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SELMER GROUPS FOR ELLIPTIC CURVES IN
Zdl -EXTENSIONS OF FUNCTION FIELDS OF

CHARACTERISTIC p

by Andrea BANDINI & Ignazio LONGHI

Abstract. — Let F be a function field of characteristic p > 0, F/F a Zdl -
extension (for some prime l 6= p) and E/F a non-isotrivial elliptic curve. We study
the behaviour of the r-parts of the Selmer groups (r any prime) in the subextensions
of F via appropriate versions of Mazur’s Control Theorem. As a consequence we
prove that the limit of the Selmer groups is a cofinitely generated (in some cases
cotorsion) module over the Iwasawa algebra of F/F .

Résumé. — Soit F un corps de fonctions de caractéristique p > 0, F/F une
Zdl -extension (pour un nombre premier l 6= p) et E/F une courbe elliptique non-
isotrivale. Nous étudions le comportement des r-parties des groupes de Selmer pour
les sous-extensions de F par des variantes du Théorème de contrôle de Mazur.
Conséquemment, nous démontrons que la limite des groupes de Selmer est un
module finiment co-engendré (parfois de cotorsion) sur l’algèbre d’Iwasawa de F/F .

1. Introduction

Let F be a function field (in the whole paper function field means a field
of transcendence degree 1 over its constant field) with constant field F an
intermediate extension between Fp (the field with p elements) and a (fixed)
algebraic closure Fp of Fp. Let E/F be a non-isotrivial elliptic curve (i.e.,
j(E) /∈ F) and assume that E has good or split multiplicative reduction at
all primes of F (it is always possible to reduce to this situation by simply
taking a finite extension of F ).

Let l be a prime different from p, let F/F be a Zdl -extension of F with
Galois group Γ (the case l = p has been developed in [2] for global function
fields). Denote by Λ := Zl[[Γ]] the associated Iwasawa algebra. Let F(l)

p be

Keywords: Selmer groups, elliptic curves, function fields, Iwasawa theory.
Math. classification: 11G05, 11R23.



2302 Andrea BANDINI & Ignazio LONGHI

the unique Zl-extension of Fp. If F(l)
p 6⊂ F then there is only one Zl-extension

of F , namely the arithmetic one, obtained by extending scalars from F
to F(l)

p F (see Proposition 4.3); we recall that this extension is everywhere
unramified. On the other hand, if, for example, F contains µl∞ (the roots
of unity of l-power order) then Kummer theory produces lots of examples
of disjoint Zl-extensions of F (see the Appendix).

In section 2 we will define the r-part (r any prime) of the Selmer group
of E, SelE(L)r, for any algebraic extension L of F . Our goal is to study the
structure of SelE(F)r (actually of its Pontrjagin dual) as a Zr[[Γ]]-module.

Not surprisingly the most interesting case happens to be r = l. Let S be
the Pontrjagin dual of SelE(F)l: its structure depends, among other things,
on the base field F. Namely we have different results depending on whether
F(l)
p ⊂ F or not. In section 4, we shall prove the following

Theorem 1.1. — Assume that F does not contain F(l)
p . Then S is a

finitely generated Λ-module. Moreover if SelE(F )l is finite then S is Λ-
torsion.

Theorem 1.2. — Assume that only finitely many primes of F are ram-
ified in F/F and that F contains F(l)

p . Then S is a finitely generated Λ-
module.

Moreover if:
1. the ramified primes are of good reduction for E;
2. for any ramified prime v, E[l∞](Fv) is finite (Fv is the completion

of F at v);
3. SelE(F )l is finite,

then S is Λ-torsion.

Remark 1.3. — When F is a global function field, according to the
Birch and Swinnerton-Dyer conjecture, SelE(F )l is finite if and only if
rankE(F ) = 0.

When F/F is a Zl-extension and S is Λ-torsion it is quite easy to prove
that E(F) is finitely generated (see Corollary 4.15). The behaviour of the
rank of E in an infinite tower of extensions of a function fieldK (in any char-
acteristic) has been addressed by many authors. Among others, Shioda [18],
Fastenberg [5] and Silverman [22] have provided examples of elliptic curves
with bounded rank in towers of function fields in characteristic 0 and Ul-
mer [25] gives instances of the same phenomenon for elliptic curves over
Fq(t1/r

m) (r a prime not dividing q). In the opposite direction examples
of elliptic curves with unbounded rank have been given by Shioda [18] for
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SELMER GROUPS OVER FUNCTION FIELDS 2303

the tower Fp(t1/r
m) and Ulmer [24] for Fp(t1/r

m). In the same spirit the
structure of Selmer groups has been studied by Ellenberg [4] from a slightly
different (more geometric) viewpoint using formulas on Euler characteristic
for Λ-modules.

Since Mazur’s classical work [10], duals of Selmer groups have provided
the algebraic counterpart for p-adic L-functions in Iwasawa theory of ellip-
tic curves over number fields. In section 4.3.2 we speculate about such an
application of our results when F is a global field.

The main tools for the proofs of Theorems 1.1 and 1.2 are appropriate
versions of Mazur’s Control Theorem (originally proved in [10]; for a differ-
ent approach, closer to ours, see [6] and [7]), which we prove in section 4 as
well, and Theorem 3.6, a generalization of Nakayama’s Lemma which has
been proved in [1]. We follow some of the basic ideas developed in [2] for
the case l = p.

Moreover we can prove a version of the control theorem for SelE(F)r for
r 6= l as well, but, unfortunately, SelE(F)r is a module over Zr[[Γ]], a ring
which we know very little about. Nevertheless we can say something on
the structure of SelE(F)r and we gathered the results on that module in
section 5.

The paper ends with a short Appendix which provides a classification of
Zdl -extensions of a field F containing µl∞ .

Acknowledgements. — The authors would like to thank S. Petersen for
comments on an earlier version and for pointing out the idea for the proof
of Proposition 4.3, F. Trihan and F. Andreatta for helpful suggestions and
discussions. We are grateful to the anonymous referee for comments which
led to improvements in the paper.

While this paper was written, the second author was supported by a
postdoctoral scholarship of Università di Milano.

2. The setting and the Selmer groups
2.1. Notations

We list some notations which will be used throughout the paper and
briefly describe the setting in which the theory will be developed.

2.1.1. Fields

Let L be a field: then Lsep will denote a separable algebraic closure of
L and we put GL := Gal(Lsep/L). Moreover L will denote an algebraic
closure of L.

TOME 59 (2009), FASCICULE 6



2304 Andrea BANDINI & Ignazio LONGHI

If L is a global field (or an algebraic extension of such),ML will be its
set of places. For any place v ∈ML we let Lv be the completion of L at v,
Ov the ring of integers of Lv, ordv the valuation associated to v and Lv the
residue field.

As usual, µn denotes the group of n-th roots of 1.
As stated in the introduction, we fix a function field F of characteristic
p > 0 and an algebraic closure F . Its constant field will be denoted by F.
Then F is generated over F by a finite number of transcendental elements
z0, . . . , zn subjected to algebraic relations. These relations are defined over
some finite field Fq ⊂ F for q � 0. Let F0 := Fq(z0, . . . , zn): then F0 is a
global field, F = FF0 and Gal(F/F0) ' Gal(F/Fq).

For any place v ∈ MF we choose Fv and an embedding F ↪→ Fv, so
to get a corresponding inclusion GFv ↪→ GF . All algebraic extensions of F
(resp. of Fv) will be assumed to be contained in F (resp. in Fv).

Script letters will denote infinite extensions of F ; in particular F/F will
be a Zdl -extension with l a fixed prime different from p. We shall consider
a sequence of finite extensions of F such that

F ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · ⊂
⋃
Fn = F .

In this setting we let Γ := Gal(F/F ) and Γn := Gal(F/Fn) (for any n > 0).
For γ an element in a profinite group, 〈γ〉 will denote the closed subgroup

topologically generated by γ.

2.1.2. Elliptic curves

We fix a non-isotrivial elliptic curve E/F , having split multiplicative re-
duction at all places supporting its conductor. The reader is reminded that
then at such places E is isomorphic to a Tate curve, i.e., E(Fv) ' F ∗v /qZE,v
for some qE,v (the Tate period at v) with ordv(qE,v) = − ordv(j(E)) > 0.

For any positive integer n let E[n] be the scheme of n-torsion points.
Moreover, for any prime r, let E[r∞] := lim

→
E[rn].

By the theory of the Tate curve, if v is of bad reduction for E and r 6= p
one has an isomorphism of Galois modules

E[r∞](Fv) ' 〈µr∞ , r∞
√
qE,v〉/qZE,v.

For any v ∈ MF we choose a minimal Weierstrass equation for E. Let Ev
be the reduction of E modulo v and for any point P ∈ E let Pv be its
image in Ev.

For all basic facts about elliptic curves, the reader is referred to Silver-
man’s books [20] and [21].

ANNALES DE L’INSTITUT FOURIER
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We remark that by increasing q (if necessary) we can (and will) assume
that E is defined over the field F0 described in section 2.1.1.

2.1.3. Duals

For X a topological abelian group, we denote its Pontrjagin dual by
X∨ := Homcont(X,C∗). In the cases considered in this paper, X will be a
(mostly discrete) topological Zr-module for some prime r, so that X∨ =
Homcont(X,Qr/Zr) and it has a natural structure of Zr-module.

The reader is reminded that to say that an R-module X (R any ring) is
cofinitely generated means that X∨ is a finitely generated R-module. Since
(X∨)∨ ' X, a module X is Zr-cofinitely generated if and only if it is the
direct sum of a finite (r-primary) abelian group with (Qr/Zr)t for some
t ∈ N; in particular, letting Xdiv be the divisible part of X, we see that
X/Xdiv is finite.

2.2. Selmer groups

We shall deal with torsion subschemes of the elliptic curve E. Since
charF = p, in order to deal with the p-torsion we need to consider flat
cohomology of group schemes to define the Selmer groups in that case.

For the basic theory of sites and cohomology on a site see [11, Chapters
II, III]. We define our Selmer groups via flat cohomology (for the relation
with classical Galois cohomology see Remark 2.2 below) so, when we write
a scheme X, we always mean the site Xfl.

Let L be an algebraic extension of F and XL := SpecL. For any positive
integer m the group schemes E[m] and E define sheaves on XL (see [11,
II.1.7]): for example E[m](XL) := E[m](L). Consider the exact sequence

E[m] ↪→ E m−→→E

and take flat cohomology to get

E(L)/mE(L) ↪→ H1
fl(XL, E[m])→ H1

fl(XL, E).

In particular let m run through the powers rn of a prime r. Taking direct
limits one gets an injective map (a “Kummer homomorphism”)

κ : E(L)⊗Qr/Zr ↪→ lim
−→
n

H1
fl(XL, E[rn]) =: H1

fl(XL, E[r∞]).

As above one can build local Kummer maps for any place v ∈ML
κv : E(Lv)⊗Qr/Zr ↪→ H1

fl(XLv , E[r∞])

where XLv := SpecLv.

TOME 59 (2009), FASCICULE 6



2306 Andrea BANDINI & Ignazio LONGHI

Definition 2.1. — The r-part of the Selmer group of E over L, denoted
by SelE(L)r, is defined to be

SelE(L)r := Ker
{
H1
fl(XL, E[r∞])→

∏
v∈ML

H1
fl(XLv , E[r∞])/ Im κv

}
where the map is the product of the natural restrictions between cohomol-
ogy groups.

The reader is reminded that if L/F is finite then SelE(L)r is a cofinitely
generated Zr-module. Moreover the Tate-Shafarevich group X(E/L) fits
into the exact sequence

E(L)⊗Qr/Zr ↪→ SelE(L)r � X(E/L)[r∞].

According to the function field version of the Birch and Swinnerton-Dyer
conjecture, X(E/L) is finite for any global function field L. Applying to
this last sequence the exact functor Hom(·,Qr/Zr), it follows that

rankZr SelE(L)∨r = rankZE(L)

(recall that cohomology groups, hence the Selmer groups, are endowed with
the discrete topology).

Fix a Zdl -extension F/F with l a prime different from p. We will study the
behaviour of the r-Selmer groups while L varies through the subextensions
Fn of F/F . Such groups admit natural actions of Zr, because of the torsion
of E, and of Γ = Gal(F/F ). Hence they are modules over the Iwasawa
algebra Zr[[Γ]]. When r = l this algebra is (noncanonically) isomorphic to
the ring of formal power series Zl[[T1, . . . , Td]] (while, for r 6= l, Zr[[Γ]] is
more mysterious and we know virtually nothing about its structure).

In particular we will be concerned with the natural maps between Zr[[Γ]]-
modules

SelE(Fn)r → SelE(F)Γn
r .

Remark 2.2. — To define SelE(L)r (with r 6= p) we can also use the
sequence

E[rn](F ) ↪→ E(F sep) r
n

−→→E(F sep)
and classical Galois (= étale) cohomology since, in this case,

H1
fl(XL, E[rn]) ' H1

et(XL, E[rn]) ' H1(GL, E[rn](F ))

(see [11, III.3.9]). To ease notations in this case we shall write Hi(L, ·)
instead of Hi(GL, ·) ' Hifl(XL, ·) and write E[n] for E[n](F ), putting
E[r∞] :=

⋃
E[rn]. In this case the Kummer map

κ : E(L)⊗Qr/Zr ↪→ H1(L,E[r∞])

ANNALES DE L’INSTITUT FOURIER
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has an explicit description as follows. Let α ∈ E(L)⊗Qr/Zr be represented
by α = P ⊗ a

rk
(a ∈ Z) and let Q ∈ E(Lsep) be such that aP = rkQ. Then

κ(α) = ϕα, where ϕα(σ) := σ(Q)−Q for any σ ∈ GL.

3. Auxiliary lemmas

We gather here the results which are needed for the proofs of the main
theorems. We start by giving a more precise description of Im κv (following
the path traced by Greenberg in [6] and [7]). In our situation the local
conditions for the Selmer groups are easily seen to be often trivial (i.e.,
Im κv = 0 in general), a fact which is essentially due to r 6= charF .

Proposition 3.1. — Let L be the completion of an algebraic extension
of Fv and r a prime different from p: then E(L) ⊗ Qr/Zr = 0 (i.e., the
Kummer map has trivial image).

Proof. — This is an easy exercise: see e.g. [2, Proposition 3.3]. �

The following two lemmas deal with torsion points in abelian extensions
of function fields of characteristic p both in the global and local case.

Lemma 3.2. — Let F/F be a Zdl -extension of function fields of char-
acteristic p > 0 and let E/F be a non-isotrivial elliptic curve. Then the
group E(F)tor is finite.

Proof (sketch). — One proves a stronger statement: namely, that
E(L)tor is finite for any abelian extension L/F . Finiteness of E[p∞](L)
follows from the fact that points in E[p∞] are inseparable over F (a proof
can be found e.g. in [3, Proposition 3.8]). For the prime-to-p part, it is
shown in [3, Theorem 4.2] that the claim is a consequence of the following
facts:

1. Gal(F (E[r])/F ) contains SL2(Fr) for almost all primes r;
2. Gal(F (E[r∞])/F ) contains Sn for some n (for any prime r 6= p)

where Sn is the kernel of the natural reduction map SL2(Zr) →
SL2(Z/rnZ).

Both statements follow from a theorem of Igusa [9]. For a clear statement
we refer to [3], where however appears the hypothesis that F is global. So
here we just show how to deduce 1 and 2 in the case F is not global.

Let F0 be the global field described in section 2.1.1 and let F ′ = F ∩
F0(E[r∞]) (see the diagram below). The group Gal(F ′/F0) is abelian be-
cause it is a quotient of Gal(F/F0) ' Gal(F/Fq). Since Gal(F ′/F0) '

TOME 59 (2009), FASCICULE 6



2308 Andrea BANDINI & Ignazio LONGHI

Gal(F0(E[r∞])/F0)/Gal(F0(E[r∞])/F ′), one has that Gal(F0(E[r∞])/F ′)
contains the commutators of Gal(F0(E[r∞])/F0). By Igusa’s theorem
Gal(F0(E[r∞])/F0) ⊃ Sn therefore

S2n+2 ⊂ [Sn, Sn] ⊂ Gal(F0(E[r∞])/F ′)

(for the inclusion on the left see e.g. [3, Lemma 4.1]). Since FF0(E[r∞]) =
F (E[r∞]) and the extensions F/F ′ and F0(E[r∞])/F ′ are disjoint, one gets
Gal(F (E[r∞])/F ) ' Gal(F0(E[r∞])/F ′) so Gal(F (E[r∞])/F ) ⊃ S2n+2 as
well.

F (E[r∞])

lllllllllllll
⊃[Sn,Sn]⊃S2n+2

OOOOOOOOOOOOO

F0(E[r∞])
⊃[Sn,Sn]

RRRRRRRRRRRRR

Sn⊂

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
F

ppppppppppppp

F ′ = F0(E[r∞]) ∩ F

F0

This proves 2. The same proof works for 1 as well (with r in place of r∞),
remembering that SL2(Fr) is its own commutator subgroup for all primes
p > 5. �

Lemma 3.3. — LetK be a field of characteristic p complete with respect
to a discrete valuation v and with residue field K ⊂ Fp. Let r be a prime
different from p and assume that K does not contain F(r)

p (the Zr-extension
of Fp). Let E/K be a non-isotrivial elliptic curve. Then E[r∞](K) is finite.

Proof. — Let t be a uniformizer: then K = K((t)) and exists s such
that E is defined over K0 := Fs((t)). Since K0 is a local field it is easy to
see that E[r∞](K0) is finite. Moreover since F(r)

p 6⊂ K, the Galois group
Gal(K/K0) ' Gal(K/Fs) contains no copies of Zr.

If E[r∞](K) is infinite then choose an infinite sequence of points Pn ∈
E[rn](K) such that rPn+1 = Pn for any n. Let K ′ = K0({Pn}n∈N) and P
the subgroup of E[r∞] generated by the Pn’s. Then K ′/K0 is an infinite
extension and, since K ′ ⊂ K, one has

Gal(K/K0) � Gal(K ′/K0) ↪→ Aut(P) ' Z∗r :

ANNALES DE L’INSTITUT FOURIER



SELMER GROUPS OVER FUNCTION FIELDS 2309

contradiction. �

Lemma 3.4. — Let Γ ' Zdl and B a cofinitely generated discrete Zl-
module with a continuous Γ-action. Assume that there exists a set γ1, . . . , γd
of independent topological generators of Γ such that B〈γ1〉 is finite. Then,
with b := max

{
|B/Bdiv|, |B〈γ1〉|

}
, one has

|H1(Γ, B)| 6 bd and |H2(Γ, B)| 6 b
d(d−1)

2 .

Proof. — If B is finite then b = |B| and the proof is in [2, Lemma 4.1].
For the other case fix a set of independent topological generators of Γ as
above and put γ := γ1. Consider the exact sequence

0 = B〈γ〉div ↪→ Bdiv
γ−1
−−→ Bdiv � Bdiv/(γ − 1)Bdiv

(because of the hypothesis on B). Taking duals one finds a sequence

(Bdiv/(γ − 1)Bdiv)∨ ↪→ (Bdiv)∨ � (Bdiv)∨ ' Ztl

(for some finite t) and, counting ranks,

rankZl(Bdiv/(γ − 1)Bdiv)∨ = 0.

Therefore (Bdiv/(γ−1)Bdiv)∨ is finite and, since Ztl has no nontrivial finite
subgroup, one finds

Bdiv/(γ − 1)Bdiv = 0.

Hence Bdiv = (γ − 1)Bdiv ⊂ (γ − 1)B ⊂ B yields

|B/(γ − 1)B| 6 |B/Bdiv|.

Now we use induction on d. For d = 1 the equality Γ = 〈γ〉 implies
H1(Γ, B) ' B/(γ−1)B and H2(Γ, B) = 0 (because Zl has l-cohomological
dimension 1, see [14, Proposition 3.5.9]).

For d > 1 let Γ/〈γ〉 =: Γ′ ' Zd−1
l . The inflation restriction sequence

H1(Γ′, B〈γ〉) ↪→ H1(Γ, B)→ H1(〈γ〉, B)

yields
|H1(Γ, B)| 6 |H1(Γ′, B〈γ〉)| |H1(〈γ〉, B)| 6 bd−1b.

Moreover sinceHn(〈γ〉, B) = 0 for any n > 2, the Hochschild-Serre spectral
sequence (see [14, Theorem 2.1.5 and Exercise 5, page 96]) gives an exact
sequence

H2(Γ′, B〈γ〉)→ H2(Γ, B)→ H1(Γ′,H1(〈γ〉, B)).

TOME 59 (2009), FASCICULE 6
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By induction and the bound on |H1(〈γ〉, B)| one has

|H2(Γ, B)| 6 |H2(Γ′, B〈γ〉)| |H1(Γ′,H1(〈γ〉, B))|

6 b
(d−1)(d−2)

2 bd−1 = b
d(d−1)

2 .

�

Remark 3.5. — Notice that if d = 1 we have proved a slightly stronger
statement, namely that

BΓ finite =⇒ |H1(Γ, B)| 6 |B/Bdiv|.

To conclude we mention the version of Nakayama’s Lemma we are going
to use in what follows: its proof (and further generalizations) can be found
in [1].

Theorem 3.6. — Let Λ be a compact topological ring with 1 and let I
be an ideal such that In → 0. Assume that X is a profinite Λ-module. If
X/IX is a finitely generated Λ/I-module then X is a finitely generated Λ-
module and the number of generators of X over Λ is at most the number of
generators of X/IX over Λ/I. Moreover if Λ = Zl[[Γ]], I := Ker{Λ→ Zl}
is the augmentation ideal and X/IX is finite then X is Λ-torsion.

4. Control theorems for SelE(F)r (r 6= p)

Before going on with the main theorems we describe the extensions we
are going to deal with. We recall that F(r)

p denotes the unique Zr-extension
of Fp.

Lemma 4.1. — For any prime r 6= p, the following statements are equiv-
alent:

1. F(r)
p ⊆ F;

2. µr∞ ⊂ F(µr);
3. Zr ↪→ Gal(F/Fp).

Proof. — Obvious, just recall that

Gal(Fp/Fp) ' Ẑ :=
∏
r

Zr

and
F(r)
p = Fp(µr∞)Gal(Fp(µr)/Fp).

�
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Lemma 4.2. — Let v be any place of F , w a place of F dividing v and
Γv := Gal(Fw/Fv). One has that:

1. if µl∞ 6⊂ Fv, then

Γv '

{
Zl if v is inert
0 otherwise

;

2. if µl∞ ⊂ Fv, then

Γv '

{
Zl if v is totally ramified
0 otherwise

.

Proof. — For any finite subextension L/Fv of Fw/Fv we have an exact
sequence

I(L/Fv) ↪→ Gal(L/Fv) � Gal(L/Fv)

where I denotes the inertia subgroup. Since Fw/Fv is tamely ramified, there
is an injective homomorphism I(L/Fv) ↪→ F∗v (see e.g. [17, IV, 2, Corollary
1 of Proposition 7]), hence |I(L/Fv)| 6 |µl∞(Fv)|. There are two cases.

Case 1: µl∞ 6⊂ Fv. Since I(Fw/Fv) is a submodule of the free Zl-
module Γv, it follows from the boundedness of |µl∞(Fv)| and the equal-
ity I(Fw/Fv) = lim

←
I(L/Fv) that all these groups are trivial. Therefore,

either Γv ' Gal(F(l)
v /Fv) and Fw is the constant field extension F(l)

v Fv or
Fw = Fv.

Case 2: µl∞ ⊂ Fv. In this case F(l)
p ⊂ Fv and Fv has no l-extensions:

hence either Fw = Fv or Fw/Fv is totally ramified. One can apply Kummer
theory to the classification of Zl-extensions, as described in the Appendix.
Let t be a uniformizer of the complete discrete valuation field Fv: from
F ∗v = F∗v × tZ × (1-units) it follows that the l-adic completion of F ∗v is tZl ,
hence the only Zl-extension is Fv( l

∞√
t). �

Proposition 4.3. — If F(l)
p 6⊂ F then F has a unique Zl-extension,

namely the constant field extension F(l)
p F .

For the proof, we remind the reader that F is the function field of a
smooth, projective connected curve C defined over F. Remembering that
F = FF0, one sees that C can be obtained by base change from a curve C0
defined over Fq. Let g be the genus of C0 and C.

Proof. — Fix a geometric point P of C. By Lemma 4.2 one sees that a
Zdl -extension F/F is everywhere unramified: therefore there is a surjective
morphism φ from the fundamental group π1(C, P ) to Gal(F/F ).
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We can assume that the point P lies in C(F) (otherwise just take a finite
extension of F whose constant field obviously still does not contain F(l)

p ).
Then we have a split exact sequence of fundamental groups

π1(C × Fp, P ) � � // π1(C, P ) // // GF

zz
,

that is, π1(C, P ) ' π1(C × Fp, P ) o GF. Since Gal(F/F ) is abelian, the
morphism φ factors through π1(C ×Fp, P )aboGF (notice that this semidi-
rect product is a quotient of π1(C, P ), since the GF action on π1(C ×Fp, P )
preserves the commutator subgroup). It is well-known (see e.g. [12, Propo-
sition 9.1] together with [8, XI, Théorème 2.1]) that one can identify the
group π1(C × Fp, P )ab with the (full) Tate module of Jac(C).

Since Gal(F/F ) is a pro-l group (and the [pro]-primary-decomposition
of a [profinite] abelian group is preserved by automorphisms) the morphism
φ factors further through Tl(Jac(C))oGF. The following lemma shows that
the maximal abelian quotient of Tl(Jac(C))oGF has the form A×GF, where
A is a finite group: the proposition is an immediate consequence. �

Lemma 4.4. — If F(l)
p 6⊂F then the commutator subgroup of Tl(Jac(C))o

GF has finite index in Tl(Jac(C)).

Proof. — Since GF is abelian the commutators are contained in
Tl(Jac(C)). To ease notation, shorten Tl(Jac(C)) to T . We write the group
law in T oGF as

(a, g)(b, h) = (a+ gb, gh)
and let ρ : GF → AutZl(T ) be the homomorphism corresponding to the
action of GF on T . Then

(a, e)(0, h)(a, e)−1(0, h)−1 = (a, h)(−a, e)(0, h−1)

= (a− ha, h)(0, h−1) = (a− ha, e)

shows that to prove our claim it is enough to find h ∈ GF such that (1 −
ρ(h))T has finite index in T . Observe that since T ' Z2g

l the operator
1− ρ(h) belongs to EndZl(T ) 'M2g(Zl); an easy reasoning shows that

[T : (1− ρ(h))T ] = |det(1− ρ(h))|−1
l

(where | · |l is normalized so that |l|l := l−1). Hence we just need det(1 −
ρ(h)) 6= 0.

Let G(l)
Fq and G(l)

F be respectively the maximal pro-l subgroup of GFq and
GF: the hypothesis F(l)

p 6⊂ F implies [G(l)
Fq : G(l)

F ] < ∞. Since all prime-to-
l subgroups of AutZl(T ) ' GL2g(Zl) are finite so is the index [ρ(GFq ) :
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ρ(G(l)
Fq )]. Hence there exists h ∈ G(l)

F such that ρ(h) = ρ(Frobnq ) for some n
(where Frobq is the “canonical” generator of GFq ).

The proof is concluded remarking the well-known fact that

det(1− ρ(Frobnq )) = | Jac(C0)(Fqn)|

and the right hand-side is not 0. �

We are now ready to prove two versions of the control theorem appro-
priate for our setting.

4.1. The case r = l with F(l)
p 6⊂ F

Theorem 4.5. — Assume F(l)
p 6⊂ F. Then the natural maps

SelE(Fn)l → SelE(F)Γn
l

have finite kernels and cokernels both of bounded order.

Proof. — To ease notations, for any field L let G(L) be the image of
H1(L,E[l∞]) in the product∏

w∈ML

H1(Lw, E[l∞])/ Im κw =
∏
w∈ML

H1(Lw, E[l∞])

(by Proposition 3.1). We have a commutative diagram with exact rows

SelE(Fn)l

an

��

� � // H1(Fn, E[l∞])

bn

��

// // G(Fn)

cn

��
SelE(F)Γn

l
� � // H1(F , E[l∞])Γn // G(F)

and we are interested in Ker an and Coker an.
By the Hochschild-Serre spectral sequence one gets

Ker bn ' H1(Γn, E[l∞](F))

and
Coker bn ⊆ H2(Γn, E[l∞](F)).

By Lemma 3.2 the group E[l∞](F) is finite and by Proposition 4.3 Γn ' Zl.
So Lemma 3.4 immediately gives

|Ker bn| 6 |E[l∞](F)| and Coker bn = 0.

By the snake lemma, this is enough to show that Ker an is finite and
bounded independently of n.
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For Coker an we need some control on Ker cn as well. Obviously Ker cn
embeds in the kernel of the natural map

dn :
∏

vn∈MFn

H1(Fvn , E[l∞]) −→
∏
w∈MF

H1(Fw, E[l∞]).

For any w|vn we have a map

dw : H1(Fvn , E[l∞]) −→ H1(Fw, E[l∞])

and w1, w2|vn imply Ker dw1 = Ker dw2 . Letting dvn be the product of the
dw’s for all the w’s dividing vn, we have Ker dvn =

⋂
wi|vn Ker dwi = Ker dw

for any w|vn and

Ker cn ⊆ Ker dn =
∏

vn∈MFn

Ker dvn .

By the inflation restriction sequence Ker dw = H1(Γvn , E[l∞](Fw)) (where
Γvn := Gal(Fw/Fvn) is independent of w since Γ is abelian).
As seen in Lemma 4.2 one finds Γvn = 0 or Zl and the latter is the only
nontrivial case. Moreover Fw/Fv is unramified (by Lemma 4.3): therefore
Fw ⊂ F unr

vn , the maximal unramified extension of Fvn .

4.1.1. Places of good reduction

Assume vn is of good reduction. By the criterion of Néron-Ogg-
Shafarevich the field Fvn(E[l∞]) is contained in F unr

vn . The pro-l-part of
Gal(F unr

vn /Fvn) ' Gal(Fp/Fvn) is isomorphic to Zl because F(l)
p 6⊂ F yields

F(l)
p 6⊂ Fvn (which is a finite extension of F). Let ϕl be a topological

generator of the Zl-part of the Galois group Gal(F unr
vn /Fvn). Since H :=

Gal(F unr
vn /Fvn)/〈ϕl〉 has no l-primary part and E[l∞] is l-primary, the coho-

mology groups Hi(H,E[l∞]〈ϕl〉) are trivial for i > 1. The Hochschild-Serre
spectral sequence provides an isomorphism

H1(Gal(F unr
vn /Fvn), E[l∞]) ' H1(〈ϕl〉, E[l∞])H .

Note that the constant field of Fvn,l := (F unr
vn )〈ϕl〉 does not contain F(l)

p

because there is no Zl-extension between Fvn and Fvn,l. Therefore by
Lemma 3.3, E[l∞]〈ϕl〉 = E[l∞](Fvn,l) is finite. By Remark 3.5 and the fact
that E[l∞] is divisible one has H1(〈ϕl〉, E[l∞]) = 0, so H1(Gal(F unr

vn /Fvn),
E[l∞]) is trivial too. Since Fw ⊂ F unr

vn , the inflation map

H1(Γvn , E[l∞](Fw)) ↪→ H1(Gal(F unr
vn /Fvn), E[l∞])
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shows that
Ker dw = H1(Γvn , E[l∞](Fw)) = 0

as well.

4.1.2. Places of bad reduction

Let Rn,i be the (finite) set of primes of Fn which are of bad reduction for
E and inert in F/Fn. We recall that Γvn ' Zl only if vn is inert (otherwise
Γvn = 0); moreover E[l∞](Fw)Γvn = E[l∞](Fvn) is finite by Lemma 3.3.
For a prime in Rn,i, using Remark 3.5 one immediately finds

|Ker dw| = |H1(Γvn , E[l∞](Fw))| 6 |E[l∞](Fw)/E[l∞](Fw)div|.

Note that such bound actually depends on vn and not on w so, to ease
notations, we choose one prime w|vn and we define

ε(vn) := |E[l∞](Fw)/E[l∞](Fw)div|.

Therefore
|Ker cn| 6 |Ker dn| 6

∏
vn∈Rn,i

ε(vn)

is finite and bounded as well. �

Remark 4.6. — Recall that we are assuming that E is a Tate curve at
any (inert) place vn of bad reduction, so

E[l∞](Fw)div =

{
0 if µl 6⊂ Fv
µl∞ if µl ⊂ Fv

.

Besides the Tate period qE,v has an lnth root in Fw if and only if the l-adic
valuation of ordv(qE,v) is at least n. Hence E[l∞](Fw)/E[l∞](Fw)div is a
cyclic group of order

ε(v) 6
1

| ordv(qE,v)|l
(where | · |l is the normalized l-adic absolute value). Moreover (as in Lem-
ma 3.4) one has a surjection

E[l∞](Fw)/E[l∞](Fw)div � E[l∞](Fw)/(γvn − 1)E[l∞](Fw)

' H1(Γvn , E[l∞](Fw))

(where γvn is a topological generator of Γvn) which shows that Ker dw is
generated by one element.
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Remark 4.7. — The uniform bounds provided by the theorem basically
depend on the number of torsion points and the places of bad reduction.
Explicitly, letting Ri be the set of (inert) primes of F of bad reduction for
E, we found

|Ker an| 6 |E[l∞](F)| and |Coker an| 6
∏
v∈Ri

ε(v).

Also, observe that |E[l∞](F)| is bounded by the number of torsion points
in the maximal abelian extension: so one could find bounds depending only
on F and E.

4.2. The case r = l with F(l)
p ⊂ F

Notice that in this case, thanks to Lemmas 4.1 and 4.2, only those places
v such that µl ⊂ Fv can ramify in F/F ; all the rest are totally split (since
F(l)
p ⊂ F there is no possibility for a Zl-extension of the constant field

corresponding to an inert Zl-extension of Fv).

Theorem 4.8. — Assume that F(l)
p ⊂ F and that only a finite number

of places of F ramify in F . Then the natural maps

SelE(Fn)l → SelE(F)Γn
l

have finite and bounded kernels and cofinitely generated cokernels (of
bounded corank over Zl when d = 1).

Proof. — Exactly as in Theorem 4.5, we have a commutative diagram
with exact rows

SelE(Fn)l

an

��

� � // H1(Fn, E[l∞])

bn

��

// // G(Fn)

cn

��
SelE(F)Γn

l
� � // H1(F , E[l∞])Γn // G(F)

with

Ker bn ' H1(Γn, E[l∞](F)) and Coker bn ⊆ H2(Γn, E[l∞](F)).

Again by Lemma 3.2 the group E[l∞](F) is finite. Hence Lemma 3.4 yields

|Ker an| 6 |Ker bn| 6 |E[l∞](F)|d

and
|Coker bn| 6 |E[l∞](F)|

d(d−1)
2 .

As before, for Coker an we need some control on Ker cn and one gets it by
looking at the Ker dw = H1(Γvn , E[l∞](Fw)) for any w|vn.
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4.2.1. Places of good reduction

Assume vn|v of good reduction. By Lemma 4.2 we get Γvn ' Zl only if
vn is ramified (otherwise it is 0 and Ker dw is trivial). Note that by the
criterion of Néron-Ogg-Shafarevich

E[l∞](Fw) = E[l∞](Fv).

Hence for a ramified place vn one has (with Γvn = 〈γvn〉)

H1(Γvn , E[l∞](Fw)) = E[l∞](Fv)/(γvn − 1)E[l∞](Fv) = E[l∞](Fv)

which obviously has Zl-corank 6 2 (notice that it can be equal to 2: for
example when F = Fp).

4.2.2. Places of bad reduction

Let vn be one of the (finitely many) primes of bad reduction for E, lying
above v. Since Γvn is Zl or 0 it is easy to see that for these ramified places

corankZl H
1(Γvn , E[l∞](Fw)) 6 2

but we can be a bit more precise.
Assume vn is ramified (otherwise Ker dw = 0): by the theory of the Tate

curve E[l∞] ' 〈µl∞ , l∞
√
qE,v〉/qZE,v where qE,v ∈ Fv is the Tate period (note

that since µl∞ ⊂ Fv the set E[l∞](Fw)Γvn = E[l∞](Fvn) is infinite and
we cannot immediately apply Lemma 3.4). Besides E[l∞](Fw) = E[l∞].
Therefore

H1(Γvn , E[l∞](Fw)) ' H1(Γvn ,µl∞)×H1(Γvn , l∞
√
qE,v) ' µl∞

because Γvn acts trivially on µl∞ and l∞
√
qE,v is divisible and such that

( l∞√qE,v)Γvn is finite (use Remark 3.5).

Let’s divide the set of places ramified in F/Fn into Rn,g (consisting of
primes where E has good reduction) and Rn,b (primes of bad reduction for
E). Then all the above computations lead to the bound

corankZl Coker an 6 2|Rn,g|+ |Rn,b|.

Note that, if d > 1, the number of ramified places is unbounded so the
coranks are unbounded as well, while for d = 1 any ramified place of F can
split only a finite number of times in F . �

Corollary 4.9. — In the setting of Theorem 4.8 assume that:
1. the ramified places are of good reduction for E;
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2. E[l∞](Fv) is finite for any ramified place v.
Then the natural maps SelE(Fn)l → SelE(F)Γn

l have finite (and bounded)
kernels and finite cokernels (of bounded order if d = 1).

Proof. — Just observe that the hypotheses yield

Ker dw =

{
0 if vn is unramified
E[l∞](Fv) otherwise

.

So one has |Coker an| 6 |E[l∞](F)|
d(d−1)

2
∏
vn∈Rn,g |E[l∞](Fv)|. �

Remark 4.10.
1. The assumption that only finitely many places ramify in F/F is strictly

necessary: see Example A.2 in the appendix.
2. Hypothesis 2 in Corollary 4.9 is often satisfied. In case of good re-

duction, by the criterion of Néron-Ogg-Shafarevich, we have E[l∞](Fvn) '
Evn [l∞](Fvn) = Evn [l∞]G, where G := Gal(Fvn(Evn [l∞])/Fvn). Let Fq be
the field of definition of Evn and put G0 := Gal(Fvn(Evn [l∞])/Fq): as a
quotient of GFq , G0 is topologically generated by the Frobenius Frobq. We
consider the embedding G0 ↪→ Aut(Evn [l∞]) ' GL2(Zl): it’s easy to see
that g ∈ G0 fixes a finite number of points iff it has not 1 as an eigenvalue.
Assume that Gal(Fvn/Fq) ' Zl, so that if G0 has a prime-to-l part, it
must be G: in particular G 6= {1} if the order of Frobq in Aut(Evn [l]) does
not divide l. Suppose besides that End(Evn) is an order O in a quadratic
imaginary field K: then Frobq lies in End(Evn) − Z and it has eigenval-
ues {x, xτ}, τ a generator of Gal(K/Q).(1) It follows that any g ∈ G0 has
eigenvalues {y, yτ} for some y ∈ 〈x〉 ⊂ (O ⊗ Zl)∗: in particular, if l is not
split in K, y = 1 implies that g is the identity.

Let B be a cofinitely generated discrete Zl-module with a continuous Γ
action and denote hi(B) the number of generators of Hi(Γ, B) (i = 1, 2).
The same induction argument as in Lemma 3.4 shows that if b is the number
of generators of B then

h1(B) 6 db and h2(B) 6
d(d− 1)

2
b.

One immediately finds the following corollaries (with identical proofs, so
we only provide the first one).

Corollary 4.11. — In the setting (and with the notations) of The-
orem 4.5 (and the subsequent remarks) SelE(F)∨l is a finitely generated

(1) We are just asking that Evn is not supersingular: see [20, V.3].
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Λ-module and

rankΛ SelE(F)∨l 6 corankZl SelE(F )l + |Ri|.

Moreover if SelE(F )l is finite then SelE(F)∨l is Λ-torsion.

This answers the analog of Question 1 and (some cases of) 2 in [23].

Corollary 4.12. — In the setting (and with the notations) of Theo-
rem 4.8 SelE(F)∨l is a finitely generated Λ-module. Moreover

rankΛ SelE(F)∨l 6 corankZl SelE(F )l + 2|Rg|+ |Rb|+ h2(E[l∞](F)),

where Rg (resp. Rb) is the set of ramified places of F of good (resp. bad)
reduction for E and, obviously, h2(E[l∞](F)) 6 d(d− 1).

Corollary 4.13. — In the setting of Corollary 4.9, if SelE(F )l is finite
then SelE(F)∨l is a finitely generated torsion Λ-module.

Proof. — Let S be the Pontrjagin dual of SelE(F)l and let I be the
augmentation ideal of Λ. The quotient S/IS is dual to SelE(F)Γ

l which is
cofinitely generated (resp. finite) by Theorem 4.5 (resp. and the hypothesis
on SelE(F )l). Therefore Theorem 3.6 yields the corollary. For the bound
on the rank just use the exact sequences

SelE(F )l → SelE(F)Γ
l � Coker a0,

Ker c0 → Coker a0 → Coker b0 = 0

and recall Remarks 4.6 and 4.7. �

Remark 4.14. — For a computation of rankΛ S in the case F = Fp see
[4, Propositions 2.5 and 3.4].

4.3. Applications

As well known, in case d = 1 the structure of the dual of Selmer groups
can be used to control the growth of Mordell-Weil ranks in the tower of
extensions between F and F and to formulate an “Iwasawa Main Conjec-
ture”.

TOME 59 (2009), FASCICULE 6



2320 Andrea BANDINI & Ignazio LONGHI

4.3.1. Mordell-Weil ranks

In [19, Theorem 1.1] Shioda proves that the group E(F ) is finitely gen-
erated for any function field F with algebraically closed constant field (of
course this covers the case of the Zl-extension F(l)

p F as well). Our Corol-
lary 4.13 provides a new family of extensions for which E(F) is finitely
generated.

Corollary 4.15. — In the setting of Corollary 4.9 assume that F/F is
a Zl-extension and that SelE(F )l is finite. Then E(F) is finitely generated.

Proof. — (More details can be found in [7, Theorem 1.3 and Corollary
4.9].) Let S be the dual of SelE(F)l: by Corollary 4.13, S is a finitely
generated torsion Λ-module. By the well-known structure theorem for such
modules there is a pseudo-isomorphism

S ∼
s⊕
i=1

Zl[[T ]]/(feii ).

Let λ = deg
∏
feii : then rankZl S = λ and, taking duals, one gets

(SelE(F)l)div ' (Ql/Zl)λ.

By Corollary 4.9, for any n, one has

(SelE(Fn)l)div ' (Ql/Zl)tn with tn 6 λ.

Hence
(Ql/Zl)rankE(Fn) ' E(Fn)⊗Ql/Zl ↪→ (SelE(Fn)l)div

yields rankE(Fn) 6 tn 6 λ for any n, i.e., such ranks are bounded.
Choose m such that rankE(Fm) is maximal and let t = |E(F)tor|. Us-

ing the fact that E(F)/E(Fm) is a torsion group one proves that tP ∈
E(Fm) for all P ∈ E(F) and multiplication by t gives a homomorphism
ϕt : E(F)→ E(Fm) whose image is finitely generated and whose kernel is
the finite group E(F)tor. Hence E(F) is indeed finitely generated. �

4.3.2. Iwasawa Main Conjecture

When F is a global field (and, necessarily, d = 1 and F = F(l)
p F ), our

control theorem may be used, as classically, as a first step towards the
algebraic side for a Main Conjecture. As for the analytic side, the best
candidate we know of has been provided by Pál. In [16], he constructs an
element L∞(E) in the Iwasawa algebra Z[[G∞]] ⊗ Q (where G∞ is the
Galois group of the maximal abelian extension of F unramified outside a

ANNALES DE L’INSTITUT FOURIER



SELMER GROUPS OVER FUNCTION FIELDS 2321

fixed place where E has split multiplicative reduction). He is then able to
prove an interpolation formula connecting L∞(E) to a special value of the
classical Hasse-Weil L-function of E ([16, Theorem 1.6]). Now, since Γ is
a quotient of G∞, there is a natural map π : Z[[G∞]] ⊗ Q → Zl[[Γ]] ⊗ Q.
The element LΓ(E) := π(L∞(E)) would then be a natural candidate for a
generator of the characteristic ideal of SelE(F)∨l .

Support for such a conjecture comes from recent work of Trihan [23].
By means of techniques of syntomic cohomology, he is able to prove an
Iwasawa Main Conjecture for a semistable abelian variety A/F and the
Zp-extension F (p)

∞ := F(p)
p F [23, Theorem 1.4]. It is not known yet what

is the relation (if any) between Pal’s L∞(E) and Trihan’s L
A/F

(p)
∞

(but
see [23, Remark 3.2]).

We also remark that Ochiai and Trihan [15] are able to prove that their
Selmer dual is always torsion (a necessary condition to have a non-zero
characteristic ideal). So one expects the analog to be true for our SelE(F)∨l
as well.

4.4. The case r 6= l, p

The r-part of Selmer groups behaves well in a Zdl -extension: indeed it is
easy to see that

Theorem 4.16. — The natural maps SelE(Fn)r → SelE(F)Γn
r are iso-

morphisms.

Proof. — We use the same diagram of Theorem 4.5, only changing l-
torsion with r-torsion points (since r 6= p we can still use Galois cohomol-
ogy). The proof goes on in the same way noting that

Ker bn = H1(Γn, E[r∞](F)) = 0,

Coker bn ⊆ H2(Γn, E[r∞](F)) = 0,

Ker dw = H1(Γvn , E[r∞](Fw)) = 0

because E[r∞](F) and E[r∞](Fw) are r-primary while Γn and Γvn are
pro-l-groups. �

The consequences of this theorem on the structure of SelE(F)r as a
Zr[[Γ]]-module will be given in the next section together with the results
on SelE(F)p (see Corollary 5.3).
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5. Control theorem for SelE(F)p

In this section we shall work with the p-torsion; so we need flat coho-
mology, as explained in section 2.2, and we shall follow the notations given
there.

As before, it is convenient to write F =
⋃
Fn with Fn/F finite and

Fn ⊂ Fn+1.

Theorem 5.1. — The natural maps SelE(Fn)p −→ SelE(F)Γn
p are iso-

morphisms.

Proof. — We start by fixing the notations which will be used throughout
the proof.

Let Xn := SpecFn, X := SpecF , Xvn := SpecFvn and Xw := SpecFw.
To ease notations, let

G(Xn) := Im
{
H1
fl(Xn, E[p∞])→

∏
vn∈MFn

H1
fl(Xvn , E[p∞])/ Im κvn

}
(analogous definition for G(X )).
Just like in the previous section we have a diagram

SelE(Fn)p

an

��

� � // H1
fl(Xn, E[p∞])

bn

��

// // G(Xn)

cn

��
SelE(F)Γn

p
� � // H1

fl(X , E[p∞])Γn // G(X ).

5.1. The map bn.

The map X → Xn is a Galois covering with Galois group Γn. In this
context the Hochschild-Serre spectral sequence holds by [11, III.2.21 a),b)
and III.1.17 d)]. Therefore one has an exact sequence

H1(Γn, E[p∞](F)) ↪→ H1
fl(Xn, E[p∞])→ H1

fl(X , E[p∞])Γn

→ H2(Γn, E[p∞](F))

which fits in the diagram above (note that the first and last elements are
Galois cohomology groups).

Since E[p∞](F) is a finite p-primary group (by Lemma 3.2) and Γn is a
pro-l-group, one has

Hi(Γn, E[p∞](F)) = 0 (i = 1, 2)

and Ker bn = Coker bn = 0 as well.
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5.2. The map cn.

First of all we note that Ker cn embeds into the kernel of the map

dn :
∏

vn∈MFn

H1
fl(Xvn , E[p∞])/ Im κvn −→

∏
w∈MF

H1
fl(Xw, E[p∞])/ Im κw

and we only consider the maps

dw : H1
fl(Xvn , E[p∞])/ Im κvn −→ H1

fl(Xw, E[p∞])/ Im κw

separately. Observe that:
1. for any vn there are as many maps dw as many primes w of F

dividing vn but all these maps have isomorphic kernels;
2. Ker cn ⊆

∏
vn∈MFn

⋂
w|vn Ker dw.

The Kummer exact sequence yields a diagram

H1
fl(Xvn , E[p∞])/ Im κvn

� � //

dw

��

H1
fl(Xvn , E)[p∞]

hw

��
H1
fl(Xw, E[p∞])/ Im κw � � // H1

fl(Xw, E)[p∞].

Again Xw → Xvn is a Galois covering so the Hochschild-Serre spectral
sequence implies

Ker dw ↪→ Kerhw ' H1(Γvn , E(Fw))[p∞] = lim
−→
k

H1(Γvn , E(Fw))[pk].

But H1(Γvn , E(Fw))[pk] = 0 because it consists of the pk-torsion of the
cohomology of a pro-l-group.

This yields Ker cn = 0 and therefore an is an isomorphism. �

5.3. Structure of SelE(F)r for r 6= l.

The Selmer groups SelE(F)r are modules over the ring Zr[[Γ]] and, to
apply the generalized Nakayama’s Lemma of [1] (i.e., Theorem 3.6 above),
we need an ideal J of Zr[[Γ]] such that Jn → 0. The classical augmentation
ideal I does not verify this condition since I = I2 (see [2, Lemma 3.7]).

Anyway we can use the ideal rI to obtain a partial description of
SelE(F)r. We need the following (detailed proof in [2, Lemma 3.8]).
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Lemma 5.2. — Let M be a discrete Zr[[Γ]]-module and mr : M → M
the multiplication by r. Then

M∨/rIM∨ ' (m−1
r (MΓ))∨ = (MΓ +M [r])∨

(where M [r] is the r-torsion of M).

Proof. — Let N = M∨ so that N is a Zr[[Γ]]-module. Via the dual of
the natural projection map π : N � N/rIN one sees that

(N/rIN)∨ ' m−1
r ((N∨)Γ),

which yields
M∨/rIM∨ ' (m−1

r (MΓ))∨.
Since H1(Γ,M [r]) = 0 one has mr(M)Γ = mr(MΓ) and can conclude
noting that

m−1
r (MΓ) = m−1

r (mr(MΓ)) =MΓ +M [r].

�

Corollary 5.3. — Assume that both SelE(F )r and SelE(F)r[r] are
finite. Then SelE(F)∨r is a finitely generated Zr[[Γ]]-module.

Proof. — By the previous lemma with M = SelE(F)r one has

SelE(F)∨r /rI SelE(F)∨r ' (SelE(F)Γ
r + SelE(F)r[r])∨

so this quotient is finite by hypothesis and Theorems 4.16 or 5.1. Then
Theorem 3.6 yields our corollary. �

In the corollary it would be enough to assume that SelE(F )r and
SelE(F)r[r] are cofinitely generated modules over Zr[[Γ]]/rIZr[[Γ]]. Unfor-
tunately even with the stronger assumption of finiteness we can’t go further
(i.e., we are not able to see whether SelE(F)∨r is a torsion Zr[[Γ]]-module
or not) due to our lack of understanding of the structure of Zr[[Γ]]-modules
even for simpler Γ’s like for example Γ ' Zl.

Appendix A. Zl-extensions of a field

Let F be a field, on which we assume only that µl∞ ⊂ F , with l 6=
char(F ) a prime. Everything is taking place in a fixed separable closure
F sep. The goal is to describe the set of all Zdl -extensions of F in F sep.

Define F̂ ∗ as the l-adic completion of F ∗: that is, F̂ ∗ := lim
←
F ∗/(F ∗)l

n

.
This is a topological Zl-module (each quotient F ∗/(F ∗)ln is given the dis-
crete topology) and the natural map F ∗ → F̂ ∗ has dense image.
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Let V := Ql ⊗Zl F̂
∗. Then V is a topological Ql-vector space, complete

and locally convex, with a distinguished lattice F̂ ∗ (more precisely, V is a
Banach space over Ql, with the norm induced by taking F̂ ∗ as unit ball).
The natural map F̂ ∗ → V is an injection.

The reader is reminded that, if W is a vector space, the Grassmannian
Grassd(W ) ⊂ P(ΛdW ) is the set of all d-dimensional subspaces of W .

Theorem A.1. — The set of Zdl -extensions of F is in bĳection with
Grassd(V ).

Proof. — By the assumption on µl∞ , we have that Zl(1) := lim
←
µln is

isomorphic to Zl as GF -module. Hence a Zdl -extension F/F is uniquely
determined by the kernel of a continuous homomorphism GF → Zl(1)d
with image a rank d submodule (Zl(1) is given the profinite topology).

We have

Homcont(GF ,Zl(1)d) ' Homcont(GF ,Zl(1))d

'
(

lim
←

Hom(GF ,µln)
)d ' F̂ ∗d

where all isomorphisms(2) are almost tautological but the last one, which
comes from Hilbert 90 and the observation that the diagram

F ∗/(F ∗)ln+1 −−−−→ Hom(GF ,µln+1)y y
F ∗/(F ∗)ln −−−−→ Hom(GF ,µln)

commutes. Here, for any n, horizontal maps are the Kummer homomor-
phisms sending a ∈ F ∗/(F ∗)ln to σ 7→ σ l

n√
a

ln
√
a

and the right-hand vertical
map is induced by raising-to-l: µln+1 → µln .

That is, any continuous homomorphism GF → Zl(1)d is of the form
〈·, x〉 = lim〈·, xn〉n for some x = (xi,n) ∈ F̂ ∗

d
, where

〈·, ·〉n : GF × (F ∗/(F ∗)l
n

)d → µdln

is the lnth level Kummer pairing, 〈σ, y〉n := (σ
ln
√
y1

ln
√
y1
, . . . ,

σ l
n√
yd

ln
√
yd

).
Let Fx ⊂ F sep be the fixed field of ker〈·, x〉 and Bx the closure of the

subgroup of F̂ ∗ generated by x1, . . . , xd. It is well-known that Fx,n :=
F ( ln√x1,n, . . . , l

n√xd,n) is the fixed field of ker〈·, xn〉n and that

Gal(Fx,n/F ) ' GF / ker〈·, xn〉n

(2) These are isomorphisms of topological groups, giving to Homcont(GF , •) the compact
open topology. Notice that since µln is discrete so is also Hom(GF ,µln ).
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is the dual of Bx/(F̂ ∗)l
n . It follows that Fx =

⋃
n Fx,n (since ker〈·, x〉 =

∩ ker〈·, xn〉n) and that Gal(Fx/F ) is (non-canonically) isomorphic to Bx '
lim
←
Bx/(F̂ ∗)l

n

(because any finite abelian group is non-canonically isomor-
phic to its dual).

In the same way, one sees that Fx = Fy if and only if Bx⊗Ql = By⊗Ql.
The theorem follows. �

Example A.2. — Let F = Fp(T ) and choose a family ai ∈ Fp, i ∈ N
and ai 6= aj if i 6= j. Put πi := T + ai and consider the sequence

x1 = π1, x2 = x1π
l
2, x3 = x2π

l2

3 · · · xn+1 = xnπl
n

n+1.

The elements xi provide a Zl-extension

Fx =
⋃
n∈N
F ( ln
√
xn)

ramified at all the πi’s.
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