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DIOPHANTINE UNDECIDABILITY OF HOLOMORPHY
RINGS OF FUNCTION FIELDS OF

CHARACTERISTIC 0

by Laurent MORET-BAILLY & Alexandra
SHLAPENTOKH (*)

Abstract. — Let K be a one-variable function field over a field of constants
of characteristic 0. Let R be a holomorphy subring of K, not equal to K. We
prove the following undecidability results for R: if K is recursive, then Hilbert’s
Tenth Problem is undecidable in R. In general, there exist x1, . . . , xn ∈ R such
that there is no algorithm to tell whether a polynomial equation with coefficients
in Q(x1, . . . , xn) has solutions in R.

Résumé. — Soit K un corps de fonctions d’une variable sur un corps de carac-
téristique nulle. Soit R un anneau d’holomorphie de K, distinct de K. Si K est
récursif, nous démontrons que le dixième problème de Hilbert sur R est indécidable.
En général, il existe x1, . . . , xn dans R tels qu’il n’y ait pas d’algorithme décidant si
une équation polynomiale à coefficients dans Q(x1, . . . , xn) a une solution dans R.

1. Introduction

The interest in the questions of existential definability and decidability
over rings goes back to a question that was posed by Hilbert: given an ar-
bitrary polynomial equation in several variables over Z, is there a uniform
algorithm to determine whether such an equation has solutions in Z? This
question, otherwise known as Hilbert’s Tenth Problem (“HTP” in the fu-
ture), has been answered negatively in the work of M. Davis, H. Putnam,
J. Robinson and Yu. Matĳasevich. (See [4], [5] or [20] for the details of
the solution of the original problem.) Since the time when this result was

Keywords: Hilbert’s tenth problem, elliptic curves, Diophantine undecidability.
Math. classification: 11U05, 03D35, 11G05.
(*) The second author has been partially supported by NSF grants DMS-0354907 and
DMS-0650927.
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obtained, similar questions have been raised for other fields and rings. In
other words, let R be a ring. Then, given an arbitrary polynomial equation
in several variables over a recursive subring R0 of R, is there a uniform
algorithm to determine whether such an equation has solutions in R? (If R
is countable and recursive then we can set R0 = R.)

Depending on the nature of the ring the difficulty of answering the ques-
tion can vary widely. By now, a lot of work has been done to solve the
problem over some subrings of number fields and function fields, including
the fields themselves in the case of function fields. However there remain
quite a few open questions which at the moment seem intractable. Chief
among these questions are arguably the Diophantine status of Q (and num-
ber fields in general), the rings of integers of an arbitrary number field, and
an arbitrary function field of characteristic 0.

More details on the Diophantine problem over number fields and related
issues can be found in [1], [2], [3], [6], [9], [10], [21], [22], [23], [24], [26],
[29], [30], [32], [33], [35], [37], [39], [42], [43], and [44]. Results concerning
function fields of positive characteristic can be found in [8], [12], [27], [28],
[47], [38], [40], and [48]. Also, for a general reference on the subject we
suggest [11] and [46].

It turned out that solving HTP over function fields of characteristic 0 was
more difficult than over function fields of positive characteristic. However
we do know that HTP is undecidable over many function fields and rings
of characteristic 0. In particular, we know that HTP is undecidable over
fields of functions of finite transcendence degree over constant fields that
are formally real or are subfields of finite extensions of Qp for some odd
rational prime p. (These constant fields include number fields.) Further, we
also know that HTP is undecidable over function fields of transcendence
degree at least 2 whose field of constants is C. (See [7], [13], [14], [16],
[17], [25], [49] for more details on these field results). We also have a few
ring results: for rings of S-integers and semi-local rings over any field of
constants, and some results for rings “in the middle”. (See [25], [36], [41],
[50] for more details on ring results.)

One of the problems which was solved over global fields was the con-
struction of an existential definition of order. In other words there exists
an existential definition in the language of rings of the set of elements of
a given global field whose order at a fixed non-archimedean valuation is
non-negative. Over function fields of characteristic 0 this was done success-
fully over a limited class of fields and the success depended heavily on the
nature of the field of constants. As it turned out, an existential definition
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of order was one of the two ingredients used for showing the Diophantine
undecidability of one variable function fields of characteristic 0. The other
ingredient was an elliptic curve of rank 1. This plan was first implemented
by Denef for the formally real rational function fields in [7]. As will be de-
scribed below, the issue of finding the right elliptic curve has been solved
in the greatest possible generality by the first author in [25], but the is-
sue of defining the order remains a stumbling block. So we can solve HTP
precisely over those function fields in one variable where we can define the
order. (See Corollary 10.3.3 of [25].)

To make the matters even more vexing, it is not hard to see that a
definition of order together with the Diophantine undecidability of any
semilocal subring of a field implies Diophantine undecidability of any ring
“in the middle”, i.e. any holomorphy ring, pretty much in the same fashion
as the Diophantine undecidability of a domain follows from the Diophantine
undecidability of its field of fractions. (Both cases also require being able
to define the set of non-zero elements. Fortunately, we know how to do it
in all cases of interest to us.) And thus the absence of a definition of order
in a manner of speaking is responsible for the subject of this paper: the
Diophantine undecidability of arbitrary holomorphy rings of characteristic
0 not equal to a field. The main results of this paper are stated below.

Theorem 1.1. — Let K be a countable recursive one variable function
field of characteristic 0. Then Hilbert’s Tenth Problem is not solvable over
any holomorphy ring of K not equal to the whole field.

Theorem 1.2. — LetK be a one variable function field of characteristic
0 over a field of constants C. Then for any holomorphy ring of K not equal
to the whole field, there exist elements x1, . . . , xn ∈ K \ C such that there
is no algorithm to tell whether a polynomial equation with coefficients in
Q(x1, . . . , xn) has solutions in the ring.

Remark 1.3. — The reason for two separate statements has to do with
the possibility that the function field K is not countable. That possibility
forces us to examine more carefully what we can allow as coefficients of our
polynomial equations. In the case of a countable field it is possible to allow
every element of the field as a coefficient, but in the case the field is not
countable we have to restrict the set of possible coefficients to a countable
set. In our case this set will depend on the ring.

Remark 1.4. — The case of holomorphy rings which are actually rings
of S-integers, i.e. rings where only finitely many primes of the field are
allowed in the pole divisors of the ring elements, has been treated by the
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second author in [34]. While it is not explicitly discussed in the paper,
the statement of the Theorem 1.2 follows from the construction of the
equations. We should also like to note that the aforementioned paper of
the second author, just as the present one, was a generalization of ideas
of Denef from [7]. In this paper Denef used a Pell equation to construct a
model of integers instead of an elliptic curve. In view of this result we will
always assume that the set of primes allowed in the pole divisors is infinite.

In some cases we will be able to prove a stronger result giving an exis-
tential definition of Z over an arbitrary holomorphy subring of the field not
equal to the whole field. More specifically the following theorem holds.

Theorem 1.5. — Let K be any function field of characteristic 0 over
a field of constants C. Assume there exists a subset C0 of C such that C0
contains Z and has a Diophantine definition over K. Then Z is existentially
definable over any holomorphy ring of K not equal to the whole field.

Remark 1.6. — We know of many function fields of characteristic 0
where constants are existentially definable. They include function fields
over ample fields of constants and other large fields, including fields which
are algebraically closed. (See [18], [31], and [45] for various examples.)

The main idea behind the proofs of Theorems 1.1 – 1.5 is rather simple.
In a ring, where not all primes are inverted, there is a natural way to define
the order using divisibility. So even if we cannot do it over a field, we can
define the order over a ring (or come pretty close). We are now ready to
proceed with the technical details.

2. Basic Diophantine Facts

We start with giving precise definitions to the objects we are going to
study, beginning with Diophantine sets.

Definition 2.1. — Let R0 ⊂ R be rings and let A ⊂ Rm. A Dio-
phantine definition of A over R, with coefficients in R0, is a finite collec-
tion of polynomials {fi,j(t1, . . . , tm, x1, . . . , xn), i = 1, . . . , r, j = 1, . . . , s} ⊂
R0[t1, . . . , tm, x1, . . . , xn] such that for any (t1, . . . , tm) ∈ Rm, we have the
equivalence

(t1, . . . , tm) ∈ A ⇐⇒ ∃ x1, . . . , xn ∈ R,
s∨
j=1

r∧
i=1
fi,j(t1, . . . , tm, x1, . . . , xn) = 0.
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We say that A is Diophantine over R w.r.t. R0 if it has such a Diophantine
definition.

Remark 2.2. — In general R0 plays an auxiliary role and is often omit-
ted, the default value being of course R.

Remark 2.3. — Consider a Diophantine set A as in Definition 2.1.
If R is a domain (which is generally the case in applications), then A

has a Diophantine definition “with s = 1”, i.e. consisting of a system of
polynomial equations, without the disjunction operation.

If, moreover, the fraction field of R is not algebraically closed, we can
even take r = s = 1; in other words, A has Diophantine definition consisting
of one equation. Most authors take this as the definition of a Diophantine
set. (See [5] or [46], Chapter I for more details.)

We will be able to construct such a definition of Z over holomorphy
subrings of our function field K provided a subset of the constant field
containing Z has a Diophantine definition over K.

Definition 2.4. — Let R be a ring and let R0 be a recursive subring of
R. We say that Hilbert’s tenth problem is solvable in R, with coefficients
in R0, if there is an algorithm taking as input a finite set of polynomials in
R0[X1, . . . , Xm] (for some arbitrary m > 0) and telling whether they have
a common zero in Rm.
We write H10(R,R0) for this property. If R is recursive we take H10(R) to
mean H10(R,R).

Remark 2.5. — Assume H10(R,R0) holds, and let A ⊂ Rm be Diophan-
tine w.r.t. R0, with given Diophantine definition (fi,j)16i6r,16j6s. Then A
is a finite union of projections of sets Aj (1 6 j 6 s) defined by polynomial
systems (with some extra variables). Since A = ∅ if and only if each Aj
is empty, there is an algorithm (taking (fi,j) as input) telling whether A
is empty or not. This of course could be taken as a definition for the H10
property.

With the same assumptions, let t be a point in Rm0 ⊂ Rm. Then {t} is
Diophantine w.r.t. R0, and we have that t ∈ A if and only if {t} ∩ A 6= ∅.
Hence, the above discussion shows that there is an algorithm telling whether
t belongs to A.

Remark 2.6. — Just as in Remark 2.3, if R is a domain with non-
algebraically closed fraction field, it suffices to check H10 for systems con-
sisting of one polynomial: this is the traditional definition of the H10 prop-
erty.

TOME 59 (2009), FASCICULE 5
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Proposition 2.7. — Let R1 ⊂ R2 ⊂ R3 be rings, with R1, R2 and the
inclusion R1 ⊂ R2 recursive. Let I be an ideal of R3 with the following
properties:

• I is generated by finitely many elements of R2 (in particular, it is
Diophantine w.r.t. R2).
• R1 ∩ I = {0}.
• The set R1 + I ⊂ R3 is Diophantine w.r.t. R2.

Then H10(R3, R2) implies H10(R1).

Proof. — Assume H10(R3, R2). Let D ⊂ Rm1 be defined by

D :=
{
t ∈ Rm1 | ∀i ∈ {1, . . . , r}, fi(t) = 0

}
where the fi’s are polynomials with coefficients in R1. We are looking for
an algorithm telling whether D is empty.

Put ∆ := R1 + I, which is Diophantine in R3 by assumption, and define
B ⊂ Rm3 by

B :=
{
t ∈ ∆m | ∀i ∈ {1, . . . , r}, fi(t) ∈ I

}
.

Clearly, B is Diophantine w.r.t. R2 since ∆ and I are. Hence, by
H10(R3, R2), there is an algorithm telling whether B is empty, so it suf-
fices to prove that D = ∅ if and only if B = ∅. The “if” part is trivial since
D ⊂ B. Conversely, assume there exists some t ∈ B. By definition of ∆,
there exists t1 ∈ Rm1 which is congruent (coordinatewise) to t mod I. Then
for each i we still have fi(t1) ∈ I, but also fi(t1) ∈ R1 since fi has coeffi-
cients in R1. Hence fi(t1) = 0, which means that t1 ∈ D, hence D 6= ∅. (In
fact it is easy to see that B = D + IRm3 and D = Rm1 ∩B.) �

We will also use the following standard trick:

Proposition 2.8. — Let R0 ⊂ R ⊂ R′ be rings, with R0 recursive.
Assume that, as an R-module, R′ has a finite basis B = {b1, . . . , bm} such
that R0 contains the following elements:

• the coordinates of 1 in B,
• the entries of the matrix of multiplication by bi in R′, for each
i ∈ {1, . . . ,m}.

We identify R′ with Rm using B. Let D ⊂ R′d be Diophantine over R′
w.r.t. R0. Then:

(1) D (as a subset of Rmd) is Diophantine over R (w.r.t. R0).
(2) D ∩Rd ⊂ Rd is Diophantine over R (w.r.t. R0).
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Proof. — (1) is immediate from the assumptions. The first assumption
also implies that the inclusion R ⊂ R′ ∼= Rm identifies R with a Diophan-
tine subset of Rm w.r.t. R0, so the same property holds for the inclusion
Rd ⊂ R′d ∼= Rmd. Assertion (2) follows. �

3. Basic Facts on Function Fields and Holomorphy Rings

Definition 3.1. — Let C be a field. Then a (one-variable) function
field K over C is a finite extension of the rational function field C(t).
(Equivalently, it is a finitely generated extension of C of transcendence
degree 1). For such a function field K, a prime of K is a nontrivial discrete
valuation of K which is trivial on C. We denote by PK the set of all such
primes (abusingly omitting C from the notation). For p ∈ PK we adopt
the traditional notation ordp for the corresponding normalized valuation
and we denote by O(p) the associated valuation ring. If W is a non-empty
subset of PK , we put

OK,W =
⋂

p6∈W

O(p) =
{
h ∈ K | ∀p 6∈ W we have that ordph > 0

}
.

OK,W is called a holomorphy ring of K.

Note that, with the above notations, taking W = ∅ would lead to the
intersection of all rings O(p) (p ∈ PK). This ring is the algebraic closure
C ′ of C in K, a finite extension of C, and K is a function field over C ′ with
the same set PK and rings OK,W as over C. Therefore, for the purposes
of this paper we can always replace C by C ′, i.e. assume C algebraically
closed in K. (In other words, K is a regular extension of C).

If W = PK , then OK,W = K. Otherwise, OK,W is a Dedekind domain
with fraction field K; its maximal ideals correspond bĳectively to elements
of PK \W, via the map

p 7−→ Ip :=
{
h ∈ OK,W | ordph > 0

}
.

We shall derive Theorems 1.1, 1.2 and 1.5 from the following result:

Theorem 3.2. — Let K and W be as above, with ∅ 6= W 6= PK and
charK = 0. Let p 6∈ W be a prime of K, and let Ip be the corresponding
maximal ideal of OK,W . Then Z + Ip is Diophantine in OK,W .

Proof of Theorems 1.1, 1.2 and 1.5 (from 3.2). — For Theorems 1.1 and
1.2 we simply apply Proposition 2.7 with R1 = Z and R3 = OK,W . We
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take for R2 the subring of R3 generated by a finite subset containing a
generating set for Ip and all elements occurring in a Diophantine definition
of Z + Ip. The condition Ip ∩Z = {0} is obvious since nonzero integers are
invertible in C ⊂ OK,W .

For Theorem 1.5, we have Z ⊂ (Z + Ip) ∩ C0 ⊂ (Z + Ip) ∩ C = Z (the
last equality follows from C ∩ Ip = {0}). Hence Z = (Z + Ip) ∩ C0 is
Diophantine. �

From now on, we assume that C is algebraically closed in K, and that
the characteristic is zero. If Ĉ is a finite extension of C, then K̂ := Ĉ⊗CK
is a finite extension of K, and a function field over Ĉ. Moreover, for W as
above, the following three subrings of K̂ are equal:

• Ĉ ⊗C OK,W ,
• the integral closure of OK,W in K̂,
• the holomorphy ring OK̂,Ŵ where Ŵ is the set of primes of K̂

inducing primes in W.
The first description shows in particular that OK̂,Ŵ is a free module over
OK,W , of rank [Ĉ : C].

In addition, let p 6∈ W be a prime of K. Then there exists a prime p̂ 6∈ Ŵ
of K̂ extending p, and the corresponding ideals Ip ⊂ OK,W and Ip̂ ⊂ OK̂,Ŵ
satisfy Ip = OK,W ∩ Ip̂. It follows that Z + Ip = OK,W ∩ (Z + Ip̂). By
Proposition 2.8 (2) we see that if Z + Ip̂ is Diophantine in OK̂,Ŵ , then
Z + Ip is Diophantine in OK,W .

In particular, to prove Theorem 3.2 for K, W, p, we may replace these
data by K̂, Ŵ, p̂, respectively.

We shall use this remark as follows: take for Ĉ the residue field of p.
We have a surjective morphism OK,W → Ĉ of C-algebras, hence (tensoring
with Ĉ) a surjective Ĉ-morphism OK̂,Ŵ → Ĉ. Its kernel defines a prime
p̂ of K̂ above p, which has degree one in the sense that its residue field is
the constant field Ĉ of K̂. To summarize, we can always assume that the
prime p of Theorem 3.2 has degree one.

As we have already mentioned above, our paper has two main inputs.
The first one is contained in a paper of Denef (see [7]) which constructs a
rank one elliptic curve over any rational function field of characteristic 0
together with a way of generating integers. The second input is a result of
the first author that allows the elliptic curve constructed by Denef to retain
its nice properties under finite extensions. More specifically we will use the
following result which is a consequence of Theorem 1.8 (ii) and Proposition
2.3.1 of [25].
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Theorem 3.3. — Let K be a function field of characteristic 0 over a
field of constants C. Let p be a degree one prime of K. Let D be a divisor
of K such that ordqD ∈ {0, 1} for any prime q of K, ordpD = 0, and
the degree of D is at least 2gK + 2, where gK is the genus of K. Let
F (T ) be a nonsingular cubic polynomial over Q such that the elliptic curve
Y 2 = F (X) has no complex multiplication. Then there exists an x ∈ K
such that its pole divisor is D, ordpx > 0, and the elliptic curve Ex defined
by the equation

(3.1) F
( 1
x

)
Y 2 = F (X)

has the property that Ex(C(x)) = Ex(K). Also Ex(C(x)) is of rank 1
generated by the point with affine coordinates ( 1

x , 1) ∈ E(C(x)) \ E(C)
modulo 2-torsion.

Proof. — We need a slight refinement of Proposition 2.3.1 of [25]:

Lemma 3.4. — With the assumptions of Theorem 3.3, there exists a
nonzero g ∈ K with the following properties:

• the divisor of zeros of g is D,
• g has only simple poles, and p is one of them,
• g has simple ramification (i.e. in the extension K/C(g) no prime

has ramification degree greater than 2).

Proof. — The argument is classical and entirely similar to [25], 2.3.1.
Put d := deg D. The linear system |D| is a projective space of dimension
d − gk, and we identify D with a (C-rational) point in it. Inside |D| we
consider the following subvarieties, where Q (resp. ∆) denotes a variable
point (resp. effective divisor):

• H = {divisors of the form p + ∆},
• Z1 = {divisors of the form 2p + ∆},
• Z2 = {divisors of the form p + 2Q+ ∆},
• Z3 = {divisors of the form 3Q+ ∆}.

Clearly, none of these contains D, and H is a hyperplane because p has
degree 1. It is proved in [25] that Z3 has codimension > 2 in |D|, and
similar arguments easily show that the same holds for Z1 and Z2. Hence
we can find a line in |D| through the point D, defined over C and disjoint
from Z1 ∪Z2 ∪Z3. This line meets H at a point D′. There is an element g
of K with divisor D−D′, and this g has the required properties. �

Let us return to the proof of Theorem 3.3. Clearly, by multiplying g by
some nonzero constant c (in Q, if we wish) we may also choose g with
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branch locus disjoint from the inverse roots of F . This makes g admissible
for D in the sense of [25], Definition 1.5.2. Further, it follows from Theorem
1.8 (ii) of [25] that by choosing c appropriately we may assume in addition
that g is good, i.e. Eg−1(C(g)) = Eg−1(K).

Now let x = g−1: we now have that Ex(C(x)) = Ex(K), and the rest of
the theorem follows from the assumption on F and from [7] which describes
Ex(C(x)). �

4. Diophantine Undecidability of Holomorphy Rings

Notation and Assumptions 4.1. — We start with a first notation set.
• Let K be a function field of characteristic 0 over a field of constants
C.
• Let PK be the set of all primes of K.
• Let ∅ 6=W ⊂ P, W 6= P.
• Let p ∈ P \ W be a prime of degree 1. (By assumption, P \ W is

not empty, and as explained in the previous section we may assume
that it contains a prime of degree 1 by extending K).
• Let gK be the genus of K.
• Assume thatW contains infinitely many primes (in fact the present

proof works whenever
∑

q∈W deg q > 2gK+2). As noted in Remark
1.4 of the introduction, the case where W is finite is settled in [34];
more precisely, in that case, Z is Diophantine in OK,W (Theorem
3.1 of [34]), hence our Theorem 3.2 also holds.
• Let D = {q1, . . . , q2gK+2} be a set of distinct elements of W. (We

only need the total degree of D to be at least 2gK + 2, in order to
apply Theorem 3.3.)
• Let x ∈ K be such that its pole divisor is

∏
i qi, ordpx > 0, and

E(K) = E(C(x)), where E = Ex is the elliptic curve defined in
(3.1). (Such an x exists by Theorem 3.3).

Observe that x ∈ OK,W and therefore OK,W contains the polynomial
ring C[x]. Moreover, the condition ordpx > 0 means that p lies above the
ideal (x) of C[x]. In other words, for any z ∈ C(x) we have

(4.1) ordpz = (ordpx)(ord0z)

where, in the right-hand side, z is viewed as a rational function of x.
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Two elements a, b ∈ OK,W will be called coprime if they generate the
unit ideal, i.e. there exist A,B ∈ OK,W such that

(4.2) Aa+Bb = 1.

Note that we have “Gauss’ Lemma”: if a and b are coprime and a divides
bc in OK,W , then a divides c.

Proposition 4.2. — The set
{
h ∈ OK,W | h 6= 0

}
is Diophantine over

OK,W .

Proof. — The proof is essentially a consequence of the Strong Approxi-
mation Theorem and can be found in [35]. �

Notation and Assumptions 4.3. — We now add the following notation
and assumptions to our list.

• Let P ∈ E(K) be the point whose affine coordinates derived from
(3.1) are ( 1

x , 1).
• For nonzero n ∈ Z, let (xn, yn) be the affine coordinates of [n]P

derived from (3.1). Since P ∈ E(C(x)) we have that xn and yn are
rational functions of x.
• Since [n]P is not a torsion point, we have yn 6= 0 and we can write

xxn
yn

= αn
βn
,

where αn, βn ∈ C[x] are relatively prime polynomials in x (in par-
ticular, since they satisfy relation (4.2) in C[x] ⊂ OK,W , they are
also coprime in OK,W).

The following lemma shows how we will generate integers to show unde-
cidability. Its proof can be found in Lemma 3.2 of [7].

Lemma 4.4. — For any n ∈ Z>0 we have that ordp

(
xxnyn − n

)
> 0.

Using Lemma 4.4 and the definition of being coprime, one easily deduces
the following lemma.

Lemma 4.5. — Let n be a nonzero integer. Assume that
xxn
yn

= an
bn

where an, bn ∈ OK,W are coprime. Then:

an = εαn and bn = εβn for some ε ∈ O×K,W ,(4.3)
an − n bn = xw for some w ∈ OK,W ,(4.4)
ordp(bn) = 0.(4.5)
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Proof. — To prove (4.3) we note that anβn = bnαn, hence (by Gauss’
lemma) an and αn divide each other in OK,W . In other words, ε := an/αn
is a unit.

To prove (4.4) and (4.5) we may and will assume, in view of (4.3), that
an = αn and bn = βn. Let w ∈ K be defined by (4.4). Let us prove that
w ∈ C[x]. Since an and bn are in C[x] it suffices to prove that an−n bn (as
a polynomial in x) vanishes at 0, which by (4.1) is equivalent to ordp(an−
n bn) > 0. This is clear from Lemma 4.4 since an−n bn = bn(xxnyn −n) and
bn ∈ C[x].

Let us now prove (4.5). Since an−n bn vanishes at 0 it follows that if bn
vanishes at 0, so does an. Since they are relatively prime polynomials, this
cannot happen. �

We also have a converse of sorts to (4.4) above.

Lemma 4.6. — With the assumptions of 4.5, suppose for some c ∈ K
we have that ordp(an − bnc) > 0. Then ordp(c− n) > 0.

Proof. — The equation an − bnc = xw implies that ordp(an − bnc) > 0
as ordpx > 0 and p 6∈ W. Since ordp(an − bnn) > 0 by Lemma 4.5, we
conclude that ordp(bn(c− n)) > 0. This proves the result by (4.5). �

Next we prove an easy lemma.

Lemma 4.7. — The set

E =
{

(u, v, w, z) ∈ (OK,W)4
∣∣∣ vw 6= 0, ∃n ∈ Z \ {0} : xn = u

v
, yn = z

w

}
is Diophantine.

Proof. — Since we know how to define non-zero elements over any holo-
morphy ring and all the points of E(K) are in fact of the form [n]P + T
where T is a 2-torsion point, we can easily define the set

Eeven =
{

(u′, v′, w′, z′) ∈ (OK,W)4
∣∣∣ ∃k ∈ Z \ {0} : x2k = u

′

v′
, y2k = z

′

w′

}
using Theorem 3.3. Then (u, v, w, z) ∈ E if and only if either (u, v, w, z) ∈
Eeven or

(
u
v ,
z
w

)
=
(
u′

v′ ,
z′

w′

)
+E
( 1
x , 1
)
, where (u′, v′, w′, z′) ∈ Eeven. �

Proof of Theorem 3.2. — Put I = Ip = {t ∈ OK,W | ordp(t) > 0}, and
let us prove that Z + I is Diophantine in OK,W .
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Let ξ be an element of OK,W . We claim that the following are equivalent:
(1) ξ ∈ Z + I,
(2) either ξ∈I, or the following system has a solution (u, v, w, z, a, b, A,B)

in O8
K,W :

(4.6)



(u, v, w, z) ∈ E
a

b
= xuw
vz

Aa+Bb = 1

a− bξ ∈ I.

This clearly implies the result since both E and I are Diophantine (the
former by 4.7, and the latter because it is a finitely generated ideal).

First, assume (1). If ξ ∈ I we are done. Otherwise, we may assume that
ξ =: n is a nonzero integer since both (1) and (2) are invariant under
adding an element of I to ξ. We construct a solution of (4.6) as follows.
First, choose u, v, w, z so that uv = xn, zw = yn (first relation). Put a = αn
and b = βn (as defined in 4.3): the second relation is satisified and we can
find A and B satisfying the third. Finally by (4.4) the fourth relation holds
since x ∈ I.

Now assume that (2) holds. As before, (1) is trivial if ξ ∈ I. Otherwise, fix
a solution (u, v, w, z, a, b, A,B) of (4.6). By definition of E there is a nonzero
integer n such that xn = u

v and yn = z
w . We can then apply Lemmas 4.5

and 4.6 with an = a, bn = b and c = ξ to conclude that ordp(ξ − n) > 0.
In other words, ξ ∈ Z + I. �
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