

mR
w−1

−→ (M0)A′ ⊂ CWk,A′(Rk)
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cf. Proposition 1.8 (ii).
Let L0 ⊂ L1 be an A′-free module of rank d = rkA′

n−1
(Ln) = dim(Gk)

that lifts L0 and let Ln = L0 + mn−1L1 ⊂ L1 ⊂ P (R). It is easy to see
that Ln does not depend on the particular lift L0. Furthermore it is not
hard to see that we have

(2.9) L0

mL0
' L0

mL0
' Ln

mLn

and

(2.10) L0

mn−1L0
' Ln

mn−1L1
= L0 ' Ln.

We denote by p0 the projection from L0 onto Ln via the above isomorphism.
Due to the particular choice of iL we know that the following diagram

L0

p0

��

ρ̂0 // (M0)A′

��

Ln
ρ // MA′

mn−1MA′

iM // (M0)A′
mn−1(M0)A′

commutes, where ρ̂0 is the composition

L0 ↪→ L1 →
L1

mR
' (M0)A′ .

From now on, we identify M with M0 and Ln with L0 via iM and iL.
Let S be a p-adic A′-algebra:
• we denote by NL0(S) (resp. N0

L0
(S)) the abelian group

HomA′(L0,SK/mnS) (resp. HomA′(L0,SK/mS)) of A′-linear mor-
phisms from L0 to SK/mnS (resp. SK/mS);

• we denote by GM (S) the abelian group Homcont
Dk

(M,CWk(Sk)) of
continuous Dk-linear morphisms from M to CWk(Sk);
• we denote by ϕρ0 the map from GM (S) to N0

L0
(S) which associates

to u ∈ GM (S) the composition

L0
ρ̂0−→MA′

uA′−→ CWk,A′(Sk)
wS−→ SK

mS
cf. (1.7) above for the definition of wS ;

• finally, we denote byG(L0,M,ρ̂0)(S) the fiber productNL0(S)×N0
L0

(S)

GM (S), where the morphism from NL0(S) to N0
L0

(S) is the one in-
duced by the projection from SK/mnS to SK/mS and the morphism
from GM (S) to N0

L0
(S) is ϕρ0 .
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It is clear that everything is functorial in S. Thus we have defined a
functor G(L0,M,ρ̂0) from p-adic A′-algebras to abelian groups. We can also
define another group functor G(Ln,M,ρ̂) from p-adic A′-algebras to abelian
groups by replacing in the above construction L0 with Ln/mnR and ρ̂0
with ρ̂, where ρ̂ is the composition

Ln
mnR

→ L1

mR
'MA′ .

For any p-adic A′-ring S we denote by XR(Sn) the set of continuous A′n-
algebra morphisms from R to Sn = S/mnS. We want to define a morphism
η(S) : XR(Sn) → G(Ln,M,ρ̂)(S). Let x be in XR(Sn) and let x̂ : R → S
be an A′-lift of x. We also denote by x̂ the unique extension of x̂ to a
morphism from R̂anK to SK and its restriction to P (R). We define xLn to
be the composition

(2.11) Ln
mnR

↪→ P (R)
mnR

x̂−→ SK
mnS

.

It is easy to see that xLn does not depend on the lift x̂ of x. Let xM be the
composition

(2.12) M ↪→ CWk(Rk)
CW (xk)−→ CWk(Sk)

where xk : Rk → Sk is induced by x. We define η(S)(x) = (xLn , xM ).
It is clear from the following commutative diagram

(2.13)

Ln/mnR

ρ̂

��

� � // P (R)/mnR x̂ // SK/mnS

��
MA′

� � // CWk,A′(Rk)
(CWk(xk))A′ // CWk,A′(Sk)

wS // SK/mS

that η(S) is well defined. It is obvious that η is functorial in S.
Moreover, the inclusion L0 ↪→ Ln defines a morphism of group func-

tors resL0 : G(Ln,M,ρ̂) → G(L0,M,ρ̂0), which in turn defines a morphism
ηL0(S) : XR(Sn)→ G(L0,M,ρ̂0)(S), for every p-adic A′-ring S, by letting

(2.14) ηL0(S) = resL0(S) ◦ η(S).

It is clear that ηL0 is functorial in S.
Now, the fact that LMn is essentially surjective follows from the following

lemma.

Lemma 2.9. — For all p-adic A′-algebras S the map ηL0(S) is bĳective.
There is a unique structure of smooth formal p-group on G = SpfA′n R
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induced by ηL0 which is independent of the particular lift L0, i.e. it depends
only on the triple (Ln,M, ρ). Moreover LMn(G) ' (Ln,M, ρ).

Proof of Lemma 2.9. — This Lemma follows basically from [5], Chap-
ter IV, §1.6 and §4.8. We limit ourselves to pointing out the main steps in
the proof. We use Fontaine’s notations.

We prove that ηL0(S) is bĳective. Let (ξ, γ) be an element inG(L0,M,ρ̂0)(S).
We want to prove that there exists a unique element x in XR(Sn) such that
ηL0(S)(x) = (ξ, γ). First of all, by Theorem 1.3 above, there exists a unique
continuous k-algebra morphism xk : Rk → Sk such that γ = CW (xk). So
we want to prove that there exists a unique x : R → Sn, which reduces to
xk, such that xL0 = ξ, where xL0 is the restriction of xLn to L0, cf. (2.11)
for the definition of xLn .

We have Rk = Ret
k ⊗̂kRc

k. Let Ret denote the lifting of Ret
k in R and let

us choose a local subring Rc of R which lifts Rc
k. There is a natural isomor-

phism of Ret⊗̂A′Rc into R. We chose coordinates X = (X1, X2, . . . , Xd) of
Rc. Thus Rc is identified with the ring A′[[X]] and Rc

k with k[[X]], where
Xj is the image of Xj in Rc

k for 1 6 j 6 d.
It is obvious that a lift x : R → S of xk is uniquely determined by a d-

tuple σ = (s1, s2, . . . , sd) ∈ Sd, where sj ∈ S is a lift of sj = xc
k(Xj) ∈ Sk.

Thus there is a bĳection between morphisms x : R → Sn that lift xk and
d-tuples σ ∈ Sd, which are well defined modulo mnS. We will denote by xσ
the morphism from R to S corresponding to σ.

Since ηL0(S)(x) = (xL0 , xM ) = (xL0 , γ) ∈ G(L0,M,ρ̂0)(S), it follows that
xL0(α) − ξ(α) ∈ mS for all α ∈ L0. We see that the bĳectivity of ηL0(S)
will follow from the following result.

Sublemma 2.9.1. — Let r be an integer between 1 and n− 1. Suppose
there exists a d-tuple σ0 = (s0

1, s
0
2, . . . , s

0
d) ∈ Sd lifting the sj ’s, which is

uniquely determined modulo mrS and which is such that xσ0
L0

(α)− ξ(α) ∈
mrS for all α ∈ L0. Then there exists a d-tuple σ = (s1, s2, . . . , sd) ∈ Sd
lifting the sj ’s, which is uniquely determined modulo mr+1S and which is
such that xσL0

(α)− ξ(α) ∈ mr+1S for all α ∈ L0.

This Sublemma, in the unramified case, is actually the result on the
bottom of p. 178 in [5]. A careful reading of the proof of Fontaine’s re-
sult shows that the only condition on L0 for the result to hold is that
L0/pL0 be isomorphic to M/FM . This condition is satisfied in our case
since L0/pL0 ' Ln/pLn 'M/FM , cf. (2.9) above.

The proof in the ramified case goes through similarly. To convince the
reader of this, we show that the main steps in the above proof have a
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correspondent in the ramified case, too. For space reasons, we use the same
notations as in [5], Chapter IV, §1.6. Here are the main steps:

(i) Let α ∈ L1. Then α = wR(y), with y = (1 ⊗ a0,
∑e−1
i=1 p

−1πi ⊗ ai)
in MA′ , with a0 = (. . . , a−m,0, . . . , a−1,0, a0,0) ∈ M and ai = (. . . , a−m,i,
. . . , a−2,i, a−1,i) ∈M for all 1 6 i 6 e−1, cf. Remark 1.6 (i), Proposition 1.8
and (1.9). It follows that

(2.15) α = â0,0 +
e−1∑
i=0

πi
( ∞∑
m=1

p−mâp
m

−m,i

)
+ πβ

for some lifts â−m,i ∈ R of the a−m,i’s. Moreover, since M = M c ⊕M et,
we can actually write α like

α = αc + αet + πβ

with αc (resp. αet) as in (2.15) above, but with the â−m,j ’s in Rc (resp.
Ret) and β ∈ R.

(ii) Let {α1, . . . , αd} be an A′-basis of L0. Then, with notations as in
(i) above, it is trivial that ∂α

c
i

∂Xu
is in Rc, for all i and u between 1 and d.

Moreover, the fact that L0/mL0
∼−→ MA′/MA′ [1] ∼−→ M/FM , cf. (2.9)

above, guarantees that the matrix ( ∂α
c
i

∂Xu
)16i,u6d is invertible.

(iii) One can repeat the argument in [5] bottom of p. 179 - top of p. 180
to show that, if xi = x0

i + πryi in S, for 1 6 i 6 d, then

αc
i (x1, . . . , xd)−αc

i (x0
1, . . . , x

0
d) ≡ πr

d∑
u=1

∂αc
i

∂Xu
(x0

1, . . . , x
0
d) · yu (mod mr+1S)

for all 1 6 i 6 d. The argument still works because e < p − 1. This ends
our sketch of the proof of the Sublemma.

The rest of Lemma 2.9 is standard. �

We now prove that LMn is full. Let G be an A′n-group, R its affine
algebra, R an A′-special lift of R, and let (Ln,M, ρ) = LMn(G). Let L0,
L1 and Ln be as before.

From Lemma 2.9 and from (2.14) it follows that, for all p-adic A′-rings S,
the map

η(S) : G(Sn)→ G(Ln,M,ρ̂)(S)

is an injective group homomorphism.
Let G′ be another A′n-group with affine algebra R′, let R′ be an A′-

special lift of R′, let L′1 and L′n be as in (2.1) above, and let (L′n,M ′, ρ′) =
LMn(G′). Let (ζ, γ) : (Ln,M, ρ)→ (L′n,M ′, ρ′) be a morphism in ΛA′n . We
want to construct a morphism f : G′ → G such that LMn(f) = (ζ, γ). In
order to do that, we need the following important technical result.
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Lemma 2.10. — There exists a morphism ζ̂0 : L0 → L′n which makes
the following diagram

L0
� � //

ζ̂0

��-
--

--
--

--
--

--
--

--
--

Ln
ρ̂ //

pr $$HHHHHH MA′

pMwwoooooo

γA′

��

Ln

ζ
��

ρ // MA′
mn−1MA′

γ��

L′n
ρ′ // M ′

A′
mn−1M ′

A′

L′n
ρ̂′

//

pr′ ;;xxxxxxx
M ′A′

pM′ffMMMMMM

commute. Moreover, there exists a unique A′-linear morphism ζ̃ : Ln →
L′n/(mn−1L′1 ∩mR′) lifting ζ, which makes the diagram

Ln
ρ̂ //

ζ̃ ��

MA′

γ̃��
L′n

mn−1L′1∩mR′
// // L′n

ρ′ // M ′
A′

mn−1M ′
A′

commute, where γ̃ = pM ′ ◦ γA′ .

Proof of Lemma 2.10. — Let {e1, . . . , ed} ⊂ L0 be an A′-basis of L0.
There are two conditions that ζ̂0 has to satisfy: pr′ ◦ζ̂0 = ζ ◦pr and ρ̂′ ◦ ζ̂0 =
γA′ ◦ ρ̂. From these two conditions we see that in order to construct ζ̂0 we
need to come up with a set of elements {h1, . . . , hd} ⊂ L′n such that hi is
a lift of ζ(ei) and ρ̂′(hi) = γA′(ρ̂(ei)), for all 1 6 i 6 d, where ei = pr(ei).

Let gi ∈ L′n be an arbitrary lift of ζ(ei), for every i. We have

(pM ′ ◦ ρ̂′)(gi) = (ρ′ ◦ pr′)(gi) = ρ′(ζ(ei)) = γ(ρ(ei)) = (pM ′ ◦ γA′ ◦ ρ̂)(ei).

So ρ̂′(gi)− (γA′ ◦ ρ̂)(ei) ∈ mn−1M ′A′ . We know wR′(L′1) = M ′A′ , cf. Propo-
sition 1.8 (ii). Hence, there exists g′i ∈ L′1 such that

(γA′ ◦ ρ̂)(ei) = ρ̂′(gi) + ρ̂′(πn−1g′i).

Now it is clear that the elements (hi)16i6d, defined by hi = gi + πn−1g′i,
satisfy the above requirements. Define ζ̂0 : L0 → L′n by sending ei to hi for
all i’s.

Let α ∈ Ln. Suppose there exist u and v in L′n such that

pr′(u) = pr′(v) = ζ(α) and ρ̂′(u) = ρ̂′(v) = γA′(ρ̂(α)).
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It follows that u−v∈πn−1L′1 and u−v∈Ker(ρ̂′) = L′n ∩ mR′, cf. Proposi-
tion 1.8 (ii). Thus u− v has to be in mn−1L′1 ∩L′n ∩mR′ = mn−1L′1 ∩mR′.

On the other hand, from the first part of the Proof we see that we can
always find an element uα in L′n such that

π′(uα) = ζ(α) and ρ̂′(uα) = γA′(ρ̂(α)).

Thus, the correspondence α 7→ [uα] defines a well defined A′-linear mor-
phism ζ̃ : Ln → L′n/(πn−1L′1 ∩ πR′), which is uniquely determined by
(ζ, γ). �

Now, ζ̂0 and γ induce a morphism of group functors

φ : G′(L′n,M ′,ρ̂′) → G(L0,M,ρ̂0).

Since ηL0 is an isomorphism between G and G(L0,M,ρ̂0), the morphism φ

induces a morphism of group functors

f : G′ → G

that makes the diagram

(2.16) G′
f //

η′

��

G

ηL0
��

G′
(L′n,M ′,ρ̂′)

φ // G(L0,M,ρ̂0)

commute.
It is clear from the first diagram in Lemma 2.10 that LMn(f) = (ζ, γ).

Thus LMn is full.
B. We will prove that LMfn is essentially surjective and fully faithful. By

Part A, all we need to prove is faithfulness. Let f : G′ → G be a morphism
in SFFA′n such that LMfn (f) = (0, 0) in HomΛf

A′n

(
(Ln,M, ρ), (L′n,M ′, ρ′)

)
,

where (Ln,M, ρ) = LMfn (G) and (L′n,M ′, ρ′) = LMfn (G′). We need the
following result.

Lemma 2.11. — If G is p-faithful then

mn−1L1 ∩mR = mnR.

Proof of Lemma 2.11. — Since [p] : Gk → Gk is faithful, it follows that
[p] : M → M is injective. This, after some computations using the explicit
description of MA′ given in Remark 1.6 (i), implies that [p]A′ : MA′ →MA′

is also injective. Since [p]A′ is the “multiplication by p” map on MA′ and
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(πe) = (p), it follows that the “multiplication by π” map onMA′ is injective.
Hence, we get an isomorphism

[π] : L1

mR
→ π · L1

mR
= mL1 + mR

mR
= mL1

mL1 ∩mR
.

Since u : L1/mR→ mL1/m
2R is also an isomorphism, where u(α̃) = πα,

we get that mL1∩mR = m2R. The Lemma follows by finite induction. �

Let f∗ : R → R′ be induced by f and let ϕ : R → R′ be a lift of f∗.
We also denote by ϕ the unique extension of ϕ to P (R). It is clear that
ϕ(L1) ⊂ L′1 and ϕ(Ln) ⊂ L′n. In particular f induces a morphism ϕ : Ln →
L′n/mnR′ which reduces to the zero morphism from Ln to L′n and which
makes the second diagram in Lemma 2.10 commute. Since, by Lemma 2.11,
mn−1L′1 ∩ mR′ = mnR′ we can apply Lemma 2.10 to deduce that the
morphism ϕ : Ln → L′n/mnR′ is the zero morphism. Therefore

(2.17) ϕ(Ln) ⊂ mnR′.

Let S be a p-adic A′-ring. Using (2.17), we get that the morphism
ϕ̃(S) : G(L′n,M ′,ρ̂′)

(S) → G(Ln,M,ρ̂)(S), induced by ϕ : Ln → L′n and 0 =
M (f) : M → M ′, is the zero morphism. Now, since in the commutative
diagram

G′(S)
f(S) //

η′(S)
��

G(S)

η(S)
��

G′
(L′n,M ′,ρ̂′)

(S) ϕ̃(S)=0 // G(Ln,M,ρ̂)(S)

the vertical arrows are injective, f(S) has to be zero. Hence f is the zero
morphism between G′ and G. Thus LMfn is faithful.

With this we achieved the proof of our Theorem. �

Proposition 2.12. — Consider the following diagram of functors:

SFA′
LMA′ //

Bn
��

ΛlA′
Qn��

SFA′n
LMn // ΛA′n

where Bn is the base change from A′ to A′n andQn sends an object (L,M, ρ)
of ΛlA′ to the object (L/mn−1L,M, ρ) of ΛA′n , with

ρ : L/mn−1L →MA′/m
n−1MA′

induced by ρ.
The functors F = Qn ◦ LMA′ and E = LMn ◦Bn are isomorphic.
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Proof. — Let G be an object in ΛlA′ . With usual notations, we have
F (G) = (L/mn−1L,M, ρ) (resp. E(G) = (Ln,M, ρn)), where (L,M, ρ)
(resp. (Ln,M, ρn)) is as in (1.8) (resp. Definition 2.7).

We have the following commutative diagram of A′-modules

(2.18) L
mn−1L

� � //

��

∼

��

u

**

P (R)
mn−1P (R)

∼ // A′⊗̂ACWA(R)
K

Ln
mn−1L1

, �

::vvvvvvvvvv
∼ //

((PPPPPP
Ln
?�

OO

ρnuukkkkkkkkkkk

MA′
mn−1MA′

cf. Lemma 2.6 for the objects in the right column. Note that the morphism
L/mn−1L → Ln/mn−1L1 is an isomorphism, because it is so mod p and
the modules are A′n−1-flat.

Define a morphism µ(G) : F (G) → E(G), by µ(G) = (u, idM ). It is
clear that µ(G) is well defined and bĳective and that µ is a morphism of
functors. �

We have the following consequence of the Proof of Theorem 2.8 and of
Proposition 2.12.

Corollary 2.13. — Any smooth finite dimensional formal p-group
over A′n lifts to a smooth finite dimensional formal p-group over A′.

Now, we restrict Theorem 2.8 to the case of p-divisible groups, cf. Def-
inition 1.1 (4). For this, we first introduce the classifying category, the
category of smooth Honda systems over A′n.

Definition 2.14. — Let Hd
A′n

be the full subcategory of ΛfA′n whose
objects are pairs (Ln,M), with M an A′-free module and

Ln ⊆MA′/(mn−1MA′).

Define a functor LMdn from the category of p-divisible groups over A′n to
the category of smooth Honda systems over A′n by

LMdn(G) = (ρ0(Ln/mn−1L1),M),

cf. (2.1) and (2.4).
From Theorem 2.8 we get the following result.

Corollary 2.15. — The functor LMdn induces a duality of categories
between the category of p-divisible groups over A′n and the category Hd

A′n
of smooth Honda systems over A′n.
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Remark 2.16. — LetG be a p-divisible group overA′ and let LMdA′(G) =
(L,M), cf. (1.10). From Proposition 2.12 it follows that

LMdn(Gn) = (L/mn−1L,M).

The following result is a special feature of p-divisible groups over A′e =
A′/pA′.

Proposition 2.17. — For every p-divisible group Γ over k there ex-
ists a canonical lift Γcan over A′e. Moreover, for every morphism f : Γ →
Γ′ between p-divisible groups over k there exists a canonical morphism
f can : Γcan → (Γ′)can over A′e that lifts it.

Proof. — Let M be the Dieudonné module of Γ. Then, we claim that
the natural morphism

A′

πe−1A′
⊗A

M

FM
→ MA′

πe−1MA′

given by
∑e−2
j=0 π

j ⊗mj 7→ [(
∑e−2
j=0 π

j ⊗mj , 0)], is injective and its image
Lcan ⊆MA′/πe−1MA′ is A′e−1-free.

It is easy to see that it is well defined, i.e. that
∑e−2
j=0 π

j⊗Fmj is mapped
to zero. Indeed, this follows from the following relation(e−2∑
j=0

πj⊗Fmj , 0
)

=
e−2∑
j=0

(
πj⊗Fmj ,−πj⊗mj

)
+πe−1

e−2∑
j=0

(
0, p−1πj+1⊗mj

)
in which the right hand side is clearly zero in MA′/π

e−1MA′ , cf. Re-
mark 1.6 (i).

We now prove that it is injective. Assume [(
∑e−2
j=0 π

j ⊗mj , 0)] is zero in
MA′/π

e−1MA′ . This means that we have the following relation(e−2∑
j=0

πj ⊗mj , 0
)

= πe−1
(e−1∑
s=0

πs ⊗m′s,
e∑
t=1

p−1πt ⊗ nt
)

+
( e∑
t=1

πt ⊗ xt −
e−1∑
s=0

πs ⊗ Fys,
e−1∑
s=0

πs ⊗ ys −
e∑
t=1

p−1πt ⊗ V xt
)

in A′ ⊗AM ⊕ p−1m⊗AM (1), for some m′’s, n’s, x’s and y’s in M . In the
case e = 3, the reader would have to trust us that similar things happen in
the general case, this gives the set of equations

m0 = pm′1 + px3 − Fy0, 0 = pn2 + py1 − V x1,

m1 = pm′2 + x1 − Fy1, 0 = pn3 + py2 − V x2,

0 = m′0 + x2 − Fy2, 0 = n1 + y0 − V x3.
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Clearly m0 ∈ FM and, because V x1 ∈ pM = V FM and VM is injective,
it follows that x1 ∈ FM , hence m1 ∈ FM .

So the map is injective and since A′/πe−1A′ ⊗M/FM is A′e−1-free of
rank d = dimkM/FM , we get that (Lcan,M) is a smooth Honda system
over A′e. Therefore, it gives rise to a p-divisible group Γcan over A′e, which
lifts Γ.

Now let f : Γ → Γ′ be a morphism between p-divisible groups over k
and let ϕ : M2 → M1 be the corresponding Dk-linear map between their
Dieudonné modules. It is clear that ϕA′(Lcan

2 ) ⊆ Lcan
1 , where

ϕA′ : MA′/(mn−1MA′) → M ′A′/(mn−1M ′A′). Therefore ϕ : (Lcan
2 ,M2) →

(Lcan
1 ,M1) is a morphism of smooth Honda systems over A′e, which gives

rise to a group morphism f can : Γcan → (Γ′)can over A′e that lifts f . It is
clear that the correspondences Γ 7→ Γcan and f 7→ f can are functorial, i.e.
canonical. �

Corollary 2.18.
(i) Any abelian variety over k and any morphism between abelian vari-

eties over k, lifts canonically to A′e.
(ii) Any finite group over k lifts canonically to a finite flat group over A′e.

Proof. — Part (i) follows from the above Proposition via Serre-Tate,
cf. [9], Theorem 1.2.1. Regarding Part (ii), we note that any finite group
G over k is the kernel of an isogeny φ : Γ → Γ′ between p-divisible groups
over k, cf. Theorem 3.1 below. Then Gcan := ker(φcan) is the canonical lift
of G to A′e. �

3. Finite flat group schemes

We begin by recalling some fundamental concepts about formal groups
over a pseudo-compact noetherian local ring. Thus a morphism between
formal groups u : G→ H is a monomorphism or a closed immersion if the
morphism induced between the affine algebras is surjective. A morphism
u : G→ H between two formal groups is an epimorphism if the morphism
induced between the affine algebras is flat and faithful with respect to
the completed tensor product, cf. [4], Exposé VIIB, §1.3.1 (note that over
noetherian bases “topologically flat” is the same as “flat”). An isogeny is
an epimorphism with finite kernel, between two p-divisible groups.

In our case, i.e. over A′n or A′, we see that a morphism between formal
groups that are flat over the base is an epimorphism (resp. isogeny, resp.
monomorphism) if and only if it is so mod m. Another way to express this
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is in terms of Dieudonné modules. Thus, via Theorem 1.3, we see that
a morphism is an epimorphism (resp. monomorphism) if and only if the
induced morphism between the Dieudonné modules of the special fibers of
the groups is injective (resp. surjective).

Also there exists the quotient of a formal group by a flat subgroup, cf. loc.
cit. §2.4. It is a standard fact that the quotient of a p-divisible group by a
finite flat subgroup is a p-divisible group, cf. for instance [1], Lemme 3.3.12.

As we announced in the Introduction, we make heavy use of the following
result of Oort, cf. [12].

Theorem 3.1. — Every finite flat group scheme over a noetherian com-
plete local ring, with perfect residue field of characteristic p, is the kernel
of an isogeny between two p-divisible groups.

Remark. — See Remark on pp. 112–113 of [1] for details. Also see The-
orem 3.1.1 in [1] for a generalization due to Raynaud.

Recall from Section 2 that for a p-divisible group Γ over A′n we denote
by RΓ its affine A′n-algebra, by RΓ an A′-special lift of RΓ, by Lr,Γ the set
{α ∈ P (RΓ); δ(α) ∈ mrRΓ⊗̂A′RΓ}, by MΓ the Dieudonné module of Γk
and by (Ln,Γ,MΓ) the smooth Honda system of Γ. Moreover, we introduce
the following further notations.

Definition 3.2. — Let (Ln,M) be a smooth Honda system over A′n.
We call an L-lift of Ln a free A′-submodule L of MA′ of rank equal to
dimkM/FM such that

Im
(
L ↪→MA′ →

MA′

mn−1MA′

)
= Ln.

Also, we denote by L|n| the preimage π−1
n (Ln) of Ln inside MA′ , where

πn : MA′ →MA′/(mn−1MA′) is the natural projection.

The following result establishes the basic properties of these notions.

Proposition 3.3.
1. Let (Ln,M) be a smooth Honda system over A′n. For every L-lift L

of Ln we have
(i) L/mL 'MA′/MA′ [1] 'M/FM.

(ii) L|n| = L+ mn−1MA′ .

2. Let φ : Γ→ Γ1 be an isogeny between two p-divisible groups over A′n.
(i) The isogeny φ lifts to A′ if and only if there exist L-lifts LΓ (resp.
LΓ1) of Ln,Γ (resp. Ln,Γ1) such that the injection MΓ1 →MΓ sends
LΓ1 into LΓ.

ANNALES DE L’INSTITUT FOURIER



GROUPS OVER ARTINIAN RINGS 2401

(ii) Let G be the kernel of φ. Then G is killed by pr, for some positive
integer r > 1, if and only if prMΓ ⊆MΓ1 and prL|n|,Γ ⊆ L|n|,Γ1 .

Proof. — Part 1 is standard and Part 2(i) follows from Proposition 2.12.
The kernel of φ is killed by pr if and only if Γ p

r

→ Γ factors like Γ φ→ Γ1 → Γ.
This, in turn, is equivalent to the inclusions prMΓ ⊆ MΓ1 ⊆ MΓ and
prL|n|,Γ ⊆ L|n|,Γ1 ⊆ L|n|,Γ. �

Remark 3.4. — For a p-divisible group Γ over A′n, with smooth Honda
system (Ln,Γ,M), the isomorphism classes of L-lifts of Ln,Γ are in bĳec-
tion with the isomorphism classes of p-divisible groups over A′ that lift Γ.
Indeed, an L-lift L of Ln,Γ together with MΓ make up a smooth Honda
system over A′ which, via Remark 2.16, corresponds to a p-divisible group
ΓL over A′ that lifts Γ.

Lemma 3.5. — Let

(3.1) 0→M2 →M1 →M → 0

be an exact sequence of Dk-modules.
(i) Suppose we are given a smooth (resp. finite) Honda system (L1,M1)

(resp. (L,M)) over A such that Im(L1 ⊆ M1 → M) = L. Then (L1 ∩
M2,M2) is a smooth Honda system over A.

(ii) Suppose we are given smooth (resp. finite) Honda systems (Ln,i,Mi)
(resp. (L,M)) over An (resp. A), with i = 1, 2, such that the sequence
induced by (3.1)

Ln,2 → Ln,1 → L→ 0
is exact. Moreover suppose that pM1 ⊆M2 and pL|n|,1 ⊆ L|n|,2.

Let β1, . . . , βu (resp. γu+1, . . . , γd) be in L|n|,2 (resp. L|n|,1) such that
their images in Ln,1/pLn,1 (resp. L) form a k-basis of ker(Ln,1/pLn,1 → L)
(resp. L), where d = dimkM1/FM1 = dimkM2/FM2. Then the A-module

L1 = 〈β1, . . . , βu, γu+1, . . . , γd〉A
is an L-lift of Ln,1 and the A-module

L2 = 〈β1, . . . , βu, pγu+1, . . . , pγd〉A
is an L-lift of Ln,2, which is equal to L1 ∩M2.

(iii) Let r > 1 be an integer and let m > n + r. Suppose we are given
smooth Honda systems (Lm,1,M1) and (Lm,2,M2) over Am such that
prM = 0 and Im(Lm,2 ⊆ M2/p

m−1M2 → M1/p
m−1M1) ⊆ Lm,1. Then

for every L-lift L1 of Lm,1 the A-module L2 = L1 ∩ M2 is an L-lift of
Ln,2 = Lm,2/p

n−1Lm,2 ⊆M2/p
n−1M2.
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(iv) Suppose we are given finite Honda systems (L2,M2) and (L,M)
over A. Furthermore, suppose that

dimkM1/pM1 = dimkM1/FM1 + dimkM1/VM1.

If L1 is an A-submodule of M1 such that the sequence induced by (3.1)

0→ L2 → L1 → L→ 0

is exact, then (L1,M1) is a finite Honda system over A.

Remark. — Before we give the proof of the Lemma we make it more
comprehensible by translating it in terms of groups. Thus, (i) gives the
explicit smooth Honda system of the quotient Γ/G of a p-divisible group
Γ over A by a finite flat subgroup G. Number (ii) states that an isogeny
φ : Γ → Γ1 over An, such that kerφ is killed by p, lifts to A. Number (iii)
states that given an isogeny φ : Γ → Γ1 over A/pn+rA such that kerφ is
killed by pr, its base change to A/pnA lifts to A. Number (iv) will help us
construct Honda systems.

Proof.
(i) It is clear that M2 (resp. L2 = L1∩M2) is A-free and it has the same

A-rank as M1 (resp. L1). This is so because M (resp. L) is an A-module
of finite A-length and M1 (resp. L1) is A-free. On the other hand, we have
the equalities rkA(L1) = dimkM1/FM1 = dimkM2/FM2. Indeed, the
first equality comes from the fact that (L1,M1) is Honda and the second
comes from the fact that the sequence (3.1) corresponds via Theorem 1.3
to an exact sequence 0 → G → Γ1 → Γ2 → of groups over k, with G

finite and Γ1 and Γ2 smooth, necessary of the same dimension, dimension
which is equal to dimkM1/FM1 = dimkM2/FM2, cf. [5], Chapter III,
Proposition 6.1(ii). Therefore, in order to prove that (L2,M2) is Honda it
is enough to prove that the natural map L2/pL2 → M2/FM2 is injective.
Let x be in L2 ∩ FM2. Then x is also in L1 ∩ FM1 = pL1. So x = pα

for some α in L1. Since x = Fy for some y in M2, we get that V α = y.
Therefore VMα is zero inside M . But α is in L and L ∩ kerVM is zero,
hence α is zero. It follows that α is in M2, hence in L1 ∩M2 = L2. Thus
L2 ∩ FM2 = pL2 and we are done.

(ii) Since from the way we constructed it, L1 is an L-lift of Ln,1 that
surjects onto L, it follows from Proposition 3.3, 1(i), that (L1,M1) is a
smooth Honda system over A, hence by (i) we get that (L1 ∩M2,M2) is
a smooth Honda system over A. All we have to do is prove that L2 =
L1 ∩M2. Then, since by hypothesis L2 is included in L|n|,2, it follows that
L2/(pn−1L2) injects into L|n|,2/(pn−1M2) = Ln,2 and since they become
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isomorphic mod p they must be equal. Note that the sequence of A-modules
induced by (3.1)

0→ L1 ∩M2 → L1 → L→ 0
is exact. Since by hypothesis L2 is included in L1 ∩M2 the fact that they
are equal is a standard linear algebra exercise.

(iii) By hypothesis the morphism M2 →M1 induces a morphism

(3.2)
(
Lm,2,

M2

pm−1M2

)
→
(
Lm,1,

M1

pm−1M1

)
of finite Honda systems over A. Since the category of finite Honda systems
over A is abelian, cf. [3], Lemma 1.3, it follows that the coimage and the
image of (3.2) are equal. Since the coimage is(

Lm,1 ∩
M2 + pm−1M1

pm−1M1
,
M2 + pm−1M1

pm−1M1

)
and the image is

(3.3)
(L|m|,2 + pm−1M1

pm−1M1
,
M2 + pm−1M1

pm−1M1

)
and Lm,1 = L|m|,1/pm−1M1, we get the relation

(3.4) L|m|,2 + pm−1M1 = L|m|,1 ∩M2 + pm−1M1.

Since prM1 is included in M2 we get that L|m|,1∩M2 is included in L|m|,2 +
pn−1M2 which, via Proposition 3.3, 1(ii), is equal to L|n|,2.

Let (L,M) be the cokernel of the morphism (3.2) and let L1 be an L-lift
of Lm,1. From (i) it follows that (L1 ∩M2,M2) is a smooth Honda system
over A. Since L1 ∩M2 is included in L|m|,1 ∩M2, which in turn is included
in L|n|,2, it follows that L1 ∩M2 is an L-lift of Ln,2.

(iv) We have to prove two things: that VM1 is injective on L1 and that
L1/pL1 is isomorphic to M1/FM1. Let α be in L1 such that VM1α is zero.
Then VMα is zero in M and since α is in L we get that α is zero. It follows
that α is in L2 and since VM2α = VM1α = 0 we get that α is zero.

Since VM1 is injective on L1 it follows that L1[p] ⊕ kerVM1 injects into
M1[p], where L1[p] (resp. M1[p]) is the submodule of L1 (resp. M1) of
elements killed by p. This fact implies the relations

dimk L1/pL1 = dimk L1[p] 6 dimkM1/pM1 − dimkM1/VM1

= dimkM1/FM1.

Thus in order to complete the proof we need to show that the natural
map L1/pL1 → M1/FM1 is surjective. Let x be in M1. Since L1 (resp.
M1) surjects onto L (resp. M) and L surjects onto M/FM there exists α
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in L1 and y in M1 such that x = α + FMy in M . It follows that there
exists z in M2 such that x = α + FM1y + z in M1. Since L2 surjects onto
M2/FM2 there exists β in L2 and w in M2 such that z = β + FM2w. We
get x = (α+ β) + FM1(y + w). This completes the proof. �

Now we construct two functors on finite groups over An. Let G be an
object in FFAn , with affine An-algebra RG, and let M be its Dieudonné
module. By Theorem 3.1, G sits in an exact sequence of formal group
schemes over An
(3.5) 0→ G→ Γ→ Γ1 → 0

where Γ and Γ1 are p-divisible groups. We call such a sequence a presenta-
tion of G.

The sequence (3.5) induces the following exact sequence of Dieudonné
modules

(3.6) 0→MΓ1 →MΓ →M → 0

which, in turn, induces the following exact sequence of Dk-modules with
finite A-length

(3.7) 0→ MΓ1 ∩ pn−1MΓ

pn−1MΓ1

→ MΓ1

pn−1MΓ1

→ MΓ

pn−1MΓ
→ M

pn−1M
→ 0.

Note that because Γ→ Γ1 is a morphism of p-divisible groups over An, the
morphism MΓ1 → MΓ induces a morphism (Ln,Γ1 ,MΓ1) → (Ln,Γ,MΓ) of
smooth Honda systems over An and, in particular a morphism

(3.8)
(
Ln,Γ1 ,

MΓ1

pn−1MΓ1

)
→
(
Ln,Γ,

MΓ

pn−1MΓ

)
of finite Honda systems over A. Let

(3.9)
(
Ln,

M

pn−1M

)
and

(
L(n),

MΓ1 ∩ pn−1MΓ

pn−1MΓ1

)
be the cokernel and the kernel, respectively, of the morphism (3.8), in the
abelian category of finite Honda systems over A. Note that under the iso-
morphism

(3.10) MΓ

MΓ1

pn−1

−→ pn−1MΓ

pn−1MΓ1

the Dk-submodule M [pn−1] of M , of elements killed by pn−1, corresponds
to (MΓ1 ∩ pn−1MΓ)/(pn−1MΓ1). Let(

Ln,M [pn−1]
)
'
(
L(n),

MΓ1 ∩ pn−1MΓ

pn−1MΓ1

)
be the finite Honda system over A induced by the isomorphism (3.10).
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Definition 3.6. — Let SHfAn (resp. SHrAn ) be the category of finite
(resp. restricted) Honda systems over An whose objects are triples (resp.
pairs) (Ln, Ln,M) (resp. (Ln,M)), where M is a Dk-module with finite A-
length and (Ln,M [pn−1]) (resp. (Ln,M/pn−1M)) is a finite Honda system
over A, and whose morphisms are the obvious ones.

We define two functors LMfn (resp. LMrn) from FFAn to SHfAn (resp.
SHrAn) which send a group G to

LMfn (G) = (Ln, Ln,M) and LMrn(G) = (Ln,M)

with Ln, Ln and M as in the paragraph before Definition 3.6, and a mor-
phism f : G′ → G to M (fk) : MG →MG′ .

Proposition 3.7.
1. The functors LMfn and LMrn are well defined.
2. The functor LMrn is essentially surjective.

Proof.
1. It suffices to prove that LMfn is well defined. We have to prove two

things: that LMfn is well defined on objects, i.e. its definition does not
depend on the particular presentation (3.5) of G, and that it sends a mor-
phism of groups into a morphism of finite Honda systems. We assume for
the moment that LMfn is well defined on objects and prove that it is a
functor.

Let f : G→ H be a morphism of finite groups over An. Let

(3.11) 0→ G→ Γ→ Γ1 → 0 ; 0→ H → Λ→ Λ1 → 0

be presentations of G and H. Let ιf be the composition

(3.12) G
∆−→ G×G 1×f−→ G×H → Γ× Λ.

It gives rise to a morphism vf between Dieudonné modules

(3.13) MΓ ⊕MΛ →MG ⊕MH
1⊕f−→MG ⊕MG →MG.

Note that the morphism MG ⊕MG → MG is the addition. It follows that
vf is surjective, hence ιf is a monomorphism. Denote Γ × Λ by Υ and
let Υ1 be the p-divisible group coker ιf . From (3.11) and (3.12) we get a
commutative diagram with exact rows

(3.14) 0 // G // Γ // Γ1 // 0

0 // G
ιf //

id
OO

f ��

Γ× Λ //
pr1

OO

pr2��

Υ1 //

OO

��

0

0 // H // Λ // Λ1 // 0

.
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The bottom right square of diagram (3.14) yields, in particular, the fol-
lowing commutative diagram

(3.15) (Ln,Λ1 ,
MΛ1

pn−1MΛ1
) //

��

(Ln,Λ, MΛ
pn−1MΛ

)

��
(Ln,Υ1 ,

MΥ1
pn−1MΥ1

) // (Ln,Υ, MΥ
pn−1MΥ

)

of finite Honda systems over A, cf. also (3.8). We get induced morphisms
between the kernels (resp. cokernels) of the horizontal morphisms in (3.15),
which express exactly the fact that LMfn (f) is a morphism of finite Honda
systems over An.

We now prove that LMfn is well defined on objects. For this, take H (resp.
f) equal to G (resp. id) in the above construction. Let (Ln(Γ), Ln(Γ),M)
and (Ln(Λ), Ln(Λ),M) be the finite Honda systems induced by the two
presentations (3.11) of G. Also let (Ln(Γ×Λ), Ln(Γ×Λ),M) be the finite
Honda system induced by the middle row of diagram (3.14). From (3.13)
we see that

(3.16) Ln(Γ× Λ) = Ln(Γ) + Ln(Λ) ⊆ M

pn−1M
.

Since the three L’s are isomorphic mod p they must be equal. Thus Ln(Γ) =
Ln(Λ).

From (3.12) we get a commutative diagram with exact rows

(3.17) 0 // G //

∆ ��

Γ× Λ //

id ��

Υ1 //

��

0

0 // G×G // Γ× Λ // Γ1 × Λ1 // 0

.

which gives us two things. The first is that the induced morphism

(3.18) MΓ

MΓ1

⊕ MΛ
MΛ1

→ MΓ ⊕MΛ
MΥ1

is the addition from M ⊕M to M . The second is that we have an induced
morphism of finite Honda systems over A between

ker
((

Ln,Γ1×Λ1 ,
MΓ1 ⊕MΛ1

pn−1(MΓ1 ⊕MΛ1)

)
→
(
Ln,Γ×Λ,

MΓ ⊕MΛ
pn−1(MΓ ⊕MΛ)

))
which is (L(n)(Γ)⊕ L(n)(Λ), MΓ1∩p

n−1MΓ
pn−1MΓ1

⊕ MΛ1∩p
n−1MΛ

pn−1MΛ1
), and

ker
((

Ln,Υ1 ,
MΥ1

pn−1MΥ1

)
→
(
Ln,Γ×Λ,

MΓ ⊕MΛ
pn−1(MΓ ⊕MΛ)

))
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which is
(
L(n)(Γ × Λ), MΥ1∩p

n−1(MΓ⊕MΛ)
pn−1MΥ1

)
, cf. also (3.8) and (3.15). In

particular, the A-module L(n)(Γ)⊕L(n)(Λ) maps inside L(n)(Γ×Λ). From
the following commutative diagram

(3.19) MΓ1∩p
n−1MΓ

pn−1MΓ1
⊕ MΛ1∩p

n−1MΛ
pn−1MΛ1

//
� _

��

MΥ1∩p
n−1(MΓ⊕MΛ)
pn−1MΥ1� _

��
pn−1MΓ
pn−1MΓ1

⊕ pn−1MΛ
pn−1MΛ1

//

∼
��

pn−1(MΓ⊕MΛ)
pn−1MΥ1

∼
��

MΓ
MΓ1
⊕ MΛ
MΛ1

// MΓ⊕MΛ
MΥ1

and from (3.18) we get the inclusion

Ln(Γ) + Ln(Λ) ⊆ Ln(Γ× Λ) ⊆M [pn−1].

Since the L’s are isomorphic mod p we get that they are equal. Thus
Ln(Γ) = Ln(Λ).

2. Let (Ln,M) be a restricted Honda system over An. By Theorem 3.1
and Theorem 1.3, M sits in an exact sequence 0 → M2 → M1 → M → 0
of Dk-modules, with Mi being A-free. From [3], Theorem 1.4, Step 4, ap-
plied to the exact sequence of Dk-modules 0 → M2 + pn−1M1 → M1 →
M/pn−1M → 0, there exists a smooth Honda system (L1,M1) that sur-
jects onto (Ln,M/pn−1M). Define Ln,1 = L1/p

n−1L1. Similarly, we get a
smooth Honda system (L2,M2) that surjects onto the finite Honda sys-
tem ker

(
(Ln,1,M1/p

n−1M1) → (Ln,M/pn−1M)
)

over A. Define Ln,2 =
L2/p

n−1L2. Then the morphism

(Ln,2,M2)→ (Ln,1,M1)

of smooth Honda systems over An gives rise to an isogeny Γ1 → Γ2 over
An whose kernel has restricted Honda system equal to (Ln,M). �

For future reference, we state the following practical consequence of the
fact that LMrn is well defined.

Corollary 3.8. — Let G → Γ be a monomorphism over An, with G

finite and Γ a p-divisible group. Then the restricted Honda system of G is
the image of the smooth Honda system of Γ.

Proposition 3.9. — The functor LMf2 is essentially surjective and full.

Proof. — Let (L1, L2,M) be a finite Honda system over A2. As in the
proof of Proposition 3.7 Part 2, we construct an exact sequence 0 →
M2 → M1 → M → 0 of Dk-modules, with Mi being A-free, and a
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smooth Honda system (L2,1,M1) over A2 that surjects onto (L2,M). We
let L2,2 ⊆ M2/pM2 be any k-vector space that fills in the empty space of
the following commutative diagram with exact rows

0 // M2∩pM1
pM2

// M2
pM2

// M2+pM1
pM1

// 0

0 // L(1)
1

//
?�

OO

//?�

OO

L′ //?�

OO

0

where (L′, (M2+pM1)/pM1) is the kernel of (L2,1,M1/pM1)→(L2,M/pM)
and (L(1)

1 , (M2∩pM1)/pM2) corresponds to (L1,M [p]) via the isomorphism
(3.10). By Lemma 3.5 (iv), (L2,2,M2) is a smooth Honda system over A2.
The morphism

(L2,2,M2)→ (L2,1,M1)

of smooth Honda systems over A2 gives rise to an isogeny Γ1 → Γ2 over
A2, whose kernel has finite Honda system equal to (L1, L2,M). This proves
that LMf2 is essentially surjective.

Let G and H be two finite groups over A2, let (LG, LG,MG) and
(LH , LH ,MH) be their finite Honda systems, respectively, and let

(3.20) 0→ G→ Γ→ Γ1 → 0 ; 0→ H → Λ→ Λ1 → 0

be some presentations of them.
Let (LH , LH ,MH) u→ (LG, LG,MG) be a morphism in SHfA2

. We seek to
reconstruct diagram (3.14) from u and (3.20), in order to get a morphism
f : G → H that maps to u. For this, it is enough to construct the middle
and the right columns. The only unknown is Υ1. We know its Dieudonné
module M . It is the kernel of the surjective composition

MΓ ⊕MΛ →MG ⊕MH
1⊕u−→MG ⊕MG →MG.

We need to construct a k-vector subspace L2 of M/pM such that the
morphisms

(3.21) (L2,Γ1×Λ1 ,MΓ1×Λ1)→ (L2,M)→ (L2,Γ×Λ,MΓ×Λ)

are morphisms of smooth Honda systems over A2.
Consider the commutative diagram of Dk-modules with exact rows

(3.22) 0 // MΓ1 ⊕MΛ1

��

// MΓ ⊕MΛ

��

// MG ⊕MH
��

// 0

0 // M // MΓ ⊕MΛ // MG // 0

.
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To ease notation, we denote Γ × Λ (resp. Γ1 × Λ1) by Ξ (resp. Ξ1). Let
(L′,M ′) (resp. (L′′,M ′′)) be the kernel of(

L2,Ξ,MΞ/pMΞ
)
→
(
LG ⊕ LH , (MG ⊕MH)/p(MG ⊕MH)

)
(resp. (L2,Ξ,MΞ/pMΞ) → (LG,MG/pMG)). From the snake lemma it fol-
lows that the induced morphism L′ → L′′ is injective.

Diagram (3.22) induces, in particular, the following commutative dia-
grams with exact rows of k-vector spaces

(3.23) MΞ1∩pMΞ
pMΞ1

����

� � // MΞ1
pMΞ1

��

// // M ′� _

��

L
(2)
Ξ

����

� � // L2,Ξ1

��

// // L′� _

��
M∩pMΞ
pM

� � // M
pM

// // M ′′ L(2) � � // // // L′′

where the right diagram is included in the left one, L(2) is induced by LG
via the isomorphism pMΞ/pM ' MΞ/M ' MG and L

(2)
Ξ = L

(2)
Γ ⊕ L(2)

Λ '
LG ⊕ LH , cf. also (3.9) above. The fact that the image of L(2)

Ξ ⊆ (MΞ1 ∩
pMΞ)/pMΞ1 → (M ∩ pMΞ)/pM lies inside L(2) follows from the inclusion
u(LH) ⊆ LG and the fact that the image is actually L(2) follows from (3.19)
and (3.22). It follows that the sequence

0→ L(2) → L1 → L′1 → 0

is exact, where L1 (resp. L′1) is the image of L2,Ξ1 ⊆MΞ1/pMΞ1 →M/pM

(resp. L′ → L′′). Thus there exists a k-vector subspace L2 of M/pM that
fills in the empty space of the right diagram in (3.23). It follows from
Lemma 3.5 (iv) that (L2,M) is a smooth Honda system over A2.

Let Υ1 be the p-divisible group over A2 that corresponds to (L2,M).
From (3.21) we get a commutative diagram of smooth Honda systems
over A2

(L2,Γ1 ,MΓ1)
��

// (L2,Γ,MΓ)
i1 ��

(L2,M) // (L2,Γ ⊕ L2,Λ,MΓ ⊕MΛ)

(L2,Λ1 ,MΛ1)

OO

// (L2,Λ,MΛ)
i2

OO

which induces a commutative diagram with exact rows of groups over A2

(3.24) 0 // G // Γ // Γ1 // 0

0 // G′ //

OO

��

Γ× Λ //
pr1

OO

pr2��

Υ1 //

OO

��

0

0 // H // Λ // Λ1 // 0

.
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It follows from the universal property of the kernel that the dotted arrows
in the above diagram are well defined morphisms of finite groups over A2.
In fact G′ → G is an isomorphism because it is so mod p. If we define f to
be the composition G→ G′ → H it follows that LMfn (f) = u. �

Corollary 3.10. — Two finite groups over A2 are isomorphic if and
only if their finite Honda systems are isomorphic.

Proof. — The “only if” implication being trivial, we need only prove
the “if” implication. Start with an isomorphism between the finite Honda
systems. By Proposition 3.9, it gives rise to a morphism between the groups,
which is an isomorphism mod p, hence an isomorphism. �

Remark 3.11.
1. If we consider a finite Honda system (L′, L,M) over A2 with pM = 0

and L′ 6= L we get a finite group G over A2 with the property that the
morphism G

p→ G is not zero but it is zero mod p. This is one instance of the
non-faithfulness of the special fiber functor. Other more general examples
can be given. Note also that for such a group G the p-torsion subgroup
G[p] is not flat.

2. For arbitrary n, we see from the proof of Proposition 3.9 that LMfn
is essentially surjective onto the finite Honda systems (L′, L,M) over An,
with L and L′ free An−1-modules, and that LMfn is full, hence classifying
by Corollary 3.10, when restricted to the finite groups over An that map
to such Honda systems. Indeed, the thing that made the proof work was
that the L’s in the Honda systems were A/pn−1A-free.

In particular, Proposition 3.9 and Corollary 3.10 hold also for LMfn re-
stricted to the category of truncated Barsotti-Tate groups of level s > n

over An (the case of levels less than n is trivially true).
3. Since for truncated Barsotti-Tate groups the kernel and the cokernel

of the “multiplication by pn−1” morphism are isomorphic in a functorial
way, we see that the restricted Honda system is enough to classify these
groups. It follows that a p-divisible group (resp. truncated Barsotti-Tate
group) over An is determined by its reduction mod p and by its pn−1 torsion
subgroup. This, over An, recovers a classical result of Grothendieck, cf. [8],
Corollary 4.7.

Definition 3.12. — We say that a finite group G over A′n is fully flat
if all the p-torsion subgroups {G[pi]}i>1 are flat.

Theorem 3.13. — Let φ : Γ→ Γ1 be an isogeny between two p-divisible
groups over An and let G be its kernel.
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(i) If G is fully flat then φ lifts to A.
(ii) The torsion subgroup G[pr] is fully flat for some integer r > 1 if and

only if G lifts to A/pn+rA.

Proof.
(i) We define the following sequence of finite groups

(3.25) G0 = G, Gi+1 = Gi
Gi[p]

, i > 0.

We have the isomorphisms

(3.26) Gi '
G

G[pi]
; Gi[p] '

G[pi+1]
G[pi]

.

Let G and G[p] sit in exact sequences

0 // G[p] //
� _

��

Γ0 //

id ��

Γ1 //

��

0

0 // G // Γ0 // Γ′0 // 0

with the Γ’s p-divisible. From the properties of the cokernel we get an
induced morphism Γ1 → Γ′0 which, by the snake lemma, is an isogeny with
kernel G1.

Therefore, in general, for every i > 0 we have a commutative diagram
with exact rows

(3.27) 0 // Gi[p] //
� _

��

Γi //

id ��

Γi+1 //

��

0

0 // Gi // Γi // Γ′0 // 0

.

From (3.26) and (3.27) we get the following relations between the
Dieudonné modules

MGi = piMG =
piMΓ0 +MΓ′0

MΓ′0
, MΓi = piMΓ0 +MΓ′0 .

Suppose Gr is zero for some positive integer r. From (3.27) and Propo-
sition 3.3, 2(ii), we get

(3.28) pL|n|,Γi ⊆ L|n|,Γi+1 ⊆ L|n|,Γi , 0 6 i 6 r − 1

where, by convention, Γr is equal to Γ′0.
Note that since the kernel of Γ0 → Γi is G[pi], which is killed by pi, the

isogeny Γ0
pi→ Γ0 factors like Γ0 → Γi → Γ0. We claim that the composition

Gi → Γi → Γ0 is a monomorphism. Indeed, the corresponding morphism
between the Dieudonné modules is piMΓ0 →MΓi → piMG which is clearly
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surjective. Therefore, by Corollary 3.8, the restricted Honda system of Gi
is (Li,MGi), with

(3.29) Li = Im
(
L|n|,Γ0 ⊆MΓ0

pi→ piMG →
piMG

pi+n−1MG

)
.

It follows, in particular, that for every i > 0 the A-module Li surjects onto
Li+1 via the surjective morphism piMG/p

i+n−1MG
p→ pi+1MG/p

i+nMG
given by [x] 7→ {px}. For future reference we denote by d (resp. di) the
dimension of the k-vector space Ln,Γ0/pLn,Γ0 (resp. Li/pLi). We have the
inequalities

d > d0 > d1 > · · · > dr−2 > dr−1.

On the other hand, from diagram (3.27) and the fact that the func-
tor LMrn is well defined, cf. Proposition 3.7, we get the following exact
sequences of A-modules

(3.30) Ln,Γ′0 → Ln,Γi → Li → 0 ; Ln,Γi+1 → Ln,Γi →
Li
pLi
→ 0.

Here we implicitly used the fact, which we leave as an exercise to the reader,
that (Li/pLi, piMG/pi+1MG) is the restricted Honda system of Gi[p].

The sequences (3.30) yield the following commutative diagram with exact
rows of k-vector spaces

(3.31)
Ln,Γ′0
pLn,Γ′0

��

//

&& &&MMMMMMM

Ln,Γr−1
pLn,Γr−1

//

��

Lr−1 // 0

L′r−1

+ �
88qqqqqq

����

Ln,Γr−1
pLn,Γr−1

//

'' ''NNNNNN

Ln,Γr−2
pLn,Γr−2

// Lr−2
pLr−2

// 0

L′r−2

* 

77pppppp

Ln,Γ2
pLn,Γ2

��

//

'' ''OOOOOOOO
Ln,Γ1
pLn,Γ1

//

��

L1
pL1

// 0

L′1
* 


77oooooooo

����

Ln,Γ1
pLn,Γ1

//

'' ''OOOOOOOO
Ln,Γ0
pLn,Γ0

// L0
pL0

// 0

L′0
* 


77oooooooo
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where L′i is by definition

ker
(
Ln,Γi/pLn,Γi → Li/pLi

)
= Im
(
Ln,Γi+1/pLn,Γi+1 → Ln,Γi/pLn,Γi

)
.

Note that the kernel of Ln,Γi → Li, which by (3.30) is the image of Ln,Γ′0 →
Ln,Γi , surjects onto the kernel of Ln,Γi/pLn,Γi → Li/pLi, which is L′i. Since
the morphism Ln,Γ′0 → Ln,Γi factors through all the Ln,Γj ’s with j > i, we
get that L′j surjects onto L′i for all j > i.

Next we prove the following statement by decreasing induction on i be-
tween r − 1 and 0.

Fact 3.14. — There exist elements γ1, . . . , γdi in L|n|,Γ0 such that:
(i) The images of piγ1, . . . , p

iγdi in Li/pLi form a k-basis of this vector
space.

(ii) The elements pi+1γdi+1+1, . . . , p
i+1γdi are in L|n|,Γ′0 and, if i is strictly

less then r−1, their images in Ln,Γi+1/pLn,Γi+1 form a k-basis of ker(L′i+1 →
L′i).

Note that P (r−1) is trivial because of (3.28) and (3.29). Assume we have
P (i). Let ξdi+1, . . . , ξdi−1 be in L|n|,Γ0 such that the images of pi−1ξdi+1, . . . ,

pi−1ξdi−1 in Li−1 (resp. Li−1/pLi−1) lie in ker(Li−1
p→ Li) (resp. form a

k-basis of ker(Li−1/pLi−1
p→ Li/pLi)). This is possible because of (3.29)

and the fact that the kernel of Li−1
p→ Li surjects onto the kernel of

Li−1/pLi−1
p→ Li/pLi. It follows that the image of piξj is zero inside Li.

Hence

piξj ∈ ker(Ln,Γi → Li) =
L|n|,Γ′0 + pn−1MΓi

pn−1MΓi

cf. (3.30) and (3.3). Since MΓi = piMΓ0 +MΓ′0 there exist βj in L|n|,Γ′0 and
xj (resp. yj) in MΓ0 (resp. MΓ′0) such that

piξj = βj + pn−1(pixj + yj).

Define γj = ξj − pn−1xj . Then γj is in L|n|,Γ0 and

piγj = βj + pn−1yj ∈ L|n|,Γ′0 .

Since the image of pi−1γj inside Ln,Γi−1 is the same as that of pi−1ξj the
only thing that remains to prove is that the elements piγdi+1, . . . , piγdi−1

form a k-basis of ker(L′i → L′i−1). For this, let δd, . . . , δdi−1+1 be in L|n|,Γ′0
such that their images δd, . . . , δdi−1+1 form a k-basis of L′i−1. Then, by
Lemma 3.5 (ii) applied to the isogeny Γi−1 → Γi, the A-module

L = 〈δd, . . . , δdi−1+1, p
iγdi−1 , . . . , p

iγ1〉A
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is an L-lift of Ln,Γi . It follows that the elements

δd, . . . , δdi−1+1, piγdi−1 , . . . , p
iγdi+1

form a basis of L′i. Since piγj is in pMΓi−1 we get that the elements
piγdi−1 , . . . , p

iγdi+1 form a basis of ker(L′i → L′i−1).
Now, to end the proof of the Theorem, we take elements δd, . . . , δd0+1 in

L|n|,Γ′0 such that their images in L′0 form a k-basis of L′0. We claim that
the A-module

L0 = 〈δd, . . . , δd0+1, γd0 , . . . , γ1〉A
is an L-lift of Ln,Γ0 such that L0∩MΓi is an L-lift of Ln,Γi , for all 1 6 i 6 r.

To show how the proof of the last claim goes we assume r is equal to 3
in order to avoid unnecessary technicalities. By Lemma 3.5 (ii) applied to
the isogeny Γ0 → Γ1 and by P (0) we get that L0 is an L-lift of Ln,Γ0 and
that the A-module

L1 = L0 ∩MΓ1 = 〈δd, . . . , δd0+1, pγd0 , . . . , pγ1〉A

is an L-lift of Ln,Γ1 .
Then, by P (1) (ii) (resp. (i)), it follows that the elements

δd, . . . , δd0+1, pγd0 , . . . , pγd1+1

(resp. pγd1 , . . . , pγ1) form a basis of L′1 (resp. L1/pL1). By Lemma 3.5 (ii)
applied to the isogeny Γ1 → Γ2 we get that the A-module

L2 = L1 ∩MΓ2 = 〈δd, . . . , δd0+1, pγd0 , . . . , pγd1+1, p
2γd1 , . . . , p

2γ1〉A

is an L-lift of Ln,Γ2 .
Similarly, it follows that the elements

δd, . . . , δd0+1, pγd0 , . . . , pγd1+1, p2γd1 , . . . , p
2γd2+1

form a basis of L′2 and that L′0 = L0 ∩MΓ′0 is an L-lift of Ln,Γ0 , generated
by the elements

L′0 = 〈δd, . . . , δd0+1, pγd0 , . . . , pγd1+1, p
2γd1 , . . . , p

2γd2+1, p
3γd2 , . . . , p

3γ1〉A.

Proposition 3.3, 2(i), finishes the proof for us.
(ii) Here we prove the ’only if’ part of the statement. The ’if’ part follows

from Corollary 3.17 below. Suppose G[pr] is fully flat. As usual, we have
the presentations

(3.32) 0 // G[pr] //
� _

��

Γ0 //

id ��

Γr //

��

0

0 // G // Γ0 // Γ′0 // 0

.

ANNALES DE L’INSTITUT FOURIER



GROUPS OVER ARTINIAN RINGS 2415

By (i) there exists an L-lift LΓ0 of Ln,Γ0 such that LΓ0 ∩MΓr is an L-lift
of Ln,Γr . Let L′ = 〈α1, . . . , αd〉A be an L-lift of Ln,Γ′0 . Since L′ ⊆ L|n|,Γ′0 ⊆
L|n|,Γr = LΓ0 ∩MΓr + pn−1MΓr and MΓr = prMΓ0 +MΓ′0 we can write

αj = βj + pn−1xj + pn+r−1yj , 1 6 j 6 d

with βj in LΓ0 ∩MΓr and xj (resp. yj) in MΓ′0 (resp. MΓ0). Define γj =
αj−pn−1xj for j between 1 and d. Then the A-module LΓ′0 = 〈γ1, . . . , γd〉A
is an L-lift of Ln,Γ′0 which is included in LΓ0 + pn+r−1MΓ0 . It follows that
the morphism ( LΓ′0

pn+r−1LΓ′0
,MΓ′0

)
→
( LΓ0

pn+r−1LΓ0

,MΓ0

)
of Honda systems over A/pn+rA lifts the morphism (Ln,Γ′0 ,MΓ0) →
(Ln,Γ,MΓ) of Honda systems over An. By Corollary 2.15 we get an isogeny
Γ→ Γ′ over An+r that lifts Γ0 → Γ′0. The kernel of this isogeny lifts G. �

Lemma 3.15. — Let m and r be two positive integers such that m > r,
let Γ be a p-divisible group over An+m and let (Ln+m,Γ,MΓ) be its Honda
system. For every L-lift L of Ln+m,Γ the composition

Ln+m,Γ →
P (RΓ)
pnRΓ

→ (RLr )K
pnRLr

is zero, where RLr is the affine A-algebra of ΓL[pr], with ΓL as in Re-
mark 3.4.

Proof. — Note that the affine A-algebra of ΓL is still RΓ, enhanced with
a comultiplication given by the group structure on ΓL. Also from Theo-
rem 1.11 and (1.8) it follows that the A-module L is identified with the
elements α in P (RΓ) such that δ(α) = 0. It also follows that Ln+m,Γ =
L+ pn+m−1L1,Γ. Indeed, the right module is included in the left one, they
are An+m−1-free modulo pn+m−1L1,Γ and they are isomorphic mod p, cf.
Lemma 2.5.

From [5], Remark 2 on page 186, we know that the composition

L ↪→ P (RΓ)→ (RLr )K

is zero. Hence we only have to deal with pn+m−1L1,Γ. Let β be in L1,Γ. The
fact that ∆̂(β)−β⊗̂1+1⊗̂β is in pRΓ⊗̂ARΓ implies that [pr](β) = prβ+pa
for some a in RΓ, where P (RΓ) [pr]→ P (RΓ) is induced by ΓL p

r

→ ΓL. Since
[pr](β) is mapped to zero inside (RLr )K , it follows that prβ is mapped into
pRLr . Thus pn+m−1L1,Γ is mapped into pn+m−rRLr ⊆ pnRLr . The Lemma
follows. �
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Theorem 3.16. — Let m and r be two positive integers.
1. Assume r 6 m and let G (resp. H) be a fully flat (resp. an arbitrary)

finite group over An+m such that G is killed by pr. The natural map

Im
(
HomAn+m−gr(G,H)→ HomAn−gr(Gn,Hn)

)
→ Homk−gr(Gk,Hk)

is injective.
2. Assume 2r 6 m and let G and H be arbitrary finite groups over An+m

such that G is killed by pr. The natural map

Im(HomAn+m−gr(G,H)→ HomAn−gr(Gn,Hn))→ Homk−gr(Gk,Hk)

is injective.

Proof.
1. Let f : G → H be a morphism such that fk = 0. Then, by (3.14), f

extends to a morphism of presentations

(3.33) 0 // G
ιf //

f ��

Υ //

��

Υ1 //

��

0

0 // H
ιH // Λ // Λ1 // 0

.

By Theorem 3.13 (i), there exists an L-lift L of Ln+m,Υ such that the
presentation of G lifts to

0 // GL
ιL // ΥL // ΥL1 // 0

over A. Since GL is killed by pr, it follows that ιL factors through ΥL[pr].
Thus, the morphism P (RΥ)→ (RGL)K factors like

(3.34) P (RΥ)→ (RΥL
r )K → (RGL)K

with RΥL
r the affine A-algebra of ΥL[pr].

Let RΛ → RΥ be an A-algebra morphism that lifts RΛ → RΥ. Then the
composition

(3.35) RΛ → RΥ → RGL

is an A-algebra morphism that lifts the composition RΛ
iH→ RH

rf→ RG.
Let LΛ be an arbitrary L-lift of Ln+m,Λ. The morphism P (RΛ) →

P (RΥ), induced by RΛ → RΥ, takes LΛ over into Ln+m,Υ. From (3.34),
(3.35) and Lemma 3.15 it follows that the composition

LΛ →
P (RΛ)
pnRΛ

→ (RGL)K
pnRGL
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is zero. This together with the fact that fk is zero imply that
ηLΛ(RGL)(ιH,n ◦ fn) is zero, cf. (2.13) and (2.14). Since ηLΛ(RGL) is bĳec-
tive by Lemma 2.9, we get that ιH,n ◦fn is zero, hence fn is zero since ιH,n
is a monomorphism.

2. The proof of this part is almost the same as the proof of (1) with the
only difference that, since in general ιf doesn’t lift to A, we have to work
with ιf,n+m−r which does lift to A, by Lemma 3.5 (iii). This is why we
need m > 2r. �

Corollary 3.17. — Let m and r be two positive integers such that
m > r and let G be a finite group over An+m. Then G[pr]n is fully flat.

Proof. — Let 0 → G → Γ φ→ Γ1 → 0 be a presentation of G. Then
G[pr] is the kernel of φ[pr]. Let L (resp. L1) be an L-lift of Ln+m,Γ (resp.
Ln+m,Γ1) and let ΓL (resp. ΓL1

1 ) be the corresponding p-divisible groups
over A lifting Γ (resp. Γ1). It is clear that the Honda system of ΓL[pr]
(resp. ΓL1

1 [pr]) is (L/prL,MΓ/p
rMΓ) (resp. (L1/p

rL1,MΓ1/p
rMΓ1)). Also,

because L is an L-lift, it follows that L/pn+m−1L = Ln+m,Γ. And the same
holds for L1.

Since the morphism

(Ln+m,Γ1 ,
MΓ1

pn+m−1MΓ1

)→ (Ln+m,Γ,
MΓ

pn+m−1MΓ
)

is a morphism of finite Honda systems over A, it follows that the morphism

( L1

prL1
,
MΓ1

prMΓ1

)→ ( L
prL

,
MΓ

prMΓ
)

is also such a morphism. By Theorem 1.13 it gives rise to a morphism

ψ : ΓL[pr]→ ΓL1
1 [pr]

of finite groups over A.
Now, we have two morphisms ψn+m and φ[pr] between Γ[pr] and Γ1[pr]

which are equal mod p. By Theorem 3.16 (1), ψn equals φ[pr]n. Thus G[pr]n
is the base change to An of kerψ. Since the category FFA is abelian, cf. [14],
Theorem 3.3.3, our Corollary follows. �

3.1. Remarks on the situation in the ramified setting

Most of the results can be carried out mutatis mutandis over A′n with n
of the form qe+ 1.
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More precisely, using the exactness properties of the functor M 7→MA′ ,
cf. [5], Chapter IV, §2.3 and Proposition 2.4, and [3], Lemma 2.2, one can
define the functors LMfn and LMr in the same manner, cf. Definition 3.6,
prove that they are well-defined and that LMrn is essentially surjective, cf.
Proposition 3.7.

Then, as in the proof of Proposition 3.9, one can prove that LMfn is essen-
tially surjective onto the finite Honda systems (L′, L,M) over A′n, with L

and L′ free A′/pqA′-modules, and that LMfn is full, hence classifying, when
restricted to the finite groups over A′n that map to such Honda systems. In
particular, cf. Remark 3.11 (3), LMrn classifies the truncated Barsotti-Tate
groups over A′n.

Definition 3.18. — We say that a finite group G over A′n is strongly
flat if it is fully flat and Li is A′/pA′-free for every i > 0, where (Li,Mi) =
LMrn(Gi[p]) and Gi is as in (3.25).

Theorem 3.13 remains true when applied to the strongly flat groups over
A′n. Theorem 3.16 and Corollary 3.17 also remain true with ’fully flat’
replaced by ’strongly flat’.

Most probably, with a bit more work one could extend these results to
the case of arbitrary n.

4. Almost canonical liftings.

In this Section we assume k is algebraically closed. We let d < h be two
relatively prime positive integers. Let Γ0 be a p-divisible group over k, with
Dieudonné module M isomorphic, as a Dk-module, to

(4.1)
(
Ah,

[
Od,h−d p · Id
Ih−d Oh−d,d

]
◦ σ
)

where σ is the absolute Frobenius on A = W (k) and Oi×j (resp. Ii) is
the zero (resp. identity) matrix in the ring of i× j (resp. i× i) matrices
over A. This means that there exists an A-basis of M on which F acts as
prescribed by the matrix. We denote by {e1, . . . , eh} the elements in this
basis. We have the relations

Fej = ed+j , 1 6 j 6 h− d ; Feh−d+j = pej , 1 6 j 6 d.

Remark 4.1. — There is a canonical way of associating to the Dieudonné
module (4.1) a connected p-divisible group Gd,h−d over Fp of dimension d

and height h, cf. [11], §4.2 and [7] (28.5.7). Thus we require Γ0 to be
isomorphic over k to Gd,h−d.
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We denote by Wi the ring W (Fpi) of Witt vectors over Fpi , for i > 1. By
requiring that an h× h matrix over A commute with F , as given in (4.1),
we get the following description of the subring R = EndDk(M) of the ring
of h× h matrices over A

(4.2)





ah pah−1 · · · pa2 pa1
aσ
u

1 aσ
u

h · · · paσ
u

3 paσ
u

2
...

...
. . .

...
...

aσ
(h−2)u

h−2 · · · paσ
(h−2)u

h−1

aσ
(h−1)u

h−1 aσ
(h−1)u

h−2 · · · aσ
(h−1)u

1 aσ
(h−1)u

h


; ai ∈Wh


where u > 1 is minimal such that ud = wh + 1 for some integer w. The
Zp-algebra R is the maximal order in the division algebra Dh,d over Qp,
with invariant d/h. We have

R =
{
ah +

h−1∑
i=1

aiγ
i; ai ∈Wh

}
where Wh is embedded into R via
(4.3)

a 7−→


a 0 0 · · · 0
0 aσ

u 0 · · · 0
0 0 aσ

2u · · · 0
...

...
...

. . .
...

0 0 0 · · · aσ
(h−1)u

 and γ =


0 0 · · · 0 p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

.
For every a ∈Wh we have the relation

aγ = γaσ
u

.

Let O be the ring of integers in a degree h extension K of Qp, which we
embed into R ⊂ Dh,d. Let e = e(O) < p−1 and f = h/e. Also let A′ be the
ring of integers in a degree e totally ramified extension of the fraction field
of A. Moreover, we choose A′ to contain the maximal unramified extension
of O. Let π be a uniformizer of O and A′, and let ε ∈ O× be such that
p = επe. We denote by v the unique valuation on Dh,d normalized such
that v(π) = 1.

Remark 4.2. — For an element [ in O we denote by T[ its matrix rep-
resentation inside R as given by (4.2).

Definition 4.3. — We call an O-lifting of Γ0 a p-divisible group Γ over
A′ such that Γk ' Γ0 and EndA′−gr(Γ) = O. We say that two O-liftings
are isomorphic if they are isomorphic as groups over A′.
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The main result of this Section is the following theorem.

Theorem 4.4. — There exists an O-lifting of Γ0 if and only if f > d.
In this case, we have

(i) For every O-lifting Γ and every n > 1

Rn−1 = EndA′n−gr(Γn) = O + πn−1R

where Γn is the base change to A′n of Γ.
(ii) There are exactly ed/g isomorphism classes of O-liftings Γ of Γ0,

where g is the number of automorphisms of K which fix its maximal un-
ramified subextension.

Remark 4.5. — It is clear from Theorem 2.8 B that we have

· · · ⊆ Rn ⊆ Rn−1 ⊆ · · · ⊆ R1 ⊆ R0 = R.

Proof. — The way we prove this Theorem is by translating it in terms
of Honda systems. Thus, a p-divisible group Γ over A′, which lifts Γ0,
corresponds to a Honda system (L,M), cf. Definition 1.10 (2) and Theo-
rem 1.11. The fact that Γ has endomorphisms by O ⊆ R = EndDk(M) ⊂
EndA′(MA′) translates into the fact that for every endomorphism M

T→M

of M we have TA′(L) ⊆ L. In general, we say that an A′-submodule U
of MA′ is an O-module if TA′(U) ⊆ U for every T in O ⊂ R. So, all we
have to do is to find all the O-modules of MA′ which are A′-free of rank d.
Furthermore, via Corollary 2.15, we know that

(4.4) Rn−1 = EndHd
A′n

(L/mn−1L,M) =
{
T ∈R; TA′(L) ⊂ L+ mn−1MA′

}
.

This will help us prove the statement about the endomorphisms mod mn.
We first prove the statement about the existence of O-liftings, then the

one concerning endomorphisms and, finally, the one concerning isomor-
phism classes. In the sequel we will distinguish between the case in which
O is unramified, which is straightforward, and the case in which O is ram-
ified, which is a bit more involved.

Case e = 1. O = Wh. In this case, the O-modules of M of A-rank 1 are
exactly

Ae1, Ae2, . . . , Aeh.

It is clear that L = Ae1 + Ae2 + · · ·+ Aed is the only A-free O-module
of M satisfying L/pL 'M/FM . The pair (L,M) is a Honda system over
A which gives rise to a p-divisible group Γ over A that lifts Γ0. It is also
clear in this case that Rn−1 = O + pn−1R and that Γ is unique up to
A-isomorphism.
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Case e > 1. In this case we have to find an A′-free O-module L of MA′ ,
such that L/πL 'M/FM .

We start by describing Im(EndDk(M) (−)A′−→ EndA′(MA′)). We choose
and fix the following A′-basis of MA′

E1 = (1⊗ e1, 0), E2 = (1⊗ e2, 0), . . . , Ed = (1⊗ ed, 0)

and
Ej = (0, p−1π ⊗ ej−d), d+ 1 6 j 6 h.

We use this basis to identify MA′ with (A′)h and EndA′(MA′) with the h
by h matrices over A′. Using the description of MA′ as in Remark 1.6 (i),
for every T in R we get the following relation between T and TA′ :

(4.5) T =
[
A1 A2
A3 A4

]
and TA′ =

[
A1 p−1πA2

pπ−1A3 A4

]
where A1 ∈Md(A), A2 ∈Md,h−d(A), A3 ∈Mh−d,d(A) and A4 ∈Mh−d(A).

We choose an embedding O ↪→ R such that the embedding Wf ⊆ O ↪→ R

corresponds to Wh ↪→ R as given by a 7→ Ta in (4.3) above. Then, for every
element θ ∈ O we have

(4.6) Tθ = Tah +
e−1∑
i=1

Taif γ
if

for some aif ’s in Wh.
We claim that there exists an element θ in O which is primitive, i.e. K =

Qp(θ), and verifies v(θ) = 1. Indeed, using a Primitive Element Theorem
type of argument, we can choose θ from among the elements {ω+ piζ}i>0,
where ζ (resp. ω) in O is a primitive pf − 1 root of unity (resp. root of
an Eisenstein polynomial over Wf of degree e), in particular Kf = Qp(ζ)
(resp. K = Kf (ω)), where Kf is the fraction field of Wf . The characteristic
polynomial of Tθ (resp. Tθ,A′) is the minimal polynomial of θ over Zp.
Hence Tθ (resp. Tθ,A′) has h distinct eigenvalues, which are conjugate by
Gal(Q

p
/Qp). Let {w1, w2, . . . , wh} ⊆ (A′)h be an A′-basis of MA′ formed

by eigenvectors of Tθ,A′ . It follows from (4.6) that the eigenvectors can be
split into f subsets Cl = {wl, wf+l, . . . , w(e−1)f+l}, for 1 6 l 6 f , such
that the elements of Cl have zeros on all positions 1 through h, which are
not congruent to l mod f . In fact, the elements in Cl, when viewed as
elements of (A′)e by considering only the entries congruent to l mod f , are
the eigenvectors of the e by e matrix Tl obtained from Tθ,A′ by considering
only the entries (i, j) with i ≡ j ≡ l (mod f). Moreover, the characteristic
polynomial of Tθ,A′ is the product of the characteristic polynomials µl(X)
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of the Tl’s and µl(X) is the minimal polynomial of θσ(l−1)u over Wf , for
every l between 1 and f .

If f > d and l 6 d then Tl is
(4.7)

Tl =



aσ
(l−1)u
h πaσ

(l−1)u
h−f · · · πaσ

(l−1)u
2f πaσ

(l−1)u
f

επe−1aσ
(l−1+f)u
f aσ

(l−1+f)u
h · · · paσ

(l−1+f)u
3f paσ

(l−1+f)u
2f

...
...

. . .
...

...
επe−1aσ

[l−1+(e−2)f]u

(e−2)f · · · paσ
[l−1+(e−2)f]u
h−f

επe−1aσ
[l−1+(e−1)f]u
h−f aσ

[l−1+(e−1)f]u

(e−2)f · · · aσ
[l−1+(e−1)f]u
f aσ

[l−1+(e−1)f]u
h


.

We choose arbitrary elements

(4.8) B1 0 0
0 B2

0 0
0 Bf

Bf+1 0 0
0 , Bf+2 , . . .

0 0
0 B2f

Bh−f+1 0 0
0 Bh−f+2

0
0 0 Bh

in each of the subsets C1, C2, . . ., Cf , respectively.
Writing out what it means for the vectors in (4.8), when viewed inside

(A′)e, to be eigenvectors of the Tl’s we get the following values for the
valuations of the entries

(4.9) v(Bif+l) =

{
e− i− 1 if 1 6 i 6 e− 1
0 if i = 0

, if f > d

and

(4.10) v(Bl) > 0, 1 6 l 6 min(f, d− f), if f < d.

From (4.10) it follows that, in the case f < d there are no A′-free O-
modules L of MA′ such that L/πL 'M/FM . Hence, in this case, there is
no O-lifting of Γ0.
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From now on we assume that f > d. Choose one element zl in Cl for
every 1 6 l 6 d(6 f) and define L ⊆MA′ to be

(4.11) L = A′z1 +A′z2 + · · ·+A′zd.

It is clear that L is an A′-free O-module of MA′ such that L/πL 'M/FM .
Hence the pair (L,M) is a Honda system over A′, which gives rise to a p-
divisible group Γ over A′ that lifts Γ0. Moreover, it is clear that O =
{φ ∈ R; φA′(L) ⊆ L} = EndHd

A′
(L,M) = EndA′−gr(Γ). This proves the

existence of the O-lifting.
We now prove (i), i.e. the statement about the endomorphisms mod mn.

We start by proving a result that holds for all p-divisible groups over A′.
We have the following result.

Proposition 4.6. — With notations as in the statement of Theo-
rem 4.4, for all integers n,m > 0 we have

πnRm ⊆ Rn+m and πnR ∩Rn+m = πnRm.

Proof. — We know, cf. (4.4) above, that Rn = {T ∈ R; TA′(L) ⊂ L +
mnMA′}. Let T be in Rm. Then TA′(L) ⊂ L+ πmMA′ , so

(πnT )A′(L) = (Tnπ,A′ ◦ TA′)(L) ⊂ Tnπ,A′(L+ πmMA′)

= πnL+ πn+mMA′ ⊂ L+ πn+mMA′

where Tπ is the image of π ∈ O via O ↪→ R. Thus πnT is in Rn+m and the
first part of the Proposition follows.

For the second part, the only thing to prove is the inclusion “⊂”. The
other inclusion follows from the first part and from Remark 4.5. Let T be
in πnR ∩Rn+m. Then there is a U in R such that T = πnU and such that
πnUA′(L) ⊂ L + πn+mMA′ . It is clear that the last relation implies that
πnUA′(L) is actually included in πnL + πn+mMA′ , hence that UA′(L) is
included in L+ πmMA′ . Therefore U is in Rm and T is in πnRm. �

This Proposition, in the case m = 1, implies that we always have an
injection

(4.12) 0→ R

R1

πn−→ Rn
Rn+1

.

Thus dimkf Rn/Rn+1 > dimkf R/R1, where kf = Fpf .
Coming back to our O-lifting Γ and its Honda system (L,M), it is clear

that O + πnR ⊆ Rn for all n > 0. So, taking (4.12) into account, all we
have to prove is that

(4.13) R1 ⊆ O + πR.
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We actually prove that R1 ⊆ Wf + πR. Let φ = bh +
∑h−1
i=1 biγ

i be an
element in R1. This means that φA′(L) ⊆ L+ πMA′ . We may assume that
φ is bh +

∑f−1
i=1 biγ

i, because
∑h−1
i=f biγ

i ∈ πR. Now, another nontrivial
computation, cf. also Lemma 4.7 (a) below, shows that the conditions

φA′(zj) ≡ cj1z1 + · · ·+ cjdzd (modπ)

with 1 6 j 6 d, imply

bσ
fu

h ≡ bh (modπ) and bi ≡ 0 (modπ) for 1 6 i 6 f − 1.

At this point, we used the fact that for d > 1 we have d < f and h+1 > 2f .
Hence bh, which is an element of kh, is actually in kf . Therefore bh is in Wf
and φ − bh is in πR. This proves (4.13) and, with it, the statement about
the endomorphisms modπn.

Now, we prove (ii). We first remark that there are exactly ed submodules
L of MA′ that are A′-free O-modules such that L/πL ' M/FM . Indeed,
L would admit an A′-basis of eigenvectors for the action of O, i.e. a de-
composition into a direct sum of A′-free O-modules of MA′ of rank 1. But
these submodules are elements of the set {A′wi; 1 6 i 6 h}. Finally the
condition L/πL 'M/FM implies that L is of the form

(4.14) L = A′wi1 + · · ·+A′wid

with wil in Cl for 1 6 l 6 d. Let I ∈ Πdl=1{l + if ; 0 6 i 6 e − 1} be
a multi-index. Define LI as in (4.14) above, where I = (i1, . . . , id). We
use the notation Il for il. The statement about the isomorphism classes of
O-liftings follows from the following lemma.

Lemma 4.7. — Fix a multi-index I.
(a) Let T ∈ R× be a Dk-automorphism of M such that TA′(LI) = LJ ,

for some multi-index J . Then

TA′(A′wIl) = A′wJl and TU = UT

for every 1 6 l 6 d and U ∈Wf ⊂ O ⊂ R.
(b) There is a bĳection of sets{

J ; there existsT ∈ R× with TA′(LI) = LJ
}
←→ Gal(K/Kf )

where Gal(K/Kf ) is the group of automorphisms of K which fix Kf =
Frac(Wf ).

We start by proving (a). Let T = bh+
∑h−1
i=1 biγ

i, cf. (4.2). Recall, cf. (4.8)
above, that for all 1 6 l 6 d we can write

w[l =
e−1∑
i=0

B[if+lEif+l
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where [ ∈ {I, J} and the B[if+l’s are elements in A′ satisfying (4.9). The
fact that TA′(LI) is included in LJ means that, for all l, we can write

(4.15) TA′wIl =
d∑
r=1

crlwJr

for some constants crl’s in A′. Now, since the wJr ’s have zeroes on all posi-
tions not congruent to r mod f and since r in (4.15) runs from 1 to d, it fol-
lows that TA′wIl has zeroes on all positions congruent to d+1, . . . , f mod f .

If TA′ = (Tij)16i,j6h, for 1 6 r, l 6 f we let Trl = (Tif+r,jf+l)06i,j6e−1
be the e by e matrix obtained from TA′ by keeping only the elements on the
rows congruent to r mod f and on the columns congruent to l mod f . The
fact that TA′wIlhas zeroes on all positions congruent to d+ 1, . . . , f mod f
translates into the following relations

Trl


BIl
BIf+l

...
BIh−f+l

 = 0 for d+ 1 6 r 6 f and 1 6 l 6 d.

This implies that Trl = 0 and, with it, that bif+r−l = 0 for all l between 1
and d, for all r between d+ 1 and f and for all i between 0 and e− 1. It is
easy to see that we have the following equality of sets

{1, 2, . . . , f − 1} = {r − l; d+ 1 6 r 6 f, 1 6 l 6 d}.

Therefore bif+r = 0 for all 1 6 r 6 f − 1 and 0 6 i 6 e − 1. Hence,
T = bh +

∑e−1
i=1 bifγ

if . It is clear that this proves (a).
(b) Let η : {J ; there exists T ∈ R× with TA′(LI) = LJ} → Gal(K/Kf )

be defined as
η(J) = ιT |K

where T is in R× such that TA′(LI) = LJ and ιT : Dh,d → Dh,d is the
inner automorphism x 7→ T−1xT of Dh,d. Also, let δ : Gal(K/Kf ) →
{J ; there existsT ∈ R× with TA′(LI) = LJ} be defined as

δ(τ) = J

where J is defined by the relation TA′(LI) = LJ , with T ∈ R× such that
ιT extends τ : K→ K (such a T exists by Skolem-Noether).

All we need to do is to prove that η and δ are well defined, because it is
clear that they are inverse to each other.

We start with η. The first thing we need to prove is that if T ∈ R×

satisfies TA′(LI) = LJ then ιT (K) ⊆ K. Since Tθ,A′(LJ) ⊆ LJ , it follows
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that (T−1TθT )A′(LI) ⊆ LI . From (a) it follows, in particular, that

(T−1TθT )A′(A′wI1) ⊆ A′wI1 ,

which, in turn, implies that

(T−1TθT )A′Tθ,A′wI1 = Tθ,A′(T−1TθT )A′wI1 .

This last relation implies that T−1TθT commutes with Tθ, hence ιT (Tθ) =
T−1TθT must be in O ↪→ R. Since K = Qp(Tθ) ⊂ Dh,d, it follows that
ιT (K) ⊆ K. The fact that ιT fixes Kf also follows from (a).

The second thing we need to prove is that if T1 and T2 are elements of
R× such that T1,A′(LI) = T2,A′(LI) then η(T1) = η(T2). As above, since
(T1T

−1
2 )A′(LI) = LI , we get that T1T

−1
2 commutes with Tθ, hence T1T

−1
2

must be in O ↪→ R. It is clear that this implies that ιT1 |K = ιT2 |K. Thus, η
is well defined.

We prove now that δ is well defined. First we have to prove that if T ∈ R×
satisfies ιT (K) ⊆ K then TA′(LI) = LJ for some J . The fact that ιT |K is
an automorphism of K implies, in particular, that ιT (Tθ) = T−1TθT is in
O = EndHd

A′
(LI ,M). Hence (T−1TθT )A′(LI ⊆ LI , which, together with

the fact that ιT fixes Kf , implies that TA′(LI) is an A′-free O-module of
MA′ such that TA′(LI)/πTA′(LI) ' M/FM . We saw in the paragraph
before our Lemma, that this implies that TA′(LI) = LJ for some J .

Finally, we have to prove that if T1 and T2 are elements of R× such
that ιT1 |K = ιT2 |K then T1,A′(LI) = T2,A′(LI). The equality ιT1 |K = ιT2 |K
implies that T−1

1 T2 is in O = EndHd
A′

(LI ,M). Hence (T−1
1 T2)A′(LI) = LI ,

i.e. T1,A′(LI) = T2,A′(LI). The proof of Lemma 4.7 and, with it, the proof
of our Theorem is complete now. �
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