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GROUPS OF REAL ANALYTIC DIFFEOMORPHISMS
OF THE CIRCLE WITH A FINITE IMAGE UNDER

THE ROTATION NUMBER FUNCTION

by Yoshifumi MATSUDA

Abstract. — We consider groups of orientation-preserving real analytic dif-
feomorphisms of the circle which have a finite image under the rotation number
function. We show that if such a group is nondiscrete with respect to the C1-
topology then it has a finite orbit. As a corollary, we show that if such a group has
no finite orbit then each of its subgroups contains either a cyclic subgroup of finite
index or a nonabelian free subgroup.

Résumé. — Nous considérons des groupes de difféomorphismes directs et ana-
lytiques réels du cercle qui ont une image finie sous l’application du nombre de
rotation. Nous montrons que si un tel groupe est non-discret pour la topologie C1

alors il a une orbite finie. Comme corollaire, nous montrons que si un tel groupe n’a
aucune orbite finie alors chacun de ses sous-groupes contient soit un sous-groupe
cyclique d’indice fini, soit un sous-groupe libre non-abélien.

1. Introduction

The rotation number is a conjugacy invariant of orientation-preserving
homeomorphisms of the circle. The precise definition of the rotation number
will be given in Section 2. H. Poincaré showed that this invariant contains
much information about dynamics. We quote only a part of his result which
is interesting for us.

Theorem (Poincaré). — Let f be an orientation-preserving homeomor-
phism of the circle. Then the rotation number ρ(f) of f is rational if and
only it has a finite orbit. More precisely, ρ(f) = p

q mod Z for certain co-
prime integers p, q ∈ Z if and only if f has an orbit with q points.

Keywords: Rotation number, circle diffeomorphisms, groups, local vector fields.
Math. classification: 37E45, 37E10, 57S05, 37B05, 20F67.
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The rotation number defines a map ρ from the group Homeo+(S1) of
orientation-preserving homeomorphisms of the circle to R/Z, which we call
the rotation number function. We are interested in the relation between
the behavior of the rotation number function on subgroups of Homeo+(S1)
and their dynamics. The above theorem implies the following corollary.

Corollary 1.1. — Let Γ be a subgroup of Homeo+(S1). If Γ has a
finite orbit, then it has a finite image under the rotation number function.

It follows from the above theorem that the converse of Corollary 1.1 holds
true for every cyclic subgroup of Homeo+(S1). More generally, it holds true
for every subgroup of Homeo+(S1) preserving a probability measure on the
circle (see Proposition 2.4).

However the converse of Corollary 1.1 does not hold true in general even
if we assume that Γ is a subgroup of the group Diffω+(S1) of orientation-
preserving real analytic diffeomorphisms of the circle. In fact, there exists a
subgroup of Diffω+(S1) which has a finite image under the rotation number
function and has no finite orbit.

The projective group PSL(2,R) acts naturally on the real projective line.
By identifying the real projective line with the circle, we regard PSL(2,R)
as a subgroup of Diffω+(S1). It follows from Selberg’s Lemma (see Lemma 8
of [11]) that every finitely generated and discrete subgroup of PSL(2,R) has
a finite image under the rotation number function. Furthermore, there exist
such subgroups which have no finite orbit in the circle such as PSL(2,Z).

On the other hand, after several works of J. Nielsen, W. Fenchel and
A. Selberg, T. Jørgensen gave a criterion for subgroups of PSL(2,R) to be
Fuchsian groups. In our context, his criterion is expressed as follows (In
fact, he obtained a stronger result. See Theorem 2 of [6]):

Theorem (Jørgensen). — Let Γ be a subgroup of PSL(2,R) which has
no finite orbit in the circle. If Γ has a finite image under the rotation number
function, then it is a discrete subgroup of PSL(2,R).

This theorem implies that the converse of Corollary 1.1 holds true for
nondiscrete subgroups of PSL(2,R). In this paper, we show that the con-
verse of Corollary 1.1 holds true for subgroups of Diffω+(S1) which are
nondiscrete with respect to the C1-topology. Our main result is the fol-
lowing:

Theorem 1.2. — Let Γ be a subgroup of Diffω+(S1) which is nondis-
crete with respect to the C1-topology. Then Γ has a finite image under the
rotation number function if and only if it has a finite orbit.
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Before describing an application of Theorem 1.2, we recall the following
result due to G. Margulis (see Theorem 3 of [7]):

Theorem (Margulis). — Let Γ be a subgroup of Homeo+(S1). Then
either there exists a Γ-invariant probability measure on the circle or Γ
contains a nonabelian free subgroup.

(For the proof, see [7] pages 670-674. See also [3] pages 360-363.) Applying
Theorem 1.2, we can improve Margulis’ theorem for certain subgroups of
Diffω+(S1). The statement is as follows:

Corollary 1.3. — Let Γ be a subgroup of Diffω+(S1) which has no
finite orbit. Assume that Γ has a finite image under the rotation number
function. Then we have the following:

(i) Γ is discrete with respect to the C1-topology.
(ii) For every subgroup Γ′ of Γ, one of the following occurs:

(a) Γ′ is a finite group.
(b) Γ′ contains an infinite cyclic subgroup of finite index.
(c) Γ′ contains a nonabelian free subgroup.

It is known that every hyperbolic group has the same property as stated
in the second assertion of Corollary 1.3 (see [4] page 157). Hence it would
be interesting to know if every finitely generated subgroup of Diffω+(S1)
satisfying the assumption of Corollary 1.3 is a hyperbolic group. To the
best of my knowledge, every known example of subgroups of Diffω+(S1)
satisfying the assumption of Corollary 1.3 is conjugate to an extension of
a finite group by a Fuchsian group .

We also show that neither Theorem 1.2 nor Corollary 1.3 holds true
if we replace Diffω+(S1) by the group Diff∞+ (S1) of orientation-preserving
C∞-diffeomorphisms of the circle (see Remark 4.4).

There are two main ingredients to prove Theorem 1.2. The first ingredient
is the fact that certain subgroups of Homeo+(S1) contain an element whose
fixed point set is nonempty and “small” (see Corollary 2.7). This fact results
from an observation of E. Ghys, which is based on an argument of G.
Margulis (see Proposition 2.6). In Section 2 we describe this fact together
with several known facts about dynamics of subgroups of Homeo+(S1). The
second ingredient is the existence of certain local vector fields associated
to nondiscrete subgroups of Diffω+(S1). (see Proposition 3.9). This fact is
essentially due to I. Nakai [8] and J. Rebelo [10]. The detailed argument is
given in Section 3. In Section 4 we prove Theorem 1.2 and Corollary 1.3.
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1822 Yoshifumi MATSUDA

2. Dynamics of groups of homeomorphisms of the circle

We begin this section by recalling the definition of the rotation number.
Denote by ˜Homeo+(S1) the group of homeomorphisms of the real line R
which commute with integer translations. Then we can lift every element of
Homeo+(S1) to ˜Homeo+(S1) and two such lifts differ by an integer trans-
lation. Let f̃ be an element of ˜Homeo+(S1). Then we take a point x of the
real line and define the translation number τ(f̃) of f̃ as follows:

τ(f̃) = lim
n→∞

f̃n(x)− x
n

.

We can prove that the limit on the right hand side always exists and does
not depend on the choice of the point x. It follows from the definition that
if two elements of ˜Homeo+(S1) differ by an integer translation then their
translation numbers differ by an integer.

Now we consider an element f of Homeo+(S1). Then the translation
numbers of its lifts in ˜Homeo+(S1) differ by integers and hence the element

ρ(f) = τ(f̃) modZ ∈ R/Z

is well-defined. This number ρ(f) is called the rotation number of the home-
omorphism f .

To describe a property of the rotation number, we recall the following
definition:

Definition 2.1. — A map h from the circle to itself is called an in-
creasing continuous map of degree one if it is covered by an increasing
continuous map from the real line to itself which commutes with integer
translations.

Let f and g be two elements of Homeo+(S1). We say that f is semi-
conjugate to g if there exists an increasing continuous map h of degree one
from the circle to itself such that hf = gh.

Note that h need not to be a homeomorphism in the above definition.
The following lemma shows that the rotation number is invariant under
semi-conjugation (see Lemma 5.1.3 of [5] for the proof):

Lemma 2.2. — Let f and g be two elements of Homeo+(S1). If f is
semi-conjugate to g, then we have ρ(f) = ρ(g).

The following proposition describes the possibilities for dynamics of sub-
groups of Homeo+(S1). (see Proposition 5.6 of [3] for the proof):
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Proposition 2.3. — Let Γ be a subgroup of Homeo+(S1). Then exactly
one of the following cases occurs:

(i) Γ has a finite orbit.
(ii) All orbits are dense: in this case Γ is said to be minimal.
(iii) There exists a minimal set C which is homeomorphic to a Cantor

set: in this case this set C is unique and is called the exceptional
minimal set.

Now we show that the converse of Corollary 1.1 holds true for every
subgroup of Homeo+(S1) preserving a probability measure on the circle.

Proposition 2.4. — Let Γ be a subgroup of Homeo+(S1). Assume that
there exists a Γ-invariant probability measure on the circle. Then Γ has a
finite image under the rotation number function if and only if it has a finite
orbit.

Proof. — Let Γ be a subgroup of Homeo+(S1) which preserves a proba-
bility measure on the circle. Then it suffices to show that if Γ has no finite
orbit then it has an infinite image under the rotation number function.

If Γ is minimal, then every invariant probability measure has full support
and has no atom. Hence every invariant probability measure is the image
of the Lebesgue measure under a certain homeomorphism of the circle.
Therefore Γ is conjugate to a group which preserves the Lebesgue measure,
that is, a group consisting of rotations. In particular, the rotation number
function is injective on Γ. Since Γ has no finite orbit, it is an infinite group
and hence has an infinite image under the rotation number function.

If Γ has an exceptional minimal set, we can show that there exists a
homomorphism ψ from Γ to Homeo+(S1) such that γ is semi-conjugate to
ψ(γ) for every element γ in Γ and ψ(Γ) is minimal (see Proposition 5.8
of [3]). Since ψ(Γ) preserves a probability measure on the circle as well
as Γ, the above argument implies that ψ(Γ) has an infinite image under
the rotation number function. Then it follows from Lemma 2.2 that Γ also
has an infinite image under the rotation number function.

Thus we have finished the proof of the proposition. �

Now we consider minimal subgroups of Homeo+(S1) which preserve no
probability measure on the circle. Such subgroups have a certain type of
dynamics. To see this, we begin by giving the following definition:

Definition 2.5. — Let Γ be a subgroup of Homeo+(S1). A closed inter-
val I in the circle is said to be Γ-contractible if there exists a sequence {gn}
of elements of Γ such that the length of the interval gn(I) tends to zero.
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The following proposition is based on an argument of G. Margulis (see
Section 4 of [7]) and was formulated by E. Ghys (see [3] pages 361-363).

Proposition 2.6. — Let Γ be a minimal subgroup of Homeo+(S1).
Assume that there exists no Γ-invariant probability measure on the circle.
Then there exists an element θ of Homeo+(S1) satisfying the following
conditions:

(i) θ is a periodic homeomorphism which commutes with every ele-
ment of Γ.

(ii) For every point x in the circle, every closed interval contained in
[x, θ(x)[ is Γ-contractible, where [x, θ(x)[ stands for the whole circle
if θ is the identity.

Proof. — We first claim that Γ is not equicontinuous. Indeed, if it is
equicontinuous, then it follows from Ascoli-Arzela’s theorem that there
exists a Γ-invariant probability measure on the circle, which contradicts
the assumption.

Now we claim that there exists a Γ-contractible interval in the circle.
Indeed, since Γ is not equicontinuous, there exist a sequence {In} of open
intervals in the circle, a sequence {gn} of elements of Γ and a positive real
number ε > 0 such that the length of In tends to zero and the length
of gn(In) is greater than ε. By taking a subsequence of {In} if necessary,
we may assume that there exists an open interval I in the circle which
is contained in gn(In) for every sufficiently large n. Then it follows that
g−1
n (I) ⊂ In for every sufficiently large n. Therefore the length of g−1

n (I)
tends to zero and hence the interval I is Γ-contractible.

We denote by π : R → S1 the universal cover of the circle. For each
point x in the real line R, we set

θ̃(x) = sup{y ∈ R|π([x, y]) is a Γ-contractible closed interval}.

Thus we obtain a map θ̃ from the real line to itself. Since θ̃ commutes with
integral translations and hence it induces a map θ from the circle to itself.
Note that θ commutes with every element of Γ.

Now we claim that the map θ is an element of Homeo+(S1). Indeed, the
map θ̃ is increasing. If it were not strictly increasing, then the union of open
intervals in the circle on which the map θ is constant would be a nonempty,
open and Γ-invariant subset of the circle. The minimality of Γ implies that
this set is the whole circle. Hence the image of θ is a single point and every
element of Γ fixes this point. However this contradicts the minimality of Γ
and hence the map θ̃ is strictly increasing. Similarly, if the map θ were not
continuous, then the interior of the complement of the image θ(S1) would
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be the whole circle. Therefore the map θ is continuous and we conclude
that it is an element of Homeo+(S1).

Next we claim that the homeomorphism θ is periodic. Indeed, if θ had a
unique exceptional minimal set, then this set would also be an exceptional
minimal set for Γ and this contradicts the minimality of Γ. If θ is minimal,
it would be conjugate to an irrational rotation. Since every element of Γ
commutes with θ and a homeomorphism which commutes with an irrational
rotation is a rotation, Γ is conjugate to a group of rotations. However this
contradicts the existence of a Γ-contractible interval. Therefore θ has a
finite orbit. The union of periodic points of θ is a closed, Γ-invariant and
nonempty subset of the circle. Then it follows from the minimality of Γ
that the homeomorphism θ is periodic.

Moreover it follows from the definition of θ that the second condition
in the proposition is satisfied and thus we have finished the proof of the
proposition. �

Proposition 2.6 yields the following corollary, which plays an important
role in the proof of Theorem 1.2.

Corollary 2.7. — Let Γ and θ be as in Proposition 2.6. Let κ denote
the period of θ and let I0 be a closed interval in the circle such that the
intervals I0, θ(I0), . . . , θκ−1(I0) are mutually disjoint. Then there exists an
element h of Γ such that

∅ 6= Fix(h) ⊂
κ−1⋃
j=0

Int(θj(I0)) and

h(S1 \
κ−1⋃
j=0

Int(θj(I0))) ⊂
κ−1⋃
j=0

Int(θj(I0)).

Proof. — We first claim that there exists an element h0 of Γ which is
different from the identity and has a fixed point. Indeed, if there were no
such element, it follows from Hölder’s theorem (see Theorem 6.10 of [3])
that Γ would be abelian and would preserve a probability measure on the
circle.

Let x be a point in the complement of Fix(h0). Then there exists a Γ-
contractible closed interval J in [x, θ(x)[ such that Fix(h0) ∩ [x, θ(x)[⊂ J .
It follows that Fix(h0) ⊂

⋃κ−1
j=0 θ

j(J). Since J is Γ-contractible and Γ is
minimal, there exists an element g of Γ such that g(J) ⊂ Int(I0). Now we
put h = gh0g

−1. Then we have

Fix(h) = g(Fix(h0)) ⊂
κ−1⋃
j=0

θj(g(J)) ⊂
κ−1⋃
j=0

Int(θj(I0)).
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Since h is a translation on each connected component of Fix(h), replacing
h by its power if necessary, we may assume that

h(S1 \
κ−1⋃
j=0

Int(θj(I0))) ⊂
κ−1⋃
j=0

Int(θj(I0)).

Thus we have finished the proof of the corollary. �

3. Locally nondiscrete subgroups and associated local
vector fields

We begin this section by giving the definition of the local nondiscreteness
for subgroups of Diffω+(S1).

Definition 3.1. — For 0 6 r 6 ∞, a subgroup Γ of Diffω+(S1) is said
to be locally nondiscrete with respect to the Cr-topology if there exists a
sequence of elements of Γ\{id} which converges to the identity on an open
interval in the circle with respect to the Cr-topology.

Locally nondiscrete subgroups of Diffω+(S1) are imposed restrictions on
their dynamics as the following proposition shows.

Proposition 3.2. — Let Γ be a subgroup of Diffω+(S1) which is locally
nondiscrete with respect to the C0-topology. Then Γ has no exceptional
minimal set.

Proof. — We prove by contradiction. Suppose that Γ has an exceptional
minimal set C and is locally nondiscrete with respect to the C0-topology.
Then there exist an open interval I in the circle and a sequence {gn} of
elements of Γ \ {id} which converges to the identity on I with respect to
the C0-topology. Let J be a connected component of the complement of C
which intersects I and let a be an endpoint of J .

We claim that the stabilizer Staba(Γ) of a is nontrivial. Indeed, the as-
sumption implies that for every n sufficiently large, the image gn(J) inter-
sects the component J . On the other hand, the image gn(J) is a connected
component of the complement of C as well as J . Therefore, for every n

sufficiently large, gn preserves the connected component J and fixes its
endpoints.

Since Γ has an exceptional minimal set, it follows from a theorem of G.
Hector that the stabilizer Staba(Γ) of a must be cyclic (see page 461 of
[9]). Hence there exists no sequence of elements of Staba(Γ) \ {id} which
converges to the identity on I ∩ J . This contradicts the fact that for every
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n sufficiently large, gn belongs to Staba(Γ) \ {id}. Thus we have finished
the proof of the proposition. �

In the sequel, we associate certain local vector fields to locally nondis-
crete subgroups of Diffω+(S1). The local vector fields we associate have the
property described in the following definition.

Definition 3.3. — Let Γ be a subgroup of Diffω+(S1) and let J be an
open interval in the circle. For 0 6 r 6∞, a local vector field X defined on
J is said to be in the Cr-closure of Γ relative to I if the following condition
is satisfied: for every compact subinterval J0 of J and for every positive
real number t0 > 0 such that the local flow ϕt associated to X is defined
on J0 for every 0 6 t 6 t0, the map ϕt0 is the Cr-limit of the restriction to
J0 of a sequence of elements of Γ.

The following lemma is used to show the existence of a local vector field
which is in the C0-closure for certain nondiscrete subgroups of Diffω+(S1)
(cf. Proposition 3.7 and 3.9).

Lemma 3.4. — Let {gn} be a sequence of C1-maps from an open inter-
val I in the real line R into R and let {λn} be a sequence of positive real
numbers which diverges to the infinity. Assume that there exist positive
real numbers A1, A2 and A3 satisfying the following:

A1 6 inf
x∈I

λn|(gn − id)(x)| 6 sup
x∈I

λn|(gn − id)(x)| 6 A2 and(3.1)

sup
x∈I

λn|(gn − id)′(x)| 6 A3.(3.2)

Then for each open and relatively compact subinterval J of I there exists
a nowhere vanishing C0-vector field X on J which satisfies the following
condition: for every compact subinterval J0 of J and for every positive real
number t0 > 0 such that the local flow ϕt associated to X is defined on
J0 for every 0 6 t 6 t0, the sequence {g[λnt0]

n } (where [λnt0] stands for the
integral part of λnt0) converges to the map ϕt0 uniformly on J0.

Proof. — Our proof is based on the argument in the proof of Proposition
3.5 of [8]. For each positive integer n > 1, we define a vector field Xn on I
by

Xn(x) = λn(gn − id)(x) ∂
∂x
.

Then it follows from the assumption that the family {λn(gn−id) | n > 1} is
uniformly bounded and equicontinuous as a family of real valued functions
on I. Let J be an open and relatively compact subinterval of I. Then by
applying Ascoli-Arzela’s theorem and taking a subsequence if necessary,
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we may assume that the sequence of vector fields {Xn} converges to a
C0-vector field X on J with respect to the C0-topology. Moreover the
inequality (3.1) implies that infx∈J ||X(x)|| > A1 > 0 and hence X is a
nowhere zero vector field on J .

Now we show that the vector fieldX satisfies the desired condition. Let J0
be a compact subinterval of J and let t0 > 0 be a positive real number such
that the local flow ϕt associated to X is defined on J0 for 0 6 t 6 t0. Let I ′
be an open and relatively compact subinterval of I containing J . Then
there exists a positive real number δ > 0 such that the δ-neighborhood of
each point in I ′ is contained in I. By taking a subsequence if necessary, we
may assume that

(3.3) 1
2
A2 λ

−1
n {(1 +A3λ

−1
n )j − 1} < δ

for every positive integer n and every integer 0 6 j 6 [λnt0]. We denote by
ϕtn the local flow associated to Xn. By taking a subsequence if necessary,
we may assume that the point ϕtn(x) belongs to the interval I ′ for every
positive integer n, every real number 0 6 t 6 t0 and every point x in J0.
Now we prove the following claim:

Claim For every positive integer n, every integer 0 6 j 6 [λnt] and every
point x in J0, we have

|ϕλ
−1
n j
n (x)− gjn(x)| 6 1

2
A2λ

−1
n {(1 +A3λ

−1
n )j − 1}

and the point gjn(x) belongs to the interval I.
Proof. — The proof is done by the induction on j. The claim obviously

holds true for j = 0. Now let us fix a positive integer n arbitrarily and
assume that the result holds for an integer j with 0 6 j 6 [λnt]− 1. Let x
be an arbitrary point in J0. Then it follows from the inequality (3.1) that∫ λ−1

n

0
|ϕt+λ

−1
n j

n (x)− gjn(x)|dt

6
∫ λ−1

n

0
{|(ϕtn − id)(ϕλ

−1
n j
n (x))|+ |ϕλ

−1
n j
n (x)− gjn(x)|}dt

6
∫ λ−1

n

0

{∫ t
0
λn|(gn − id)(ϕs+λ

−1
n j

n (x))|ds+ |ϕλ
−1
n j
n (x)− gjn(x)|

}
dt

6
∫ λ−1

n

0
(A2t+ |ϕλ

−1
n j
n (x)− gjn(x)|)dt

6
1
2
A2λ

−2
n + λ−1

n |ϕ
λ−1
n j
n (x)− gjn(x)|.
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Since the two points ϕλ
−1
n j
n (x) and gjn(x) belong to the interval I by the

assumption, the inequality (3.2) and the above inequality imply that

|((ϕλ
−1
n
n − id)(ϕλ

−1
n j
n (x))− (gn − id)(gjn(x))|

6
∫ λ−1

n

0
λn|(gn − id)(ϕt+λ

−1
n j

n (x))− (gn − id)(gjn(x))|dt

6 (sup
y∈I

λn|(gn − id)′(y)|)
∫ λ−1

n

0
|ϕt+λ

−1
n j

n (x)− gjn(x)|dt

6
1
2
A2A3λ

−2
n +A3λ

−1
n |ϕ

λ−1
n j
n (x)− gjn(x)|.

Hence it follows from the assumption that

|ϕλ
−1
n (j+1)
n (x)− gj+1

n (x)|

6 |((ϕλ
−1
n
n − id)(ϕλ

−1
n j
n (x))− (gn − id)(gjn(x))|+ |ϕλ

−1
n j
n (x)− gjn(x)|

6
1
2
A2A3λ

−2
n + (1 +A3λ

−1
n )|ϕλ

−1
n j
n (x)− gjn(x)|

6
1
2
A2λ

−1
n {(1 +A3λ

−1
n )j+1 − 1}.

Thus we have proved the first assertion of the claim for j + 1.
Moreover, since the point ϕλ

−1
n (j+1)
n (x) belongs to the interval I ′ by the

assumption, the inequality (3.3) and the property of δ imply that the point
gj+1
n (x) belongs to the interval I. Thus we have proved the second assertion

of the claim for j + 1 and have finished the proof of the claim. �

Now we return to the proof of the lemma. Since the sequence {ϕt0n }
uniformly converges to ϕt0 on J0 and the sequence {λ−1

n [λnt0]} converges
to t0, the inequality (3.1) implies that the sequence {ϕλ

−1
n [λnt0]
n } uniformly

converges to ϕt0 on J0. On the other hand, it follows from the above claim
that

|ϕλ
−1
n [λnt0]
n (x)− g[λnt0]

n (x)| 6 1
2
A2λ

−1
n {(1 +A3λ

−1
n )[λnt0] − 1}

6
1
2
A2λ

−1
n (eA3t0 − 1)

for every positive integer n and every point x in J0. This implies that the
sequence {g[λnt0]

n } also uniformly converges to ϕt0 on J0. Thus we have
finished the proof of the lemma. �

Now we quote a result of I.Nakai (see Section 3 of [8]). He showed that
we can associate local vector fields to pseudogroups of holomorphic diffeo-
morphisms on open neighborhoods of the origin 0 in the complex plane C
fixing the origin. Precisely, his result is stated as follows:
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Proposition 3.5 (I. Nakai). — Let f and g be holomorphic diffeomor-
phisms on a neighborhood of 0 in C. Assume that f and g have the following
Taylor expansions:

f(z) = z + azi + · · · , g(z) = z + bzj + · · · , a, b 6= 0, 1 6 i < j.

For every positive integer n > 1, we put λn = n
j−i
i and gn = f−ngfn. We

denote by Bf the basin of f , that is, the set of the points z in the domain
of f such that fn(z) converges to 0 ∈ C as n tends to the infinity. Then we
have the following:

(i) The sequence {λn(gn−id)} converges (locally uniformly) to a holo-
morphic vector field X on Bf \ {0}.

(ii) For every relatively compact subset V of Bf \ {0} and for every
positive real number t0 > 0 such that the local flow ϕt associated
to X is defined on V for every 0 6 t 6 t0, the sequence {g[λnt0]

n }
converges to the map ϕt0 uniformly on V .

When we embed the real line R in the complex plane C, every real ana-
lytic diffeomorphism defined on a neighborhood of 0 in R has a holomorphic
extension to a certain neighborhood of 0 in C. Therefore we obtain the fol-
lowing corollary:

Corollary 3.6. — Let f and g be real analytic diffeomorphisms on a
neighborhood of 0 in R. Assume that f and g have the following Taylor
expansions:

f(x) = x+ axi + · · · , g(x) = x+ bxj + · · · , a, b 6= 0, 1 6 i < j.

For every positive integer n > 1, we put λn = n
j−i
i and gn = f−ngfn. We

denote by Bf the basin of f , that is, the set of the points x in the domain
of f such that fn(x) converges to 0 ∈ R as n tends to the infinity. Then
we have the following:

(i) The sequence {λn(gn− id)} converges (locally uniformly) to a real
analytic vector field X on Bf \ {0}.

(ii) For every relatively compact subset I0 of Bf \ {0} and for every
positive real number t0 > 0 such that the local flow ϕt associated
to X is defined on I0 for every 0 6 t 6 t0, the sequence {g[λnt0]

n }
converges to the map ϕt0 uniformly on I0.

Using this corollary, we show the following proposition:

Proposition 3.7. — Let Γ be a subgroup of Diffω+(S1) and let p be a
point in the circle. Assume that the stabilizer Stabp(Γ) of the point p in Γ
is not cyclic. Then we have the following:
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(i) Γ is locally nondiscrete with respect to the C1-topology and
(ii) there exists a local C0-vector field defined on an open interval

which is in the C0-closure of Γ.

Proof. — The proof is divided into two cases in accordance with the sta-
bilizer Stabp(Γ) being abelian.

Case 1. The stabilizer Stabp(Γ) of p in Γ is abelian. — Let f be an
element of Stabp(Γ) which is different from the identity. We claim that
every element g of Stabp(Γ) fixes every point of Fix(f). Indeed, g commutes
with f and hence it preserves Fix(f). Moreover, it follows from the real
analyticity of f that Fix(f) is a finite set. Since g fixes the point p in
Fix(f), this implies that g fixes every point of Fix(f).

Let I =]a, b[ be a connected component of the complement of Fix(f).
Then it follows from a result of G. Seekers that there exists a C1-vector
field X on [a, b[ with the following properties:

• X is nowhere zero on I,
• the local flow ϕt associated to X verifies ϕ1 = f |[a,b[ and
• the centralizer of f |[a,b[ in Diff1

+([a, b[) is equal to {ϕt}
(see [13]. See also Theorem 2.2 of [12]). Since Stabp(Γ) is abelian and non-
cyclic, the restrictions of its elements to I form a dense subgroup of {ϕt}.
This implies that there exists a sequence of elements of Stabp(Γ)\{id} which
converges to the identity on I with respect to the C1-topology. Moreover
it follows that the restriction of the vector field X to I is in the C1-closure
of Γ with respect to I. Thus we have finished the proof in this case.

Case 2. The stabilizer Stabp(Γ) of p in Γ is not abelian. — In this case,
there exist elements f and g of Stabp(Γ) which have the following Taylor
expansions in a local coordinate x with p = 0:

f(x) = x+ axi+1 + · · · , g(x) = x+ bxj+1 + · · · , a, b 6= 0, 0 6 i < j.

If i > 1, then the claim of the proposition results from Corollary 3.6.
Hence it suffices to consider the case where i = 0. We put λ = f ′(0)(= 1+a).
Replacing f by its inverse if necessary, we may assume that 0 < λ < 1.
Then it follows from a theorem of G. Koenigs (see Theorem 2.1 of [1]) that
there exists a local real analytic coordinate x on an open neighborhood I1
of p such that p = 0 and f is written in the form f(x) = λx on I1.
Via the local coordinate x, we regard each element of Stabp(Γ) as a local
orientation-preserving real analytic diffeomorphism on I1 fixing the point 0.
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Replacing g by its inverse if necessary, we may assume that b < 0. Then
there exists a positive real number δ1 > 0 such that the closed interval
[0, δ1] is contained in I1 and g(j+1)(y) < 0 for every y in [0, δ1]. We denote
by I ′1 the closed interval [0, δ1]. We put M1 = supy∈I′1 |g

(j+1)(y)| and M2 =
infy∈I′1 |g

(j+1)(y)|. Then we have 0 < M2 6 M1. We take a positive real
number δ2 in ]0, δ1[ and denote by I the open interval ]δ2, δ1[.

For each positive integer n > 1, we define an element gn of Stabp(Γ) by
gn = f−ngfn. Now we prove the following lemma:

Lemma 3.8. — For every positive integer n > 1 and every point x in I,
we have

δj+1
2

(j + 1)!
M2 6 λ−jn|(gn − id)(x)| 6 δj+1

1
(j + 1)!

M1 and(3.4)

λ−jn|(gn − id)′(x)| 6 δj1
j!
M1.(3.5)

Proof. — We fix a point x in I arbitrarily. First we claim that

(3.6) gn(x) = λ−ng(λnx).

Indeed, since g(j+1)(y) < 0 for every point y in I, it follows from the def-
inition of j and Taylor’s theorem that 0 < g(fn(x)) < fn(x) < λnδ1.
Hence the point g(fn(x)) belongs to the open interval ]0, λnδ1[. Since
f−n(z) = λ−nz for every point z in ]0, λnδ1[, we obtain the equality (3.6).

Next we prove the inequality (3.4). The equality (3.6) implies that

|(gn − id)(x)| = λ−n|(g − id)(λnx)|.

Moreover, it follows from Taylor’s theorem that there exists a point y in I ′1
such that

|(g − id)(λnx)| = (λnx)j+1

(j + 1)!
|g(j+1)(λny)|.

These two equalities imply the inequality (3.4).
Finally we prove the inequality (3.5). It follows from the equality (3.6)

that
|(gn − id)′(x)| = |(g − id)′(λnx)|.

Since g′(0) = 1 by the assumption, it follows from Taylor’s theorem that
there exists a point y′ in I ′1 such that

|(g − id)′(λnx)| = (λnx)j

j!
|g(j+1)(λny′)|.

This equality implies the inequality (3.5) and we have finished the proof of
the lemma. �
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We return to the proof of Proposition 3.7 in Case 2. It follows from
Lemma 3.8 that the sequence {gn} converges to the identity on I. More-
over the sequence {gn} satisfies the assumption of Lemma 3.4 (we put
λn = λ−jn). Therefore Lemma 3.4 implies the existence of a desired local
vector field. Thus we have finished the proof in Case 2 and the proof of the
proposition has been completed. �

The rest of this section is devoted to proving the following proposition:

Proposition 3.9. — Let Γ be a subgroup of Diffω+(S1) which is nondis-
crete with respect to the C1-topology. Assume that Γ preserves no proba-
bility measure on the circle. Then there exist a nowhere zero C0-vector field
which is defined on an open interval in the circle and is in the C0-closure
of Γ.

Proof. — Since Γ has no finite orbit by the assumption, it is minimal
by Proposition 3.2. Moreover Γ contains a nontrivial element which has a
fixed point. Indeed if there were no such element, it follows from Hölder’s
theorem that Γ would be abelian and would preserve a probability measure
on the circle. Then by a result of E. Ghys there exists an element f of Γ
and a point p in the circle such that f(p) = p and f ′(p) = λ < 1 (see
Theorem 1.2.7 of [2]). If the stabilizer Stabp(Γ) is not cyclic, then Corol-
lary 3.6 implies the claim of the proposition. Hence we may assume that
the stabilizer Stabp(Γ) is cyclic.

Since Γ is locally nondiscrete with respect to the C1-topology and min-
imal, there exists a sequence {hn} of elements of Γ which converges to
the identity on a neighborhood I1 of p with respect to the C1-topology.
Since the stabilizer Stabp(Γ) is cyclic by the assumption, by taking a sub-
sequence if necessary, we may assume that hn(p) 6= p for every positive
integer n > 1. Moreover, by taking a subinterval of I1 if necessary, we may
assume that there exists a local real analytic coordinate x defined on I1
such that p = 0 and f is written in the form f(x) = λx. Furthermore, we
may assume that in our coordinate x the neighborhood I1 of 0 contains the
closed interval [−1, 1].

Now we show that there exist an open subinterval I of I1 and a se-
quence {gn} of elements of Γ satisfying the assumption of Lemma 3.4. We
follow an argument due to J. Rebelo (see Section 3 of [10]). For an open
subset J ⊂ R and a C1-map defined on J onto its image in R, we denote
||h||1,J = supx∈J(|h(x)|+ |h′(x)|).

Lemma 3.10. — Let I2 be an open and relatively compact subinterval
of I1. Assume that we are given a positive integer n > 1 and a positive real
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number ε > 0. Then there exists a positive real number δ > 0 such that

|(hn − id)(x)− n(h− id)(x)| 6 ε|(h− id)(x)|

for every map h satisfying ||h− id ||1,I1 < δ and every point x in I2.

Proof. — We prove the lemma by induction on n. The lemma obviously
holds true for n = 1 and we assume that the result holds true for n > 1.
Then there exists a positive real number δ′ > 0 such that

(3.7) |(hn − id)(x)− n(h− id)(x)| 6 ε

2
|(h− id)(x)|

for every map h satisfying ||h − id ||1,I1 < δ′ and every point x in I2. Let
d > 0 be a positive real number such that the open interval ]x− d, x+ d[ is
contained in I1 for every point x in I2. Now we put δ = min{ dn ,

ε
2n+ε , δ

′}.
We take a C1-map h : I → R satisfying ||h − id ||1,I1 < δ and a point x
in I2 arbitrarily. Then for every 1 6 m 6 n we have

|(hm − id)(x)| 6
m−1∑
l=0
|(hl+1 − hl)(x)| < md

n
6 d.

In particular, the point hn(x) belongs to I1. Therefore it follows from the
mean value theorem and the inequality (3.7) that

|(hn+1 − id)(x)− (n+ 1)(h− id)(x)|

6 |(hn+1 − hn)(x))− (h− id)(x)|+ |(hn − id)(x)− n(h− id)(x))|

6 (sup
y∈I1
|(h− id)′(y)|)|(hn − id)(x)|+ ε

2
|(h− id)(x)|

6
ε

2n+ ε
(n+ ε

2
)|(h− id)(x)|+ ε

2
|(h− id)(x)| = ε|(h− id)(x)|.

Thus the result holds true for n+ 1 and we have finished the proof of the
lemma. �

Lemma 3.11. — Let I2 be an open and relatively compact subinterval
of I1. Assume that we are given a positive integer n > 1 and positive real
numbers C1 and C2. Then there exists a positive real number δ > 0 such
that

|(h− id)(y)− (h− id)(x)| < C1|(h− id)(x)|
for every C1-map h : I1 → R satisfying ||h− id ||1,I1 < δ and two arbitrary
points x, y in I2 satisfying |y − x| < C2|(hn − id)(x)|.

Proof. — Let δ′ > 0 be a positive real number such that Lemma 3.10
holds true for I2, n and ε = 1. We set δ = min{δ′, C1

C2(n+1)}. We take a
C1-map h : I1 → R satisfying ||h − id ||1,I1 < δ and two points x, y in I2
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satisfying |y − x| < C2|(hn − id)(x)| arbitrarily. Then it follows from the
mean value theorem and Lemma 3.10 that

|(h− id)(y)− (h− id)(x)|
6 (sup
z∈I1
|(h− id)′(z)|)|y − x| 6 δC2|(hn − id)(x)|

6 δC2(n+ 1)|(h− id)(x)| 6 C1|(h− id)(x)|.

Thus we have finished the proof of the lemma. �

Lemma 3.12. — Let n > 1 be a positive integer. Then there exists a
positive real number δ(n) > 0 with

(3.8) (n+ 1)δ(n) < 1− λ

such that for every C1-map h : I1 → R satisfying ||h− id ||1,I1 < δ(n) and
h(0) > 0 there exists a positive integer k > 1 satisfying the following:

(n+ 1)|(h− id)(λk)| > λk(1− λ),(3.9)

n|(h− id)(λk)| < λk−1(1− λ) and(3.10)

|(h− id)(y)− (h− id)(λk)| < 1
4
|(h− id)(λk)|(3.11)

for every point y in I1 with |y − λk| < λk−1(1− λ).

Proof. — Replacing in the statement of Lemma 3.11 I2 by ]− 1, 1[, n by
n+ 2, C1 by 1

4(n+1) and C2 by λ−1, we see that there exists a positive real
number δ(n) > 0 such that if a C1-map h : I1 → R satisfies ||h− id ||1,I1 <
δ(n) then we have

(3.12) |(h− id)(y)− (h− id)(x)| < 1
4(n+ 1)

|(h− id)(x)|

for two arbitrary points x, y in ]− 1, 1[ with |y − x| < λ−1|(hn+2 − id)(x)|.
Moreover, replacing in the statement of Lemma 3.10 n by n+ 2 and ε by 1
and reducing δ(n) if necessary, we may assume that the inequality (3.8)
holds true for every positive integer n > 1 and

(3.13) |(hn+2 − id)(x)− (n+ 2)(h− id)(x)| < |(h− id)(x)|

for every point x in ]− 1, 1[.
We fix a C1-map h : I1 → R satisfying ||h− id ||1,I1 < δ(n) and h(0) > 0

arbitrarily. Then we can consider the smallest positive integer k > 1 ver-
ifying the inequality (3.9). Then the inequalities (3.9) and (3.13) imply
that

(3.14) |λk−1 − λk| < λ−1(n+ 1)|(h− id)(λk)| < λ−1|(hn+2 − id)(λk)|.
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Therefore, setting x = λk and y = λk−1 in the inequality (3.12), we obtain

(3.15) |(h− id)(λk−1)− (h− id)(λk)| < 1
4(n+ 1)

|(h− id)(λk)|

Now we claim that the inequality (3.10) holds true. Indeed, if it were
false it would follow from the inequality (3.15) that

(n+ 1)|(h− id)(λk−1)| > (n+ 3
4

)|(h− id)(λk)|

> n|(h− id)(λk)| > λk−1(1− λ)

and this would contradict the minimality of k.
Finally we claim that the inequality (3.11) holds true. Indeed, replacing

x by λk in the inequality (3.12), it suffices to see that λk−1(1 − λ) <

λ−1|(hn+2 − id)(λk)|, which is obtained from the inequality (3.14). Thus
we have finished the proof of the lemma. �

Recall that we have a sequence {hn} of C1-maps defined on I1 which con-
verges to the identity on I1 with respect to the C1-topology. Since hn(0) 6= 0
for every positive integer n > 1 by assumption, replacing hn by its inverse
if necessary, we may assume that hn(0) > 0. By taking a subsequence if
necessary, we may also assume that ||hn − id ||1,I1 < δ(n) for every posi-
tive integer n > 1. Then it follows from Lemma 3.12 that for each positive
integer n > 1 there exists a positive integer kn > 1 satisfying the following:

(n+ 1)|(hn − id)(λkn)| > λkn(1− λ),(3.16)

n|(hn − id)(λkn)| < λkn−1(1− λ) and(3.17)

|(hn − id)(y)− (hn − id)(λkn)| < 1
4
|(hn − id)(λkn)|(3.18)

for every point y in I1 with |y − λkn | < λkn−1(1− λ).
We set λ′ = max{0, 2λ− 1} and define a compact subinterval I of I1 by

I = [λ′, λ]. For each positive integer n > 1, we define an element gn of Γ
by gn = f−kn+1hnf

kn−1.

Lemma 3.13. — For every positive integer n > 1 and every point x in I,
we have

3
8
λ(1− λ) 6 n|(gn − id)(x)| 6 5

4
(1− λ) and(3.19)

n|(gn − id)′(x)| < 1− λ.(3.20)

Proof. — First we claim that

(3.21) gn(x) = λ−kn+1hn(λkn−1x).
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Indeed, we have 0 < x < λ and hence the inequality (3.17) implies that

hn(fkn−1(x)) < hn(λkn) < λkn + 1
n
λkn−1(1− λ) 6 λkn−1.

Moreover we have
hn(fkn−1(x)) > hn(0) > 0.

Hence the point hn(fkn−1(x)) belongs to the open interval ]0, λkn−1[. Since
f−kn+1(y) = λ−kn+1y for every point y in ]0, λkn−1[, we obtain the equality
(3.21).

Next we prove the inequality (3.19). It follows from the equality (3.21)
that

(3.22) n|(gn − id)(x)| = λ−kn+1n|(hn − id)(λkn−1x)|.

Note that |x − λ| < 1 − λ and hence |λkn−1x − λkn | < λkn−1(1 − λ).
Therefore, the inequality (3.18) implies that

(3.23) 3
4
n|(hn − id)(λkn)| < n|(hn − id)(λkn−1x)| < 5

4
n|(hn − id)(λkn)|.

Moreover, it follows from the inequality (3.16) that

(3.24) n|(hn − id)(λkn)| > 1
2

(n+ 1)|(hn − id)(λkn)| > 1
2
λkn(1− λ).

Combining the inequalities (3.17), (3.23), (3.24), we have
3
8
λkn(1− λ) < n|(hn − id)(λkn−1x)| < 5

4
λkn−1(1− λ).

In view of the equality (3.22), this implies the inequality (3.19).
Finally we claim that the inequality (3.20) holds true. Indeed, it follows

from the equality (3.21) and the inequality (3.8) that

n|(gn − id)′(x)| 6 sup
y∈I

n|(hn − id)′(λkn−1y)| 6 nδ(n) < 1− λ.

Thus we have finished the proof of the lemma. �

In view of Lemma 3.13, Lemma 3.4 implies the existence of a desired
vector field on I. Thus we have finished the proof of Proposition 3.9. �

4. Proof of Theorem 1.2 and Corollary 1.3

We first prove Theorem 1.2. In view of Corollary 1.1 and Proposition 2.4,
it suffices to show the following proposition:
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Proposition 4.1. — Let Γ be a subgroup of Diffω+(S1) which is locally
nondiscrete with respect to the C1-topology. Assume that there exists no
Γ-invariant probability measure on the circle. Then Γ has an infinite image
under the rotation number function.

Note that in Proposition 4.1 we only assume that Γ is locally nondis-
crete with respect to the C1-topology. The assumption implies that Γ has
no finite orbit and hence it is minimal by Proposition 3.2. Then we can
take a homeomorphism θ in Homeo+(S1) which satisfies the conditions in
Proposition 2.6. We denote by κ the period of θ.

Furthermore by Proposition 3.9, there exist an open interval I in the
circle and a nowhere zero local vector field X on I which is in the C0-closure
of Γ relative to I. We take a closed subinterval I0 of I such that there exists
a positive real number t0 > 0 such that the local flow ϕt associated to X is
defined on I0 for −t0 6 t 6 t0 and ϕt0(I0) does not intersect I0. Replacing
I0 by its closed subinterval if necessary, the intervals I0, θ(I0), . . . , θκ−1(I0)
are mutually disjoint. Then it follows from Corollary 2.7 that there exists
an element h of Γ such that

∅ 6= Fix(h) ⊂
⋃κ−1
j=0 Int(θj(I0)) and

h(S1 \
⋃κ−1
j=0 (θj(I0)) ⊂

⋃κ−1
j=0 Int(θj(I0)).

Let h̃ denote the lift of h under the covering projection π : R→ S1 which
has fixed points and let θ̃ denote the lift of θ under the covering projection
π : R → S1 such that θ̃κ(x) = x + 1 for every point x in R. Note that the
homeomorphism θ̃ commutes with every lift of any element of Γ. Let Ĩ be
a connected component of π−1(I) and let Ĩ0 be the connected component
of π−1(I0) which is contained in Ĩ. We put Ĩ0 = [a, b]. The properties of h
imply that

Fix(h̃) ⊂
⋃
j∈Z Int(θ̃j(Ĩ0)) and(4.1)

h̃(R \
⋃
j∈Z(θ̃j(Ĩ0)) ⊂

⋃
j∈Z Int(θ̃j(Ĩ0)).(4.2)

Note that the relations (4.1) and (4.2) still hold if we replace h̃ by its
inverse. It follows from (4.1) that

Fix(h̃) ∩ [a, θ̃(a)[⊂]a, b[= Int(Ĩ0).

By replacing h by its inverse if necessary, we may assume that h̃(a) < a.
Then it follows that h̃(θ̃(a)) < θ̃(a). Since h̃ has a fixed point in ]a, b[ and
has no fixed point in [b, θ̃(a)[, we have

(4.3) a < h̃(b) < b.
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Since the closed interval [b, θ̃(a)] is a connected component of the comple-
ment of

⋃
j∈Z Int(θ̃j(Ĩ0)), it follows from (4.2) and (4.3) that

h̃([b, θ̃(a)]) ⊂]a, b[= Int(Ĩ0).

In particular we have

(4.4) h̃(θ̃(a)) < b.

We denote by X̃ the pullback of the local vector field X to Ĩ. Then the
local flow ϕ̃t associated to X̃ is defined on Ĩ0 for −t0 6 t 6 t0. Since it
follows from the assumption that ϕ̃t0(Ĩ0) and Ĩ0 are disjoint, replacing X
by −X if necessary, we may assume that ϕ̃t0(a) > b. Since X is nowhere
zero, this implies that

ϕ̃t(x) > x

for every positive real number t 6 t0 and every point x in Ĩ0. Now we
consider the real number T ∈ R defined as follows:

T = sup{t > 0 | ϕ̃t(x) = h̃(x) for a certain point x in Ĩ0}.

Since h̃(b) < b < ϕ̃t0(a), this number T is well-defined and we have T < t0.
It follows from the definition of T that

(4.5) h̃(x) 6 ϕ̃T (x) < h̃(x) + 1 for every point x in Ĩ0.

Moreover, there exists a point x0 in Ĩ0 such that ϕ̃T (x0) = h̃(x0). Since
we have h̃(a) < a and h̃(b) < b, this point x0 belongs to the interior of Ĩ0.
Therefore we have

ϕ̃T (a) < ϕ̃T (x0) = h̃(x0) < h̃(b).(4.6)

We take a decreasing sequence {ti}i=1 of positive real numbers with
t1 < t0 which converges to T . Then for every positive integer i > 1 there
exists a sequence {g̃i,j}∞j=1 of lifts of elements of Γ under the covering
projection π : R→ S1 which converges to ϕ̃ti uniformly on Ĩ0 as j tends to
the infinity. By taking subsequences if necessary, we may assume that

g̃i,j(x) > ϕ̃T (x)

for arbitrary two positive integers i > 1, j > 1, and every point x in Ĩ0.
Now we put g̃i = g̃i,i for every positive integer i > 1. Then it follows that
the sequence {g̃i} converges to ϕ̃T uniformly on Ĩ0 and for every positive
integer i > 1 we have

g̃i(x) > ϕ̃T (x) > x for every point x in Ĩ0.(4.7)

TOME 59 (2009), FASCICULE 5



1840 Yoshifumi MATSUDA

In view of the inequalities (4.5) and (4.6), by taking a subsequence if nec-
essary, we may assume that for every positive integer i > 1 we have

h̃(x) < g̃i(x) < h̃(x) + 1 for every point x in Ĩ0 and(4.8)
g̃i(a) < h̃(b).(4.9)

We put f̃i = h̃−1g̃i for every positive integer i > 1. Now we estimate the
translation number τ(f̃i) of f̃i.

Lemma 4.2. — (i) We have 0 < τ(f̃i) < 1 for every positive inte-
ger i > 1.

(ii) The sequence {τ(f̃i)} converges to zero as i tends to the infinity.

Proof. —
(i) We take a point x in ]b, θ̃(a)[ arbitrarily. Then it follows from the

inequalities (4.4) and (4.7) that

h̃(x) < h̃(θ̃(a)) < b < g̃i(b).

Furthermore the inequality (4.9) implies that

g̃i(θ̃(a)) = θ̃(g̃i(a)) < θ̃(h̃(b)) 6 h̃(b) + 1 < h̃(x) + 1.

Thus we have

h̃(x) < g̃i(b) < g̃i(x) < g̃i(θ̃(a)) < h̃(x) + 1.

Together with the inequality (4.8), this implies that

h̃(x) < g̃i(x) < h̃(x) + 1

for every point x in [a, θ̃(a)[.
For every point x in R, there exists an integer j ∈ Z such that

the point θ̃j(x) belongs to the interval [a, θ̃(a)[. Since every lift of
any element of Γ commutes with θ̃, we have

h̃(x) < g̃i(x) < h̃(x) + 1.

This implies that x < f̃i(x) < x+ 1. Since x is an arbitrary point
in R, we have 0 < τ(f̃i) < 1. Thus we have finished the proof of
(i).

(ii) Since the map h̃−1 is continuous and commutes with integer trans-
lations, it is uniformly continuous. Hence for every positive real
number ε > 0 there exists a positive real number δh−1(ε) > 0 such
that for |x− y| < δh−1(ε), we have

(4.10) |h̃−1(x)− h̃−1(y)| < ε.
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We fix a positive real number 0 < d < 1 such that ]x0 − d, x0 + d[⊂ Ĩ0.
Now we show the following claim:

Claim. — For every positive integer n > 1 and every positive real num-
ber ε > 0 with ε < d

n , there exists a positive real number δ(n, ε) > 0 such
that supx∈Ĩ0 |g̃i(x)− ϕ̃T (x)| < δ(n, ε) implies

|f̃ ji (x0)− f̃ j−1
i (x0)| < ε

for j = 1, . . . , n.

Proof. — The proof is done by induction on n. We first consider the case
n = 1. We fix a positive real number ε > 0 with ε < d arbitrarily. Now we
put δ(1, ε) = δh−1(ε). If supx∈Ĩ0 |g̃i(x)− ϕ̃T (x)| < δ(1, ε) then we obtain

|g̃i(x0)− h̃(x0)| = |g̃i(x0)− ϕ̃T (x0)| < δ(1, ε).

Hence it follows from the inequality (4.10) that

|f̃i(x0)− x0| = |h̃−1(g̃i(x0))− h̃−1(h̃(x0))| < ε

and thus we have finished the proof for the case n = 1.
Next we assume that the claim is true for a positive integer n > 1. We

take a positive real number ε > 0 with ε < d
n+1 arbitrarily. Then there

exists a positive real number δ1 > 0 such that supx∈Ĩ0 |g̃i(x)− ϕ̃T (x)| < δ1
implies

(4.11) |f̃ ji (x0)− f̃ j−1
i (x0)| < ε

for j = 1, . . . , n. Since the map ϕ̃T is uniformly continuous on Ĩ0, there
exists a positive real number δ2 > 0 such that for arbitrary two points x, y
in Ĩ0 with |x− y| < δ2 we have

(4.12) |ϕ̃T (x)− ϕ̃T (y)| < 1
3
δh−1(ε).

Moreover by the assumption of the induction there exists a positive real
number δ3 > 0 such that supx∈Ĩ0 |g̃i(x)− ϕ̃T (x)| < δ3 implies

(4.13) |f̃ni (x0)− f̃n−1
i (x0)| < δ2.

Now we put δ(n, ε) = min{ 1
3δh−1(ε), δ1, δ3}. Then by the inequality

(4.13), if supx∈Ĩ0 |g̃i(x)− ϕ̃T (x)| < δ(n, ε) we have

|f̃ni (x0)− f̃n−1
i (x0)| < δ2.
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Then it follows from the inequality (4.12) that

|g̃i(f̃ni (x0))− g̃i(f̃n−1
i (x0))|

6 |ϕ̃T (f̃ni (x0))− ϕ̃T (f̃n−1
i (x0))|+ 2 sup

x∈Ĩ0
|g̃i(x)− ϕ̃T (x)|

<
1
3
δh−1(ε) + 2

3
δh−1(ε) = δh−1(ε).

Therefore the inequality (4.10) implies that

(4.14) |f̃n+1
i (x0)− f̃ni (x0)| = |h̃−1g̃i(f̃ni (x0))− h̃−1g̃i(f̃n−1

i (x0))| < ε.

Then it follows from the inequalities (4.11) and (4.14) that the claim is
true for n+ 1. Thus we have finished the proof of the claim. �

We complete the proof of (ii) of Lemma 4.2. For every positive inte-
ger n > 1 and every positive real number ε > 0 with ε < d

n , we have
supx∈Ĩ0 |g̃i(x)− ϕ̃T (x)| < δ(n, ε) for every sufficiently large positive integer
i > 1. Then it follows from the above claim that for every such positive
integer i > 1, we have

|f̃ni (x0)− x0| 6
n∑
j=1
|f̃ ji (x0)− f̃ j−1

i (x0)| < nε < d < 1.

This implies that |τ(f̃i)| 6 1
n and we have finished the proof of (ii). Thus

we have finished the proof of the lemma. �

Now we complete the proof of Proposition 4.1. For each positive integer
i > 1, the diffeomorphism f̃i on R determines an element fi of Γ. Then it
follows from Lemma 4.2 that the rotation number ρ(fi) of fi is not equal
to zero for every positive integer i > 1 and tends to zero as i tends to the
infinity. Thus we have finished the proof of Proposition 4.1 and hence the
proof of Theorem 1.2 has been completed.

Remark 4.3. — In view of Selberg’s lemma, we can show that ev-
ery finitely generated subgroup of PSL(2,R) satisfying the assumption of
Proposition 4.1 contains an element whose rotation number is irrational.
Hence it would be interesting to know if this assertion still holds true when
we replace PSL(2,R) by Diffω+(S1).

Next we prove Corollary 1.3. The first assertion immediately follows from
Theorem 1.2. To prove the second assertion, we take a subgroup Γ′ of Γ ar-
bitrarily. Assume that Γ′ contains no subgroup isomorphic to a nonabelian
free group. Then it follows from Margulis’ theorem that there exists a Γ′-
invariant probability measure on the circle. Since Γ′ has a finite image
under the rotation number function as well as Γ, Proposition 2.4 implies
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that Γ′ has a finite orbit. Hence there exists a point p in the circle such
that the stabilizer Stabp(Γ′) is a finite index subgroup of Γ′.

Now we claim that Stabp(Γ′) is cyclic. Indeed, if it were not cyclic, then
Proposition 3.7 would imply that Γ′ would be locally nondiscrete with
respect to the C1-topology and so would Γ. Hence it would follow from
Proposition 4.1 that Γ would have an infinite image under the rotation
number, which contradicts the assumption. Thus we have finished the proof
of Corollary 1.3.

Remark 4.4. — Neither Theorem 1.2 nor Corollary 1.3 holds true if
we replace Diffω+(S1) by Diff∞+ (S1). To see this, we construct a finitely
generated subgroup Γ of Diff∞+ (S1) satisfying the following conditions:

• Γ is nondiscrete with respect to the C∞-topology,
• Γ contains a subgroup isomorphic to Z⊕ Z,
• Γ has a trivial image under the rotation number function, that is,
ρ(Γ) = {0} and
• Γ has no finite orbit.

Let Γ1 be a finitely generated and torsionfree Fuchsian group which has
an exceptional minimal set C. We take a connected component I of the
complement of the minimal set C and a nontrivial C∞-vector field X on
the circle which vanishes outside the interval I. Let Γ2 be a dense subgroup
of the flow associated to X which is isomorphic to Z⊕Z. Now we define Γ
to be the subgroup of Diff∞+ (S1) generated by Γ1 and Γ2.

Then Γ is nondiscrete with respect to the C∞-topology as well as Γ2. To
see that Γ has a trivial image under the rotation number function, we claim
that every element of Γ has a fixed point in C. Indeed, for every element γ
of Γ, there exist elements γ1,1, . . . , γ1,k of Γ1 and γ2,1, . . . , γ2,k of Γ2 such
that γ = γ1,1γ2,1 · · · γ1,kγ2,k. Then the product γ1,1 · · · γ1,k is an element of
Γ1 and hence has a fixed point x in C. Since the set C is invariant under
the action of Γ1 and fixed pointwise by the action of Γ2, it follows that
γ(x) = x and we have finished the proof of the claim. We can also see that
the set C is an exceptional minimal set for Γ and hence Γ has no finite
orbit. Thus we proved that the group Γ satisfies the desired conditions.
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