Ioan BERBEC

Group Schemes over artinian rings and Applications

<http://aif.cedram.org/item?id=AIF_2009__59_6_2371_0>

L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
GROUP SCHEMES OVER ARTINIAN RINGS AND APPLICATIONS

by Ioan BERBEC (*)

Abstract. — Let \(n \) be a positive integer and \(A' \) a complete characteristic zero discrete valuation ring with maximal ideal \(m \), absolute ramification index \(e < p - 1 \) and perfect residue field \(k \) of characteristic \(p > 2 \). In this paper we classify smooth finite dimensional formal \(p \)-faithful groups over \(A'_n = A'/m^nA' \), i.e. groups on which the “multiplication by \(p \)” morphism is faithfully flat, in particular \(p \)-divisible groups. As applications, we prove that \(p \)-divisible groups over \(k \), and the morphisms between them, lift canonically to \(A'/pA' \), and we study liftings to characteristic zero of certain connected \(p \)-divisible groups of dimension \(d \) and height \(h \) over \(k = \overline{k} \), with \(d \) and \(h \) coprime. When \(e = 1 \), we classify finite flat group schemes over \(A'/p^2A' \) of \(p \)-power order and prove that a finite flat group scheme over \(A'/p^nA' \) of \(p \)-power order, having flat \(p^i \)-torsion for every \(i \geq 1 \), lifts to \(A' \).

Résumé. — Soit \(n \) un entier positif et \(A' \) un anneau de valuation discrète complet de caractéristique zéro avec idéal maximal \(m \), indice de ramification absolu \(e < p - 1 \) et corps résiduel parfait \(k \) de caractéristique \(p > 2 \). Dans cet article nous classifions les groupes formels lisses \(p \)-fidèles de dimension finie sur \(A'_n = A'/m^nA' \), i.e. les groupes sur lesquels le morphisme “multiplication par \(p \)” est fidèlement plat, en particulier les groupes \(p \)-divisibles. Comme application, nous prouvons que les groupes \(p \)-divisibles sur \(k \), et les morphismes entre eux, se relèvent canoniquement à \(A'/pA' \), et nous étudions les relèvements en caractéristique zéro de certains groupes \(p \)-divisibles connexes de dimension \(d \) et hauteur \(h \) sur \(k = \overline{k} \), ou \(d \) et \(h \) sont étrangers. Quand \(e = 1 \), nous classifions les schémas en groupes finis et plats sur \(A'/p^2A' \) d’ordre une puissance de \(p \) et nous prouvons que tous les schémas en groupes finis et plats sur \(A'/p^iA' \) d’ordre une puissance de \(p \), avec \(p^i \)-torsion plate pour chaque \(i \geq 1 \), se relèvent à \(A' \).

Introduction

Let \(p > 2 \) be a prime. Let \(A' \) be a complete characteristic 0 discrete valuation ring with absolute ramification index \(e = e(A') < p - 1 \) and perfect

Keywords: Group scheme, \(p \)-divisible group, almost canonical lifting.

Math. classification: 14L15, 14L05.

(*) The author wishes to thank the Holy Putna Monastery for providing the best working conditions while this article was revised.
residue field of characteristic p. Let m be its maximal ideal, $k = A'/m$ and n a positive integer. In this paper we classify smooth finite dimensional (commutative) formal p-faithful groups, i.e. groups on which the “multiplication by p” morphism is faithfully flat, in particular p-divisible groups, over $A'_n = A'/m^n A'$, and use it to derive other classification results and some applications.

Fontaine classified smooth p-groups over A', cf. Theorem 1.11 below. We use his work to achieve the classification of smooth p-groups over A'_n, cf. Theorem 2.8. We associate to any such group a so-called smooth Honda system over A'_n, i.e. linear algebra data constructed from the Dieudonné module of the special fiber of the group. In general, we can prove that this correspondence is essentially surjective and full. In order to prove that this correspondence is also faithful, and thus achieve our classification, we have to restrict to p-faithful groups. While essential surjectivity follows more or less easily from Fontaine’s work, fully faithfulness is nontrivial, reflecting phenomena specific to groups over A'_n, cf. Lemma 2.10. In the end, we prove that our classification is compatible with Fontaine’s. More precisely, we prove that if a p-faithful group Γ over A' is classified, via Fontaine, by the pair (\mathcal{L}, M) then its base change Γ_n to A'_n is classified by $(\mathcal{L}/m^n-1 \mathcal{L}, M)$, cf. Proposition 2.12.

In the case $n = e$, from the algebraic properties of the Honda system associated to a p-divisible group over A'_e, we deduce the following proposition. It is implied by Proposition 2.17 and Corollary 2.18.

Proposition. — For every p-divisible group Γ over k there exists a canonical p-divisible group Γ^can over A'_e such that $\Gamma^\text{can} \times \text{Spec } k \simeq \Gamma$. Moreover, any morphism $f: \Gamma \to \Gamma'$ between p-divisible groups over k lifts canonically to a morphism $f^\text{can}: \Gamma^\text{can} \to (\Gamma')^\text{can}$ of p-divisible groups over A'_e. In particular, any abelian variety (resp. finite group scheme) over k lifts canonically to an abelian scheme (resp. finite flat group scheme) over A'_e.

We apply our classification to the study of liftings to characteristic zero of Manin’s groups $G_{d,h-d}$, cf. Remark 4.1, where $d < h$ are coprime and k is algebraically closed. The group $G_{d,h-d}$ is a connected p-divisible group of dimension d and absolute height h over k. All connected p-divisible groups of height h and dimension 1 are isomorphic to $G_{1,h}$. In general, all p-divisible groups of dimension d and height h are isogeneous to $G_{d,h-d}$, cf. [13], p. 3. We prove, cf. Theorem 4.4, the following result.

Theorem 1. — Let $d < h$ be two coprime positive integers, let k be an algebraically closed field of characteristic p, let \mathcal{O} be the ring of integers in
a degree h extension \mathbb{K} of \mathbb{Q}_p, with absolute ramification index $e < p - 1$, and let A' be the ring of integers in a degree e, totally ramified extension of the fraction field of the Witt ring $W(k)$, which contains the maximal unramified extension of \mathcal{O}.

There exists a p-divisible group Γ over A' such that $\Gamma \times \text{Spec} \ k \simeq G_{d,h-d}$ and $\text{End}_{A'_{-\text{gr}}} (\Gamma) = \mathcal{O}$ if and only if $h \geq ed$. In this case:

(i) There are exactly e^d/g isomorphism classes of such Γ’s, where g is the number of automorphisms of \mathbb{K} which fix its maximal unramified subextension.

(ii) For every such Γ and every $n \geq 1$
\[
\text{End}_{A'_{-\text{gr}}} (\Gamma_{A'_{n}}) = \mathcal{O} + \pi^{n-1} \text{End}_{k_{-\text{gr}}} (\Gamma_k)
\]
where $\Gamma_{A'_{n}}$ (resp. Γ_k) is the base change to A'_{n} (resp. k) of Γ and π is a uniformizer of \mathcal{O}.

We refer the reader to Section 4 for details concerning this result. This Theorem, via Honda systems, becomes a beautiful, yet nontrivial, exercise in semilinear algebra. Over bases with low ramification, Part (i) of the Theorem generalizes to arbitrary dimension results of Lubin, [10], Theorem 4.3.2, and Part (ii) generalizes results of Gross, [6], §3, and Yu, [15], Section 14.

Another application of our classification of p-divisible groups over A'_{n} is the study of finite flat group schemes over A'_{n} of p-power order, finite groups in the sequel, in the case $e = 1$. Our main tool is Oort’s result, cf. Theorem 3.1, which states that any finite group embeds into a p-divisible one.

Fontaine associated to a finite group over A' a so-called finite Honda system (L, M) over A' that classifies the group, with M being the Dieudonné module of the special fiber of the group, cf. [3], Theorem 1.4. We associate to a finite group over A'_{n} a finite Honda system over A'_{n}, consisting of a triple (L^n, L_n, M), with $(L^n, M[p^{n-1}])$ and $(L_n, M/p^{n-1}M)$ being finite Honda systems over A', cf. Definition 3.6 and Proposition 3.7. In the case $n = 2$ we are able to prove that this correspondence classifies finite groups over A'/p^2A', cf. Corollary 3.10. For general n we can prove that this correspondence classifies a certain class of finite groups over A'_{n} among which are the truncated Barsotti-Tate groups of level $s \geq 1$, cf. Remark 3.11 (2).

One of the main differences between the situation over A' and the situation over A'_{n} is that the “special fiber” functor from finite groups over A'_{n} to finite groups over k is not faithful. This implies, in particular, that the
category of finite groups over A'_n is not abelian, cf. Remark 3.11 (1). Nevertheless, we are able to prove, cf. Theorem 3.16, that the “special fiber” functor is faithful on the morphisms that lift to A'_{n+m} for m large enough.

We also prove, cf. Theorem 3.13, the following result.

Theorem 2. — Suppose A' is unramified. Let G be a finite flat group scheme over $A'/p^n A'$ of p-power order.

(i) If the p^i-torsion subgroup $G[p^i]$ is flat for every $i \geq 1$ then G lifts to A'.

(ii) The torsion subgroup $G[p^i]$ is flat for i between 1 and some positive integer r if and only if G lifts to $A'/p^{n+r} A'$.

A future generalization of this paper would be to include higher ($e \geq p-1$) ramification on the base. We think that Breuil’s techniques, cf. [2], can be used to achieve this.

Here is the structure of this paper: in Section 1 we introduce notations and we review concepts and results of Fontaine and Conrad that we will use in our paper. In Section 2 we classify smooth formal p-groups. In Section 3 we study finite groups. In Subsection 3.1 we show how most of the results can be carried out mutatis mutandis in the case of finite groups over A'_n with $e \geq 2$ and n of the form $qe + 1$. In Section 4 we study liftings to characteristic zero of Manin’s groups and their endomorphisms mod m^n.

Acknowledgement. — I would like to thank Professor Robert Coleman for suggesting the motivating problem behind this paper to me and for his guidance throughout my graduate studies. I also thank Brian Conrad for helpful suggestions, which lead to some of the applications in this paper, and the referee for very useful comments.

1. Notations and Preliminaries

The main references for this paper are Fontaine’s book [5] and Conrad’s article [3]. For the convenience of the reader we review here all the definitions and results we use from the above papers.

Throughout this paper:

$n \geq 2$ is a positive integer.

$p \geq 3$ is a fixed prime number.

k is a perfect field of characteristic p.

$A = W(k)$ is the ring of Witt vectors of k. We let (A', \mathfrak{m}) be the valuation ring of a finite totally ramified extension K' of the fraction field
K of A, with $e = e(A')$ the absolute ramification index of A', and $A'_n = A'/m^n$. We fix a uniformizer π of A'.

If R (resp. R) is an A' (resp A'_n) algebra, we denote by R_k (resp. R_k) the special fiber $R \otimes_{A'} k$ (resp. $R \otimes_{A'_n} k$) of R (resp. R) and by $R_{K'} = R_K$ the generic fiber $R \otimes_{A'} K$ of R.

$D_k = A[F,V]$ is the Dieudonné ring, i.e. the variables satisfy $FV = VF = p$, $F\alpha = \sigma(\alpha)$, $V\alpha = \sigma^{-1}(\alpha)$, for all $\alpha \in A$, where $\sigma: A \to A$ is the Frobenius morphism.

For us, a group is a group scheme, formal or finite. A pseudo-compact ring S is a separated and complete linearly topologized ring such that the ring S/I is artinian for all open ideals I of S. Obviously k with the discrete topology, A' and A'_n with the p-adic topology are pseudo-compact.

Definition 1.1. — Let (S, m) be a local pseudo-compact ring with residue characteristic p.

1. A formal S-group functor F is a functor defined on finite S-algebras with values in abelian groups. Thus all our groups are commutative.

2. A formal S-group is a pro-representable formal S-group functor. A formal p-group G over S is a formal S-group G such that $G \simeq \lim_{\longrightarrow} G[p^i]$. We say that a formal S-group G is smooth if for all finite S-algebras R and all square zero ideals I of R the canonical map from $G(R)$ to $G(R/I)$ is surjective.

3. We say that a smooth formal p-group G over S is p-faithful if the “multiplication by p” morphism $[p]: G \to G$ is faithfully flat.

4. We say that a p-faithful group G over S is p-divisible of height h if $G[p^i]$ has order p^{ih} for all $i \geq 1$.

5. A finite flat group scheme of p-power order over S is a formal p-group which is a finite flat scheme over S.

A profinite S-module M is a linearly topologized S-module such that for any open submodule M' the quotient M/M' is an S-module of finite length. A profinite S-algebra B is an S-algebra such that B is a profinite S-module.

We briefly review the theory of Witt covectors from [5], Chapter II, §§1-4.

For any commutative ring S (the reader should have in mind k, A or A_m finite algebras as a typical example) we define the S-valued Witt covectors $CW(S)$ to be the set of sequences $a = (\ldots, a_{-i}, \ldots, a_0)$ of elements $a_{-i} \in S$ verifying the condition: there is an integer $r \geq 0$ such that the ideal of S generated by the a_{-i}'s for $i \geq r$ is nilpotent. Letting
\[S_m \in \mathbb{Z}[X_0, \ldots, X_m, Y_0, \ldots, Y_m] \] denote the \(m \)-th addition polynomial for Witt vectors, cf. [5], pp. 71–72, and choosing \(a \) and \(b \) in \(CW(S) \), the nilpotence condition ensures that the sequence
\[\{ S_m(a-i-m, \ldots, a-i, b-i-m, \ldots, b-i) \}_{m \geq 0} \]
is stationary. Denoting the limit by \(c_i \) it is true that \(c = (c_i) \) is in \(CW(S) \), cf. [5], Chapter II, Proposition 1.1. Defining
\[a + b = c \]
makes \(CW(S) \) into a commutative group with identity \((\ldots, 0, \ldots, 0)\), cf. [5], Chapter II, Proposition 1.4.

We refer the reader to [5], Chapter II, §1.6 for the natural topology of \(CW(S) \). We note that \(CW(S) \) is complete and separable with respect to this topology and that \(CW^u(S) = \{ a; a_i = 0 \text{ for large } i \} \) is a dense subgroup. Moreover, for every morphism of commutative rings \(\varphi: S \to S' \) the map
\[CW(\varphi): CW(S) \to CW(S') \]
defined by
\[CW(\varphi)((\ldots, a_i, \ldots, a_0)) = (\ldots, \varphi(a_i), \ldots, \varphi(a_0)) \]
is continuous. Thus, \(CW \) is a functor from the category of commutative rings to the category of topological groups. It can be extended in an obvious way to the category of separable, complete linearly topologized commutative rings, cf. [5], Chapter II, §1.7.

Now we specialize to \(k \)-algebras \(S \). In this case, \(CW_k(S) = CW(S) \) admits a unique structure of topological module over \(A \), such that for all \(x \) in \(k \), with Teichmüller lift \([x] = (x, 0, \ldots, 0) \in A \), we have
\[[x] \cdot a = (\ldots, x^{p-i} a_i, \ldots, x^{p-1} a_{-1}, a_0). \]

The operations \(F, V: CW_k(S) \to CW_k(S) \) given by
\[F(a) = (\ldots, a^{p-i}_i, \ldots, a^{p}_0), \quad V(a) = (\ldots, a_{-i-1}, \ldots, a_{-1}) \]
are additive, continuous and satisfy the relations \(FV = VF = p, F\alpha = \sigma(\alpha), V\alpha = \sigma^{-1}(\alpha) \), with \(\alpha \in A \). In other words, \(CW_k(S) \) is a topological \(D_k \)-module. This is all functorial in \(S \).

The group functor \(CW_k \) on finite \(k \)-algebras is pro-representable. We denote by \(\widehat{CW_k} \) the group scheme that represents it, cf. [5], Chapter II, §4.2.

For any formal \(p \)-group \(G \) over \(k \) we define its \emph{Dieudonné module}
\[\mathcal{M}(G) = \text{Hom}_{k-\text{gr}}(G, \widehat{CW_k}) \]
as the group of formal \(k \)-group morphisms from \(G \) to \(\widehat{CW_k} \).
Remark 1.2. — By viewing morphisms of formal group schemes between G and \widehat{CW}_k as morphisms of schemes, we obtain an embedding
$$\mathcal{M}(G) \hookrightarrow \text{Hom}_{k-\text{sch}}(G, \widehat{CW}_k) \simeq CW_k(R)$$
where R is the affine algebra of G. Moreover, if Δ is the comultiplication of R then
$$\mathcal{M}(G) = \{ a \in CW_k(R) ; CW(\Delta)(a) = a \hat{\otimes} 1 + 1 \hat{\otimes} a \}.$$
This allows us to view $\mathcal{M}(G)$ as a closed topological D_k-submodule of $CW_k(R)$.

All of the standard properties of the classical Dieudonné module theory are proven in [5], Chapter III based on this definition. The main result of this theory, [5], Theorem 1, p. 127, is comprised in the following theorem.

Theorem 1.3. — The functor \mathcal{M} sets up a duality of abelian categories between formal p-groups over k and certain topological D_k-modules.

Now, for any separable, complete linearly topologized A-algebra S, in particular for A_n-algebras, $CW(S)$ has a natural structure of topological A-module, which is uniquely determined by
$$[x] \cdot a = \left(\ldots, \sigma^{-i}([x])a_{-i}, \ldots, \sigma^{-1}([x])a_{-1}, [x]a_0 \right)$$
for every $x \in k$ and every $a = (\ldots, a_{-i}, \ldots, a_0) \in CW^u(S)$, cf. [5], Chapter II, §2.4. We denote this A-module by $CW_A(S)$.

Recall from [5], Chapter II, §5 and Chapter IV, §3 the following definitions and notations:

Definition 1.4.

(i) A p-adic A'-algebra R is a separable, complete linearly topologized A'-algebra, with the topology being the p-adic one, such that p is not a zero divisor in R.

(ii) A special A'-algebra R is a profinite formally smooth A'-algebra locally of finite dimension, i.e. a profinite A'-algebra whose every local component is isomorphic to a power series ring in a finite number of indeterminates with coefficients in the ring of integers of a finite unramified extension of K'.

For a p-adic A-algebra R one can construct a continuous A-linear map
$$\hat{w}_R : CW_A(R) \to R_K$$
(1.1)
the topology on \(R_K \) being the \(p \)-adic one, defined by

\[
\hat{w}_R((...,\hat{a}_{-i},...,\hat{a}_0)) = \sum_{i=0}^{\infty} p^{-i}(\hat{a}_{-i})p^i
\]

which induces an \(A \)-linear continuous map

(1.2) \[w_R : CW_k(R_k) \to \frac{R_K}{p^R} \]

defined by

\[
w_R((...,a_{-i},...,a_0)) = \sum_{i=0}^{\infty} p^{-i}(\hat{a}_{-i})p^i
\]

where \(\hat{a}_{-i} \in R \) is an arbitrary lift of \(a_{-i} \), cf. [5], Chapter II, §§5.1-2.

If \((R, m)\) is a local special \(A' \)-algebra then we let \(\hat{R}^{an}_K \) be the separable completion of \(R_K \) with respect to the ideals \(J_s = \sum_{i=1}^{\infty} p^{-i+1}m^i \), for \(s \geq 1 \), i.e. \(\hat{R}^{an}_K = \varprojlim R_K / J_s \). If \(R \) is an arbitrary special \(A' \)-algebra and if \(R = \prod R_m \) is the decomposition of \(R \) into local components, we let \(\hat{R}^{an}_K \) be \(\prod (R_m)^{an}_K \), where \(R_m = \varprojlim (R/I_m)_{m/I} \), with \(I \) running through all open ideals of \(R \) contained in the open maximal ideal \(m \). Let us denote by \(\Omega_{A'}(R) \) (resp. \(\Omega_{A'}(\hat{R}^{an}_K) \)) the module of continuous \(A' \)-differentials of \(R \) (resp. \(\hat{R}^{an}_K \)). We let

(1.3) \[P(R) = \{ \alpha \in \hat{R}^{an}_K; d(\alpha) \in \Omega_{A'}(R) \} \]

where \(d : \hat{R}^{an}_K \to \Omega_{A'}(\hat{R}^{an}_K) \) is the canonical morphism.

For a special \(A \)-algebra \(R \) one can construct an \(A \)-linear continuous map

(1.4) \[\hat{w}_R : CW_A(R) \to \hat{R}^{an}_K \]

defined by the same formula as (1.1) above, whose image is \(P(R) \), cf. [5], Chapter II, Proposition 5.5, and which induces an \(A \)-linear continuous isomorphism

(1.5) \[w_R : CW_k(R_k) \to \frac{P(R)}{p^R} \]

defined as (1.2) above.

1.1. Group schemes over discrete valuation rings

In this Subsection we review Fontaine’s classification of smooth \(p \)-groups and Conrad’s classification of finite flat groups over discrete valuation rings with ramification index \(e < p - 1 \).
Definition 1.5. — Let M be a D_k-module.

(i) Let $M^{(1)}$ be the D_k-module, whose underlying space is M, with A-action given by $a \cdot x := \sigma^{-1}(a)x$, for every $a \in A$ and $x \in M$, and with F and V acting as before. Thus F and V can be seen as A-linear maps

$$M \xrightarrow{V} M^{(1)}, \quad M \xleftarrow{F} M^{(1)}.$$

(ii) Define $M_{A'}$ to be the direct limit of the following diagram of A'-modules

$$
\begin{array}{c}
\begin{array}{ccc}
m \otimes_A M & \xrightarrow{V_1} & p^{-1}m \otimes_A M^{(1)} \\
\varphi_0 & & \varphi_1 \\
A' \otimes_A M & \xleftarrow{F_1} & A' \otimes_A M^{(1)}
\end{array}
\end{array}
$$

where the vertical maps are the obvious “inclusions”, $V_1(\lambda \otimes x) = p^{-1}\lambda \otimes V(x)$ and $F_1(\lambda \otimes x) = \lambda \otimes F(x)$, with F, V the usual operators.

(iii) It is obvious how to associate to a D_k-morphism $\varphi : M \to M'$ an A'-morphism $\varphi_{A'} : M_{A'} \to M'_{A'}$.

Remark 1.6.

(i) More explicitly, $M_{A'}$ is the quotient of $A' \otimes_A M \oplus p^{-1}m \otimes_A M^{(1)}$ by the submodule

$$\{(\varphi_0(u) - F_1(w), \varphi_1(w) - V_1(u)); u \in m \otimes_A M, w \in A' \otimes_A M^{(1)}\}.$$

In particular, it is easy to see that any element in $M_{A'}$ can be written as $(1 \otimes m_0, \sum_{i=1}^{e-1} p^{-1} \pi^i \otimes m_i)$, cf. also [3], Lemma 2.2.

(ii) We denote the image of the natural morphism $p^{-1}m \otimes_A M^{(1)} \to M_{A'}$ by $M_{A'}[1]$.

(iii) In the case $A' = A$ there is a canonical isomorphism between M and M_A, via which $M_A[1]$ corresponds to FM. The reader should read M instead of M_A and FM instead of $M_A[1]$ in this case, in all the statements we make.

We have the following basic result, cf. [5], Chapter IV, Proposition 2.3.

Proposition 1.7. — The natural map $M/\hat{w}_R : CW_k(\mathcal{R}) \to P(\mathcal{R})$. It is clear that $\hat{w}_R(CW_k(\mathcal{R})) \subset m\mathcal{R} (e<p-1)$, hence \hat{w}_R induces a morphism $w'_R : CW_k(\mathcal{R}) \to P(\mathcal{R})/m\mathcal{R}$, which in
turn, via extension of scalars, induces a morphism $w''_{\mathcal{R}} : A' \otimes_A CW_k(\mathcal{R}_k) \to P(\mathcal{R})/m\mathcal{R}$. Now, $A' \otimes_A CW_k(\mathcal{R}_k)$ surjects onto

$$(CW_k(\mathcal{R}_k))_{A'} =: CW_{k,A'}(\mathcal{R}_k).$$

cf. [5], Chapter IV, Proposition 2.5. Fontaine proved that $w''_{\mathcal{R}}$ induces an A'-linear map

$$(1.6) \quad w_{\mathcal{R}} : CW_{k,A'}(\mathcal{R}_k) \to \frac{P(\mathcal{R})}{m\mathcal{R}}$$

which is an isomorphism, cf. [5], Chapter IV, Proposition 3.2.

For future reference, we note that for a p-adic A'-algebra S we can construct, as in the case of A'-special algebras, an A'-linear map

$$(1.7) \quad w_{\mathcal{S}} : CW_{k,A'}(S_k) \to \frac{S_K}{mS}$$

starting with $\hat{w}_{\mathcal{S}} : CW_{A}(S) \to S_K$, cf. (1.1) above.

Now let G be a smooth formal p-group over A' and let \mathcal{R} be its affine algebra. Then $G_k = G \times \text{Spec} \ k$, its special fiber, has affine algebra \mathcal{R}_k. Let $M = \mathcal{M}(G_k)$ be the Dieudonné module of G_k. We denote by Δ the comultiplication of \mathcal{R} and by $\hat{\Delta}$ the extension of Δ to $\hat{\mathcal{R}}_k^{an}$. Let $\delta(\alpha) := \alpha \otimes 1 + 1 \otimes \alpha - \hat{\Delta}(\alpha)$ for $\alpha \in \hat{\mathcal{R}}_k^{an}$. Let:

$$(1.8) \quad \mathcal{L}_1 = \{\alpha \in P(\mathcal{R}); \delta(\alpha) \in m\mathcal{R} \otimes A\} \quad \text{and} \quad \mathcal{L} = \{\alpha \in P(\mathcal{R}); \delta(\alpha) = 0\}.$$

Fontaine proved the following result.

Proposition 1.8.

(i) The natural morphism $M_{A'} \to CW_{k,A'}(\mathcal{R}_k)$, induced by the inclusion $M \subset CW_k(\mathcal{R}_k)$, is an injection.

(ii) The map $w_{\mathcal{R}}$, cf. (1.6) above, induces an isomorphism w between $M_{A'}$ and $\mathcal{L}_1/m\mathcal{R}$.

Remark 1.9. — Conrad proved, cf. [3] last part of Lemma 2.7, that $M_{A'}$ is an A'-submodule of $CW_{k,A'}(\mathcal{R}_k)$ also in the case when M is the Dieudonné module of a finite group.

We now take some time to describe the map $w_{\mathcal{R}}$ on the less obvious part of $M_{A'}$, namely on $M_{A'}[1] = \text{Im}(p^{-1}m \otimes_A M^{(1)} \to M_{A'})$. Let $x = (0, p^{-1}\pi \otimes a)$ be in $M_{A'}[1]$, where $a = (a_{-1}, \ldots, a_0) \in M^{(1)} \subset CW_k(\mathcal{R}_k)^{(1)}$ and i is between 1 and $e-1$. Then, as an element of $CW_{k,A'}(\mathcal{R}_k)$ via the natural inclusion $M_{A'} \hookrightarrow CW_{k,A'}(\mathcal{R}_k)$, x is equal to $(\pi \otimes b, 0)$, where $b = (a_{-1}, \ldots, a_0, a_1)$ with $a_1 \in \mathcal{R}_k$ an arbitrary element. This is
so because $p^{-1} \tau^i \otimes a = V_1(\tau^i \otimes b)$ in $p^{-1} m \otimes_A CW_k(R_k)^{(1)}$, cf. Definition 1.5 (ii) and Remark 1.6 (i). Therefore

\[
(1.9) \quad w_{R}(x) = \pi^i \sum_{j=0}^{\infty} p^{-j-1}(\hat{a}_{-j})^{p^{j+1}} = \frac{\pi^i \beta}{m \overline{R}}
\]

where $\hat{a}_{-j} \in R$ is any lift of a_{-j}.

Before we introduce the category of classifying objects, we note that a profinite D_k-module M is a D_k-module M which is A-profinite and is such that its open D_k-submodules form a fundamental system of neighborhoods of 0. Now, the category of classifying objects Λ^f_A, cf. [5], Chapter IV, §4.3, is defined as follows:

Definition 1.10.

1) a. The objects are triples (\mathcal{L}, M, ρ), where
 i) M is a profinite D_k-module on which the action of F is injective such that the quotient M/FM is a finite dimensional k-vector space,
 ii) \mathcal{L} is a free A'-module of finite rank,
 iii) $\rho : \mathcal{L} \to M_{A'}$ is A'-linear such that the induced morphism $\overline{\rho} : \mathcal{L}/m\mathcal{L} \to M_{A'}/M_{A'}[1] \xrightarrow{\sim} M/FM$ is an isomorphism of k-vector spaces.

b. A morphism $u : (\mathcal{L}, M, \rho) \to (\mathcal{L}', M', \rho')$ is a couple $(u_{\mathcal{L}}, u_M)$ with $u_{\mathcal{L}} : \mathcal{L} \to \mathcal{L}'$ (resp. $u_M : M \to M'$) an A' (resp. D_k) linear morphism such that $u_{M, A'} \circ \rho = \rho' \circ u_{\mathcal{L}}$.

2) The category of smooth Honda systems $H^d_{A'}$ over A' has as objects pairs (\mathcal{L}, M) with M and \mathcal{L} as in 1(a) and with \mathcal{L} included in $M_{A'}$. The morphisms are the obvious ones.

3) We denote by $\mathcal{S} \mathcal{F}_{A'}$ the category of smooth finite dimensional formal p-groups over A'.

Fontaine defined a functor $\mathcal{L}M_{A'}$ (resp. $\mathcal{L}M^d_{A'}$) from the category $\mathcal{S} \mathcal{F}_{A'}$ (resp. of p-divisible groups over A') to the category $\Lambda^f_{A'}$ (resp. $H^d_{A'}$) by $\mathcal{L}M_{A'}(G) = (\mathcal{L}, M, \rho)$ (resp. $\mathcal{L}M^d_{A'}(G) = (\rho(\mathcal{L}), M)$), with ρ the composition

\[
(1.10) \quad \mathcal{L} \hookrightarrow \mathcal{L}_1 \to \frac{\mathcal{L}_1}{m \overline{R}} \xrightarrow{\sim} M_{A'}
\]

where \mathcal{L}, \mathcal{L}_1 and M are as in (1.8) above.

Then he proved, cf. [5], Chapter IV, Theorem 2 (resp. Proposition 5.1), the following theorem.
Theorem 1.11. — The functor $\mathcal{L}M_{A'}$ (resp. $\mathcal{L}M^d_{A'}$) induces a duality of categories between the category $\mathcal{SF}_{A'}$ (resp. of p-divisible groups over A') and the category $\Lambda^d_{A'}$ (resp. $\Lambda^d_{A'}$).

We now review Conrad’s classification of finite flat group schemes over A'.

Definition 1.12.
1) Let $\text{SH}^f_{A'}$ be the category of finite Honda systems over A' whose objects are triples (L, M, j) where:
 i) M is a D_k-module with finite A'-length,
 ii) $L \overset{j}{\rightarrow} M_{A'}$ is a morphism of A'-modules such that the natural k-linear map $L/\mathfrak{m}L \rightarrow M_{A'}/M_{A'}[1]$ is an isomorphism of k-vector spaces and such that $\mathcal{V} \circ j$ is injective, where
 $$\mathcal{V}: M_{A'} \rightarrow A' \otimes_A M^{(1)}$$
 is induced by the maps
 $$\text{id} \otimes V: A' \otimes_A M \rightarrow A' \otimes_A M^{(1)},$$
 $$p \otimes \text{id}: p^{-1}m \otimes_A M^{(1)} \rightarrow A' \otimes_A M^{(1)}.$$
 A morphism $u: (L, M, j) \rightarrow (L', M', j')$ is a pair $u = (u_L, u_M)$, with $u_M: M \rightarrow M'$ a continuous D_k-linear morphism and $u_L: L \rightarrow L'$ an A'-linear morphism such that $u_{M, A'} \circ j = j' \circ u_L$.

2) We denote by $\mathcal{FF}_{A'}$ the category of finite flat group schemes over A' of p-power order.

Let G be a finite flat group scheme over A' of p-power order, with affine A'-algebra R. Let $M = \mathcal{M}(G_k)$ be the Dieudonné module of G_k and let $L \subseteq M_{A'}$ denote the kernel of the A'-linear composite map

$$(1.11) \quad M_{A'} \hookrightarrow CW_{k, A'}(R_k) \xrightarrow{w_R} \frac{R_K}{\mathfrak{m}R}$$

where w_R is the map (1.7) above.

Conrad defined, cf. [3], §3, a functor

$$LM_{A'}: \mathcal{FF}_{A'} \rightarrow \text{SH}^f_{A'}$$

by $LM_{A'}(G) := (L, M)$. Moreover, he proved, cf. [3], Theorem 3.6, the following theorem.

Theorem 1.13. — The functor $LM_{A'}$ is fully faithful and essentially surjective.
2. Smooth p-groups

In this Section we classify smooth p-faithful groups over A_n'. We start by defining the category of classifying objects.

Definition 2.1.

1) Let $\Lambda_{A_n'}$ be the category whose objects are triples (L_n, M, ρ) where:

 i) M is a profinite D_k-module on which the action of F is injective such that the quotient M/FM is a finite dimensional k-vector space;

 ii) L_n is a free $A_n'-1$-module;

 iii) $\rho: L_n \to M\A'_{n-1}$ is $A_n'-1$-linear such that the induced morphism
 $\overline{\rho}: L_n \to M\A'_{n-1}$ is an isomorphism of k-vector spaces.

2) Let $\Lambda_{A_n'}^{f}$ be the full subcategory of $\Lambda_{A_n'}$ of objects (L_n, M, ρ) such that the “multiplication by p” map $[p]: M \to M$ is injective.

3) We denote by $SF_{A_n'}$ (resp. $SF_{A_n'}^{f}$) the category of smooth finite dimensional formal p-groups (resp. p-faithful groups) over A_n'. Recall, cf. Definition 1.1, that a smooth formal p-group is p-faithful if the “multiplication by p” morphism is faithfully flat.

Now we want to construct a functor

$\mathcal{LM}_{n}: SF_{A_n'} \to \Lambda_{A_n'}$.

For this, let G be a smooth formal p-group over A_n' and let R be its affine algebra. Then $G_k = G \times \text{Spec } k$, its special fiber, has affine algebra R_k. Let $M = M(G_k)$ be the Dieudonné module of G_k. Let \mathcal{R} be a smooth A'-lift of R. We know it is unique up to non-unique isomorphism. We denote by Δ (resp. Δ_k) the comultiplication of R (resp. R_k). Let $\hat{\Delta}: \mathcal{R} \to \mathcal{R} \otimes_{A'} \mathcal{R}$ be
an A'-algebra morphism that lifts Δ. We also denote by $\hat{\Delta}$ the extension of $\hat{\Delta}$ to $\hat{\mathcal{R}}_{K}^{an}$. For $n \geq r \geq 1$ define:

\begin{equation}
\mathcal{L}_r = \{ \alpha \in P(\mathcal{R}) ; \delta(\alpha) \in \mathfrak{m}^{r}\mathcal{R} \hat{\otimes}_{A'} \mathcal{R} \} \tag{2.1}
\end{equation}

with $P(\mathcal{R})$ and δ as in (1.3) and (1.8) above, respectively.

Remark 2.2. — Our \mathcal{L}_1 is Fontaine’s $\mathfrak{M}_{A'}(G)$, cf. [5], pp. 166–167 and p. 202.

Lemma 2.3. — The sets \mathcal{L}_r are independent of the lift $\hat{\Delta}$, i.e. they only depend on G and the lift \mathcal{R}.

Proof. — Suppose $\hat{\Delta}$ and $\hat{\Delta}_1 : \mathcal{R} \to \mathcal{R} \hat{\otimes}_{A'} \mathcal{R}$ are two A'-lifts of Δ which are uniquely extended to $\hat{\mathcal{R}}_{K}^{an}$. Let δ and δ_1 be the corresponding morphisms. For every $\alpha \in \mathcal{R}$ we have $\hat{\Delta}(\alpha) \equiv \hat{\Delta}_1(\alpha) \pmod{\mathfrak{m}^n \mathcal{R} \hat{\otimes} \mathcal{R}}$, that is $\hat{\Delta}(\alpha) = \hat{\Delta}_1(\alpha) + \pi^n x$ with $x \in \mathcal{R} \hat{\otimes}_{A'} \mathcal{R}$. Therefore, since $\hat{\Delta}$ and $\hat{\Delta}_1$ are morphisms of algebras,

\begin{equation}
\hat{\Delta}(\alpha^{p^i}) = (\hat{\Delta}(\alpha))^{p^i} = (\hat{\Delta}_1(\alpha))^{p^i} + p^i \pi^n y = \hat{\Delta}_1(\alpha^{p^i}) + p^i \pi^n y \tag{2.2}
\end{equation}

with $y \in \mathcal{R} \hat{\otimes}_{A'} \mathcal{R}$. So $p^{-i} \hat{\Delta}(\alpha^{p^{i+1}}) \equiv p^{-i} \hat{\Delta}_1(\alpha^{p^i}) \pmod{\mathfrak{m}^n \mathcal{R} \hat{\otimes} \mathcal{R}}$ for all integers $i \geq 0$. In the unramified setting every element of $P(\mathcal{R})$ is an infinite sum of elements of the form $p^{-i} \beta^{p^i}$ with $\beta \in \mathcal{R}$, cf. (1.4). In the ramified setting the situation is similar, because $A' \otimes_A CW_A(\mathcal{R})$ surjects on $P(\mathcal{R})$, cf. (1.6). Hence every element of $P(\mathcal{R})$ is an A'-combination of infinite sums of elements of the form $p^{-i} \beta^{p^i}$ with $\beta \in \mathcal{R}$. Therefore we get that $\delta(\alpha) - \delta_1(\alpha) \in \mathfrak{m}^n \mathcal{R} \hat{\otimes} \mathcal{R}$. \hfill \Box

Let $\tilde{\rho}$ be the composition

$$P(\mathcal{R}) \xrightarrow{\text{proj.}} P(\mathcal{R})/\mathfrak{m}\mathcal{R} \xrightarrow{w_{\mathcal{R}}^{-1}} CW_{k_A'}(\mathcal{R}_k)$$

where $w_{\mathcal{R}}$ is the map (1.6) above.

The following Lemma follows directly from [5], Chapter IV, Lemmas 1.2 and 4.3.

Lemma 2.4. — Let r be an integer between 1 and $n - 1$ and let $\alpha \in \mathcal{L}_r$. There exists an element $\gamma \in \mathcal{L}_1$ such that $\tilde{\rho}(\gamma) \in M_{A'}[1]$ and $(\alpha - \pi^{r-1} \gamma) \in \mathcal{L}_{r+1}$.

Let $\tilde{\rho}_0$ be the composition

\begin{equation}
\mathcal{L}_n \xrightarrow{\text{proj.}} \mathcal{L}_1/\mathfrak{m}\mathcal{R} \xrightarrow{w_{\mathcal{R}}^{-1}} M_{A'} \tag{2.3}
\end{equation}
where, w is the map in Proposition 1.8 (ii) above, and let ρ_0 be the induced map

$$
(2.4) \quad \rho_0 : \frac{L_n}{m^{n-1}L_1} \to \frac{M_{A'}}{m^{n-1}M_{A'}}.
$$

Note that these maps depend only on G and the lift \mathcal{R}.

We have the following key result.

Lemma 2.5.

(i) The morphism ρ_0 induces a map

$$
\bar{\rho}_0 : \frac{L_n}{mL_n + m^{n-1}L_1} \simeq \frac{mL_n}{m^{n-1}L_1} \to \frac{mM_{A'}}{m^{n-1}M_{A'}} \xrightarrow{\text{proj}} \frac{M_{A'}}{M_{A'}[1]} \sim \frac{M}{FM}
$$

which is an isomorphism of k-vector spaces.

(ii) $L_n/m^{n-1}L_1$ is a free A'_{n-1}-module.

Proof.

(i) Since the surjectivity of $\bar{\rho}_0 : L_n/(mL_n + m^{n-1}L_1) \to M_{A'}/M_{A'}[1]$ follows from Lemma 2.4, cf. also [5], Chapter IV, Proposition 1.1, all we have to prove is that it is injective. For this, we need to prove that $\tilde{\rho}^{-1}(M_{A'}[1]) \cap L_n = mL_n + m^{n-1}L_1$ (we can view $\bar{\rho}_0$ as being induced by $\tilde{\rho} : P(\mathcal{R}) \to CW_{k,A'}(R_k)$).

“\subseteq” Let $\alpha \in L_n$ such that $\tilde{\rho}(\alpha) \in M_{A'}[1]$. This means, cf. (1.9), that $\alpha = \pi \beta$ for some $\beta \in P(\mathcal{R})$. Since α is in L_n it follows that β is in L_{n-1}. On the other hand, from Lemma 2.4 we know there is a $\gamma \in L_1$ such that $\tilde{\rho}(\gamma) \in M_{A'}[1]$ and $(\beta - \pi^{n-2}\gamma) \in L_n$. Hence

$$
\alpha = \pi \beta = \pi(\beta - \pi^{n-2}\gamma + \pi^{n-2}\gamma) = \pi(\beta - \pi^{n-2}\gamma + \pi^{n-2}\gamma) + \pi^{n-1}\gamma \in mL_n + m^{n-1}L_1.
$$

This proves the first inclusion. Since the other inclusion “\supseteq” is obvious, it follows that $\bar{\rho}_0$ is injective.

For future reference, we observe that $\tilde{\rho}$ induces a surjective morphism, also denoted $\tilde{\rho}$

$$
(2.5) \quad \tilde{\rho} : L_n \to \frac{M_{A'}}{M_{A'}[1]} \sim \frac{M}{FM}.
$$

(ii) First of all, from (i) and some linear algebra follows that $L_n/m^{n-1}L_1$ is a finite A' (hence A'_{n-1})-module. From (2.5) above, it follows that $\tilde{\rho}$ induces a surjective morphism $\rho_1 : L_n/mL_{n-1} \to M/FM$. Since $mL_n +
\[\frac{L_n}{mL_{n-1}} \xrightarrow{\rho_1} \frac{M}{FM}. \]

Since \(\bar{\rho}_0 \) is an isomorphism, in particular injective, it follows that \(\rho_1 \) is injective, hence an isomorphism since it was already surjective. It also follows that the vertical arrow in the above diagram is an isomorphism. Therefore

\[\frac{L_n}{mL_{n-1}} = \frac{L_n}{(mL_n + m^{n-1}L_1)}. \]

Now, let \(\{\overline{\alpha}_1, \overline{\alpha}_2, \ldots, \overline{\alpha}_d\} \subset \frac{L_n}{m^{n-1}L_1} \) be a lift of a basis of \(\frac{L_n}{(mL_n + m^{n-1}L_1)} \). We claim that \(\pi^{n-2} \cdot \overline{\alpha}_j \neq \overline{0} \) in \(\frac{L_n}{m^{n-1}L_1} \), for all \(j \) between 1 and \(d \). Indeed, suppose \(\pi^{n-2} \cdot \overline{\alpha}_j = \overline{0} \) in \(\frac{L_n}{m^{n-1}L_1} \) for some \(j \). Then it follows that \(\pi^{n-2} \alpha_j \in m^{n-1}L_1 \). Hence \(\pi^{n-2} \alpha_j = \pi^{n-1} \beta \) for some \(\beta \) in \(L_1 \). So \(\alpha_j = \pi \beta \) and it follows that \(\beta \in L_{n-1} \), because \(\alpha_j \in L_n \). Therefore \(\alpha_j \in mL_{n-1} \) and \([\overline{\alpha}_j] = [0] \) in \(\frac{L_n}{mL_{n-1}} = \frac{L_n}{(mL_n + m^{n-1}L_1)} \) which is a contradiction since \([\overline{\alpha}_j]\) is part of a basis of \(\frac{L_n}{(mL_n + m^{n-1}L_1)} \).

From the above claim, the fact that \(\frac{L_n}{m^{n-1}L_1} \) is a finite \(A' \)-module and the structure of modules over a principal ideal domain, it follows that \(\frac{L_n}{m^{n-1}L_1} \) is \(A'_{n-1} \)-free.

With the previous Lemma we got really close to the definition of our classifying functor \(LM_n \). We are not there yet because all the objects we constructed depend on the lift \(\mathcal{R} \). So our goal in the sequel is to embed \(\frac{L_n}{m^{n-1}L_1} \) in an object depending only on \(G \). This is rather technical and will follow from the following lemma.

Lemma 2.6.

(i) There is a natural surjective map

\[A' \hat{\otimes}_A CW_A(R) \rightarrow P(\mathcal{R})/m^{n-1}P(\mathcal{R}) \]

of \(A' \)-modules, whose kernel \(\mathcal{K} \) does not depend on the lift \(\mathcal{R} \).

(ii) There is a natural injective map

\[\frac{L_n}{m^{n-1}L_1} \xrightarrow{\mathcal{L}_n} \frac{A' \hat{\otimes}_A CW_A(R)}{\mathcal{K}} \]

whose image \(L_n \) does not depend on the lift \(\mathcal{R} \) and is “functorial”, i.e. there is a functor \(\mathcal{L}_n : \mathcal{S} \mathcal{F}_{A_n} \rightarrow A'_{n-1}-\text{Mod} \) such that \(\mathcal{L}_n(G) = L_n \).

(iii) Let \(\rho : L_n \rightarrow M_{A'}/m^{n-1}M_{A'} \) be induced by \(\rho_0 \) (\(\mathcal{L}_n/m^{n-1}L_1 \) and \(L_n \) are isomorphic). Then for every morphism \(f : G \rightarrow G' \) in \(\mathcal{S} \mathcal{F}_{A_n} \) the...
Diagram

\[
\begin{array}{ccc}
L_n & \xrightarrow{L_n(f)} & L'_n \\
\downarrow^\rho & & \downarrow^\rho' \\
\frac{M_{A'}}{m^{n-1}M_{A'}} & \xrightarrow{\mathcal{M}(f)} & \frac{M_{A'}}{m^{n-1}M_{A'}}
\end{array}
\]

is commutative, where \(\mathcal{M}\) is the Dieudonné module functor and \(\mathcal{M}(f)\) is induced by \(\mathcal{M}(f)_{A'} : M_{A'} \to M'_{A'}\).

Proof. — This Lemma is quite straightforward. All we will do is draw some diagrams which will make everything clear.

(i) We have the following diagram of \(A\)-modules with exact columns

\[
\begin{array}{ccc}
CW_A(m^nR) & \xrightarrow{\cdot w_R} & m^{n-1}P(R) \\
\downarrow & & \downarrow \\
CW_A(R) & \xrightarrow{\cdot \hat{w}_R} & P(R) \\
\downarrow & & \downarrow \\
CW_A(R) & \xrightarrow{\cdot w_n} & P(R)/m^{n-1}P(R)
\end{array}
\]

where \(\hat{w}_R\) is the map (1.4) above and the top horizontal map is the restriction of \(\hat{w}_R\). Actually \(\hat{w}_R(CW_A(m^nR)) \subset m^nR \subset m^{n-1}P(R)\). From the above diagram we get an induced morphism

\[
w'_n(R) : CW_A(R) \to P(R)/m^{n-1}P(R)
\]

of \(A\)-modules, which yields, via extension of scalars, an \(A'\)-morphism

\[
w_n(R) : A' \otimes_A CW_A(R) \to P(R)/m^{n-1}P(R).
\]

Now for any other \(A'\)-lift \(R_1\) of \(R\) there exists a non-unique \(A'\)-isomorphism \(R \xrightarrow{\varphi} R_1\). It is easy to see that we have the following commutative diagram

\[
\begin{array}{ccc}
A' \otimes_A CW_A(R) & \xrightarrow{\cdot w_n(R)} & P(R)/m^{n-1}P(R) \\
\downarrow^\varphi & & \downarrow^\varphi^* \\
A' \otimes_A CW_A(R_1) & \xrightarrow{\cdot w_n(R_1)} & P(R_1)/m^{n-1}P(R_1)
\end{array}
\]

where \(\varphi^*\) is induced by \(\varphi\). This shows that the \(A'\)-module

\[
\mathcal{K} = \ker(w_n(R)) = \ker(w_n(R_1))
\]

does not depend on the lift \(R\). This proves (i).
Define the functor P also denote by ϕ to define it on morphisms. Let

\[\mathcal{A} \to \mathcal{B} \]

follows from the following enlarged diagram

\[\begin{array}{ccc}
\mathcal{L}_n / m^{n-1} \mathcal{L}_1 & \to & P(\mathcal{R}) / m^{n-1} P(\mathcal{R})
\end{array} \]

which induces an injective map

\[(2.8) \quad \frac{\mathcal{L}_n}{m^{n-1} \mathcal{L}_1} \hookrightarrow \frac{P(\mathcal{R})}{m^{n-1} P(\mathcal{R})} \sim \frac{A' \otimes_A CW_A(R)}{K}. \]

Now, a diagram similar to (2.7) above, with $A' \otimes_A CW_A(R)/K$ instead of $A' \otimes_A CW_A(R)$ and with $\mathcal{L}_n / m^{n-1} \mathcal{L}_1$ (resp. $\mathcal{L}_n' / m^{n-1} \mathcal{L}_1'$) instead of $P(\mathcal{R}) / m^{n-1} P(\mathcal{R})$ (resp. $P(\mathcal{R}') / m^{n-1} P(\mathcal{R}')$) will convince the reader that the image of (2.8) does not depend on the lift \mathcal{R}, where the objects \mathcal{L}_1' and \mathcal{L}_n' correspond to \mathcal{R}'.

We are left with defining the functor $L_n : \mathcal{SF}_{A_n} \to A_{n-1} \text{-Mod}$. Since we said how it acts on objects, $L_n(G) = L_n = \text{image of (2.8)}$, we only have to define it on morphisms. Let $f : G' \to G$ be a morphism in \mathcal{SF}_{A_n}, let $\phi : R \to R'$ be the induced morphism of A_n'-algebras, and let $\phi : \mathcal{R} \to \mathcal{R}'$ be a lift of ϕ where \mathcal{R} (resp. \mathcal{R}') is an A_n'-special lift of R (resp. R'). We also denote by ϕ the unique extension of ϕ to \mathcal{R}^{mn}_K and its restriction to $P(\mathcal{R})$. It is obvious that $\phi(\mathcal{L}_r) \subset \mathcal{L}_r'$ for all $1 \leq r \leq n$. If $\phi : \mathcal{L}_n / m^{n-1} \mathcal{L}_1 \to \mathcal{L}_n' / m^{n-1} \mathcal{L}_1'$ is induced by ϕ we define $L_n(f) : L_n \to L_n'$ to be the induced morphism. Recall that $L_n \simeq \mathcal{L}_n / m^{n-1} \mathcal{L}_1$ and $L_n' \simeq \mathcal{L}_n' / m^{n-1} \mathcal{L}_1'$. It is clear that this construction is functorial. This proves (ii).

(iii) We want to prove that the diagram (2.6) is commutative. We keep the same notations as in the proof of (ii) above. The commutativity of (2.6) follows from the following enlarged diagram

\[\begin{array}{ccc}
L_n & \sim & \mathcal{L}_n / m^{n-1} \mathcal{L}_1 \\
\downarrow L_n & \sim & \downarrow \phi \\
L_n' & \sim & \mathcal{L}_n' / m^{n-1} \mathcal{L}_1'
\end{array} \]

in which all the squares are commutative and in which the composition of the maps on the top (resp. bottom) row is ρ (resp. ρ'). Here we used the fact that $\mathcal{L}_1 / mR \sim M_{A'}$, cf. Proposition 1.8 (ii), to get the isomorphisms between the fourth and the fifth column in the above diagram.

Now we are able to make the following definition.

Definition 2.7. — Define the functor $LM_n : \mathcal{SF}_{A_n} \to A_{n-2} \text{-Mod}$ as follows:

i) for an object G of \mathcal{SF}_{A_n} we let

\[LM_n(G) := (L_n, M, \rho) \]

\[\text{ANNALES DE L'INSTITUT FOURIER} \]
where M is the Dieudonné module of G_k and L_n and ρ are as in Lemma 2.6;

ii) for a morphism $f: G \to G'$ in $\mathcal{SF}_{A'_n}$ we let
\[\mathcal{L}M_n(f) = (L_n(f), \mathcal{M}(f)) \]
where L_n is as in Lemma 2.6.

Remark. — Lemmas 2.5 and 2.6 guarantee that the functor $\mathcal{L}M_n$ is well defined. Also, it is clear that by restricting $\mathcal{L}M_n$ to $\mathcal{SFF}_{A'_n}$ we get a functor
\[\mathcal{L}M^f_n: \mathcal{SFF}_{A'_n} \to \mathcal{A}^f_{A'_n}. \]

The main result of this Section is the following theorem.

Theorem 2.8.

A. The functor $\mathcal{L}M_n$ is essentially surjective and full.

B. The functor $\mathcal{L}M^f_n$ induces a duality of categories between the category $\mathcal{SFF}_{A'_n}$ of smooth finite dimensional p-faithful groups over A'_n and the category $\mathcal{A}^f_{A'_n}$.

Proof.

A. We first prove that $\mathcal{L}M_n$ is essentially surjective. The reader who is familiar with the proof of the main result of Fontaine, cf. Theorem 1.11 above, will realize that our proof of essential surjectivity is built on his, cf. [5], §1 and §4.8. Let (L_n, M, ρ) be an object in $\mathcal{SFF}_{A'_n}$. From Theorem 1.3 we know there exists a smooth formal p-group G_k of finite dimension over k such that its Dieudonné module $M_0 = \mathcal{M}(G_k)$ is isomorphic to M. We fix such an isomorphism $i_M: M \simeq M_0$. Let R_k be the affine k-algebra of G_k, let \mathcal{R} be an A'-special lift of R_k and let $R = \mathcal{R}/m^n\mathcal{R}$. Note that R is unique up to non-unique isomorphism. As in Lemma 2.3, the set $\mathcal{L}_1 = \{\alpha \in P(\mathcal{R}); \delta(\alpha) \in m\mathcal{R}\hat{\otimes} \mathcal{R}\} \subset P(\mathcal{R})$ is well defined and depends only on R_k. Since L_n is A'_n-1-free, we can embed it into $\mathcal{L}_1/m^{n-1}\mathcal{L}_1 \subset P(\mathcal{R})/m^{n-1}\mathcal{L}_1$. We choose an isomorphism $i_L: L_n \to L_0$ of L_n onto an A'_n-1-submodule of $\mathcal{L}_1/m^{n-1}\mathcal{L}_1$ such that the following diagram

\[
\begin{array}{ccc}
L_n & \xrightarrow{i_L} & L_0 \quad \xrightarrow{\mathcal{L}} \quad \frac{\mathcal{L}}{m^{n-1}\mathcal{L}_1} \\
\downarrow \rho & & \downarrow \\
\frac{M_{A'_n}}{m^{n-1}M_{A'_n}} & \xrightarrow{i_M} & \frac{(M_0)_{A'_n}}{m^{n-1}(M_0)_{A'_n}} \\
\end{array}
\]

is commutative. Here i_M is induced by $(i_M)_{A'}$ and the right vertical arrow is induced by the isomorphism
\[
\frac{P(\mathcal{R})}{m\mathcal{R}} \xrightarrow{\mathcal{L}_1 w^{-1}} \frac{(M_0)_{A'}}{m^{n-1}(M_0)_{A'}} \subset CW_{k,A'}(R_k)
\]
Let $L_0 \subset L_1$ be an \mathcal{A}'-free module of rank $d = \text{rk}_{\mathcal{A}'_{n-1}}(L_n) = \dim(G_k)$ that lifts L_0 and let $L_n = L_0 + \mathfrak{m}^{n-1}L_1 \subset L_1 \subset P(\mathcal{R})$. It is easy to see that L_n does not depend on the particular lift L_0. Furthermore it is not hard to see that we have

\[(2.9)\]

\[\frac{L_0}{\mathfrak{m}L_0} \simeq \frac{L_0}{\mathfrak{m}L_0} \simeq \frac{L_n}{\mathfrak{m}L_n}\]

and

\[(2.10)\]

\[\frac{L_0}{\mathfrak{m}^{n-1}L_0} \simeq \frac{L_n}{\mathfrak{m}^{n-1}L_1} = L_0 \simeq L_n.\]

We denote by p_0 the projection from L_0 onto L_n via the above isomorphism. Due to the particular choice of i_L we know that the following diagram

\[
\begin{array}{ccc}
L_0 & \xrightarrow{\hat{\rho}_0} & (M_0)_{\mathcal{A}'} \\
p_0 \downarrow & & \downarrow \phi_{\rho_0} \\
L_n & \xrightarrow{\rho} & (M_0)_{\mathcal{A}'_{n-1}} = (M_0)_{\mathcal{A}'}
\end{array}
\]

commutes, where $\hat{\rho}_0$ is the composition

\[L_0 \xrightarrow{i_L} \mathcal{L}_1 \to L_1 \xrightarrow{\mathfrak{m}^{n-1}} (M_0)_{\mathcal{A}'}.
\]

From now on, we identify M with M_0 and L_n with L_0 via i_M and i_L.

Let \mathcal{S} be a p-adic \mathcal{A}'-algebra:

- we denote by $N_{\mathcal{L}_0}(\mathcal{S})$ (resp. $N^0_{\mathcal{L}_0}(\mathcal{S})$) the abelian group $\text{Hom}_{\mathcal{A}'}(L_0, S_K/\mathfrak{m}^nS)$ (resp. $\text{Hom}_{\mathcal{A}'}(L_0, S_K/\mathfrak{m}S)$) of \mathcal{A}'-linear morphisms from L_0 to S_K/\mathfrak{m}^nS (resp. $S_K/\mathfrak{m}S$);
- we denote by $G_{\mathcal{S}}(\mathcal{S})$ the abelian group $\text{Hom}_{D_{\mathcal{S}k}}^{\text{cont}}(M, \mathcal{C}W_k(S_k))$ of continuous $D_{\mathcal{S}k}$-linear morphisms from M to $\mathcal{C}W_k(S_k)$;
- we denote by ϕ_{ρ_0} the map from $G_{\mathcal{S}}(\mathcal{S})$ to $N^0_{\mathcal{L}_0}(\mathcal{S})$ which associates to $u \in G_{\mathcal{S}}(\mathcal{S})$ the composition

\[L_0 \xrightarrow{\rho_0} M_0 \xrightarrow{u_{\mathcal{A}'}} \mathcal{C}W_{k, \mathcal{A}'}(S_k) \xrightarrow{w_\mathcal{S}} \frac{S_K}{\mathfrak{m}S},\]

\[\text{cf. (1.7)}\] above for the definition of $w_\mathcal{S}$;
- finally, we denote by $G_{(\mathcal{L}_0, M, \mathcal{C}W_k)}(\mathcal{S})$ the fiber product $N_{\mathcal{L}_0}(\mathcal{S}) \times_{N^0_{\mathcal{L}_0}(\mathcal{S})} G_{\mathcal{S}}(\mathcal{S})$, where the morphism from $N_{\mathcal{L}_0}(\mathcal{S})$ to $N^0_{\mathcal{L}_0}(\mathcal{S})$ is the one induced by the projection from S_K/\mathfrak{m}^nS to $S_K/\mathfrak{m}S$ and the morphism from $G_{\mathcal{S}}(\mathcal{S})$ to $N^0_{\mathcal{L}_0}(\mathcal{S})$ is ϕ_{ρ_0}.
For all L-groups by replacing in the above construction η_{res} with $\hat{\rho}$, where $\hat{\rho}$ is the composition

$$\frac{\mathcal{L}_n}{m^nR} \rightarrow \frac{\mathcal{L}_1}{mR} \simeq M_{A'}.$$

For any p-adic A'-ring S we denote by $X_R(S_n)$ the set of continuous A'_n-algebra morphisms from R to $S_n = S/m^nS$. We want to define a morphism $\eta(S): X_R(S_n) \rightarrow G_{(L_{n,M},\hat{\rho})}(S)$. Let x be in $X_R(S_n)$ and let $\hat{x}: R \rightarrow S$ be an A'-lift of x. We also denote by \hat{x} the unique extension of \hat{x} to a morphism from \hat{R}_K^{an} to S_K and its restriction to $P(R)$. We define $x_{\mathcal{L}_n}$ to be the composition

$$\mathcal{L}_n \rightarrow \frac{P(R)}{m^nR} \xrightarrow{\bar{x}} \frac{S_K}{m^nS}.$$

It is easy to see that $x_{\mathcal{L}_n}$ does not depend on the lift \hat{x} of x. Let x_M be the composition

$$\mathcal{L}_n \rightarrow \frac{P(R)}{m^nR} \xrightarrow{\bar{x}} \frac{S_K}{m^nS}.$$

It is clear from the following commutative diagram

$$\mathcal{L}_n/m^nR \xrightarrow{\hat{\rho}} P(R)/m^nR \xrightarrow{\bar{x}} S_K/m^nS,$$

that $\eta(S)$ is well defined. It is obvious that η is functorial in S.

Moreover, the inclusion $\mathcal{L}_0 \hookrightarrow \mathcal{L}_n$ defines a morphism of group functors $\text{res}_{\mathcal{L}_0}: G_{(L_{0,M},\hat{\rho}_0)} \rightarrow G_{(L_{n,M},\hat{\rho})}$, which in turn defines a morphism $\eta_{\mathcal{L}_0}(S): X_R(S_n) \rightarrow G_{(L_{0,M},\hat{\rho}_0)}(S)$, for every p-adic A'-ring S, by letting

$$\eta_{\mathcal{L}_0}(S) = \text{res}_{\mathcal{L}_0}(S) \circ \eta(S).$$

It is clear that $\eta_{\mathcal{L}_0}$ is functorial in S.

Now, the fact that LM_n is essentially surjective follows from the following lemma.

Lemma 2.9. — For all p-adic A'-algebras S the map $\eta_{\mathcal{L}_0}(S)$ is bijective. There is a unique structure of smooth formal p-group on $G = \text{Spf}_{A'_n} R$.

TOME 59 (2009), FASCICULE 6
induced by η_{L_0} which is independent of the particular lift L_0, i.e. it depends only on the triple (L_n, M, ρ). Moreover $LM_n(G) \simeq (L_n, M, \rho)$.

Proof of Lemma 2.9. — This Lemma follows basically from [5], Chapter IV, §1.6 and §4.8. We limit ourselves to pointing out the main steps in the proof. We use Fontaine’s notations.

We prove that $\eta_{L_0}(S)$ is bijective. Let (ξ, γ) be an element in $G_{(L_0, M, \tilde{\rho}_0)}(S)$. We want to prove that there exists a unique element $x \in X_R(S_n)$ such that $\eta_{L_0}(S)(x) = (\xi, \gamma)$. First of all, by Theorem 1.3 above, there exists a unique continuous k-algebra morphism $x_k : R_k \to S_k$ such that $\gamma = CW(x_k)$. So we want to prove that there exists a unique $x : R \to S_n$, which reduces to x_k, such that $x_{L_0} = \xi$, where x_{L_0} is the restriction of x_{L_n} to L_0, cf. (2.11) for the definition of x_{L_n}.

We have $R_k = R_k^{\text{et}} \otimes_k R_k^{\text{et}}$. Let R^{et} denote the lifting of R_k^{et} in R and let us choose a local subring R^c of R which lifts R_k^c. There is a natural isomorphism of $R^{\text{et}} \otimes_{\mathcal{O}} R^c$ into R. We chose coordinates $X = (X_1, X_2, \ldots, X_d)$ of R^c. Thus R^c is identified with the ring $A'([X])$ and R_k^c with $k([X])$, where \overline{X}_j is the image of X_j in R_k^c for $1 \leq j \leq d$.

It is obvious that a lift $x : R \to S$ of x_k is uniquely determined by a d-tuple $\sigma = (s_1, s_2, \ldots, s_d) \in S^d$, where $s_j \in S$ is a lift of $\pi_j = x_k^c(X_j) \in S_k$. Thus there is a bijection between morphisms $x : R \to S_n$ that lift x_k and d-tuples $\sigma \in S^d$, which are well defined modulo m^nS. We will denote by x^σ the morphism from R to S corresponding to σ.

Since $\eta_{L_0}(S)(x) = (x_{L_0}, x_M) = (x_{L_0}, \gamma) \in G_{(L_0, M, \tilde{\rho}_0)}(S)$, it follows that $x_{L_0}(x_{L_0}(\alpha) - \xi(\alpha)) \in mS$ for all $\alpha \in L_0$. We see that the bijectivity of $\eta_{L_0}(S)$ will follow from the following result.

Sublemma 2.9.1. — Let r be an integer between 1 and $n - 1$. Suppose there exists a d-tuple $\sigma_0 = (s_0^1, s_0^2, \ldots, s_0^d) \in S^d$ lifting the π_j’s, which is uniquely determined modulo m^rS and which is such that $x_{L_0}^\sigma(\alpha) - \xi(\alpha) \in m^rS$ for all $\alpha \in L_0$. Then there exists a d-tuple $\sigma = (s_1, s_2, \ldots, s_d) \in S^d$ lifting the π_j’s, which is uniquely determined modulo $m^{r+1}S$ and which is such that $x_{L_0}^\sigma(\alpha) - \xi(\alpha) \in m^{r+1}S$ for all $\alpha \in L_0$.

This Sublemma, in the unramified case, is actually the result on the bottom of p. 178 in [5]. A careful reading of the proof of Fontaine’s result shows that the only condition on L_0 for the result to hold is that L_0/pL_0 be isomorphic to M/FM. This condition is satisfied in our case since $L_0/pL_0 \simeq L_n/pL_n \simeq M/FM$, cf. (2.9) above.

The proof in the ramified case goes through similarly. To convince the reader of this, we show that the main steps in the above proof have a
correspondent in the ramified case, too. For space reasons, we use the same notations as in [5], Chapter IV, §1.6. Here are the main steps:

(i) Let \(\alpha \in \mathcal{L}_1 \). Then \(\alpha = w_R(y) \), with \(y = (1 \otimes a_0, \sum_{i=1}^{e-1} p^{-1} \pi_i \otimes a_i) \) in \(M_{A'} \), with \(a_0 = (\ldots, a_{-m,0}, \ldots, a_{-1,0}, a_{0,0}) \in M \) and \(a_i = (\ldots, a_{-m,i}, \ldots, a_{-2,i}, a_{-1,i}) \in M \) for all \(1 \leq i \leq e-1 \), cf. Remark 1.6 (i), Proposition 1.8 and (1.9). It follows that

\[
\alpha = \hat{a}_{0,0} + \sum_{i=0}^{e-1} \pi^i \left(\sum_{m=1}^{\infty} p^{-m} \hat{a}_{m,i}^m \right) + \pi \beta
\]

for some lifts \(\hat{a}_{m,i} \in \mathcal{R} \) of the \(a_{m,i} \)'s. Moreover, since \(M = M^c \oplus M^{et} \), we can actually write \(\alpha \) like

\[
\alpha = \alpha^c + \alpha^{et} + \pi \beta
\]

with \(\alpha^c \) (resp. \(\alpha^{et} \)) as in (2.15) above, but with the \(\hat{a}_{m,i} \)'s in \(\mathcal{R}^c \) (resp. \(\mathcal{R}^{et} \)) and \(\beta \in \mathcal{R} \).

(ii) Let \(\{\alpha_1, \ldots, \alpha_d\} \) be an \(A' \)-basis of \(\mathcal{L}_0 \). Then, with notations as in (i) above, it is trivial that \(\frac{\partial \alpha_i^c}{\partial x_u} \) is in \(\mathcal{R}^c \), for all \(i \) and \(u \) between 1 and \(d \).

Moreover, the fact that \(\mathcal{L}_0 / m\mathcal{L}_0 \xrightarrow{\sim} M_{A'}/M_{A'}[1] \xrightarrow{\sim} M/FM \), cf. (2.9) above, guarantees that the matrix \((\frac{\partial \alpha_i^c}{\partial x_u})_{1 \leq i, u \leq d} \) is invertible.

(iii) One can repeat the argument in [5] bottom of p. 179 - top of p. 180 to show that, if \(x_i = x_i^0 + \pi^r y_i \in \mathcal{S} \), for \(1 \leq i \leq d \), then

\[
\alpha_i^c(x_1, \ldots, x_d) - \alpha_i^c(x_1^0, \ldots, x_d^0) = \pi^r \sum_{u=1}^d \frac{\partial \alpha_i^c}{\partial x_u} (x_1^0, \ldots, x_d^0) \cdot y_u \pmod{m^{r+1}} \mathcal{S}
\]

for all \(1 \leq i \leq d \). The argument still works because \(e < p - 1 \). This ends our sketch of the proof of the Sublemma.

The rest of Lemma 2.9 is standard. \(\square \)

We now prove that \(\mathcal{L} M_n \) is full. Let \(G \) be an \(A'_n \)-group, \(R \) its affine algebra, \(\mathcal{R} \) an \(A' \)-special lift of \(R \), and let \((L_n, M, \rho) = \mathcal{L} M_n(G) \). Let \(\mathcal{L}_0 \), \(\mathcal{L}_1 \) and \(\mathcal{L}_n \) be as before.

From Lemma 2.9 and from (2.14) it follows that, for all \(p \)-adic \(A' \)-rings \(\mathcal{S} \), the map

\[
\eta(\mathcal{S}) : G(\mathcal{S}_n) \to G(\mathcal{L}_n, M, \hat{\rho})(\mathcal{S})
\]

is an injective group homomorphism.

Let \(G' \) be another \(A'_n \)-group with affine algebra \(R' \), let \(\mathcal{R}' \) be an \(A' \)-special lift of \(R' \), let \(\mathcal{L}'_1 \) and \(\mathcal{L}'_n \) be as in (2.1) above, and let \((L'_n, M', \rho') = \mathcal{L} M_n(G') \). Let \((\zeta, \gamma) : (L_n, M, \rho) \to (L'_n, M', \rho') \) be a morphism in \(\Lambda A'_n \). We want to construct a morphism \(f : G' \to G \) such that \(\mathcal{L} M_n(f) = (\zeta, \gamma) \). In order to do that, we need the following important technical result.

TOME 59 (2009), FASCICULE 6

2393
Lemma 2.10. — There exists a morphism \(\hat{\zeta}_0 : \mathcal{L}_0 \rightarrow \mathcal{L}'_n \) which makes the following diagram commute. Moreover, there exists a unique \(A' \)-linear morphism \(\tilde{\zeta} : \mathcal{L}_n \rightarrow \mathcal{L}'_n/(m^{n-1}\mathcal{L}'_1 \cap m\mathcal{R}') \) lifting \(\zeta \), which makes the diagram commute, where \(\tilde{\gamma} = p_{M'} \circ \gamma_{A'} \).

Proof of Lemma 2.10. — Let \(\{e_1, \ldots, e_d\} \subset \mathcal{L}_0 \) be an \(A' \)-basis of \(\mathcal{L}_0 \). There are two conditions that \(\hat{\zeta}_0 \) has to satisfy: \(\text{pr}' \circ \hat{\zeta}_0 = \zeta \circ \text{pr} \) and \(\hat{\rho}' \circ \hat{\zeta}_0 = \gamma_{A'} \circ \hat{\rho} \). From these two conditions we see that in order to construct \(\hat{\zeta}_0 \) we need to come up with a set of elements \(\{h_1, \ldots, h_d\} \subset \mathcal{L}'_n \) such that \(h_i \) is a lift of \(\zeta(e_i) \) and \(\hat{\rho}'(h_i) = \gamma_{A'}(\hat{\rho}(e_i)) \), for all \(1 \leq i \leq d \), where \(e_i = \text{pr}(e_i) \).

Let \(g_i \in \mathcal{L}'_n \) be an arbitrary lift of \(\zeta(e_i) \), for every \(i \). We have

\[
(p_{M'} \circ \hat{\rho}')(g_i) = (\rho' \circ \text{pr}')(g_i) = \rho'(\zeta(e_i)) = \tilde{\gamma}(\rho(e_i)) = (p_{M'} \circ \gamma_{A'} \circ \hat{\rho})(e_i).
\]

So \(\hat{\rho}'(g_i) - (\gamma_{A'} \circ \hat{\rho})(e_i) \in m^{n-1}M'_{A'} \). We know \(w_{\mathcal{R}'}(\mathcal{L}'_1) = M'_{A'} \), cf. Proposition 1.8 (ii). Hence, there exists \(g'_i \in \mathcal{L}'_1 \) such that

\[
(\gamma_{A'} \circ \hat{\rho})(e_i) = \hat{\rho}'(g_i) + \hat{\rho}'(\pi^{n-1}g'_i).
\]

Now it is clear that the elements \(h_i = g_i + \pi^{n-1}g'_i \), for all \(1 \leq i \leq d \), defined by \(h_i = g_i + \pi^{n-1}g'_i \), satisfy the above requirements. Define \(\hat{\zeta}_0 : \mathcal{L}_0 \rightarrow \mathcal{L}'_n \) by sending \(e_i \) to \(h_i \) for all \(i \).

Let \(\alpha \in \mathcal{L}_n \). Suppose there exist \(u \) and \(v \) in \(\mathcal{L}'_n \) such that

\[
\text{pr}'(u) = \text{pr}'(v) = \zeta(\alpha) \quad \text{and} \quad \hat{\rho}'(u) = \hat{\rho}'(v) = \gamma_{A'}(\hat{\rho}(\alpha)).
\]
It follows that \(u-v \in \pi^{n-1}L'_1 \) and \(u-v \in \ker(\widehat{\rho}') = L'_n \cap mR' \), cf. Proposition 1.8 (ii). Thus \(u-v \) has to be in \(m^{n-1}L'_1 \cap L'_n \cap mR' = m^{n-1}L'_1 \cap mR' \).

On the other hand, from the first part of the Proof we see that we can always find an element \(u_\alpha \) in \(L'_n \) such that \(\pi'(u_\alpha) = \zeta(\alpha) \) and \(\widehat{\rho}'(u_\alpha) = \gamma_A'(\widehat{\rho}(\alpha)) \).

Thus, the correspondence \(\alpha \mapsto [u_\alpha] \) defines a well defined \(A'-\)linear morphism \(\widehat{\zeta} : L_n \rightarrow L'_n/(\pi^{n-1}L'_1 \cap \pi R') \), which is uniquely determined by \((\zeta,\gamma)\).

Now, \(\widehat{\zeta_0} \) and \(\gamma \) induce a morphism of group functors

\[
\phi : G'_{(L'_n,M',\widehat{\rho}')} \rightarrow G_{(L_0,M,\widehat{\rho}_0)}.
\]

Since \(\eta_{L_0} \) is an isomorphism between \(G \) and \(G_{(L_0,M,\widehat{\rho}_0)} \), the morphism \(\phi \) induces a morphism of group functors

\[
f : G' \rightarrow G
\]

that makes the diagram

\[
\begin{array}{c}
G' \\
\downarrow \eta' \\
G'_{(L'_n,M',\widehat{\rho}')} \\
\downarrow \phi \\
G_{(L_0,M,\widehat{\rho}_0)}
\end{array}
\quad \begin{array}{c}
f \\
\downarrow \eta_{L_0} \\
G
\end{array}
\]

commute.

It is clear from the first diagram in Lemma 2.10 that \(LM_n(f) = (\zeta,\gamma) \). Thus \(LM_n \) is full.

B. We will prove that \(LM'_n \) is essentially surjective and fully faithful. By Part A, all we need to prove is faithfulness. Let \(f : G' \rightarrow G \) be a morphism in \(\mathcal{SFF}_{A'} \) such that \(LM'_n(f) = (0,0) \) in \(\operatorname{Hom}_{\mathcal{A}'_n} ((L_n,M,\rho), (L'_n,M',\rho')) \), where \((L_n,M,\rho) = LM'_n(G)\) and \((L'_n,M',\rho') = LM'_n(G')\). We need the following result.

Lemma 2.11. — If \(G \) is \(p \)-faithful then \(m^{n-1}L_1 \cap mR = m^nR \).

Proof of Lemma 2.11. — Since \([p] : G_k \rightarrow G_k\) is faithful, it follows that \([p] : M \rightarrow M\) is injective. This, after some computations using the explicit description of \(M_A\) given in Remark 1.6 (i), implies that \([p]_{A'} : M_A' \rightarrow M_A\) is also injective. Since \([p]_{A'}\) is the “multiplication by \(p \)” map on \(M_A\) and
\((\pi^e) = (p)\), it follows that the “multiplication by \(\pi\)” map on \(M_{A'}\) is injective. Hence, we get an isomorphism
\[
[\pi]: \frac{L_1}{mR} \rightarrow \pi \cdot \frac{L_1}{mR} = \frac{mL_1 + mR}{mR} = \frac{mL_1}{mL_1 \cap mR}.
\]

Since \(u: L_1/mR \rightarrow mL_1/m^2R\) is also an isomorphism, where \(u(\tilde{\alpha}) = \pi \tilde{\alpha}\), we get that \(mL_1 \cap mR = m^2R\). The Lemma follows by finite induction. \(\square\)

Let \(f^*: R \rightarrow R'\) be induced by \(f\) and let \(\varphi: R \rightarrow R'\) be a lift of \(f^*\). We also denote by \(\varphi\) the unique extension of \(\varphi\) to \(P(R)\). It is clear that \(\varphi(L_1) \subset L_1'\) and \(\varphi(L_n) \subset L_n'\). In particular \(f\) induces a morphism \(\varphi_n: L_n \rightarrow L_n'/m^nR'\) which reduces to the zero morphism from \(L_n\) to \(L_n'\) and which makes the second diagram in Lemma 2.10 commute. Since, by Lemma 2.11, \(m^{n-1}L_1' \cap mR' = m^nR'\) we can apply Lemma 2.10 to deduce that the morphism \(\varphi_n: L_n \rightarrow L_n'/m^nR'\) is the zero morphism. Therefore
\[
(2.17) \quad \varphi(L_n) \subset m^nR'.
\]

Let \(S\) be a \(p\)-adic \(A'\)-ring. Using (2.17), we get that the morphism \(\tilde{\varphi}(S): G_{(L_n',M',\tilde{\rho})}(S) \rightarrow G_{(L_n,M,\rho)}(S)\), induced by \(\varphi_n: L_n \rightarrow L_n'\) and \(0 = \mathcal{M}(f): M \rightarrow M'\), is the zero morphism. Now, since in the commutative diagram
\[
\begin{array}{ccc}
G'(S) & \xrightarrow{f(S)} & G(S) \\
\eta'(S) \downarrow & & \downarrow \eta(S) \\
G'_{(L_n',M',\tilde{\rho})}(S) & \xrightarrow{\tilde{\varphi}(S)=0} & G_{(L_n,M,\rho)}(S)
\end{array}
\]

the vertical arrows are injective, \(f(S)\) has to be zero. Hence \(f\) is the zero morphism between \(G'\) and \(G\). Thus \(LM_1^f\) is faithful.

With this we achieved the proof of our Theorem. \(\square\)

Proposition 2.12. — Consider the following diagram of functors:

\[
\begin{array}{ccc}
SF_{A'} & \xrightarrow{LM_{A'}} & A'_n \\
B_n \downarrow & & \downarrow Q_n \\
SF_{A'_n} & \xrightarrow{LM_{A'_n}} & A_{A'_n}
\end{array}
\]

where \(B_n\) is the base change from \(A'\) to \(A'_n\) and \(Q_n\) sends an object \((L, M, \rho)\) of \(A'\) to the object \((L/m^{n-1}L, M, \bar{\rho})\) of \(A_{A'_n}\), with
\[
\bar{\rho}: L/m^{n-1}L \rightarrow M_{A'}/m^{n-1}M_{A'}
\]

induced by \(\rho\).

The functors \(F = Q_n \circ LM_{A'}\) and \(E = LM_n \circ B_n\) are isomorphic.
Proof. — Let G be an object in $\Lambda^d_{A'}$. With usual notations, we have $F(G) = (\mathcal{L}/m^{n-1}\mathcal{L}, M, p)$ (resp. $E(G) = (L_n, M, \rho_n)$), where (\mathcal{L}, M, ρ) (resp. (L_n, M, ρ_n)) is as in (1.8) (resp. Definition 2.7).

We have the following commutative diagram of A'-modules

\[
\begin{array}{cccccc}
\mathcal{L}/m^{n-1}\mathcal{L} & \xrightarrow{\sim} & P(R)/m^{n-1}P(R) & \sim & A'\otimes_A CW_A(R) \\
\downarrow & & \downarrow & & \downarrow \\
\mathcal{L}/m^{n-1}\mathcal{L}_1 & \xrightarrow{\sim} & L_n & \sim & M_{A'}/m^{n-1}M_{A'}
\end{array}
\]

\[\text{cf. Lemma 2.6 for the objects in the right column. Note that the morphism} \]
\[\mathcal{L}/m^{n-1}\mathcal{L} \to L_n/m^{n-1}\mathcal{L}_1 \text{ is an isomorphism, because it is so mod } p \text{ and the modules are } A'_{n-1}\text{-flat.}\]

Define a morphism $\mu(G) : F(G) \to E(G)$, by $\mu(G) = (u, \text{id}_M)$. It is clear that $\mu(G)$ is well defined and bijective and that μ is a morphism of functors. \qed

We have the following consequence of the Proof of Theorem 2.8 and of Proposition 2.12.

Corollary 2.13. — Any smooth finite dimensional formal p-group over A'_n lifts to a smooth finite dimensional formal p-group over A'.

Now, we restrict Theorem 2.8 to the case of p-divisible groups, cf. Definition 1.1 (4). For this, we first introduce the classifying category, the category of smooth Honda systems over A'_n.

Definition 2.14. — Let $H^d_{A'_n}$ be the full subcategory of $\Lambda^d_{A'_n}$ whose objects are pairs (\mathcal{L}_n, M), with M an A'-free module and

\[\mathcal{L}_n \subseteq M_{A'}/(m^{n-1}M_{A'}).\]

Define a functor $\mathcal{L}M^d_n$ from the category of p-divisible groups over A'_n to the category of smooth Honda systems over A'_n by

\[\mathcal{L}M^d_n(G) = (\rho_0(\mathcal{L}_n/m^{n-1}\mathcal{L}_1), M),\]

\[\text{cf. (2.1) and (2.4).}\]

From Theorem 2.8 we get the following result.

Corollary 2.15. — The functor $\mathcal{L}M^d_n$ induces a duality of categories between the category of p-divisible groups over A'_n and the category $H^d_{A'_n}$ of smooth Honda systems over A'_n.
Remark 2.16. — Let G be a p-divisible group over A' and let $\mathcal{LM}_n^d(G) = (\mathcal{L}, M)$, cf. (1.10). From Proposition 2.12 it follows that

$$\mathcal{LM}_n^d(G_n) = (\mathcal{L}/m^{n-1}\mathcal{L}, M).$$

The following result is a special feature of p-divisible groups over $A'_e = A'/pA'$.

Proposition 2.17. — For every p-divisible group Γ over k there exists a canonical lift Γ^{can} over A'_e. Moreover, for every morphism $f: \Gamma \rightarrow \Gamma'$ between p-divisible groups over k there exists a canonical morphism $f^{\text{can}}: \Gamma^{\text{can}} \rightarrow (\Gamma')^{\text{can}}$ over A'_e that lifts it.

Proof. — Let M be the Dieudonné module of Γ. Then, we claim that the natural morphism

$$\frac{A'}{\pi^{e-1}A'} \otimes_A M \xrightarrow{FM} \frac{M_{A'}}{\pi^{e-1}M_{A'}}$$

given by $\sum_{j=0}^{e-2} \pi^j \otimes m_j \mapsto [(\sum_{j=0}^{e-2} \pi^j \otimes m_j), 0]$, is injective and its image $L^{\text{can}} \subseteq M_{A'}/\pi^{e-1}M_{A'}$ is A'_{e-1}-free.

It is easy to see that it is well defined, i.e. that $\sum_{j=0}^{e-2} \pi^j \otimes Fm_j$ is mapped to zero. Indeed, this follows from the following relation

$$(\sum_{j=0}^{e-2} \pi^j \otimes Fm_j, 0) = \sum_{j=0}^{e-2} (\pi^j \otimes Fm_j, -\pi^j \otimes m_j) + \pi^{e-1} \sum_{j=0}^{e-2} (0, p^{-1}\pi^{j+1} \otimes m_j)$$

in which the right hand side is clearly zero in $M_{A'}/\pi^{e-1}M_{A'}$, cf. Remark 1.6 (i).

We now prove that it is injective. Assume $[(\sum_{j=0}^{e-2} \pi^j \otimes m_j, 0)]$ is zero in $M_{A'}/\pi^{e-1}M_{A'}$. This means that we have the following relation

$$\left(\sum_{j=0}^{e-2} \pi^j \otimes m_j, 0\right) = \pi^{e-1} \left(\sum_{s=0}^{e-1} \pi^s \otimes m'_s, \sum_{t=1}^{e} p^{-1}\pi^t \otimes n_t\right)$$

$$+ \left(\sum_{t=1}^{e} \pi^t \otimes x_t - \sum_{s=0}^{e-1} \pi^s \otimes Fy_s, \sum_{s=0}^{e-1} \pi^s \otimes y_s - \sum_{t=1}^{e} p^{-1}\pi^t \otimes Vx_t\right)$$

in $A' \otimes_A M \oplus p^{-1}m \otimes_A M^{(1)}$, for some m's, n's, x's and y's in M. In the case $e = 3$, the reader would have to trust us that similar things happen in the general case, this gives the set of equations

$$m_0 = pm'_1 + px_3 - Fy_0, \quad 0 = pm_2 + py_1 - Vx_1,$$
$$m_1 = pm'_2 + x_1 - Fy_1, \quad 0 = pm_3 + py_2 - Vx_2,$$
$$0 = m'_0 + x_2 - Fy_2, \quad 0 = n_1 + y_0 - Vx_3.$$
Clearly $m_0 \in FM$ and, because $Vx_1 \in pM = VFM$ and V_M is injective, it follows that $x_1 \in FM$, hence $m_1 \in FM$.

So the map is injective and since $A'/\pi^{e-1} A' \otimes M/FM$ is A'_{e-1}-free of rank $d = \dim_k M/FM$, we get that (L^can, M) is a smooth Honda system over A'_e. Therefore, it gives rise to a p-divisible group Γ^can over A'_e, which lifts Γ.

Now let $f : \Gamma \to \Gamma'$ be a morphism between p-divisible groups over k and let $\varphi : M_2 \to M_1$ be the corresponding D_k-linear map between their Dieudonné modules. It is clear that $\varphi_A'(L_2^\text{can}) \subseteq L_1^\text{can}$, where $\varphi_A' : M_{A'}/(m^{n-1} M_{A'}) \to M'_{A'}/(m^{n-1} M'_{A'})$. Therefore $\varphi : (L_2^\text{can}, M_2) \to (L_1^\text{can}, M_1)$ is a morphism of smooth Honda systems over A'_e, which gives rise to a group morphism $f^\text{can} : \Gamma^\text{can} \to (\Gamma')^\text{can}$ over A'_e that lifts f. It is clear that the correspondences $\Gamma \mapsto \Gamma^\text{can}$ and $f \mapsto f^\text{can}$ are functorial, i.e. canonical.

Corollary 2.18.

(i) Any abelian variety over k and any morphism between abelian varieties over k, lifts canonically to A'_e.

(ii) Any finite group over k lifts canonically to a finite flat group over A'_e.

Proof. Part (i) follows from the above Proposition via Serre-Tate, cf. [9], Theorem 1.2.1. Regarding Part (ii), we note that any finite group G over k is the kernel of an isogeny $\phi : \Gamma \to \Gamma'$ between p-divisible groups over k, cf. Theorem 3.1 below. Then $G^\text{can} := \ker(\phi^\text{can})$ is the canonical lift of G to A'_e.

3. **Finite flat group schemes**

We begin by recalling some fundamental concepts about formal groups over a pseudo-compact noetherian local ring. Thus a morphism between formal groups $u : G \to H$ is a monomorphism or a closed immersion if the morphism induced between the affine algebras is surjective. A morphism $u : G \to H$ between two formal groups is an epimorphism if the morphism induced between the affine algebras is flat and faithful with respect to the completed tensor product, cf. [4], Exposé VII B, §1.3.1 (note that over noetherian bases “topologically flat” is the same as “flat”). An isogeny is an epimorphism with finite kernel, between two p-divisible groups.

In our case, i.e. over A'_{n} or A', we see that a morphism between formal groups that are flat over the base is an epimorphism (resp. isogeny, resp. monomorphism) if and only if it is so mod m. Another way to express this
is in terms of Dieudonné modules. Thus, via Theorem 1.3, we see that a morphism is an epimorphism (resp. monomorphism) if and only if the induced morphism between the Dieudonné modules of the special fibers of the groups is injective (resp. surjective).

Also there exists the quotient of a formal group by a flat subgroup, cf. loc. cit. §2.4. It is a standard fact that the quotient of a p-divisible group by a finite flat subgroup is a p-divisible group, cf. for instance [1], Lemme 3.3.12.

As we announced in the Introduction, we make heavy use of the following result of Oort, cf. [12].

Theorem 3.1. — Every finite flat group scheme over a noetherian complete local ring, with perfect residue field of characteristic p, is the kernel of an isogeny between two p-divisible groups.

Remark. — See Remark on pp. 112–113 of [1] for details. Also see Theorem 3.1.1 in [1] for a generalization due to Raynaud.

Recall from Section 2 that for a p-divisible group Γ over A'_n we denote by R_Γ its affine A'_n-algebra, by \mathcal{R}_Γ an A'-special lift of R_Γ, by $\mathcal{L}_{r,\Gamma}$ the set $\{\alpha \in P(\mathcal{R}_\Gamma); \delta(\alpha) \in m^r\mathcal{R}_\Gamma \otimes A'/\mathcal{R}_\Gamma\}$, by M_Γ the Dieudonné module of Γ_k and by $(L_{n,\Gamma}, M_\Gamma)$ the smooth Honda system of Γ. Moreover, we introduce the following further notations.

Definition 3.2. — Let (L_n, M) be a smooth Honda system over A'_n. We call an \mathcal{L}-lift of L_n a free A'-submodule \mathcal{L} of $M_{A'}$ of rank equal to $\dim_k M/FM$ such that

$$\text{Im}(\mathcal{L} \hookrightarrow M_{A'} \to \frac{M_{A'}}{m^n M_{A'}}) = L_n.$$

Also, we denote by $\mathcal{L}_{|n}$ the preimage $\pi_n^{-1}(L_n)$ of L_n inside $M_{A'}$, where $\pi_n : M_{A'} \to M_{A'}/(m^n M_{A'})$ is the natural projection.

The following result establishes the basic properties of these notions.

Proposition 3.3.

1. Let (L_n, M) be a smooth Honda system over A'_n. For every \mathcal{L}-lift \mathcal{L} of L_n we have

(i) $\mathcal{L}/m\mathcal{L} \simeq M_{A'}/m A'[1] \simeq M/FM$.

(ii) $\mathcal{L}_{|n} = \mathcal{L} + m^{n-1} M_{A'}$.

2. Let $\phi : \Gamma \to \Gamma_1$ be an isogeny between two p-divisible groups over A'_n.

(i) The isogeny ϕ lifts to A' if and only if there exist \mathcal{L}-lifts \mathcal{L}_Γ (resp. \mathcal{L}_{Γ_1}) of $L_{n,\Gamma}$ (resp. L_{n,Γ_1}) such that the injection $M_{\Gamma_1} \to M_\Gamma$ sends \mathcal{L}_{Γ_1} into \mathcal{L}_Γ.

ANNALES DE L’INSTITUT FOURIER
(ii) Let G be the kernel of ϕ. Then G is killed by p^r, for some positive integer $r \geq 1$, if and only if $p^r M_\Gamma \subseteq M_{\Gamma_1}$ and $p^r \mathcal{L}_{|n|, \Gamma} \subseteq \mathcal{L}_{|n|, \Gamma_1}$.

Proof. — Part 1 is standard and Part 2(i) follows from Proposition 2.12. The kernel of ϕ is killed by p^r if and only if $\Gamma \xrightarrow{p^r} \Gamma$ factors like $\Gamma \xrightarrow{\phi} \Gamma_1 \xrightarrow{} \Gamma$. This, in turn, is equivalent to the inclusions $p^r M_\Gamma \subseteq M_{\Gamma_1} \subseteq M_\Gamma$ and $p^r \mathcal{L}_{|n|, \Gamma} \subseteq \mathcal{L}_{|n|, \Gamma_1} \subseteq \mathcal{L}_{|n|, \Gamma}$. □

Remark 3.4. — For a p-divisible group Γ over A'_n, with smooth Honda system $(L_{n, \Gamma}, M)$, the isomorphism classes of \mathcal{L}-lifts of $L_{n, \Gamma}$ are in bijection with the isomorphism classes of p-divisible groups over A' that lift Γ. Indeed, an \mathcal{L}-lift \mathcal{L} of $L_{n, \Gamma}$ together with M_Γ make up a smooth Honda system over A' which, via Remark 2.16, corresponds to a p-divisible group $\Gamma^\mathcal{L}$ over A' that lifts Γ.

Lemma 3.5. — Let

$$0 \to M_2 \to M_1 \to M \to 0$$

be an exact sequence of D_k-modules.

(i) Suppose we are given a smooth (resp. finite) Honda system (\mathcal{L}_1, M_1) (resp. (L, M)) over A such that $\text{Im} (\mathcal{L}_1 \subseteq M_1 \to M) = L$. Then $(\mathcal{L}_1 \cap M_2, M_2)$ is a smooth Honda system over A.

(ii) Suppose we are given smooth (resp. finite) Honda systems $(L_{n,i}, M_i)$ (resp. (L, M)) over A_n (resp. A), with $i = 1, 2$, such that the sequence induced by (3.1)

$$L_{n,2} \to L_{n,1} \to L \to 0$$

is exact. Moreover suppose that $pM_1 \subseteq M_2$ and $p\mathcal{L}_{|n|, 1} \subseteq \mathcal{L}_{|n|, 2}$.

Let β_1, \ldots, β_u (resp. $\gamma_{u+1}, \ldots, \gamma_d$) be in $\mathcal{L}_{|n|, 2}$ (resp. $\mathcal{L}_{|n|, 1}$) such that their images in $L_{n,1}/pL_{n,1}$ (resp. L) form a k-basis of $\ker (L_{n,1}/pL_{n,1} \to L)$ (resp. L), where $d = \dim_k M_1/FM_1 = \dim_k M_2/FM_2$. Then the A-module

$$\mathcal{L}_1 = \langle \beta_1, \ldots, \beta_u, \gamma_{u+1}, \ldots, \gamma_d \rangle_A$$

is an \mathcal{L}-lift of $L_{n,1}$ and the A-module

$$\mathcal{L}_2 = \langle \beta_1, \ldots, \beta_u, p\gamma_{u+1}, \ldots, p\gamma_d \rangle_A$$

is an \mathcal{L}-lift of $L_{n,2}$, which is equal to $\mathcal{L}_1 \cap M_2$.

(iii) Let $r \geq 1$ be an integer and let $m \geq n + r$. Suppose we are given smooth Honda systems $(L_{m,1}, M_1)$ and $(L_{m,2}, M_2)$ over A_m such that $p^r M = 0$ and $\text{Im}(L_{m,2} \subseteq M_2/p^{m-1}M_2 \to M_1/p^{m-1}M_1) \subseteq L_{m,1}$. Then for every \mathcal{L}-lift \mathcal{L}_1 of $L_{m,1}$ the A-module $\mathcal{L}_2 = \mathcal{L}_1 \cap M_2$ is an \mathcal{L}-lift of $L_{n,2} = L_{m,2}/p^{n-1}L_{m,2} \subseteq M_2/p^{n-1}M_2$.

Tome 59 (2009), Fascicule 6
(iv) Suppose we are given finite Honda systems \((L_2, M_2)\) and \((L, M)\) over \(A\). Furthermore, suppose that
\[
\dim_k M_1/pM_1 = \dim_k M_1/FM_1 + \dim_k M_1/V M_1.
\]
If \(L_1\) is an \(A\)-submodule of \(M_1\) such that the sequence induced by (3.1)
\[
0 \to L_2 \to L_1 \to L \to 0
\]
is exact, then \((L_1, M_1)\) is a finite Honda system over \(A\).

Remark. — Before we give the proof of the Lemma we make it more comprehensible by translating it in terms of groups. Thus, (i) gives the explicit smooth Honda system of the quotient \(\Gamma/G\) of a \(p\)-divisible group \(\Gamma\) over \(A\) by a finite flat subgroup \(G\). Number (ii) states that an isogeny \(\phi: \Gamma \to \Gamma_1\) over \(A_n\), such that \(\ker \phi\) is killed by \(p\), lifts to \(A\). Number (iii) states that given an isogeny \(\phi: \Gamma \to \Gamma_1\) over \(A/p^{n+r}A\) such that \(\ker \phi\) is killed by \(p^r\), its base change to \(A/p^n A\) lifts to \(A\). Number (iv) will help us construct Honda systems.

Proof.

(i) It is clear that \(M_2\) (resp. \(L_2 = L_1 \cap M_2\)) is \(A\)-free and it has the same \(A\)-rank as \(M_1\) (resp. \(L_1\)). This is so because \(M\) (resp. \(L\)) is an \(A\)-module of finite \(A\)-length and \(L_1\) (resp. \(L_1\)) is \(A\)-free. On the other hand, we have the equalities \(\text{rk}_A(L_1) = \dim_k M_1/FM_1 = \dim_k M_2/FM_2\). Indeed, the first equality comes from the fact that \((L_1, M_1)\) is Honda and the second comes from the fact that the sequence (3.1) corresponds via Theorem 1.3 to an exact sequence \(0 \to G \to \Gamma_1 \to \Gamma_2 \to 0\) of groups over \(k\), with \(G\) finite and \(\Gamma_1\) and \(\Gamma_2\) smooth, necessary of the same dimension, dimension which is equal to \(\dim_k M_1/FM_1 = \dim_k M_2/FM_2\), cf. [5], Chapter III, Proposition 6.1(ii). Therefore, in order to prove that \((L_2, M_2)\) is Honda it is enough to prove that the natural map \(L_2/pL_2 \to M_2/FM_2\) is injective. Let \(x\) be in \(L_2 \cap FM_2\). Then \(x\) is also in \(L_1 \cap FM_1 = pL_1\). So \(x = p\alpha\) for some \(\alpha\) in \(L_1\). Since \(x = Fy\) for some \(y\) in \(M_2\), we get that \(V\alpha = y\). Therefore \(V_M\overline{\alpha}\) is zero inside \(M\). But \(\overline{\alpha}\) is in \(L\) and \(L \cap \ker V_M\) is zero, hence \(\overline{\alpha}\) is zero. It follows that \(\alpha\) is in \(M_2\), hence in \(L_1 \cap M_2 = L_2\). Thus \(L_2 \cap FM_2 = pL_2\) and we are done.

(ii) Since from the way we constructed it, \(L_1\) is an \(L\)-lift of \(L_{n,1}\) that surjects onto \(L\), it follows from Proposition 3.3, 1(i), that \((L_1, M_1)\) is a smooth Honda system over \(A\), hence by (i) we get that \((L_1 \cap M_2, M_2)\) is a smooth Honda system over \(A\). All we have to do is prove that \(L_2 = L_1 \cap M_2\). Then, since by hypothesis \(L_2\) is included in \(L_{n,2}\), it follows that \(L_2/(p^{n-1}L_2)\) injects into \(L_{n,2}/(p^{n-1}M_2) = L_{n,2}\) and since they become
isomorphic mod p they must be equal. Note that the sequence of A-modules induced by (3.1)

$$0 \to \mathcal{L}_1 \cap M_2 \to \mathcal{L}_1 \to L \to 0$$

is exact. Since by hypothesis \mathcal{L}_2 is included in $\mathcal{L}_1 \cap M_2$ the fact that they are equal is a standard linear algebra exercise.

(iii) By hypothesis the morphism $M_2 \to M_1$ induces a morphism

$$\left(L_{m,2}, \frac{M_2}{p^{m-1}M_2} \right) \to \left(L_{m,1}, \frac{M_1}{p^{m-1}M_1} \right)$$

of finite Honda systems over A. Since the category of finite Honda systems over A is abelian, cf. [3], Lemma 1.3, it follows that the coimage and the image is equal. Since the coimage is

$$\left(L_{m,1} \cap \frac{M_2 + p^{m-1}M_1}{p^{m-1}M_1}, \frac{M_2 + p^{m-1}M_1}{p^{m-1}M_1} \right)$$

and the image is

$$\left(\frac{\mathcal{L}_{|m|,2} + p^{m-1}M_1}{p^{m-1}M_1}, \frac{M_2 + p^{m-1}M_1}{p^{m-1}M_1} \right)$$

and $L_{m,1} = \mathcal{L}_{|m|,1}/p^{m-1}M_1$, we get the relation

$$\mathcal{L}_{|m|,2} + p^{m-1}M_1 = \mathcal{L}_{|m|,1} \cap M_2 + p^{m-1}M_1.$$
in \(L_1 \) and \(y \) in \(M_1 \) such that \(\overline{x} = \overline{\alpha} + F_{M_1} \overline{y} \) in \(M \). It follows that there exists \(z \) in \(M_2 \) such that \(x = \alpha + F_{M_1}y + z \) in \(M_1 \). Since \(L_2 \) surjects onto \(M_2/FM_2 \) there exists \(\beta \) in \(L_2 \) and \(w \) in \(M_2 \) such that \(z = \beta + F_{M_2}w \). We get \(x = (\alpha + \beta) + F_{M_1}(y + w) \). This completes the proof. \(\square \)

Now we construct two functors on finite groups over \(A_n \). Let \(G \) be an object in \(\mathcal{F}_A \), with affine \(A_n \)-algebra \(R_G \), and let \(M \) be its Dieudonné module. By Theorem 3.1, \(G \) sits in an exact sequence of formal group schemes over \(A_n \)

\[
0 \to G \to \Gamma \to \Gamma_1 \to 0
\]

where \(\Gamma \) and \(\Gamma_1 \) are \(p \)-divisible groups. We call such a sequence a presentation of \(G \).

The sequence (3.5) induces the following exact sequence of Dieudonné modules

\[
0 \to M_{\Gamma_1} \to M_\Gamma \to M \to 0
\]

which, in turn, induces the following exact sequence of \(D_k \)-modules with finite \(A \)-length

\[
0 \to \frac{M_{\Gamma_1} \cap p^{n-1}M_\Gamma}{p^{n-1}M_{\Gamma_1}} \to \frac{M_{\Gamma_1}}{p^{n-1}M_{\Gamma_1}} \to \frac{M_\Gamma}{p^{n-1}M_\Gamma} \to \frac{M}{p^{n-1}M} \to 0.
\]

Note that because \(\Gamma \to \Gamma_1 \) is a morphism of \(p \)-divisible groups over \(A_n \), the morphism \(M_{\Gamma_1} \to M_\Gamma \) induces a morphism \((L_n, \Gamma_1, M_{\Gamma_1}) \to (L_n, \Gamma, M_\Gamma) \) of smooth Honda systems over \(A_n \) and, in particular a morphism

\[
(L_n, \frac{M_{\Gamma_1}}{p^{n-1}M_{\Gamma_1}}) \to (L_n, \frac{M_\Gamma}{p^{n-1}M_\Gamma})
\]

of finite Honda systems over \(A \). Let

\[
(L_n, \frac{M}{p^{n-1}M}) \text{ and } (L^{(n)}, \frac{M_{\Gamma_1} \cap p^{n-1}M_\Gamma}{p^{n-1}M_{\Gamma_1}})
\]

be the cokernel and the kernel, respectively, of the morphism (3.8), in the abelian category of finite Honda systems over \(A \). Note that under the isomorphism

\[
\frac{M_\Gamma}{p^{n-1}M_{\Gamma_1}} \to \frac{M_{\Gamma_1} \cap p^{n-1}M_\Gamma}{p^{n-1}M_{\Gamma_1}}
\]

the \(D_k \)-submodule \(M[p^{n-1}] \) of \(M \), of elements killed by \(p^{n-1} \), corresponds to \((M_{\Gamma_1} \cap p^{n-1}M_\Gamma)/(p^{n-1}M_{\Gamma_1}) \). Let

\[
(L^n, M[p^{n-1}]) \simeq (L^{(n)}, \frac{M_{\Gamma_1} \cap p^{n-1}M_\Gamma}{p^{n-1}M_{\Gamma_1}})
\]

be the finite Honda system over \(A \) induced by the isomorphism (3.10).
Definition 3.6. — Let $\text{SH}^f_{A_n}$ (resp. $\text{SH}^r_{A_n}$) be the category of finite (resp. restricted) Honda systems over A_n whose objects are triples (resp. pairs) (L^n, L_n, M) (resp. (L_n, M)), where M is a D_k-module with finite A-length and $(L^n, M[p^{n-1}])$ (resp. $(L_n, M/p^{n-1}M)$) is a finite Honda system over A, and whose morphisms are the obvious ones.

We define two functors LM^f_n (resp. LM^r_n) from $\mathcal{F}\mathcal{F}_{A_n}$ to $\text{SH}^f_{A_n}$ (resp. $\text{SH}^r_{A_n}$) which send a group G to

$LM^f_n(G) = (L^n, L_n, M)$ and $LM^r_n(G) = (L_n, M)$

with L^n, L_n and M as in the paragraph before Definition 3.6, and a morphism $f: G' \to G$ to $\mathcal{M}(f_k): M_G \to M_{G'}$.

Proposition 3.7.
1. The functors LM^f_n and LM^r_n are well defined.
2. The functor LM^r_n is essentially surjective.

Proof.
1. It suffices to prove that LM^f_n is well defined. We have to prove two things: that LM^f_n is well defined on objects, i.e. its definition does not depend on the particular presentation (3.5) of G, and that it sends a morphism of groups into a morphism of finite Honda systems. We assume for the moment that LM^f_n is well defined on objects and prove that it is a functor.

Let $f: G \to H$ be a morphism of finite groups over A_n. Let

\begin{align*}
0 \to G &\to \Gamma \to \Gamma_1 \to 0 ; \\
0 \to H &\to \Lambda \to \Lambda_1 \to 0 \tag{3.11}
\end{align*}

be presentations of G and H. Let ι_f be the composition

\begin{align*}
G \xrightarrow{\Delta} G \times G \xrightarrow{1 \times f} G \times H \to \Gamma \times \Lambda. \tag{3.12}
\end{align*}

It gives rise to a morphism v_f between Dieudonné modules

\begin{align*}
M_\Gamma \oplus M_\Lambda &\to M_G \oplus M_H \xrightarrow{1 \oplus f} M_G \oplus M_G \to M_G. \tag{3.13}
\end{align*}

Note that the morphism $M_G \oplus M_G \to M_G$ is the addition. It follows that v_f is surjective, hence ι_f is a monomorphism. Denote $\Gamma \times \Lambda$ by Υ and let Υ_1 be the p-divisible group $\text{coker} \iota_f$. From (3.11) and (3.12) we get a commutative diagram with exact rows

\begin{align*}
0 \to G &\to \Gamma \to \Gamma_1 \to 0 ; \\
0 \to H &\to \Lambda \to \Lambda_1 \to 0 \tag{3.14}
\end{align*}
The bottom right square of diagram (3.14) yields, in particular, the following commutative diagram

\[
\begin{array}{c}
(L_{n,\Lambda_1}, \frac{M_{\Lambda_1}}{p^{n-1}M_{\Lambda_1}}) \rightarrow (L_{n,\Lambda}, \frac{M_{\Lambda}}{p^{n-1}M_{\Lambda}}) \\
\downarrow \quad \downarrow \\
(L_{n,\Upsilon_1}, \frac{M_{\Upsilon_1}}{p^{n-1}M_{\Upsilon_1}}) \rightarrow (L_{n,\Upsilon}, \frac{M_{\Upsilon}}{p^{n-1}M_{\Upsilon}})
\end{array}
\]

of finite Honda systems over \(A\), cf. also (3.8). We get induced morphisms between the kernels (resp. cokernels) of the horizontal morphisms in (3.15), which express exactly the fact that \(LM^f_n(f)\) is a morphism of finite Honda systems over \(A_n\).

We now prove that \(LM^f_n\) is well defined on objects. For this, take \(H\) (resp. \(f\)) equal to \(G\) (resp. \(id\)) in the above construction. Let \((L^n(\Gamma), L_n(\Gamma), M)\) and \((L^n(\Lambda), L_n(\Lambda), M)\) be the finite Honda systems induced by the two presentations (3.11) of \(G\). Also let \((L^n(\Gamma \times \Lambda), L_n(\Gamma \times \Lambda), M)\) be the finite Honda system induced by the middle row of diagram (3.14). From (3.13) we see that

\[
L_n(\Gamma \times \Lambda) = L_n(\Gamma) + L_n(\Lambda) = \frac{M}{p^{n-1}M}.
\]

Since the three \(L\)'s are isomorphic mod \(p\) they must be equal. Thus \(L_n(\Gamma) = L_n(\Lambda)\).

From (3.12) we get a commutative diagram with exact rows

\[
\begin{array}{c}
0 \rightarrow G \rightarrow \Gamma \times \Lambda \rightarrow \Upsilon_1 \rightarrow 0 \\
\downarrow \Delta \quad \downarrow \text{id} \\
0 \rightarrow G \times G \rightarrow \Gamma \times \Lambda \rightarrow \Gamma_1 \times \Lambda_1 \rightarrow 0
\end{array}
\]

which gives us two things. The first is that the induced morphism

\[
\frac{M_{\Gamma}}{M_{\Gamma_1}} \oplus \frac{M_{\Lambda}}{M_{\Lambda_1}} \rightarrow \frac{M_{\Gamma} + M_{\Lambda}}{M_{\Upsilon_1}}
\]

is the addition from \(M \oplus M\) to \(M\). The second is that we have an induced morphism of finite Honda systems over \(A\) between

\[
\ker \left(\left(L_{n,\Gamma \times \Lambda_1}, \frac{M_{\Gamma_1} + M_{\Lambda_1}}{p^{n-1}(M_{\Gamma_1} + M_{\Lambda_1})} \right) \rightarrow \left(L_{n,\Gamma \times \Lambda}, \frac{M_{\Gamma} + M_{\Lambda}}{p^{n-1}(M_{\Gamma} + M_{\Lambda})} \right) \right)
\]

which is \((L^{(n)}(\Gamma) \oplus L^{(n)}(\Lambda), \frac{M_{\Gamma_1} \oplus M_{\Lambda_1}}{p^{n-1}(M_{\Gamma} + M_{\Lambda})} \oplus \frac{M_{\Gamma_1} \cap p^{n-1}M_{\Gamma}}{p^{n-1}(M_{\Gamma} + M_{\Lambda})} + \frac{M_{\Lambda_1} \cap p^{n-1}M_{\Lambda}}{p^{n-1}(M_{\Gamma} + M_{\Lambda})}),\) and

\[
\ker \left(\left(L_{n,\Upsilon_1}, \frac{M_{\Upsilon_1}}{p^{n-1}M_{\Upsilon_1}} \right) \rightarrow \left(L_{n,\Upsilon}, \frac{M_{\Gamma} + M_{\Lambda}}{p^{n-1}(M_{\Gamma} + M_{\Lambda})} \right) \right)
\]
which is \(\left(L^{(n)}(\Gamma \times \Lambda), \frac{M_{\Gamma} \cap p^{n-1}(M_{\Gamma} \oplus M_{\Lambda})}{p^{n-1}M_{\Gamma}} \right) \), cf. also (3.8) and (3.15). In particular, the \(A \)-module \(L^{(n)}(\Gamma) \oplus L^{(n)}(\Lambda) \) maps inside \(L^{(n)}(\Gamma \times \Lambda) \). From the following commutative diagram

\[
\begin{array}{ccc}
\frac{M_{\Gamma} \cap p^{n-1}M_{\Gamma}}{p^{n-1}M_{\Gamma}} \oplus \frac{p^{n-1}M_{\Lambda}}{p^{n-1}M_{\Lambda}} & \xrightarrow{\sim} & \frac{p^{n-1}(M_{\Gamma} \oplus M_{\Lambda})}{p^{n-1}M_{\Gamma}} \\
\downarrow & & \downarrow \\
\frac{M_{\Gamma}}{M_{\Gamma}} \oplus \frac{M_{\Lambda}}{M_{\Lambda}} & \xrightarrow{\sim} & \frac{M_{\Gamma} \oplus M_{\Lambda}}{M_{\Gamma}}
\end{array}
\]

and from (3.18) we get the inclusion

\[L^n(\Gamma) + L^n(\Lambda) \subseteq L^n(\Gamma \times \Lambda) \subseteq M[p^{n-1}] \]

Since the \(L \)'s are isomorphic mod \(p \) we get that they are equal. Thus \(L^n(\Gamma) = L^n(\Lambda) \).

2. Let \((L_n, M) \) be a restricted Honda system over \(A_n \). By Theorem 3.1 and Theorem 1.3, \(M \) sits in an exact sequence \(0 \to M_2 \to M_1 \to M \to 0 \) of \(D_k \)-modules, with \(M_i \) being \(A \)-free. From [3], Theorem 1.4, Step 4, applied to the exact sequence of \(D_k \)-modules \(0 \to M_2 + p^{n-1}M_1 \to M_1 \to M/p^{n-1}M \to 0 \), there exists a smooth Honda system \((L_1, M_1) \) that surjects onto \((L_n, M/p^{n-1}M) \). Define \(L_{n,1} = L_1/p^{n-1}L_1 \). Similarly, we get a smooth Honda system \((L_2, M_2) \) that surjects onto the finite Honda system \(\ker((L_{n,1}, M_1/p^{n-1}M_1) \to (L_n, M/p^{n-1}M)) \) over \(A \). Define \(L_{n,2} = L_2/p^{n-1}L_2 \). Then the morphism

\[(L_{n,2}, M_2) \to (L_{n,1}, M_1) \]

of smooth Honda systems over \(A_n \) gives rise to an isogeny \(\Gamma_1 \to \Gamma_2 \) over \(A_n \) whose kernel has restricted Honda system equal to \((L_n, M) \).

For future reference, we state the following practical consequence of the fact that \(LM^n \) is well defined.

Corollary 3.8. — Let \(G \to \Gamma \) be a monomorphism over \(A_n \), with \(G \) finite and \(\Gamma \) a \(p \)-divisible group. Then the restricted Honda system of \(G \) is the image of the smooth Honda system of \(\Gamma \).

Proposition 3.9. — The functor \(LM^n \) is essentially surjective and full.

Proof. — Let \((L_1, L_2, M) \) be a finite Honda system over \(A_2 \). As in the proof of Proposition 3.7 Part 2, we construct an exact sequence \(0 \to M_2 \to M_1 \to M \to 0 \) of \(D_k \)-modules, with \(M_i \) being \(A \)-free, and a
smooth Honda system \((L_{2,1}, M_1)\) over \(A_2\) that surjects onto \((L_2, M)\). We let \(L_{2,2} \subseteq M_2/pM_2\) be any \(k\)-vector space that fills in the empty space of the following commutative diagram with exact rows

\[
\begin{array}{cccccc}
0 & \longrightarrow & M_2/pM_2 & \longrightarrow & M_2/pM_1 & \longrightarrow & 0 \\
0 & \longrightarrow & L_1^{(1)} & \longrightarrow & L' & \longrightarrow & 0
\end{array}
\]

where \((L', (M_2+pM_1)/pM_1)\) is the kernel of \((L_{2,1}, M_1/pM_1) \to (L_2, M/pM)\) and \((L_1^{(1)}, (M_2+pM_1)/pM_2)\) corresponds to \((L_1, M[p])\) via the isomorphism (3.10). By Lemma 3.5 (iv), \((L_{2,2}, M_2)\) is a smooth Honda system over \(A_2\).

The morphism \((L_{2,2}, M_2) \to (L_{2,1}, M_1)\) of smooth Honda systems over \(A_2\) gives rise to an isogeny \(\Gamma_1 \to \Gamma_2\) over \(A_2\), whose kernel has finite Honda system equal to \((L_1, L_2, M)\). This proves that \(LM_2^{f}\) is essentially surjective.

Let \(G\) and \(H\) be two finite groups over \(A_2\), let \((L^G, L_G, M_G)\) and \((L^H, L_H, M_H)\) be their finite Honda systems, respectively, and let

\[
\begin{array}{ccc}
0 & \to & G \to \Gamma \to \Gamma_1 \to 0 \\
0 & \to & H \to \Lambda \to \Lambda_1 \to 0
\end{array}
\]

be some presentations of them.

Let \((L^H, L_H, M_H) \xrightarrow{u} (L^G, L_G, M_G)\) be a morphism in \(\text{SH}^{f}_{A_2}\). We seek to reconstruct diagram (3.14) from \(u\) and (3.20), in order to get a morphism \(f: G \to H\) that maps to \(u\). For this, it is enough to construct the middle and the right columns. The only unknown is \(\Upsilon_1\). We know its Dieudonné module \(M\). It is the kernel of the surjective composition

\[
M_\Gamma \oplus M_\Lambda \to M_G \oplus M_H \xrightarrow{1 \oplus u} M_G \oplus M_G
\]

We need to construct a \(k\)-vector subspace \(L_2\) of \(M/pM\) such that the morphisms

\[
(L_{2,\Gamma \times \Lambda_1}, M_{\Gamma \times \Lambda_1}) \to (L_2, M) \to (L_{2,\Gamma \times \Lambda}, M_{\Gamma \times \Lambda})
\]

are morphisms of smooth Honda systems over \(A_2\).

Consider the commutative diagram of \(D_k\)-modules with exact rows

\[
\begin{array}{cccccc}
0 & \longrightarrow & M_\Gamma \oplus M_\Lambda & \longrightarrow & M_\Gamma \oplus M_\Lambda & \longrightarrow & M_G \oplus M_H \longrightarrow & 0 \\
0 & \longrightarrow & M & \longrightarrow & M_\Gamma \oplus M_\Lambda & \longrightarrow & M_G \longrightarrow & 0
\end{array}
\]
To ease notation, we denote $\Gamma \times \Lambda$ (resp. $\Gamma_1 \times \Lambda_1$) by Ξ (resp. Ξ_1). Let (L', M') (resp. (L'', M'')) be the kernel of

$$(L_{2,\Xi}, M_{\Xi}/pM_{\Xi}) \to (L_G \oplus L_H, (M_G \oplus M_H)/p(M_G \oplus M_H))$$

(resp. $(L_{2,\Xi}, M_{\Xi}/pM_{\Xi}) \to (L_G, M_G/pM_G)$). From the snake lemma it follows that the induced morphism $L' \to L''$ is injective.

Diagram (3.22) induces, in particular, the following commutative diagrams with exact rows of k-vector spaces

$$
\begin{array}{ccc}
\frac{M_{\Xi_1} \cap pM_{\Xi}}{pM_{\Xi_1}} & \longrightarrow & \frac{M_{\Xi_1}}{pM_{\Xi_1}} \\
\downarrow & & \downarrow \\
\frac{M \cap pM}{pM} & \longrightarrow & \frac{M}{pM}
\end{array}
\quad
\begin{array}{ccc}
L^{(2)}_{\Xi} & \longrightarrow & L_{2,\Xi_1} \\
\downarrow & & \downarrow \\
L^{(2)} & \longrightarrow & L''
\end{array}
$$

where the right diagram is included in the left one, $L^{(2)}$ is induced by L^G via the isomorphism $pM_{\Xi}/pM \simeq M_{\Xi}/M \simeq M_G$ and $L^{(2)}_{\Xi} = L^{(2)}_{\Gamma} \oplus L^{(2)}_{\Lambda} \simeq L^G \oplus L^H$, cf. also (3.9) above. The fact that the image of $L^{(2)}_{\Xi} \subseteq (M_{\Xi_1} \cap pM_{\Xi})/pM_{\Xi_1} \to (M \cap pM_{\Xi})/pM$ lies inside $L^{(2)}$ follows from the inclusion $u(L^H) \subseteq L^G$ and the fact that the image is actually $L^{(2)}$ follows from (3.19) and (3.22). It follows that the sequence

$$0 \to L^{(2)} \to L_1 \to L'_1 \to 0$$

is exact, where L_1 (resp. L'_1) is the image of $L_{2,\Xi_1} \subseteq M_{\Xi_1}/pM_{\Xi_1} \to M/pM$ (resp. $L' \to L''$). Thus there exists a k-vector subspace L_2 of M/pM that fills in the empty space of the right diagram in (3.23). It follows from Lemma 3.5 (iv) that (L_2, M) is a smooth Honda system over A_2.

Let Υ_1 be the p-divisible group over A_2 that corresponds to (L_2, M). From (3.21) we get a commutative diagram of smooth Honda systems over A_2

$$
\begin{array}{ccc}
(L_{2,\Gamma_1}, M_{\Gamma_1}) & \longrightarrow & (L_{2,\Gamma}, M_{\Gamma}) \\
\downarrow & & \downarrow \\
(L_2, M) & \longrightarrow & (L_{2,\Gamma} \oplus L_{2,\Lambda}, M_{\Gamma} \oplus M_{\Lambda})
\end{array}
\quad
\begin{array}{ccc}
(L_{2,\Lambda_1}, M_{\Lambda_1}) & \longrightarrow & (L_{2,\Lambda}, M_{\Lambda})
\end{array}
$$

which induces a commutative diagram with exact rows of groups over A_2

$$
\begin{array}{ccc}
0 & \longrightarrow & G \\
\uparrow{pr_1} & & \uparrow{pr_1} \\
0 & \longrightarrow & G' \\
\downarrow{pr_2} & & \downarrow{pr_2} \\
0 & \longrightarrow & H \\
\end{array}
\quad
\begin{array}{ccc}
\Gamma \longrightarrow \Gamma_1 \longrightarrow 0 \\
\uparrow & & \uparrow \\
\Gamma \times \Lambda \longrightarrow \Upsilon_1 \longrightarrow 0
\end{array}
$$
It follows from the universal property of the kernel that the dotted arrows in the above diagram are well defined morphisms of finite groups over \(A_2 \).

In fact \(G' \rightarrow G \) is an isomorphism because it is so mod \(p \). If we define \(f \) to be the composition \(G \rightarrow G' \rightarrow H \) it follows that \(LM_n^f(f) = u \). □

Corollary 3.10. — Two finite groups over \(A_2 \) are isomorphic if and only if their finite Honda systems are isomorphic.

Proof. — The “only if” implication being trivial, we need only prove the “if” implication. Start with an isomorphism between the finite Honda systems. By Proposition 3.9, it gives rise to a morphism between the groups, which is an isomorphism mod \(p \), hence an isomorphism. □

Remark 3.11.

1. If we consider a finite Honda system \((L', L, M)\) over \(A_2 \) with \(pM = 0 \) and \(L' \neq L \) we get a finite group \(G \) over \(A_2 \) with the property that the morphism \(G \rightarrow L' \rightarrow G \) is not zero but it is zero mod \(p \). This is one instance of the non-faithfulness of the special fiber functor. Other more general examples can be given. Note also that for such a group \(G \) the \(p \)-torsion subgroup \(G[p] \) is not flat.

2. For arbitrary \(n \), we see from the proof of Proposition 3.9 that \(LM_n^f \) is essentially surjective onto the finite Honda systems \((L', L, M)\) over \(A_n \), with \(L \) and \(L' \) free \(A_{n-1} \)-modules, and that \(LM_n^f \) is full, hence classifying by Corollary 3.10, when restricted to the finite groups over \(A_n \) that map to such Honda systems. Indeed, the thing that made the proof work was that the \(L \)'s in the Honda systems were \(A/p^{n-1}A \)-free.

In particular, Proposition 3.9 and Corollary 3.10 hold also for \(LM_n^f \) restricted to the category of truncated Barsotti-Tate groups of level \(s \geq n \) over \(A_n \) (the case of levels less than \(n \) is trivially true).

3. Since for truncated Barsotti-Tate groups the kernel and the cokernel of the “multiplication by \(p^{n-1} \)” morphism are isomorphic in a functorial way, we see that the restricted Honda system is enough to classify these groups. It follows that a \(p \)-divisible group (resp. truncated Barsotti-Tate group) over \(A_n \) is determined by its reduction mod \(p \) and by its \(p^{n-1} \) torsion subgroup. This, over \(A_n \), recovers a classical result of Grothendieck, cf. [8], Corollary 4.7.

Definition 3.12. — We say that a finite group \(G \) over \(A'_n \) is fully flat if all the \(p \)-torsion subgroups \(\{G[p^i]\}_{i \geq 1} \) are flat.

Theorem 3.13. — Let \(\phi : \Gamma \rightarrow \Gamma_1 \) be an isogeny between two \(p \)-divisible groups over \(A_n \) and let \(G \) be its kernel.
(i) If G is fully flat then ϕ lifts to A.
(ii) The torsion subgroup $G[p^r]$ is fully flat for some integer $r \geq 1$ if and only if G lifts to $A/p^{n+r}A$.

Proof.
(i) We define the following sequence of finite groups

\begin{equation}
G_0 = G, \quad G_{i+1} = \frac{G_i}{G_i[p]}, \quad i \geq 0.
\end{equation}

We have the isomorphisms

\begin{equation}
G_i \simeq \frac{G}{G[p^i]}; \quad G_i[p] \simeq \frac{G[p^{i+1}]}{G[p^i]}.
\end{equation}

Let G and $G[p]$ sit in exact sequences

\begin{equation}
\begin{array}{ccccc}
0 & \longrightarrow & G[p] & \longrightarrow & \Gamma_0 \longrightarrow \Gamma_1 \longrightarrow 0 \\
& & \downarrow \text{id} & & \downarrow \text{id} \\
0 & \longrightarrow & G & \longrightarrow & \Gamma_0 \longrightarrow \Gamma_0' \longrightarrow 0
\end{array}
\end{equation}

with the Γ’s p-divisible. From the properties of the cokernel we get an induced morphism $\Gamma_1 \rightarrow \Gamma_0'$ which, by the snake lemma, is an isogeny with kernel G_1.

Therefore, in general, for every $i \geq 0$ we have a commutative diagram with exact rows

\begin{equation}
\begin{array}{ccccc}
0 & \longrightarrow & G_i[p] & \longrightarrow & \Gamma_i \longrightarrow \Gamma_{i+1} \longrightarrow 0 \\
& & \downarrow \text{id} & & \downarrow \\
0 & \longrightarrow & G_i & \longrightarrow & \Gamma_i \longrightarrow \Gamma_0' \longrightarrow 0
\end{array}
\end{equation}

From (3.26) and (3.27) we get the following relations between the Dieudonné modules

\[M_{G_i} = p^i M_G = \frac{p^i M_{\Gamma_0} + M_{\Gamma_0'}}{M_{\Gamma_0'}}, \quad M_{\Gamma_i} = p^i M_{\Gamma_0} + M_{\Gamma_0}. \]

Suppose G_r is zero for some positive integer r. From (3.27) and Proposition 3.3, 2(ii), we get

\begin{equation}
p^i \mathcal{L}_{[n],\Gamma_i} \subseteq \mathcal{L}_{[n],\Gamma_{i+1}} \subseteq \mathcal{L}_{[n],\Gamma_i}, \quad 0 \leq i \leq r - 1
\end{equation}

where, by convention, Γ_r is equal to Γ_0'.

Note that since the kernel of $\Gamma_0 \rightarrow \Gamma_i$ is $G[p^i]$, which is killed by p^i, the isogeny $\Gamma_0 \rightarrow \Gamma_0$ factors like $\Gamma_0 \rightarrow \Gamma_i \rightarrow \Gamma_0$. We claim that the composition $G_i \rightarrow \Gamma_i \rightarrow \Gamma_0$ is a monomorphism. Indeed, the corresponding morphism between the Dieudonné modules is $p^i M_{\Gamma_0} \rightarrow M_{\Gamma_i} \rightarrow p^i M_G$ which is clearly
surjective. Therefore, by Corollary 3.8, the restricted Honda system of G_i is (L_i, M_{G_i}), with

$$L_i = \text{Im}(\mathcal{L}_{[n], \Gamma_0} \subseteq M_{\Gamma_0} \xrightarrow{p^i} p^i M_G \xrightarrow{p^{i+n-1} M_G} p^{i+n} M_G).$$

(3.29)

It follows, in particular, that for every $i \geq 0$ the A-module L_i surjects onto L_{i+1} via the surjective morphism $p^i M_G/p^{i+n-1} M_G \xrightarrow{\ell_i} p^{i+1} M_G/p^{i+n} M_G$ given by $[x] \mapsto \{px\}$. For future reference we denote by d (resp. d_i) the dimension of the k-vector space $L_{n, \Gamma_0}/pL_{n, \Gamma_0}$ (resp. L_i/pL_i). We have the inequalities

$$d \geq d_0 \geq d_1 \geq \cdots \geq d_{r-2} \geq d_{r-1}.$$

On the other hand, from diagram (3.27) and the fact that the functor LM_n^r is well defined, cf. Proposition 3.7, we get the following exact sequences of A-modules

$$L_{n, \Gamma_0} \to L_{n, \Gamma_i} \to L_i \to 0; \quad L_{n, \Gamma_{i+1}} \to L_{n, \Gamma_i} \to \frac{L_i}{pL_i} \to 0.$$

Here we implicitly used the fact, which we leave as an exercise to the reader, that $(L_i/pL_i, p^i M_G/p^{i+1} M_G)$ is the restricted Honda system of $G_i[p]$.

The sequences (3.30) yield the following commutative diagram with exact rows of k-vector spaces

$$\begin{array}{ccccccccc}
L_{n, \Gamma_0} & \xrightarrow{\ell_0} & L_{n, \Gamma_1} & \xrightarrow{\ell_1} & L_{n, \Gamma_2} & \xrightarrow{\ell_2} & \cdots & \xrightarrow{\ell_{r-2}} & L_{n, \Gamma_{r-1}} & \xrightarrow{\ell_{r-1}} & L_{r-1} & \to 0 \\
pL_{n, \Gamma_0} & \downarrow & pL_{n, \Gamma_1} & \downarrow & pL_{n, \Gamma_2} & \downarrow & \cdots & \downarrow & pL_{n, \Gamma_{r-1}} & \downarrow & pL_{r-1} & \to 0 \\
L_{n, \Gamma_0} & \xrightarrow{\ell_0} & L_{n, \Gamma_1} & \xrightarrow{\ell_1} & L_{n, \Gamma_2} & \xrightarrow{\ell_2} & \cdots & \xrightarrow{\ell_{r-2}} & L_{n, \Gamma_{r-1}} & \xrightarrow{\ell_{r-1}} & L_{r-1} & \to 0 \\
pL_{n, \Gamma_0} & \downarrow & pL_{n, \Gamma_1} & \downarrow & pL_{n, \Gamma_2} & \downarrow & \cdots & \downarrow & pL_{n, \Gamma_{r-1}} & \downarrow & pL_{r-1} & \to 0 \\
L_{n, \Gamma_0} & \xrightarrow{\ell_0} & L_{n, \Gamma_1} & \xrightarrow{\ell_1} & L_{n, \Gamma_2} & \xrightarrow{\ell_2} & \cdots & \xrightarrow{\ell_{r-2}} & L_{n, \Gamma_{r-1}} & \xrightarrow{\ell_{r-1}} & L_{r-1} & \to 0 \\
pL_{n, \Gamma_0} & \downarrow & pL_{n, \Gamma_1} & \downarrow & pL_{n, \Gamma_2} & \downarrow & \cdots & \downarrow & pL_{n, \Gamma_{r-1}} & \downarrow & pL_{r-1} & \to 0
\end{array}$$
where L'_i is by definition

$$
\ker(L_n, \Gamma_i/pL_n, \Gamma_i \rightarrow L_i/pL_i) = \text{Im}(L_{n, \Gamma_i+1}/pL_{n, \Gamma_i+1} \rightarrow L_{n, \Gamma_i}/pL_{n, \Gamma_i}).
$$

Note that the kernel of $L_n, \Gamma_i \rightarrow L_i$, which by (3.30) is the image of $L_{n, \Gamma_i}' \rightarrow L_{n, \Gamma_i}$, surjects onto the kernel of $L_{n, \Gamma_i}/pL_{n, \Gamma_i} \rightarrow L_i/pL_i$, which is L'_i. Since the morphism $L_{n, \Gamma_i}' \rightarrow L_{n, \Gamma_i}$ factors through all the L_{n, Γ_j}’s with $j \geq i$, we get that L'_j surjects onto L'_i for all $j \geq i$.

Next we prove the following statement by decreasing induction on i between $r - 1$ and 0.

Fact 3.14. — There exist elements $\gamma_1, \ldots, \gamma_d$ in $L_{[n], \Gamma_0}$ such that:

(i) The images of $p^i\gamma_1, \ldots, p^i\gamma_d$ in L_i/pL_i form a k-basis of this vector space.

(ii) The elements $p^{i+1}\gamma_d, \ldots, p^{i+1}\gamma_d$ are in $L_{[n], \Gamma_0}$ and, if i is strictly less than $r - 1$, their images in $L_{n, \Gamma_i+1}/pL_{n, \Gamma_i+1}$ form a k-basis of $\ker(L'_i+1 \rightarrow L'_i)$.

Note that $P(r-1)$ is trivial because of (3.28) and (3.29). Assume we have $P(i)$. Let $\xi_{d_{i+1}}, \ldots, \xi_{d_{i-1}}$ be in $L_{[n], \Gamma_0}$ such that the images of $p^{i-1}\xi_{d_{i+1}}, \ldots, p^{i-1}\xi_{d_{i-1}}$ in L_{i-1} (resp. L_{i-1}/pL_{i-1}) lie in $\ker(L_{i-1} \rightarrow L_i)$ (resp. form a k-basis of $\ker(L_{i-1}/pL_{i-1} \rightarrow L_i/pL_i)$). This is possible because of (3.29) and the fact that the kernel of $L_{i-1} \rightarrow L_i$ surjects onto the kernel of $L_{i-1}/pL_{i-1} \rightarrow L_i/pL_i$. It follows that the image of $p^i\xi_j$ is zero inside L_i. Hence

$$
p^i\xi_j \in \ker(L_{n, \Gamma_i} \rightarrow L_i) = \frac{L_{[n], \Gamma_0} + p^{n-1}M_{\Gamma_i}}{p^{n-1}M_{\Gamma_i}}
$$

cf. (3.30) and (3.3). Since $M_{\Gamma_i} = p^iM_{\Gamma_0} + M_{\Gamma_0}$ there exist β_j in $L_{[n], \Gamma_0}$ and x_j (resp. y_j) in M_{Γ_0} (resp. M_{Γ_0}') such that

$$
p^i\xi_j = \beta_j + p^{n-1}(p^ix_j + y_j).
$$

Define $\gamma_j = \xi_j - p^{n-1}x_j$. Then γ_j is in $L_{[n], \Gamma_0}$ and

$$
p^i\gamma_j = \beta_j + p^{n-1}y_j \in L_{[n], \Gamma_0}'.
$$

Since the image of $p^{i-1}\gamma_j$ inside L_{n, Γ_i} is the same as that of $p^{i-1}\xi_j$ the only thing that remains to prove is that the elements $p^{i+1}\gamma_d, \ldots, p^{i+1}\gamma_d$ form a k-basis of $\ker(L'_i \rightarrow L'_{i-1})$. For this, let $\delta_d, \ldots, \delta_{d_{i-1}+1}$ be in $L_{[n], \Gamma_0}'$ such that their images $\overline{\delta_d}, \ldots, \overline{\delta_{d_{i-1}+1}}$ form a k-basis of L'_{i-1}. Then, by Lemma 3.5 (ii) applied to the isogeny $\Gamma_{i-1} \rightarrow \Gamma_i$, the A-module

$$
L = \langle \delta_d, \ldots, \delta_{d_{i-1}+1}, p^i\gamma_d, \ldots, p^i\gamma_1 \rangle_A.
$$
is an \mathcal{L}-lift of L_{n,Γ_i}. It follows that the elements
\[\overline{\delta}_{d_i}, \ldots, \overline{\delta}_{d_i+1}, \overline{p}^i \gamma_{d_i}, \ldots, \overline{p}^i \gamma_{d_i+1} \]
form a basis of L'_i. Since $p^i \gamma_j$ is in $p M_{\Gamma_{i-1}}$ we get that the elements $p^i \gamma_{d_i}, \ldots, p^i \gamma_{d_i+1}$ form a basis of $\ker(L'_i \to L'_{i-1})$.

Now, to end the proof of the Theorem, we take elements $\delta_d, \ldots, \delta_{d_0+1}$ in L_{n,Γ_0}^\prime such that their images in L_0' form a k-basis of L_0'. We claim that the A-module
\[\mathcal{L}_0 = \langle \delta_d, \ldots, \delta_{d_0+1}, \gamma_{d_0}, \ldots, \gamma_1 \rangle_A \]
is an \mathcal{L}-lift of L_{n,Γ_0} such that $\mathcal{L}_0 \cap M_{\Gamma_1}$ is an \mathcal{L}-lift of L_{n,Γ_1}, for all $1 \leq i \leq r$.

To show how the proof of the last claim goes we assume r is equal to 3 in order to avoid unnecessary technicalities. By Lemma 3.5 (ii) applied to the isogeny $\Gamma_0 \to \Gamma_1$ and by $P(0)$ we get that \mathcal{L}_0 is an \mathcal{L}-lift of L_{n,Γ_0} and that the A-module
\[\mathcal{L}_1 = \mathcal{L}_0 \cap M_{\Gamma_1} = \langle \delta_d, \ldots, \delta_{d_0+1}, p \gamma_{d_0}, \ldots, p \gamma_1 \rangle_A \]
is an \mathcal{L}-lift of L_{n,Γ_1}.

Then, by $P(1)$ (ii) (resp. (i)), it follows that the elements
\[\overline{\delta}_d, \ldots, \overline{\delta}_{d_0+1}, \overline{p} \gamma_{d_0}, \ldots, \overline{p}^2 \gamma_{d_1+1} \]
(resp. $\overline{p} \gamma_{d_1}, \ldots, \overline{p}^2 \gamma_{d_1+1}$) form a basis of L'_1 (resp. $L_1/p L_1$). By Lemma 3.5 (ii) applied to the isogeny $\Gamma_1 \to \Gamma_2$ we get that the A-module
\[\mathcal{L}_2 = \mathcal{L}_1 \cap M_{\Gamma_2} = \langle \delta_d, \ldots, \delta_{d_0+1}, p \gamma_{d_0}, \ldots, p^2 \gamma_{d_1}, \ldots, p^2 \gamma_1 \rangle_A \]
is an \mathcal{L}-lift of L_{n,Γ_2}.

Similarly, it follows that the elements
\[\overline{\delta}_d, \ldots, \overline{\delta}_{d_0+1}, \overline{p} \gamma_{d_0}, \ldots, \overline{p}^2 \gamma_{d_1+1}, \overline{p}^2 \gamma_{d_2+1}, \ldots, \overline{p}^3 \gamma_1 \]
form a basis of L'_2 and that $\mathcal{L}'_0 = \mathcal{L}_0 \cap M_{\Gamma_0}^\prime$ is an \mathcal{L}-lift of L_{n,Γ_0}, generated by the elements $\mathcal{L}'_0 = \langle \delta_d, \ldots, \delta_{d_0+1}, p \gamma_{d_0}, \ldots, p^2 \gamma_{d_1+1}, \ldots, p^2 \gamma_{d_2+1}, p^3 \gamma_{d_2}, \ldots, p^3 \gamma_1 \rangle_A$.

Proposition 3.3, 2(i), finishes the proof for us.

(ii) Here we prove the 'only if' part of the statement. The 'if' part follows from Corollary 3.17 below. Suppose $G[p^r]$ is fully flat. As usual, we have the presentations
\[
\begin{array}{c}
0 \longrightarrow G[p^r] \longrightarrow \Gamma_0 \longrightarrow \Gamma_r \longrightarrow 0 \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
0 \longrightarrow G \longrightarrow \Gamma_0 \longrightarrow \Gamma_0' \longrightarrow 0
\end{array}
\]
By (i) there exists an \mathcal{L}-lift \mathcal{L}_{Γ_0} of L_{n,Γ_0} such that $\mathcal{L}_{\Gamma_0} \cap M_{\Gamma_r}$ is an \mathcal{L}-lift of L_{n,Γ_r}. Let $\mathcal{L}' = \langle \alpha_1, \ldots, \alpha_d \rangle_A$ be an \mathcal{L}-lift of L_{n,Γ_r}. Since $\mathcal{L}' \subseteq \mathcal{L}_{|n|,\Gamma_r} \subseteq \mathcal{L}_{|n|,\Gamma_r} = \mathcal{L}_{\Gamma_0} \cap M_{\Gamma_r} + p^{n-1}M_{\Gamma_r}$ and $M_{\Gamma_r} = p^r M_{\Gamma_0} + M_{\Gamma_0}$ we can write

$$\alpha_j = \beta_j + p^{n-1}x_j + p^{n+r-1}y_j, \quad 1 \leq j \leq d$$

with β_j in $\mathcal{L}_{\Gamma_0} \cap M_{\Gamma_r}$ and x_j (resp. y_j) in M_{Γ_0} (resp. M_{Γ_r}). Define $\gamma_j = \alpha_j - p^{n-1}x_j$ for j between 1 and d. Then the A-module $\mathcal{L}'_{\Gamma_0} = \langle \gamma_1, \ldots, \gamma_d \rangle_A$ is an \mathcal{L}-lift of L_n,Γ_r which is included in $\mathcal{L}_{\Gamma_0} + p^{n+r-1}M_{\Gamma_0}$. It follows that the morphism

$$\left(\frac{\mathcal{L}'_{\Gamma_0}}{p^{n+r-1}\mathcal{L}'_{\Gamma_0}}, M_{\Gamma_0} \right) \rightarrow \left(\frac{\mathcal{L}_{\Gamma_0}}{p^{n+r-1}\mathcal{L}_{\Gamma_0}}, M_{\Gamma_0} \right)$$

of Honda systems over $A/p^{n+r}A$ lifts the morphism $(L_n,\Gamma_0, M_{\Gamma_0}) \rightarrow (L_n,\Gamma_r, M_{\Gamma_r})$ of Honda systems over A_n. By Corollary 2.15 we get an isogeny $\Gamma \rightarrow \Gamma'$ over A_{n+r} that lifts $\Gamma_0 \rightarrow \Gamma'_0$. The kernel of this isogeny lifts G. \(\square\)

Lemma 3.15. — Let m and r be two positive integers such that $m \geq r$, let Γ be a p-divisible group over A_{n+m} and let $(L_{n+m,\Gamma}, M_{\Gamma})$ be its Honda system. For every \mathcal{L}-lift \mathcal{L} of $L_{n+m,\Gamma}$ the composition

$$\mathcal{L}_{n+m,\Gamma} \rightarrow P(R_{\Gamma}) \rightarrow (R_{\Gamma})_K^{p^n}$$

is zero, where R_{Γ}^p is the affine A-algebra of $\Gamma^p[p^n]$, with Γ^p as in Remark 3.4.

Proof. — Note that the affine A-algebra of Γ^p is still R_{Γ}, enhanced with a comultiplication given by the group structure on Γ^p. Also from Theorem 1.11 and (1.8) it follows that the A-module \mathcal{L} is identified with the elements α in $P(R_{\Gamma})$ such that $\delta(\alpha) = 0$. It also follows that $\mathcal{L}_{n+m,\Gamma} = \mathcal{L} + p^{n+m-1}L_{1,\Gamma}$. Indeed, the right module is included in the left one, they are A_{n+m-1}-free modulo $p^{n+m-1}L_{1,\Gamma}$ and they are isomorphic mod p, cf. Lemma 2.5.

From [5], Remark 2 on page 186, we know that the composition

$$\mathcal{L} \rightarrow P(R_{\Gamma}) \rightarrow (R_{\Gamma}^p)_K$$

is zero. Hence we only have to deal with $p^{n+m-1}L_{1,\Gamma}$. Let β be in $L_{1,\Gamma}$. The fact that $\hat{\Delta}(\beta) - \beta \otimes 1 + 1 \otimes \beta$ is in $pR_{\Gamma} \otimes A R_{\Gamma}$ implies that $[p^n](\beta) = p^n \beta + pa$ for some a in R_{Γ}, where $P(R_{\Gamma})^{[p^n]} \rightarrow P(R_{\Gamma})$ is induced by $\Gamma^p \rightarrow \Gamma^p$. Since $[p^n](\beta)$ is mapped to zero inside $(R_{\Gamma}^p)_K$, it follows that $p^n \beta$ is mapped into pR_{Γ}^p. Thus $p^{n+m-1}L_{1,\Gamma}$ is mapped into $p^{n+m-r}R_{\Gamma}^p \subseteq p^nR_{\Gamma}^p$. The Lemma follows. \(\square\)
THEOREM 3.16. — Let m and r be two positive integers.

1. Assume $r \leq m$ and let G (resp. H) be a fully flat (resp. an arbitrary) finite group over A_{n+m} such that G is killed by p^r. The natural map

$$\text{Im}(\text{Hom}_{A_{n+m}}(G, H) \to \text{Hom}_{A_{n}}(G_n, H_n)) \to \text{Hom}_{k}(G_k, H_k)$$

is injective.

2. Assume $2r \leq m$ and let G and H be arbitrary finite groups over A_{n+m} such that G is killed by p^r. The natural map

$$\text{Im}(\text{Hom}_{A_{n+m}}(G, H) \to \text{Hom}_{A_{n}}(G_n, H_n)) \to \text{Hom}_{k}(G_k, H_k)$$

is injective.

Proof.

1. Let $f : G \to H$ be a morphism such that $f_k = 0$. Then, by (3.14), f extends to a morphism of presentations

$$0 \to G \to \Upsilon \to \Upsilon_1 \to 0 .$$

By Theorem 3.13 (i), there exists an L-lift L of $L_{n+m, \Upsilon}$ such that the presentation of G lifts to

$$0 \to G^L \to \Upsilon^L \to \Upsilon_1^L \to 0$$

over A. Since G^L is killed by p^r, it follows that Υ^L factors through $\Upsilon^L[p^r]$. Thus, the morphism $P(\mathcal{R}_\Upsilon) \to (R_{G^L})_K$ factors like

$$P(\mathcal{R}_\Upsilon) \to (\mathcal{R}_\Upsilon^L)_K \to (R_{G^L})_K$$

with \mathcal{R}_Υ^L the affine A-algebra of $\Upsilon^L[p^r]$.

Let $\mathcal{R}_\Lambda \to \mathcal{R}_\Upsilon$ be an A-algebra morphism that lifts $R_\Lambda \to R_\Upsilon$. Then the composition

$$\mathcal{R}_\Lambda \to \mathcal{R}_\Upsilon \to R_{G^L}$$

is an A-algebra morphism that lifts the composition $R_\Lambda \overset{\iota_\Upsilon}{\to} R_H \overset{\tau_\Upsilon}{\to} R_G$.

Let \mathcal{L}_Λ be an arbitrary L-lift of $L_{n+m, \Lambda}$. The morphism $P(\mathcal{R}_\Lambda) \to P(\mathcal{R}_\Upsilon)$, induced by $\mathcal{R}_\Lambda \to \mathcal{R}_\Upsilon$, takes \mathcal{L}_Λ over into $\mathcal{L}_{n+m, \Upsilon}$. From (3.34), (3.35) and Lemma 3.15 it follows that the composition

$$\mathcal{L}_\Lambda \to \frac{P(\mathcal{R}_\Lambda)}{p^n R_\Lambda} \to \frac{(R_{G^L})_K}{p^n R_{G^L}}$$
is zero. This together with the fact that f_k is zero imply that $\eta \mathcal{L}_A(R_{G\mathcal{C}})(\iota_{H,n} \circ f_n)$ is zero, cf. (2.13) and (2.14). Since $\eta \mathcal{L}_A(R_{G\mathcal{C}})$ is bijective by Lemma 2.9, we get that $\iota_{H,n} \circ f_n$ is zero, hence f_n is zero since $\iota_{H,n}$ is a monomorphism.

2. The proof of this part is almost the same as the proof of (1) with the only difference that, since in general ι_f doesn’t lift to A, we have to work with $\iota_{f,n+m-r}$ which does lift to A, by Lemma 3.5 (iii). This is why we need $m \geq 2r$. □

Corollary 3.17. — Let m and r be two positive integers such that $m \geq r$ and let G be a finite group over A_{n+m}. Then $G[p^r]_n$ is fully flat.

Proof. — Let $0 \rightarrow G \rightarrow \Gamma \xrightarrow{\phi} \Gamma_1 \rightarrow 0$ be a presentation of G. Then $G[p^r]$ is the kernel of $\phi[p^r]$. Let \mathcal{L} (resp. \mathcal{L}_1) be an \mathcal{L}-lift of $L_{n+m,\Gamma}$ (resp. L_{n+m,Γ_1}) and let $\Gamma^\mathcal{L}$ (resp. $\Gamma_1^\mathcal{L}$) be the corresponding p-divisible groups over A lifting Γ (resp. Γ_1). It is clear that the Honda system of $\Gamma^\mathcal{L}[p^r]$ (resp. $\Gamma_1^\mathcal{L}[p^r]$) is $(\mathcal{L}/p^r\mathcal{L}, M_{\Gamma}/p^rM_{\Gamma})$ (resp. $(\mathcal{L}_1/p^r\mathcal{L}_1, M_{\Gamma_1}/p^rM_{\Gamma_1})$). Also, because \mathcal{L} is an \mathcal{L}-lift, it follows that $\mathcal{L}/p^{n+m-1}\mathcal{L} = L_{n+m,\Gamma}$. And the same holds for \mathcal{L}_1.

Since the morphism
\[
(L_{n+m,\Gamma_1}, \frac{M_{\Gamma_1}}{p^{n+m-1}M_{\Gamma_1}}) \rightarrow (L_{n+m,\Gamma}, \frac{M_{\Gamma}}{p^{n+m-1}M_{\Gamma}})
\]
is a morphism of finite Honda systems over A, it follows that the morphism
\[
(\frac{\mathcal{L}_1}{p^r\mathcal{L}_1}, \frac{M_{\Gamma_1}}{p^rM_{\Gamma_1}}) \rightarrow (\frac{\mathcal{L}}{p^r\mathcal{L}}, \frac{M_{\Gamma}}{p^rM_{\Gamma}})
\]
is also such a morphism. By Theorem 1.13 it gives rise to a morphism
\[
\psi: \Gamma^\mathcal{L}[p^r] \rightarrow \Gamma_1^\mathcal{L}[p^r]
\]
of finite groups over A.

Now, we have two morphisms ψ_{n+m} and $\phi[p^r]$ between $\Gamma[p^r]$ and $\Gamma_1[p^r]$ which are equal mod p. By Theorem 3.16 (1), ψ_n equals $\phi[p^r]_n$. Thus $G[p^r]_n$ is the base change to A_n of ker ψ. Since the category $\mathcal{F} \mathcal{F}_A$ is abelian, cf. [14], Theorem 3.3.3, our Corollary follows. □

3.1. **Remarks on the situation in the ramified setting**

Most of the results can be carried out mutatis mutandis over A'_n with n of the form $qe + 1$.

TOME 59 (2009), FASCICULE 6
More precisely, using the exactness properties of the functor $M \mapsto M_{A'}$, cf. [5], Chapter IV, §2.3 and Proposition 2.4, and [3], Lemma 2.2, one can define the functors LM^f_n and LM_r in the same manner, cf. Definition 3.6, prove that they are well-defined and that LM^r_n is essentially surjective, cf. Proposition 3.7.

Then, as in the proof of Proposition 3.9, one can prove that LM^f_n is essentially surjective onto the finite Honda systems (L', L, M) over A'_n, with L and L' free A'/p^qA'-modules, and that LM^f_n is full, hence classifying, when restricted to the finite groups over A'_n that map to such Honda systems. In particular, cf. Remark 3.11 (3), LM^r_n classifies the truncated Barsotti-Tate groups over A'_n.

Definition 3.18. — We say that a finite group G over A'_n is strongly flat if it is fully flat and L_i is A'_n/pA'_n-free for every $i \geq 0$, where $(L_i, M_i) = LM^r_n(G_i[p])$ and G_i is as in (3.25).

Theorem 3.13 remains true when applied to the strongly flat groups over A'_n. Theorem 3.16 and Corollary 3.17 also remain true with 'fully flat' replaced by 'strongly flat'.

Most probably, with a bit more work one could extend these results to the case of arbitrary n.

4. Almost canonical liftings.

In this Section we assume k is algebraically closed. We let $d < h$ be two relatively prime positive integers. Let Γ_0 be a p-divisible group over k, with Dieudonné module M isomorphic, as a D_k-module, to

$$
(4.1) \quad \left(A^h, \begin{bmatrix} O_{d,h-d} & p \cdot I_d \\ I_{h-d} & O_{h-d,d} \end{bmatrix} \circ \sigma \right)
$$

where σ is the absolute Frobenius on $A = W(k)$ and $O_{i\times j}$ (resp. I_i) is the zero (resp. identity) matrix in the ring of $i \times j$ (resp. $i \times i$) matrices over A. This means that there exists an A-basis of M on which F acts as prescribed by the matrix. We denote by $\{e_1, \ldots, e_h\}$ the elements in this basis. We have the relations

$$
Fe_j = e_{d+j}, \quad 1 \leq j \leq h - d; \quad Fe_{h-d+j} = pe_j, \quad 1 \leq j \leq d.
$$

Remark 4.1. — There is a canonical way of associating to the Dieudonné module (4.1) a connected p-divisible group $G_{d,h-d}$ over \mathbb{F}_p of dimension d and height h, cf. [11], §4.2 and [7] (28.5.7). Thus we require Γ_0 to be isomorphic over k to $G_{d,h-d}$.

ANNALES DE L'INSTITUT FOURIER
We denote by W_i the ring $W(\mathbb{F}_{p^i})$ of Witt vectors over \mathbb{F}_{p^i}, for $i \geq 1$. By requiring that an $h \times h$ matrix over A commute with F, as given in (4.1), we get the following description of the subring $R = \text{End}_{D_k}(M)$ of the ring of $h \times h$ matrices over A

\[
\begin{align*}
\left\{ \begin{array}{cccc}
 a_h & pa_{h-1} & \cdots & pa_2 \\
 a_1\sigma^u & a_2\sigma^u & \cdots & a_3\sigma^u \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{h-1}\sigma^{(h-2)u} & \cdots & & a_{h-1}\sigma^{(h-1)u} \\
 a_{h-1}\sigma^{(h-1)u} & a_{h-2}\sigma^{(h-1)u} & \cdots & a_1\sigma^{(h-1)u} \\
 \end{array} \right\} ; a_i \in W_h
\end{align*}
\]

where $u \geq 1$ is minimal such that $ud = wh + 1$ for some integer w. The \mathbb{Z}_p-algebra R is the maximal order in the division algebra $\mathbb{D}_{h,d}$ over \mathbb{Q}_p, with invariant d/h. We have

\[
R = \left\{ a_h + \sum_{i=1}^{h-1} a_i\gamma^i ; a_i \in W_h \right\}
\]

where W_h is embedded into R via

\[
a \mapsto \left[\begin{array}{cccc}
 a & 0 & 0 & \cdots & 0 \\
 0 & a\sigma^u & 0 & \cdots & 0 \\
 0 & 0 & a^{2\sigma^u} & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & a^{(h-1)\sigma^u} \\
 \end{array} \right] \quad \text{and} \quad \gamma = \left[\begin{array}{cccc}
 0 & 0 & \cdots & 0 \\
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1 & 0 \\
 \end{array} \right].
\]

For every $a \in W_h$ we have the relation

\[a\gamma = \gamma a^{\sigma^u}.\]

Let \mathcal{O} be the ring of integers in a degree h extension \mathbb{K} of \mathbb{Q}_p, which we embed into $R \subset \mathbb{D}_{h,d}$. Let $e = e(\mathcal{O}) < p-1$ and $f = h/e$. Also let A' be the ring of integers in a degree e totally ramified extension of the fraction field of A. Moreover, we choose A' to contain the maximal unramified extension of \mathcal{O}. Let π be a uniformizer of \mathcal{O} and A', and let $\varepsilon \in \mathcal{O}^\times$ be such that $p = \varepsilon \pi^e$. We denote by v the unique valuation on $\mathbb{D}_{h,d}$ normalized such that $v(\pi) = 1$.

Remark 4.2. — For an element b in \mathcal{O} we denote by T_b its matrix representation inside R as given by (4.2).

Definition 4.3. — We call an \mathcal{O}-lifting of Γ_0 a p-divisible group Γ over A' such that $\Gamma_k \simeq \Gamma_0$ and $\text{End}_{A'_{\text{gr}}}(\Gamma) = \mathcal{O}$. We say that two \mathcal{O}-liftings are isomorphic if they are isomorphic as groups over A'.

TOME 59 (2009), FASCICULE 6
The main result of this Section is the following theorem.

Theorem 4.4. — There exists an \mathcal{O}-lifting of Γ_0 if and only if $f \geq d$.

In this case, we have

(i) For every \mathcal{O}-lifting Γ and every $n \geq 1$

$$R_{n-1} = \text{End}_{A'_n \text{-gr}}(\Gamma_n) = \mathcal{O} + \pi^{n-1}R$$

where Γ_n is the base change to A'_n of Γ.

(ii) There are exactly e^d/g isomorphism classes of \mathcal{O}-liftings Γ of Γ_0, where g is the number of automorphisms of \mathbb{K} which fix its maximal unramified subextension.

Remark 4.5. — It is clear from Theorem 2.8 B that we have

$$\cdots \subseteq R_n \subseteq R_{n-1} \subseteq \cdots \subseteq R_1 \subseteq R_0 = R.$$

Proof. — The way we prove this Theorem is by translating it in terms of Honda systems. Thus, a p-divisible group Γ over A', which lifts Γ_0, corresponds to a Honda system (\mathcal{L}, M), cf. Definition 1.10 (2) and Theorem 1.11. The fact that Γ has endomorphisms by $\mathcal{O} \subseteq R = \text{End}_{D_k}(M) \subset \text{End}_{A'}(M_{A'})$ translates into the fact that for every endomorphism $M \xrightarrow{T} M$ of M we have $T_{A'}(\mathcal{L}) \subseteq \mathcal{L}$. In general, we say that an A'-submodule U of $M_{A'}$ is an \mathcal{O}-module if $T_{A'}(U) \subseteq U$ for every T in $\mathcal{O} \subset R$. So, all we have to do is to find all the \mathcal{O}-modules of $M_{A'}$ which are A'-free of rank d. Furthermore, via Corollary 2.15, we know that

$$R_{n-1} = \text{End}_{H^d_{A'_n}}(\mathcal{L}/m^{n-1}\mathcal{L}, M) = \{T \in R; T_{A'}(\mathcal{L}) \subseteq \mathcal{L} + m^{n-1}M_{A'}\}.$$

This will help us prove the statement about the endomorphisms mod m^n.

We first prove the statement about the existence of \mathcal{O}-liftings, then the one concerning endomorphisms and, finally, the one concerning isomorphism classes. In the sequel we will distinguish between the case in which \mathcal{O} is unramified, which is straightforward, and the case in which \mathcal{O} is ramified, which is a bit more involved.

Case e = 1. $\mathcal{O} = W_h$. In this case, the \mathcal{O}-modules of M of A-rank 1 are exactly

$$Ae_1, Ae_2, \ldots, Ae_h.$$

It is clear that $\mathcal{L} = Ae_1 + Ae_2 + \cdots + Ae_d$ is the only A-free \mathcal{O}-module of M satisfying $\mathcal{L}/p\mathcal{L} \simeq M/FM$. The pair (\mathcal{L}, M) is a Honda system over A which gives rise to a p-divisible group Γ over A that lifts Γ_0. It is also clear in this case that $R_{n-1} = \mathcal{O} + p^{n-1}R$ and that Γ is unique up to A-isomorphism.

ANNALES DE L'INSTITUT FOURIER
Case $e > 1$. In this case we have to find an A'-free O-module L of $M_{A'}$, such that $L/\pi L \simeq M/FM$.

We start by describing $\text{Im}(\text{End}_{D_k}(M) \xrightarrow{(-)} A') \text{End}_{A'}(M_{A'})$. We choose and fix the following A'-basis of $M_{A'}$

\[E_1 = (1 \otimes e_1, 0), \ E_2 = (1 \otimes e_2, 0), \ldots, \ E_d = (1 \otimes e_d, 0) \]

and

\[E_j = (0, p^{-1} \pi \otimes e_{j-d}), \ d + 1 \leq j \leq h. \]

We use this basis to identify $M_{A'}$ with $(A')^h$ and $\text{End}_{A'}(M_{A'})$ with the h by h matrices over A'. Using the description of $M_{A'}$, as in Remark 1.6 (i), for every T in R we get the following relation between T and $T_{A'}$:

\[
(4.5) \quad T = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \quad \text{and} \quad T_{A'} = \begin{bmatrix} A_1 & p^{-1} \pi A_2 \\ p^{-1} \pi A_3 & A_4 \end{bmatrix}
\]

where $A_1 \in M_d(A)$, $A_2 \in M_{d,h-d}(A)$, $A_3 \in M_{h-d,d}(A)$ and $A_4 \in M_{h-d}(A)$.

We choose an embedding $O \hookrightarrow R$ such that the embedding $W_f \subseteq O \hookrightarrow R$ corresponds to $W_h \hookrightarrow R$ as given by $a \mapsto T_a$ in (4.3) above. Then, for every element $\theta \in O$ we have

\[
(4.6) \quad T_\theta = T_{a_{h}} + \sum_{i=1}^{e-1} T_{a_{i}f} \gamma_{i}^{\theta}
\]

for some $a_{i}f$’s in W_h.

We claim that there exists an element θ in O which is primitive, i.e. $K = \mathbb{Q}_p(\theta)$, and verifies $v(\theta) = 1$. Indeed, using a Primitive Element Theorem type of argument, we can choose θ from among the elements $\{\omega + p^i \zeta\}_{i \geq 0}$, where ζ (resp. ω) in O is a primitive $p^f - 1$ root of unity (resp. root of an Eisenstein polynomial over W_f of degree e), in particular $K_f = \mathbb{Q}_p(\zeta)$ (resp. $K_f = K_f(\omega)$), where K_f is the fraction field of W_f. The characteristic polynomial of T_θ (resp. $T_{\theta,A'}$) is the minimal polynomial of θ over \mathbb{Z}_p. Hence T_θ (resp. $T_{\theta,A'}$) has h distinct eigenvalues, which are conjugate by $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$. Let \{\(w_1, w_2, \ldots, w_h\) \subseteq (A')^h be an A'-basis of $M_{A'}$ formed by eigenvectors of $T_{\theta,A'}$. It follows from (4.6) that the eigenvectors can be split into f subsets $C_l = \{w_1, w_{f+l}, \ldots, w_{(e-1)f+l}\}$, for $1 \leq l \leq f$, such that the elements of C_l have zeros on all positions 1 through h, which are not congruent to $l \mod f$. In fact, the elements in C_l, when viewed as elements of $(A')^e$ by considering only the entries congruent to $l \mod f$, are the eigenvectors of the e by e matrix T_l obtained from $T_{\theta,A'}$ by considering only the entries (i,j) with $i \equiv j \equiv l \pmod{f}$. Moreover, the characteristic polynomial of $T_{\theta,A'}$ is the product of the characteristic polynomials $\mu_l(X)$
of the T_l’s and $\mu_l(X)$ is the minimal polynomial of $\theta^{\sigma^{(i-1)u}}$ over W_f, for every l between 1 and f.

If $f \geq d$ and $l \leq d$ then T_l is

$$T_l = \begin{bmatrix}
a_h^{(i-1)u} & \pi a_h^{\sigma^{(i-1)u}} & \cdots & \pi a_h^{\sigma^{(i-1)u}} & \pi a_h^{\sigma^{(i-1)u}} \\
e \pi e - 1 a_f^{(i-1+f)u} & a_h^{(i-1+f)u} & \cdots & p a_3 f & p a_2 f \\
e \pi e - 1 a_{\sigma^{(i-1+(e-2)f)}} & a_{\sigma^{(i-1+(e-2)f)}} & \cdots & p a_{h-f} \\
e \pi e - 1 a_{h-f}^{(i-1+(e-1)f)u} & a_{h-f}^{(i-1+(e-1)f)u} & \cdots & a_f^{(i-1+(e-1)f)u} & a_h^{(i-1+(e-1)f)u}
\end{bmatrix}.$$

We choose arbitrary elements

$$B_l = \begin{bmatrix} B_1 & 0 & \cdots & 0 \\
0 & B_2 & \cdots & 0 \\
0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & B_f \\
B_{f+1} & 0 & \cdots & 0 \\
0 & B_{f+2} & \cdots & \cdots \\
0 & \cdots & 0 & B_{2f} \\
B_{h-f+1} & 0 & \cdots & 0 \\
0 & B_{h-f+2} & \cdots & 0 \\
0 & \cdots & 0 & B_h
\end{bmatrix}$$

in each of the subsets C_1, C_2, \ldots, C_f, respectively.

Writing out what it means for the vectors in (4.8), when viewed inside $(A')^e$, to be eigenvectors of the T_l’s we get the following values for the valuations of the entries

$$v(B_{lf+l}) = \begin{cases} e - i - 1 & \text{if } 1 \leq i \leq e - 1, \\ 0 & \text{if } i = 0 \end{cases}, \quad \text{if } f \geq d$$

and

$$v(B_l) > 0, \quad 1 \leq l \leq \min(f, d - f), \quad \text{if } f < d.$$

From (4.10) it follows that, in the case $f < d$ there are no A'-free O-modules L of $M_{A'}$ such that $L/\pi L \simeq M/FM$. Hence, in this case, there is no O-lifting of Γ_0.

\textit{Annales de l'Institut Fourier}
From now on we assume that $f \geq d$. Choose one element z_l in C_l for every $1 \leq l \leq d(\leq f)$ and define $L \subseteq M_{A'}$ to be

\[(4.11) \quad L = A'z_1 + A'z_2 + \cdots + A'z_d.\]

It is clear that L is an A'-free O-module of $M_{A'}$ such that $L/\pi L \cong M/FM$. Hence the pair (L, M) is a Honda system over A', which gives rise to a p-divisible group Γ over A' that lifts Γ_0. Moreover, it is clear that $O = \{\phi \in R; \phi_{A'}(L) \subseteq L\} = \text{End}_{M_{A'}}(L, M) = \text{End}_{A' - \text{gr}}(\Gamma)$. This proves the existence of the O-lifting.

We now prove (i), i.e. the statement about the endomorphisms mod m^n. We start by proving a result that holds for all p-divisible groups over A'.

We have the following result.

Proposition 4.6. — With notations as in the statement of Theorem 4.4, for all integers $n, m \geq 0$ we have

\[
\pi^n R_m \subseteq R_{n+m} \quad \text{and} \quad \pi^n R \cap R_{n+m} = \pi^n R_m.
\]

Proof. — We know, cf. (4.4) above, that $R_n = \{T \in R; T_{A'}(L) \subseteq L + m^n M_{A'}\}$. Let T be in R_m. Then $T_{A'}(L) \subset L + \pi^m M_{A'}$, so

\[
(\pi^n T)_{A'}(L) = (T_{\pi, A'} \circ T_{A'})(L) \subseteq T_{\pi, A'}(L + \pi^m M_{A'})
\]

\[
= \pi^n L + \pi^{n+m} M_{A'} \subseteq L + \pi^{n+m} M_{A'},
\]

where T_{π} is the image of T in πO via $O \hookrightarrow R$. Thus $\pi^n T$ is in R_{n+m} and the first part of the Proposition follows.

For the second part, the only thing to prove is the inclusion “\subseteq”. The other inclusion follows from the first part and from Remark 4.5. Let T be in $\pi^n R \cap R_{n+m}$. Then there is a U in R such that $T = \pi^n U$ and such that $\pi^n U_{A'}(L) \subseteq L + \pi^{n+m} M_{A'}$. It is clear that the last relation implies that $\pi^n U_{A'}(L)$ is actually included in $\pi^n L + \pi^{n+m} M_{A'}$, hence that $U_{A'}(L)$ is included in $L + \pi^{n+m} M_{A'}$. Therefore U is in R_m and T is in $\pi^n R_m$. \qed

This Proposition, in the case $m = 1$, implies that we always have an injection

\[(4.12) \quad 0 \rightarrow \frac{R}{R_1} \xrightarrow{\pi^n} \frac{R}{R_{n+1}}.\]

Thus $\dim_{k_f} \frac{R_n}{R_{n+1}} \geq \dim_{k_f} \frac{R}{R_1}$, where $k_f = \mathbb{F}_p$.\

Coming back to our O-lifting Γ and its Honda system (L, M), it is clear that $O + \pi^n R \subseteq R_n$ for all $n \geq 0$. So, taking (4.12) into account, all we have to prove is that

\[(4.13) \quad R_1 \subseteq O + \pi R.\]
We actually prove that $R_1 \subseteq W_f + \pi R$. Let $\phi = b_h + \sum_{i=1}^{h-1} b_i \gamma^i$ be an element in R_1. This means that $\phi A'(\mathcal{L}) \subseteq \mathcal{L} + \pi M_{A'}$. We may assume that ϕ is $b_h + \sum_{i=f}^{f-1} b_i \gamma^i$, because $\sum_{i=f}^{h-1} b_i \gamma^i \in \pi R$. Now, another nontrivial computation, cf. also Lemma 4.7 (a) below, shows that the conditions

$$\phi A'(z_j) \equiv c^j_1 z_1 + \cdots + c^j_d z_d \pmod{\pi}$$

with $1 \leq j \leq d$, imply

$$b^{\phi^{-1}}_h \equiv b_h \pmod{\pi} \quad \text{and} \quad b_i \equiv 0 \pmod{\pi} \quad \text{for} \quad 1 \leq i \leq f - 1.$$

At this point, we used the fact that for $d > 1$ we have $d < f$ and $h + 1 > 2f$. Hence b_h, which is an element of k_h, is actually in k_f. Therefore b_h is in W_f and $\phi - b_h$ is in πR. This proves (4.13) and, with it, the statement about the endomorphisms mod π^n.

Now, we prove (ii). We first remark that there are exactly e^d submodules \mathcal{L} of $M_{A'}$ that are A'-free \mathcal{O}-modules such that $\mathcal{L}/\pi \mathcal{L} \simeq M/\pi M$. Indeed, \mathcal{L} would admit an A'-basis of eigenvectors for the action of \mathcal{O}, i.e. a decomposition into a direct sum of A'-free \mathcal{O}-modules of $M_{A'}$ of rank 1. But these submodules are elements of the set $\{A'w_i; 1 \leq i \leq h\}$. Finally the condition $\mathcal{L}/\pi \mathcal{L} \simeq M/\pi M$ implies that \mathcal{L} is of the form

$$\mathcal{L} = A'w_{i_1} + \cdots + A'w_{i_d}$$

with w_{i_l} in C_l for $1 \leq l \leq d$. Let $I \in \Pi_{l=1}^d \{l + if; 0 \leq i \leq e - 1\}$ be a multi-index. Define \mathcal{L}_I as in (4.14) above, where $I = (i_1, \ldots, i_d)$. We use the notation I_l for i_l. The statement about the isomorphism classes of \mathcal{O}-liftings follows from the following lemma.

Lemma 4.7. — Fix a multi-index I.

(a) Let $T \in R^X$ be a D_r-automorphism of M such that $T_{A'}(\mathcal{L}_I) = \mathcal{L}_J$, for some multi-index J. Then

$$T_{A'}(A'w_{i_l}) = A'w_{J_l} \quad \text{and} \quad TU = UT$$

for every $1 \leq l \leq d$ and $U \in W_f \subset \mathcal{O} \subset R$.

(b) There is a bijection of sets

$$\{J; \text{there exists } T \in R^X \text{ with } T_{A'}(\mathcal{L}_I) = \mathcal{L}_J\} \longleftrightarrow \text{Gal}(\mathbb{K}/K_f)$$

where $\text{Gal}(\mathbb{K}/K_f)$ is the group of automorphisms of \mathbb{K} which fix $K_f = \text{Frac}(W_f)$.

We start by proving (a). Let $T = b_h + \sum_{i=1}^{h-1} b_i \gamma^i$, cf. (4.2). Recall, cf. (4.8) above, that for all $1 \leq l \leq d$ we can write

$$w_{b_l} = \sum_{i=0}^{e-1} B_{i+l}^i E_l E_{i+l}.$$
where \(b \in \{ I, J \} \) and the \(B^2_{l, f+l} \)'s are elements in \(A' \) satisfying (4.9). The fact that \(T_{A'}(\mathcal{L}_I) \) is included in \(\mathcal{L}_J \) means that, for all \(l \), we can write

\[
(4.15) \quad T_{A'}w_{l} = \sum_{r=1}^{d} c_{rl}w_{J, r}
\]

for some constants \(c_{rl} \)'s in \(A' \). Now, since the \(w_{J, r} \)'s have zeroes on all positions not congruent to \(r \) mod \(f \) and since \(r \) in (4.15) runs from 1 to \(d \), it follows that \(T_{A'}w_{l} \) has zeroes on all positions congruent to \(d+1, \ldots, f \) mod \(f \).

If \(T_{A'} = (T_{ij})_{1 \leq i, j \leq h} \), for \(1 \leq r, l \leq f \) we let \(T_{rl} = (T_{lf+r, lf+r+l})_{0 \leq i, j \leq e-1} \) be the \(e \) by \(e \) matrix obtained from \(T_{A'} \) by keeping only the elements on the rows congruent to \(r \) mod \(f \) and on the columns congruent to \(l \) mod \(f \). The fact that \(T_{A'}w_{l} \) has zeroes on all positions congruent to \(d+1, \ldots, f \) mod \(f \) translates into the following relations

\[
T_{rl} \begin{pmatrix}
B^l_i \\
B^l_{f+l-i} \\
\vdots \\
B^l_{h-f+l-1}
\end{pmatrix} = 0 \quad \text{for} \quad d+1 \leq r \leq f \quad \text{and} \quad 1 \leq l \leq d.
\]

This implies that \(T_{rl} = 0 \) and, with it, that \(b_{i, f+r-l} = 0 \) for all \(l \) between 1 and \(d \), for all \(r \) between \(d+1 \) and \(f \) and for all \(i \) between 0 and \(e-1 \). It is easy to see that we have the following equality of sets

\[
\{1, 2, \ldots, f - 1\} = \{r - l; d + 1 \leq r \leq f, 1 \leq l \leq d\}.
\]

Therefore \(b_{i, f+r} = 0 \) for all \(1 \leq r \leq f - 1 \) and \(0 \leq i \leq e - 1 \). Hence, \(T = b_h + \sum_{i=1}^{e-1} b_{i, f} \gamma^i f \). It is clear that this proves (a).

(b) Let \(\eta: \{ J; \text{there exists} \ T \in R^\times \text{ with} \ T_{A'}(\mathcal{L}_I) = \mathcal{L}_J \} \to \text{Gal}(\mathbb{K}/K_f) \) be defined as

\[
\eta(J) = \iota_T|_{\mathbb{K}}
\]

where \(T \) is in \(R^\times \) such that \(T_{A'}(\mathcal{L}_I) = \mathcal{L}_J \) and \(\iota_T: \mathbb{D}_{h, d} \to \mathbb{D}_{h, d} \) is the inner automorphism \(x \mapsto T^{-1}xT \) of \(\mathbb{D}_{h, d} \). Also, let \(\delta: \text{Gal}(\mathbb{K}/K_f) \to \{ J; \text{there exists} \ T \in R^\times \text{ with} \ T_{A'}(\mathcal{L}_I) = \mathcal{L}_J \} \) be defined as

\[
\delta(\tau) = J
\]

where \(J \) is defined by the relation \(T_{A'}(\mathcal{L}_I) = \mathcal{L}_J \), with \(T \in R^\times \) such that \(\iota_T \) extends \(\tau: \mathbb{K} \to \mathbb{K} \) (such a \(T \) exists by Skolem-Noether).

All we need to do is to prove that \(\eta \) and \(\delta \) are well defined, because it is clear that they are inverse to each other.

We start with \(\eta \). The first thing we need to prove is that if \(T \in R^\times \) satisfies \(T_{A'}(\mathcal{L}_I) = \mathcal{L}_J \) then \(\iota_T(\mathbb{K}) \subseteq \mathbb{K} \). Since \(T_{0, A'}(\mathcal{L}_J) \subseteq \mathcal{L}_J \), it follows
that \((T^{-1}T_\theta T)_{A'}(\mathcal{L}_I) \subseteq \mathcal{L}_I\). From (a) it follows, in particular, that
\[(T^{-1}T_\theta T)_{A'}(A'w_{I_1}) \subseteq A'w_{I_1},\]
which, in turn, implies that
\[(T^{-1}T_\theta T)_{A'}T_{\theta,A'}w_{I_1} = T_{\theta,A'}(T^{-1}T_\theta T)_{A'}w_{I_1}.
\]
This last relation implies that \(T^{-1}T_\theta T\) commutes with \(T_\theta\), hence \(\nu_T(T_\theta) = T^{-1}T_\theta T\) must be in \(\mathcal{O} \hookrightarrow R\). Since \(\mathbb{K} = \mathbb{Q}_p(T_\theta) \subset \mathbb{D}_{h,d}\), it follows that \(\nu_T(\mathbb{K}) \subseteq \mathbb{K}\). The fact that \(\nu_T\) fixes \(K_f\) also follows from (a).

The second thing we need to prove is that if \(T_1\) and \(T_2\) are elements of \(R^\times\) such that \(T_1,A'(\mathcal{L}_I) = T_2,A'(\mathcal{L}_I)\) then \(\eta(T_1) = \eta(T_2)\). As above, since \((T_1T_2^{-1})_{A'}(\mathcal{L}_I) = \mathcal{L}_I\), we get that \(T_1T_2^{-1}\) commutes with \(T_\theta\), hence \(T_1T_2^{-1}\) must be in \(\mathcal{O} \hookrightarrow R\). It is clear that this implies that \(\nu_{T_1}|_{\mathbb{K}} = \nu_{T_2}|_{\mathbb{K}}\). Thus, \(\eta\) is well defined.

We prove now that \(\delta\) is well defined. First we have to prove that if \(T \in R^\times\) satisfies \(\nu_T(\mathbb{K}) \subseteq \mathbb{K}\) then \(T_{A'}(\mathcal{L}_I) = \mathcal{L}_J\) for some \(J\). The fact that \(\nu_T|_{\mathbb{K}}\) is an automorphism of \(\mathbb{K}\) implies, in particular, that \(\nu_T(T_\theta) = T^{-1}T_\theta T\) is in \(\mathcal{O} = \text{End}_{H_{A'}}(\mathcal{L}_I, M)\). Hence \((T^{-1}T_\theta T)_{A'}(\mathcal{L}_I) \subseteq \mathcal{L}_I\), which, together with the fact that \(\nu_T\) fixes \(K_f\), implies that \(T_{A'}(\mathcal{L}_I)\) is an \(A'\)-free \(\mathcal{O}\)-module of \(M_{A'}\) such that \(T_{A'}(\mathcal{L}_I)/\pi T_{A'}(\mathcal{L}_I) \simeq M/FM\). We saw in the paragraph before our Lemma, that this implies that \(T_{A'}(\mathcal{L}_I) = \mathcal{L}_J\) for some \(J\).

Finally, we have to prove that if \(T_1\) and \(T_2\) are elements of \(R^\times\) such that \(\nu_{T_1}|_{\mathbb{K}} = \nu_{T_2}|_{\mathbb{K}}\) then \(T_{1,A'}(\mathcal{L}_I) = T_{2,A'}(\mathcal{L}_I)\). The equality \(\nu_{T_1}|_{\mathbb{K}} = \nu_{T_2}|_{\mathbb{K}}\) implies that \(T_1^{-1}T_2\) is in \(\mathcal{O} = \text{End}_{H_{A'}}(\mathcal{L}_I, M)\). Hence \((T_1^{-1}T_2)_{A'}(\mathcal{L}_I) = \mathcal{L}_I\), i.e. \(T_{1,A'}(\mathcal{L}_I) = T_{2,A'}(\mathcal{L}_I)\). The proof of Lemma 4.7 and, with it, the proof of our Theorem is complete now. \(\square\)

BIBLIOGRAPHY

Manuscrit reçu le 21 novembre 2006,
accepté le 25 avril 2008.

Ioan BERBEC
University of California at Berkeley
Department of Mathematics
Berkeley, CA 94720 (USA)
ioan@math.berkeley.edu