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INFINITE ASYMPTOTIC GAMES

by Christian ROSENDAL (*)

Abstract. — We study infinite asymptotic games in Banach spaces with a
finite-dimensional decomposition (F.D.D.) and prove that analytic games are de-
termined by characterising precisely the conditions for the players to have winning
strategies. These results are applied to characterise spaces embeddable into `p sums
of finite dimensional spaces, extending results of Odell and Schlumprecht, and to
study various notions of homogeneity of bases and Banach spaces. The results are
related to questions of rapidity of subsequence extraction from normalised weakly
null sequences.

Résumé. — Nous étudions les jeux asymptotiques infinis dans les espaces de
Banach admettant une décomposition en somme de sous-espaces de dimension finie
(FDD). Nous montrons que les jeux analytiques sont déterminés en caractérisant
précisément les conditions pour les deux joueurs d’avoir une stratégie gagnante.

Ces résultats servent à caractériser les espaces réflexifs qui se plongent dans
une somme `p d’espaces de dimension finie, étendant ainsi des résultats d’Odell et
Schlumprecht. Ils servent également à étudier les différentes notions d’homogénéité
de bases et d’espaces de Banach. Nos résultats sont liés à des questions sur la
vitesse d’extraction de sous-suites d’une suite normalisée faiblement nulle.

1. Introduction

A number of results have surfaced over some years that involve questions
about Banach spaces of the following kind: Suppose E is a Banach space
such that every normalised weakly null sequence has a subsequence with a
certain property. What can then be concluded about E? In general, it is
not enough that one can just find some subsequence, but in various guises
(for example, regulators [3], weakly null trees [10, 14]) it has been noticed
that if the subsequence can be chosen sufficiently fast then this is sufficient
to provide some information about the whole space.

Keywords: Infinite asymptotic games, extraction of subsequences, weakly null trees.
Math. classification: 46B03, 03E15.
(*) The author is partially supported by NSF grant DMS 0556368.



1360 Christian ROSENDAL

The notion behind this principle was crystalised through work of E. Odell
and T. Schlumprecht, in particular [14] (or see [15] for a survey), and can
be formulated via infinite asymptotic games. Infinite asymptotic games, as
defined in, e.g., [14] and [6], are a straightforward generalisation of the finite
asymptotic games of B. Maurey, V. Milman, and N. Tomczak-Jaegermann
in [13], but with very different objectives. While finite asymptotic games are
used for describing the asymptotic finite-dimensional structure of Banach
spaces, infinite asymptotic games have a much more combinatorial flavour.
For example, they can be used as basis for a simplified proof of Gowers’
block Ramsey principle as in [17] and are also related to the notion of tight
Banach spaces from [5].

A weakly null tree in a Banach space can be defined as a normalised
sequence (xs)s∈N<∞ such that for each s, the sequence (xsn)n∈N is weakly
null (we shall use a trivial variation of this definition later on). Odell and
Schlumprecht proved that any reflexive separable Banach space in which
any weakly null tree has a branch C-equivalent to `p embeds into an `p-
F.D.D. Their proof involved first proving the equivalence of their hypothesis
with the existence of a winning strategy for I in a closed infinite asymptotic
game.

The main result of this paper, Corollary 4.5, is to give an exact criterion
for when I has a winning strategy in any coanalytic infinite asymptotic
game, thus extending the result of Odell and Schlumprecht. The proof of
Corollary 4.5 is very different from the proof of the case of closed games
and is instead related to a result in [6].

The game behind Gowers’ block Ramsey principle mentioned above is a
game for extracting block sequences of block sequences (see Bagaria and
López-Abad [2]). Analogously, we introduce games for extracting subse-
quences of block sequences and show that the strongest of these games is
actually equivalent with the infinite asymptotic game, Theorem 2.1. We
also study weaker versions of these games in Section 5 indicating their
differences with the infinite asymptotic game.

Corollary 4.5 allows us to use the techniques of Odell and Schlumprecht
in a priori more complicated settings. For example, we prove that if E is
a reflexive separable Banach space in which any weakly null tree has a
subsymmetric branch, then E embeds into some `p-F.D.D., Theorem 4.10.
Also, assuming strong axioms of set theory, we show that for a space E
which is not `1-saturated, every weakly null tree in E has a branch span-
ning a space isomorphic to E if and only if E has an unconditional block
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INFINITE ASYMPTOTIC GAMES 1361

homogeneous basis, i.e., an unconditional basis all of whose blocks span
isomorphic spaces, Theorem 3.5.

For the reader not familiar with descriptive set theory, we have included
subsection 2.2 for a brief review of used notions and results.

2. Theory

2.1. Infinite asymptotic and subsequence games in vector spaces

Let E be a real or complex vector space with basis (ei)i∈N. For a vector
x =

∑
i aiei ∈ E, we designate by supp(x) the finite set {i ∈ N

∣∣ ai 6= 0}
and use k < x < n to denote that k < supp(x) < n, i.e., that k <

min supp(x) and max supp(x) < n. Similar notation is used for inequalities
between non-zero vectors. A finite or infinite block sequence is a sequence
(xi) of non-zero vectors such that xi < xi+1 for all i. We denote the set of
infinite, resp. finite, block sequences of E by E∞, resp. E<∞. If (xi) is a
finite or infinite sequence of vectors, we denote by [xi] the corresponding
linear span, On the other hand, when (xi) is a sequence in a Banach space,
we let [xi] be the closed linear span of the vectors.

The infinite asymptotic game (IAG) on E between two players I and
II is defined as follows: I and II alternate (with I beginning) in choosing
respectively natural numbers n0, n1, n2, . . . and non-zero vectors x0 < x1 <

x2 < . . . ∈ E according to the constraint ni < xi:

I n0 n1 n2 n3 . . .

II n0 < x0 n1 < x1 n2 < x2 n3 < x3 . . .

We say that the sequence (xn)n∈N is the outcome of the game.
There is another natural game to play on a basis. This is the subsequence

game (SG) defined as follows. Player I and II alternate in choosing respec-
tively digits ε0, ε1, ε2, . . . ∈ {0, 1} and non-zero vectors x0 < x1 < x2 <

. . . ∈ E, now with II beginning:

I ε0 ε1 ε2 ε3 . . .

II x0 x1 x2 x3 . . .

We thus see II as constructing an infinite block sequence (xn)n∈N, while I
chooses a subsequence (xn)n∈A by letting n ∈ A ⇔ εn = 1. This subse-
quence (xn)n∈A is then called the outcome of the game.

Despite their superficial difference, we shall prove that the games are
actually equivalent, i.e., for any A ⊆ E∞, player I, resp. II, has a strategy
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1362 Christian ROSENDAL

in (IAG) to play in A if and only if I, resp. II, has a strategy in (SG) to
play in A.

A block tree is a non-empty infinitely branching tree T ⊆ E<∞ such that
for all (x0, x1, . . . , xn) ∈ T the set

{y ∈ E
∣∣ (x0, x1, . . . , xn, y) ∈ T}

can be written as {yj}j∈N for some infinite block sequence (yj)j∈N ∈ E∞

such that xn < y0. We denote by [T ] the set of infinite branches of T , i.e.,
the set of (xi) ∈ E∞ such that (x0, . . . , xn) ∈ T for all n.

Theorem 2.1. — The games (IAG) and (SG) are equivalent. Moreover,
for any A ⊆ E∞, II has a strategy in (IAG) to play in A if and only if there
is a block tree T such that [T ] ⊆ A.

Proof. — Let A ⊆ E∞ be given. Suppose first that I has a strategy σ

in (IAG) to play in A. We construct a strategy for I in (SG) to play in A.
So suppose II is playing a sequence x0 < x1 < x2 < . . . in (SG). For every
k > 0, we have to construct an answer εk by I based only on the first k+ 1
vectors x0 < . . . < xk. So let n0 be the first number played by I according
to σ in (IAG). I then plays ε0 = ε1 = . . . = 0 until k0 is minimal such
that n0 < xk0 and then lets εk0 = 1. Let now n1 be the answer of σ to xk0

played by II. I then plays εk0+1 = εk0+2 = . . . = 0 until k1 > k0 is minimal
such that n1 < xk1 , at which point εk1 is set to be 1. Again we let n2 be the
answer by σ to (xk0 , xk1) played by II in (IAG) and I continues as before.
Since σ forces the outcome (xki

)i∈N to be in A, this describes a strategy in
(SG) for I to play in A.

Suppose conversely that I has a strategy σ in (SG) to play in A, i.e., σ
associates to each finite block sequence (x0, . . . , xn) a digit εn ∈ {0, 1}. We
define a tree of good finite block sequences and a function φ associating to
each good (x0, . . . , xn) another block sequence (y0, . . . , ym), n 6 m, such
that (x0, . . . , xn) is the subsequence of (y0, . . . , ym) extracted by σ. We
begin by letting ∅ be good with φ(∅) = ∅. Now if (x0, . . . , xn) is good with
φ(x0, . . . , xn) = (y0, . . . , ym), we let (x0, . . . , xn, xn+1) be good if there is
(ym+1, . . . , yk) such that yk = xn+1 and

σ(y0, . . . , ym, ym+1, . . . , yl) =
{

0, if m < l < k;
1, if l = k.

Moreover, we let φ(x0, . . . , xn, xn+1) = (y0, . . . , ym, ym+1, . . . , yk) for some
such (ym+1, . . . , yk). Now if (x0, x1, x2, . . .) is such that (x0, . . . , xn) is good
for all n, then φ(∅) ⊆ φ(x0) ⊆ φ(x0, x1) ⊆ . . . and (xi) is the subsequence
extracted by σ from

⋃
m φ(x0, x1, . . . , xm) and hence belongs to A. We
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INFINITE ASYMPTOTIC GAMES 1363

claim that if (x0, . . . , xn) is good, then for some k ∈ N if k < y, then
(x0, . . . , xn, y) is good. Suppose not and let φ(x0, . . . , xn) = (y0, . . . , ym).
Then, we can find xn =ym< ym+1< ym+2< . . . such that no (x0, . . . , xn, yi)
is good and, in particular, σ(y0, . . . , ym, ym+1, . . . , yk) = 0 for all k > m.
But then (x0, . . . , xn) is the subsequence of (y0, y1, . . .) extracted by σ, con-
tradicting that σ is a strategy for I to play in A ⊆ E∞. It is now trivial to
use this claim to construct a strategy for I in (IAG) to play in A.

Similarly, if σ is a strategy for II in (SG) to play in A, we can construct
a strategy for II in (IAG) to play in A as follows. If I plays n0 in (IAG),
we let I play ε0 = ε1 = . . . = 0 in (SG) and II respond according to σ until
II plays some xk0 such that n0 < xk0 . II then plays xk0 as response to n0

in (IAG) and I lets εk0 = 1. Let n1 be the next number played by I in
(IAG) and let I play εk0+1 = εk0+2 = . . . = 0 and II respond further using
σ until II plays some xk1 > n1, at which point I responds by εk1 = 1 and II
plays xk1 in (IAG). We continue in this way and see that II plays according
to σ in (SG) with I choosing the subsequence (xki), whereby (xki) ∈ A.
Moreover, (xki

) is exactly the sequence played by II in (IAG) and hence II
has a strategy to play in A in the game (IAG).

Suppose σ is a strategy for II in (IAG) to play in A, i.e., σ is a func-
tion associating to each finite non-empty sequence (n0, . . . , nk) of natural
numbers some xk > nk. We define a pruned tree T ′ of good finite block
bases (x0, . . . , xk) and a function ψ associating to each good (x0, . . . , xk)
a sequence (n0, . . . , nk) such that (n0, x0, . . . , nk, xk) is consistent with σ,
i.e., for all l 6 k, σ(n0, . . . , nl) = xl.

• The empty sequence ∅ is good and ψ(∅) = ∅.
• If (x0, . . . , xk) is good and

ψ(x0, . . . , xk) = (n0, . . . , nk),

then we let (x0, . . . , xk, y) be good if there is some m > nk such
that y = σ(n0, . . . , nk,m) and in this case we let

ψ(x0, . . . , xk, y) = (n0, . . . , nk,m
′),

where m′ is the least such m.

Now, if (x0, x1, x2, . . .) is such that (x0, . . . , xk) is good for all k, then
ψ(∅) ⊆ ψ(x0) ⊆ ψ(x0, x1) ⊆ . . . and xk = σ(ψ(x0, . . . , xk)) for all k,
whence (x0, x1, x2, . . .) is a play of II according to σ and hence belongs to
A. So [T ′] ⊆ A. Also by construction, for each (x0, . . . , xk) ∈ T ′ and n there
is y > n such that (x0, . . . , xk, y) ∈ T ′ and thus it is easy to construct a
block subtree T ⊆ T ′, whereby also [T ] ⊆ A.

TOME 59 (2009), FASCICULE 4



1364 Christian ROSENDAL

If T is a block tree all of whose branches lie in A, then we can construct
a strategy for II in (SG) to play in A as follows: First play x(0)

0 < x
(1)
0 < . . .

such that (x(i)
0 ) ∈ T for all i until k0 is minimal with εk0 = 1. Then play

x
(0)
1 < x

(1)
1 < . . . such that (x(k0)

0 , x
(i)
1 ) ∈ T for all i until k1 > 0 is minimal

with εk0+k1 = 1, etc. Then the subsequence (x(ki)
i )i∈N chosen by I will be

a branch of T and hence lie in A. �

The fact that strategies for II in (IAG) can be refined to a block tree is
perhaps not too surprising, as the outcome of the game is independent of
the play of I. However, there is a small twist, as, in general, taking T ′ to be
the set of all (x0, . . . , xk) that are played according to σ does not produce
a tree all of whose branches lie in A. This is avoided above by using ideas
of D. A. Martin [12].

2.2. Notation and results from descriptive set theory

We recall that a Polish space is a separable topological space whose
topology can be induced by a complete metric. The Borel sets are those
belonging to the smallest σ-algebra containing the open sets and a standard
Borel space is the measurable space obtained by equipping the underlying
set of a Polish space with its σ-algebra of Borel sets. A subset A ⊆ X of a
Polish or standard Borel space is analytic or Σ1

1 if there is a Polish space
Y and a Borel set B ⊆ X × Y such that

x ∈ A⇔ ∃y ∈ Y (x, y) ∈ B.

In other words, A is the projection projX(B) of B onto X. All Borel sets
are analytic. A set C ⊆ X is coanalytic or Π1

1 if its complement is analytic,
or, equivalently, if there is a Polish space Y and a Borel set D ⊆ X × Y

such that
x ∈ C ⇔ ∀y ∈ Y (x, y) ∈ D.

And if n > 1, a set A is Σ1
n+1 if there is a Π1

n set B ⊆ X×Y for some Polish
space Y such that A = projX(B). Also, C is Π1

n if its complement is Σ1
n.

Sets belonging to some class Σ1
n or Π1

n are called projective and encompass
most of the sets used in analysis. For example, if E is a separable Banach
space, then the set of sequences in C[0, 1], whose closed linear span is
isomorphic to E, is analytic in C[0, 1]N.

If A is an infinite subset of N, we denote by [A]N the set of all infinite
increasing sequences in A or equivalently the infinite subsets of A. Also,
if n1 < . . . < nk are natural numbers, we denote by [(n1, . . . , nk), A] the

ANNALES DE L’INSTITUT FOURIER
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elements of [A]N whose first k terms are n1, . . . , nk. We give [A]N the Polish
topology inherited from its inclusion in AN, where A is taken discrete. A
theorem due to F. Galvin and K. Prikry says that if A ⊆ [N]N is Borel, then
there is an infinite set A ⊆ N such that either [A]N ∩ A = ∅ or [A]N ⊆ A.
This was improved by J. Silver to include the σ-algebra σ(Σ1

1) generated
by the analytic sets.

A result due to D.A. Martin states that all countable games on integers
with Borel winning conditions are determined. The set theoretical state-
ment called Projective determinacy says that all games on integers with a
projective winning condition is determined. This is not provable from the
usual axioms of set theory, but in contrast with other strong axioms of
set theory is a part of what many consider to be the right axioms of set
theory. It has the consequence of extending the regularity properties of Σ1

1

to all projective sets. Thus, a result of L. Harrington and A.S. Kechris says
that the Galvin–Prikry result extends to all projective sets under projective
determinacy. We refer to [11] for these results.

We use (xn) ∼ (yn) to denote that two sequences in Banach spaces X
and Y are equivalent, i.e., that the mapping T : xn 7→ yn extends to an
isomorphism of their closed linear spans. Also X ∼= Y denotes that the
spaces X and Y are isomorphic. If we index these relations by a constant
K, we mean that the constant of equivalence or isomorphism is bounded
by K. If X is a Banach space, we denote its unit sphere by S(X) or SX .

If X is a Banach space and (Fi)i∈N a sequence of finite-dimensional
subspaces, we say that (Fi) is a finite-dimensional decomposition or F.D.D.
of X if any element x ∈ X can uniquely be written as a norm-convergent
series x =

∑
i fi, where fi ∈ Fi.

2.3. Gowers’ block sequence game

The infinite asymptotic game resembles W.T. Gowers’ block sequence
game [7] that is defined as follows: Player I and II alternate in choosing
infinite-dimensional subspaces Z0, Z1, . . . ⊆ E and non-zero vectors x1 <

x2 < . . . in E according to the constraint xi ∈ Zi:

I Z0 Z1 Z2 . . .

II x0 ∈ Z0 x1 ∈ Z1 x2 ∈ Z2 . . .

Again, the block sequence (xi) is called the outcome of the game.
Gowers [7] essentially proved that if A ⊆ E is an analytic set such that

any infinite-dimensional Z ⊆ E contains a block sequence belonging to E,
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1366 Christian ROSENDAL

then there is an infinite-dimensional subspace X ⊆ E such that II has a
strategy in the block sequence game, in which I is restricted to playing
subspaces of X, to play inside a slightly bigger set than A.

We shall prove a similar result, Theorem 2.2, for the infinite asymptotic
game, except that there is no passage to a subspaceX involved. This implies
that the nature of the infinite asymptotic game is really different from that
of Gowers’ game. On the other hand, in [17] it is shown that if E is a
vector space over a countable field, A ⊆ E∞ is analytic, and for all infinite-
dimensional X ⊆ E, II has a strategy in (IAG) played below X to play
in A, then there is X such that II has a strategy in the block sequence
game, in which I is restricted to playing subspaces of X, to play in A. This
elucidates the exact relation between the two games.

2.4. Infinite asymptotic games in normed vector spaces

Suppose now that E is moreover a normed vector space and (ei) is a nor-
malised basis. Since each [e0, . . . , en] is a finite-dimensional Banach space,
it is complete and hence Polish. We can therefore naturally see E as a stan-
dard Borel space by letting it be the increasing union of the sequence of
Borel subsets [e0, . . . , en] ⊆ E. We denote by bb(ei) and fbb(ei) the set of
infinite, resp. finite, normalised block sequences and notice that the former
is a Borel subset of EN.

When playing the infinite asymptotic or subsequence game in the normed
space E, we will now demand that II always plays normalised vectors. Also,
block trees are now supposed to consist of normalised vectors. It is obvious
that the proof of Theorem 2.1 adapts to this context.

Let also A ⊆ bb(ei) be non-empty and ∆ = (δi)∞i=0 be a decreasing
sequence of strictly positive reals converging to 0 (which we denote simply
by ∆ > 0). We let

A∆ = {(yi) ∈ bb(ei)
∣∣ ∃(xi) ∈ A ∀i ‖xi − yi‖ < δi},

and
Int∆(A) = {(yi) ∈ bb(ei)

∣∣ ∀(xi) ∈ bb(ei) (∀i ‖xi − yi‖ < δi → (xi) ∈ A)}
= ∼ (∼ A)∆.

Thus Int∆(A) ⊆ A ⊆ A∆. We should notice here that if (ei) is a Schauder
basis for the completion of E and A is a set which is closed under taking
equivalent sequences, i.e., if for (xi) ∼ (yi) we have (xi) ∈ A ↔ (yi) ∈ A,
then for ∆ > 0 chosen sufficiently small (depending on the constant of
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INFINITE ASYMPTOTIC GAMES 1367

the basis (ei)), we have Int∆(A) = A = A∆. Finally, define the following
relation R between (mi) ∈ [N]N and (xi) ∈ bb(ei) ∪ fbb(ei):

R(mi, xi) ⇔ ∀i ∃j m0 < xi < mj < mj+1 < xi+1.

The following is our basic determinacy result. The proof is based on
an idea already used in [6] to prove a different result and is essentially
descriptive set theoretical.

Theorem 2.2. — Let A ⊆ bb(ei) be analytic. Then the following are
equivalent:

(a) ∀∆ > 0 ∀(mi) ∃(xi) (R(mi, xi) & (xi) ∈ A∆),
(b) ∀∆ > 0 II has a strategy in (IAG) to play in A∆,
(c) ∀∆ > 0 ∃T block tree ([T ] ⊆ A∆).

Proof. — The implication (c)⇒(a) is easy and (b)⇒(c) follows from The-
orem 2.1, so we need only consider (a)⇒(b). Thus, assume (a) and fix some
∆ > 0. Let

B = {(ni) ∈ [N]N
∣∣ ∃(xi) ∈ A∆/2 ∀i n2i < xi < n2i+1}.

Clearly B is analytic too. Moreover, we see that any (mi) ∈ [N]N contains a
subsequence in B. For just choose some (xi) ∈ A∆/2 such that ∀i ∃j m0 <

xi < mj < mj+1 < xi+1. Then by leaving out some terms of the sequence
(mi) we get some subsequence (ni) such that the indices match up. Using
this fact, by Silver’s theorem, there is some infinite B ⊆ N such that [B]N ⊆
B. And by the Jankov–von Neumann selection theorem we can find a σ(Σ1

1)-
measurable f : [B]N → bb(ei) such that f((ni)) = (xi), where (xi) ∈ A∆/2

and ∀i n2i < xi < n2i+1. Now choose inductively sequences (ni), (mi) such
that ni < mi < ni+1 and sets Bi ⊆ Bi−1 such that mi−1 < minBi and
such that for all j0 < . . . < jk and

C,D ∈ [(nj0 ,mj0 , nj1 ,mj1 , . . . , njk
,mjk

), Bjk+1]

we have ‖f(C)k − f(D)k‖ < δk/2. To see how this is done, start by
choosing n0 < m0 in B arbitrary and set B0 = B. Then for any C ∈
[(n0,m0), B0] we have f(C)0 ∈ S([en0+1, . . . , em0−1]), and, as the unit
sphere S([en0+1, . . . , em0−1]) is compact, we can by Silver’s theorem find
some B1 ⊆ B0, m0 < minB1, such that for all C,D ∈ [(n0,m0), B1] we
have ‖f(C)0 − f(D)0‖ < δ0/2. Now suppose by induction that Bl and
nl < ml in Bl have been chosen. Then we choose Bl+1 ⊆ Bl small enough
that for all j0 < . . . < jk 6 l and all

C,D ∈ [(nj0 ,mj0 , . . . , njk
,mjk

), Bl+1]

TOME 59 (2009), FASCICULE 4



1368 Christian ROSENDAL

we have ‖f(C)k − f(D)k‖ < δk/2. Again this can be done as for all

C,D ∈ [(nj0 ,mj0 , . . . , njk
,mjk

), Bl],

we have
f(C)k, f(D)k ∈ S([enjk

+1, . . . , emjk
−1])

and this unit sphere is compact. Moreover, we can assume that ml <

minBl+1 and finally let nl+1 < ml+1 be arbitrary numbers in Bl+1.
It now remains to describe the strategy for II to play in A∆. First of

all, it is clear that we get an equivalent game if we demand that I plays a
subsequence (nji) of the sequence (ni). Then II will respond to nj0 < nj1 <

. . . < njk
played by I with some xk satisfying njk

< xk < mjk
and such that

for all C ∈ [(nj0 ,mj0 , . . . , njk
,mjk

), Bjk+1] we have ‖f(C)k − xk‖ < δk/2.
Thus, at the end of the game, when I has played (nji

) and II has played
(xk), we let (yi) = f((nji ,mji)i) and notice that for all k, ‖yk−xk‖ < δk/2.
As (yi) = f((nji

,mji
)i) ∈ A∆/2, also (xi) ∈ A∆. Thus II will always play

in A∆. �

Theorem 2.3. — Let B ⊆ bb(ei) be coanalytic. Then the following are
equivalent:

(d) ∃∆ > 0 ∃(mi) ∀(xi) (R(mi, xi) → (xi) ∈ Int∆(B)),
(e) ∃∆ > 0 I has a strategy in (IAG) to play in Int∆(B),
(f) ∃∆ > 0 ∀T block tree ([T ] ∩ Int∆(B) 6= ∅).

Proof. — Notice that if we define A in Theorem 2.2 to be the set ∼B,
then, as Int∆(B) =∼ (A∆), ¬(d)⇔(a)⇔(c)⇔ ¬(f). On the other hand,
(b)⇔ ¬(e) only if the game is determined. But clearly, (d)⇒(e)⇒ ¬(b)⇒
¬(a)⇒(d). Thus (d)⇔(e)⇔(f). �

For the following result, we notice that the proof of Theorem 2.2 goes
through for arbitrary projective sets as long as we also assume a sufficient
amount of determinacy. This follows from the fact that projective deter-
minacy implies that projective sets are completely Ramsey and, moreover,
that they can be uniformised by projective sets (see [11]).

Theorem 2.4 (Projective determinacy). — Let A ⊆ bb(ei) be projec-
tive. Then the following are equivalent:

(g) ∀∆ > 0 ∀(mi) ∃(xi) (R(mi, xi) & (xi) ∈ A∆),
(h) ∀∆ > 0 II has a strategy in (IAG) to play in A∆,
(i) ∀∆ > 0 ∃T block tree ([T ] ⊆ A∆).

With this result in hand, we can also get a perhaps more satisfactory
version of Theorem 2.3.
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Theorem 2.5 (Projective determinacy). — Let A ⊆ bb(ei) be projec-
tive. Then the following are equivalent:

(j) ∀∆ > 0 ∃(mi) ∀(xi) (R(mi, xi) → (xi) ∈ A∆),
(k) ∀∆ > 0 I has a strategy in (IAG) to play in A∆,
(l) ∀∆ > 0 ∀T block tree ([T ] ∩ A∆ 6= ∅).

Proof. — Clearly, (j)⇒(k)⇒(l). Now suppose ¬(j) holds. Then

∃∆0 > 0 ∀(mi) ∃(xi) (R(mi, xi) & (xi) /∈ A∆0).

Now put B =∼ (A∆0), then a fortiori

∀∆ > 0 ∀(mi) ∃(xi) (R(mi, xi) & (xi) ∈ B∆),

so also ∀∆ > 0 ∃T block tree ([T ] ⊆ B∆). In particular, if ∆ = ∆0/2, then

∃T block tree ([T ] ⊆ B∆ = (∼(A∆0))∆0/2 ⊆∼(A∆0/2)),

i.e., ¬(l), finishing the proof. �

There is a different and more constructive approach to Theorem 2.2,
namely that of [17] which changes the position of the ∆-expansions. On
the other hand, this method relies directly on the determinacy of games
and therefore only applies to Borel sets. We should also mention that Odell
and Schlumprecht [14] prove a result concerning closed sets that resembles
Theorem 2.5. Their exact result can also be obtained by our methods.

3. Applications

In the following, we let (ei) be a Schauder basis for a Banach space. We
also restrict our attention to the infinite asymptotic game (IAG), which is
without consequence by Theorem 2.1. Thus, I and II always refer to the
players in (IAG).

Proposition 3.1. — Suppose that A ⊆ bb(ei) is analytic such that II
has a strategy to play in

A∼ = {(xi) ∈ bb(ei)
∣∣ ∃(yi) ∈ A (xi) ∼ (yi)}.

Then there is some K > 1 such that II has a strategy to play in

AK = {(xi) ∈ bb(ei)
∣∣ ∃(yi) ∈ A (xi) ∼K (yi)}.

Proof. — To see this, we notice that if not, then, by Theorem 2.2, for
every K there is some (mK

i ) such that

∀(xi) (R(mK
i , xi) → (xi) /∈ Ac(K)·K),
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where c(K) is a constant depending on the constant of the basis such
that whenever (yi) and (xi) are two elements of bb(ei) differing in at most
the K first terms, then (xi) ∼c(K) (yi). Moreover, we can assume that
mK

i + 1 < mK
i+1. We use here that for ∆ > 0 sufficiently small, we have for

all K, (AK)∆ ⊆ AK+1. Now pick an increasing sequence (ki) such that

∀K ∀j > K ∃l > 2j + 1 (kj 6 mK
l < mK

l+1 6 kj+1).

Suppose now that (xi) satisfies R(ki, xi). We claim that (xi) /∈ A∼. To see
this, let K be given. Then

∀i ∃j > i (xi < kj < kj+1 < xi+1),

so therefore we have also

∀i > K ∃l > 2i+ 1 (xi < mK
l < mK

l+1 < xi+1).

Choose arbitrary y0, . . . , yK ∈ SE satisfying mK
2i < yi < mK

2i+1, and notice
that then mK

2K < yK < mK
2K+1 < mK

2K+2 < xK+1. So the sequence

(zi) = (y0, . . . , yK , xK+1, xK+2, xK+3, . . .)

belongs to bb(ei) and (zi) ∼c(K) (xi) as the two sequences only differ by
the first K terms. On the other hand, we have R(mK

i , zi), which implies
that (zi) /∈ Ac(K)·K , and hence (xi) /∈ AK . As K is arbitrary, this show
that (xi) /∈ A∼ and thus that

∀(xi) (R(ki, xi) → (xi) /∈ A∼).

But then I has an obvious strategy to play in ∼A∼, contradicting that II
should have a strategy to play in A∼. �

The same argument easily shows

Proposition 3.2. — Suppose that A ⊆ bb(ei) is analytic such that II
has a strategy to play in

A∼= = {(xi) ∈ bb(ei)
∣∣ ∃(yi) ∈ A [xi] ∼= [yi]}.

Then there is some K > 1 such that II has a strategy to play in

AK = {(xi) ∈ bb(ei)
∣∣ ∃(yi) ∈ A [xi] ∼=K [yi]}.

We now come to our first application of the results of Section 2.4. When
(ei) is a normalised Schauder basis of a Banach space E, we can consider the
dense subspace linearly spanned by the basis. When there is no chance of
confusion, we shall not insist of the difference between E and this subspace.
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Proposition 3.3. — Let (ei) be a normalised Schauder basis for a Ba-
nach space such that any block tree has a branch equivalent to (ei). Then
(ei) is equivalent to the standard unit vector basis in either c0 or `p for
some 1 6 p <∞.

Proof. — We claim that there is a normalised block basis (xi) ∈ bb(ei)
of (ei) that is perfectly homogeneous. For otherwise, we would for every
(xi) ∈ bb(ei) have a further block basis (yi) ∈ bb(ei) of (xi) such that
(yi) 6∼ (xi). In particular, either (xi) 6∼ (ei) or (yi) 6∼ (ei). But then it is
easy to see that

∀(mi) ∃(xi) (R(mi, xi) & (xi) 6∼ (ei)),

and hence by Theorem 2.2, there is a block tree T all of whose branches
are inequivalent with (ei), contradicting the assumption.

So pick a perfectly homogeneous normalised (xi) ∈ bb(ei), which by
Zippin’s theorem (see [1]) is equivalent with either c0 or some `p. On the
other hand, by constructing a block tree of subsequences of (xi), we see
that also (xi) ∼ (ei). �

We recall that a normalised basic sequence (ei) is called a Rosenthal
basic sequence if any normalised block has a subsequence equivalent to
(ei) (see Ferenczi, Pelczar, and Rosendal [4] for more on such bases). It is
still an open question whether Rosenthal sequences are equivalent to the
standard unit vector bases in c0 or `p, though the answer is positive in case
there is some uniformity or the subsequence can be chosen continuously.
The preceding proposition is in the same vein.

Definition 3.4. — A weakly null tree is a non-empty set of finite
strings of normalised vectors T ⊆ S<N

E closed under initial segments such
that for all (x0, . . . , xn−1) ∈ T the set

{y ∈ SE

∣∣ (x0, . . . , xn−1, y) ∈ T}

can be written as {yi}∞i=0 for some weakly null sequence (yi).

We next consider an analogous situation but for isomorphism instead of
equivalence.

Theorem 3.5 (Projective determinacy). — Let E be an infinite-dimen-
sional Banach space that is not `1-saturated. Then any weakly null tree in
E has a branch spanning a space isomorphic to E if and only if E has an
unconditional block homogeneous basis, i.e., an unconditional basis all of
whose blocks span isomorphic spaces.
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Proof. — Suppose first that any weakly null tree in E has a branch span-
ning a space isomorphic to E and let X be a separable infinite-dimensional
subspace not containing `1. Then by Gowers’ dichotomy theorem [7], X ei-
ther contains an unconditional basis or a hereditarily indecomposable (HI)
subspace generated by a basis (ei). In the latter case, by Rosenthal’s `1-
theorem, we can find a weakly Cauchy subsequence (e′i) and thus by looking
at the block sequence (fi)∞i=0 = (e′2i− e′2i+1)

∞
i=0, we get a weakly null basic

sequence. Let T be the weakly null tree whose branches are exactly the
subsequences of (fi)∞i=0. Then T has a branch spanning a space isomorphic
to E and hence E is isomorphic to a proper subspace that is HI, contradict-
ing the properties of HI spaces [8]. Thus, X must contain an unconditional
basic sequence (gi), which by James’ theorem must be shrinking, whereby
any normalised block basis is weakly null. This means that any block tree
T over the basis (gi) is in particular a weakly null tree and hence has a
branch spanning a space isomorphic to E. So by Theorem 2.5 we can find
an increasing sequence (mi) such that for all normalised blocks (xi) ∈ bb(gi)
of (gi), if R(mi, xi), then [xi] is isomorphic to E. In particular, (gi) has a
subsequence that is block homogeneous and spans a space isomorphic to E.

Conversely, assume E has a block homogeneous basis (ei) (we do not need
it to be unconditional). Any weakly null tree in E has a branch equivalent
to a block basis of E and thus spanning a space isomorphic to E. �

It is plausible that one should be able to avoid the use of projective
determinacy in the above theorem. However, as projective determinacy
seems to be a part of the right axioms for set theory one should not be too
reluctant in using it.

It is unclear which spaces can have a block homogeneous basis. It seems
quite likely that this should only happen for the spaces `p and c0, but
the question appears to be wide open. Modulo the non-trivial fact that
`p, p 6= 2, and c0 are not homogeneous, a positive answer would of course
provide another solution to the homogeneous space problem.

4. Subspaces of spaces with F.D.D.’s

4.1. Approximate games

We would now like also to consider spaces that do not necessarily have a
basis or even an F.D.D. and thus obtain coordinate free versions of Theo-
rem 2.2 and 2.3. However, when E is a closed subspace of a space F with an
F.D.D. (Fi), we cannot immediately apply the results developed till now.
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The problem is that there might be relatively few blocks in E for II to play
and hence this would put unnatural restrictions on the play of II. Instead
we will need to consider approximate blocks and thus continuously work
with an extra layer of approximations. This does not make for a nicer the-
ory, and indeed obscures many of the arguments that are otherwise very
similar to the previous setting. Unfortunately, this seems to be unavoidable
for certain applications.

We fix in the following spaces E ⊆ F and an F.D.D. (Fi) of F . We let
for each interval I ⊆ N, PI denote the projection from F onto the subspace
⊕i∈IFi = span(

⋃
i∈I Fi).

Definition 4.1. — We denote by ∆ > 0 the fact that ∆ = (δi)∞i=0 for
some decreasing sequence of δi > 0 converging to 0. Given ∆ > 0, a finite
or infinite sequence (xi) of vectors xi ∈ SE is said to be a ∆-block if there
are intervals Ii ⊆ N such that

I0 < I1 < I2 < . . .

and for every i,
‖PIi(xi)− xi‖ < δi.

We also write B∆(xi, Ii) to denote that (xi) is a ∆-block as witnessed by
(Ii) and denote by bbE,∆(Fi) the set of ∆-blocks (in S∞E ) with respect to
the decomposition (Fi) of F .

We notice that due to the convergence of the δi’s, if (xi) is an infinite ∆-
block and Γ > 0, then (xi) has an infinite subsequence which is a Γ-block.
We should also mention that the sequence (Ii) witnessing that (xi) is a
∆-block is not necessarily unique, but if it exists then there is a minimal
one, i.e., such that max Ii 6 max Ji for any other witness (Ji). This is easily
seen by constructing the Ii’s inductively.

Furthermore, if K is the constant of the decomposition (Fi) and (xi) and
(yi) are given such that ∀i ‖xi − yi‖ < δi, then if (xi) is a ∆-block, (yi) is
a 4K∆-block. For if (Ii) witnesses that (xi) is a ∆-block then for every i

‖yi − PIi
(yi)‖ 6 ‖yi − xi‖+ ‖xi − PIi

(xi)‖+ ‖PIi
(xi)− PIi

(yi)‖
6 δi + δi + 2K‖xi − yi‖
< 4Kδi.

Definition 4.2. — A ∆-block tree T is a non-empty subset T ⊆ (SE)<N

closed under initial segments such that for all (x0, . . . , xn−1) ∈ T the set

{y ∈ SE

∣∣ (x0, . . . , xn−1, y) ∈ T}
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can be written as {yi}∞i=0, where for each i there is an interval Ii ⊆ N
satisfying

• ‖yi − PIi(yi)‖ < δn,
• min Ii −→

i→∞
∞.

It is easily seen that any ∆-block tree T has a ∆-block subtree S ⊆ T

such that any branch (xi) ∈ [S] is a ∆-block.

Definition 4.3. — If (mi) ∈ [N]N and (Ii) are intervals, we write
R(mi, Ii) in case

m0 < I0 & ∀i ∃j Ii < mj < mj+1 < Ii+1.

Similarly, if (xi) ∈ S∞E and ∆ > 0, we write R∆(mi, xi) if (xi) is a ∆-block
with witness (Ii) satisfying R(mi, Ii).

Proceeding with our definitions, we let the (infinite asymptotic) ∆-game
between two players I and II be defined as follows: I and II alternate
(with I beginning) in choosing resp. natural numbers n0, n1, n2, . . . and
normalised vectors x0, x1, x2, . . . ∈ E and intervals Ii such that for each i,
‖xi − PIi

(xi)‖ < δi and ni < Ii < In+1.

I n0 n1 n2 n3 . . .

II (x0, I0) (x1, I1) (x2, I2) (x3, I3) . . .

Finally, we now define for each set A ⊆ S∞E and ∆ > 0, the sets

A∆ = {(yi) ∈ S∞E
∣∣ ∃(xi) ∈ A ∀i ‖xi − yi‖ < δi},

and

Int∆(A) = {(yi) ∈ S∞E
∣∣ ∀(xi) ∈ S∞E (∀i ‖xi − yi‖ < δi → (xi) ∈ A)}

= ∼ (∼ A)∆.

So as before Int∆(A) ⊆ A ⊆ A∆. Moreover, there is some ∆ > 0 depending
only on the constant K of the decomposition (Fi) such that if A ⊆ S∞E is
closed under taking equivalent sequences then A∆ ∩ bbE,∆(Fi) ⊆ Int∆(A).

Theorem 4.4. — Suppose spaces E ⊆ F are given, where F has an
F.D.D (Fi). Let A ⊆ S∞E be analytic. Then the following are equivalent.

(a) ∀∆ > 0 ∀(mi) ∃(xi)
(
R∆(mi, xi) & (xi) ∈ A∆

)
.

(b) ∀∆ > 0 II has a strategy in the ∆-game to play into A∆.
(c) ∀∆ > 0 ∃T ∆-block tree such that [T ] ⊆ A∆.

The proof goes along the lines of the proof of Theorem 2.2.
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Proof. — It should be obvious that from a ∆-block tree all of whose
branches belong to A∆ one easily obtains a strategy for II in the ∆-game
to play in A∆. Conversely, as in the proof of Proposition 2.1, any such
strategy for II gives rise to a ∆-block tree with branches only in A∆. Thus
(b)⇔(c) and trivially (b)⇒(a).

For (a)⇒(b), assume that (a) holds and fix some ∆ > 0. Let

B = {(ni)
∣∣∃(xi) ∃(Ii)

(
B∆/6(xi, Ii) & ∀i (n2i<Ii<n2i+1) & (xi) ∈ A∆/6

)
}.

Then as in the proof of Theorem 2.2, we find some infinite B ⊆ N and C-
measurable functions f, g that to each (ni) ∈ [B]N associate (Ii) = g((ni))
and (xi) = f((ni)) such that B∆/6(xi, Ii), ∀i (n2i < Ii < n2i+1), and
(xi) ∈ A∆/6.

Again construct inductively sequences ni < mi < ni+1 and sets Bk+1 ⊆
Bk such that mi−1 < minBi and such that for all j0 < . . . < jk and all

C,D ∈ [(nj0 ,mj0 , . . . , njk
,mjk

), Bk+1]

we have g(C)k = g(D)k and

‖Pg(C)k
(f(C)k)− Pg(D)k

(f(D)k)‖ < δk/6.

This can be done since in this case njk
< g(C)k < mjk

and there are only
finitely many intervals I such that njk

< I < mjk
, and as furthermore the

ball of radius 2K in ⊕i∈g(C)k
Fi is compact.

Finally, we describe the strategy for II to play in A∆ assuming that I is
playing a subsequence of (ni). So suppose I has played nj0 < . . . < njk

.
Then II responds with (xk, Ik) such that ‖PIk

(xk)−xk‖ < δk/6 and for all

C ∈ [(nj0 ,mj0 , . . . , njk
,mjk

), Bk+1]

we have g(C)k = Ik and

‖PIk
(f(C)k)− PIk

(xk)‖ < δk/6.

Thus, if at the end of the game, I has played (nji
) and II has played (xi),

then if (yi) = f((nji
,mji

)i), we have for all i

‖yi − xi‖ 6 ‖yi − PIi
(yi)‖+ ‖PIi

(yi)− PIi
(xi)‖+ ‖PIi

(xi)− xi‖
6 δi/6 + δi/6 + δi/6

= δi/2.

As (yi) = f((nji
,mji

)i) ∈ A∆/6, also (xi) ∈ A∆. �

Corollary 4.5. — Let B ⊆ S∞E be coanalytic. Then the following are
equivalent:

(d) ∃∆ > 0 ∃(mi) ∀(xi) (R∆(mi, xi) → (xi) ∈ Int∆(B)),
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(e) ∃∆ > 0 I has a strategy in the ∆-game to play in Int∆(B),
(f) ∃∆ > 0 ∀T ∆-block tree ([T ] ∩ Int∆(B) 6= ∅).

4.2. Uniformity

Before we state the next proposition, which is very similar to a result
of Odell, Schlumprecht, and Zsák [16], let us recall a few notions. If (xi)
and (yi) are two basic sequences, we say that (yi) dominates (xi) if for
some K and for all choices of scalars a0, . . . , an we have ‖

∑n
i=0 aix‖ 6

K‖
∑n

i=0 aiyi‖. We denote this by (xi) 6 (yi) or (xi) 6K (yi) if it holds for
the constant K.

Proposition 4.6. — Let E be a closed infinite dimensional subspace of
a Banach space F with an F.D.D. (Fi), let ∆ > 0, and suppose that there
is a countable set A of normalised Schauder bases such that any ∆-block
tree has a branch that is majorised by some element of A. Then there is a
constant C, a sequence (ei) ∈ A, and a sequence (mi) such that whenever
(xi) ∈ bbE,∆(Fi) satisfies R∆(mi, xi) then (xi) 6C (ei).

Similarly for > and ≈.

Proof. — Notice first that by Corollary 4.5, we can find some sequence
(mi) such that

∀(xi) ∈ bbE,∆(Fi) (R∆(mi, xi) → ∃(fi) ∈ A (xi) 6 (fi)).

By passing to a subsequence of (mi), we can suppose that for every i

there is some v ∈ SE such that ‖v − P]mi,mi+1[(v)‖ < δi. List now A as
{(y0

i ), (y1
i ), (y2

i ), . . .} and suppose towards a contradiction that the conclu-
sion of the Proposition fails for the specific sequence (mi). Then for every
n and C there is some ∆-block (xn,C

i ) such that R∆(mi, x
n,C
i ) and

(xn,C
i ) 66C (yn

i ).

But then for all n, C, and M 6 N there is some L big enough such that

(xn,L
i )∞i=M+N 66C (yn

i )∞i=M+N .

Notice that, as R∆(mi, x
n,L
i ), there is an interval I such that m2M+2N < I

and ‖xn,L
M+N − PI(x

n,L
M+N )‖ < δM+N . So find vM , . . . , vM+N−1 ∈ SE and

intervals IM < . . . < IM+N−1 such that
mN < IM < mN+1 < mN+2 < IM+1 < mN+3 < . . .

< m2N−2 < IM+N−1 < m2N−1 < m2N 6 m2M+2N < I

and ‖vi − PIi(vi)‖ < δi.
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Let now

zi =
{

vi for M 6 i < M +N

xn,L
i for M +N 6 i <∞

.

Then (zi)∞i=M 66C (yn
i )∞i=M , while (zi)∞i=M is a (δi)∞i=M -block for some wit-

nessing sequence (Ii)∞i=M of intervals such that mN < IM and

∀i > M ∃j (Ii < mj < mj+1 < Ii+1).

Cutting (zi)∞i=M off at some finite P we get the following claim.
Claim: For all n, C, and M 6 N there is a sequence (zi)P

i=M and intervals
(Ii)P

i=M such that
• mN < IM ,
• ∀i ∈ [M,P ] ∃j (Ii < mj < mj+1 < Ii+1),
• ∀i ∈ [M,P ] ‖zi − PIi

(zi)‖ < δi,
• (zi)P

i=M 66C (yn
i )P

i=M .
We can now construct a sequence (pi) and some ∆-block (zi) such that

R∆(mi, zi) and for all l

(zi)
pl−1
i=0 66l (yπ(l)

i )pl−1
i=0 ,

where π : N → N is some surjection hitting each number infinitely often.
To begin, let p0 = 0, n = π(0), C = 0, M = p0, and N = M and find some
(zi)P

i=p0
and (Ii)P

i=p0
according to the claim. Set p1 = P + 1.

Assume now that p0, . . . , pl and z0, . . . , zpl−1 have been chosen. Let n =
π(l), C = l, M = pl, and let N > M be large enough such that Ipl−1 <

mN−1 < mN . Then we can find some (zi)P
i=pl

and (Ii)P
i=pl

according to the
claim and finally let pl+1 = P +1. This finishes the inductive construction.

We then see that R∆(mi, zi), while on the other hand

(zi)∞i=0 66 (yn
i )∞i=0

for any n, which is a contradiction. �

One should contrast the proof of Proposition 4.6 with that of Proposi-
tion 3.1. In the former the diagonalisation is over the sequence (mi) while
in the latter the diagonalisation is over the sequence (xi).

4.3. Introduction of coordinates

To introduce coordinates in a space E that does not have an F.D.D we
shall use the setup of Odell and Schlumprecht from [14]. They developed
much of the theory used to take care of spaces without F.D.D., but only
proved the basic determinacy result in the case of closed games.
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The fundamental result that allows us to introduce coordinates is the
following lemma from [14] based on a result of W. B. Johnson, H. Rosenthal
and M. Zippin [9].

Lemma 4.7. — Let E be a separable Banach space and (Yn)∞n=1 a se-
quence of closed subspaces each having finite codimension in E. Then E

is isometrically embeddable into a space F having an F.D.D. (Fi)∞i=0 such
that, when identifying E with its image in F , the following holds

(1) E ∩ span(
⋃∞

i=0 Fi) is dense in E.
(2) For every n, the finite codimensional subspace

En = E ∩ span(
⋃∞

i=n Fi) is contained in Yn.
(3) There is a constant c > 1 such that for every n > 1, there is a finite

set Dn ⊆ S(F ∗0 ⊕ . . .⊕ F ∗n−1) such that for any x ∈ E we have

‖x‖E/Yn
= inf

y∈Yn

‖x− y‖ 6 c max
w∗∈Dn

w∗(x).

From (1) it follows that for each n, E ∩ span(
⋃∞

i=n Fi) is dense in En.
Moreover, if E has separable dual, (Fi) can be chosen to be shrinking,

and if E is reflexive, F can also be chosen to be reflexive.

Remark: We should mention that from the lemma above it follows that
for all n, δ > 0, and x ∈ SE ∩

(
span(

⋃∞
i=n Fi)

)
δ
, there is some y ∈ SYn with

‖x− y‖ 6 4δc. The argument can be found on page 4095 in [14].

Definition 4.8. — Given a decreasing sequence of finite codimensional
subspaces (Yn) of E as above, a (Yn)-block tree is a non-empty subset
S ⊆ S<∞

E closed under initial segments such that for all (x0, . . . , xn−1) ∈ S
the set

{y ∈ SE

∣∣ (x0, . . . , xn−1, y) ∈ S}
can be written as {yi}∞i=0, where for each i there is an ni satisfying

• yi ∈ Yni
,

• ni −→
i→∞

∞.

We now sum up exactly the amount of knowledge we need from Lemma 4.7
in the following proposition.

Proposition 4.9. — Let E be a separable reflexive Banach space. Then
there is some reflexive F ⊇ E having an F.D.D. (Fi)∞i=0 and a constant c > 1
such that whenever ∆ > 0 and T ⊆ S<N

E is a ∆-block tree with respect to
(Fi), there is a weakly null tree S ⊆ S<N

E such that

[S] ⊆ [T ]8∆c & [T ] ⊆ [S]8∆c.

Moreover, E contains a block sequence of (Fi).
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Proof. — Notice that as E∗ is separable, we can chose Yn =
⋂

i6n kerφi

for a dense set {φi} of continuous functionals on E. Then any (Yn)-block
tree is a weakly null tree. Using these Yn, we embed E isometrically into
F as in Lemma 4.7. Then we can talk about ∆-blocks etc. in E. By the
remark above, we see that if T is a ∆-block tree, then by replacing vectors
one by one we can construct a (Yn)-block tree S such that [S] ⊆ [T ]8∆c

and [T ] ⊆ [S]8∆c.
The moreover part easily follows from (1) of Lemma 4.7. �

We are now ready for an application of the basic determinacy result,
which strengthens a result of Odell and Schlumprecht from [14].

Theorem 4.10. — Let E be a reflexive Banach space such that any
weakly null tree has a branch that is a subsymmetric (possibly conditional)
basic sequence. Then E embeds into an `p sum of finite-dimensional spaces
for some 1 < p <∞.

Proof. — Use Proposition 4.9 to find a reflexive superspace F ⊇ E as
described. Let B = {(xi) ∈ S∞E

∣∣ (xi) is a subsymmetric basis }, which is
coanalytic (in fact Fσ), and find ∆ > 0 small enough such that B8∆c ∩
bbE,∆(Fi) ⊆ Int∆(B). Then if T is a ∆-block tree, all of whose branches are
∆-blocks, we can find a weakly null tree S such that [S] ⊆ [T ]8∆c. Thus,
as S has a branch in B, T has a branch in Int∆(B).

We now apply Corollary 4.5 in order to find some Γ > 0 and a sequence
(mi) such that for any Γ-block (xi), if RΓ(mi, xi), then (xi) is a subsym-
metric basic sequence.

We claim that there is some basic sequence (ei) such that if RΓ(mi, xi)
then (xi) ∼ (ei). To see this, notice that if (xi) and (yi) are given such that
RΓ(mi, xi) and RΓ(mi, yi), then we can find subsequences (z2i) of (xi) and
(z2i+1) of (yi) such that RΓ(mi, zi). But then each of (zi), (xi), and (yi) is
subsymmetric and hence

(xi) ∼ (z2i) ∼ (zi) ∼ (z2i+1) ∼ (yi).

Thus (xi) and (yi) are equivalent to some common (ei). We claim that (ei)
is perfectly homogeneous. To see this, pick a block sequence (yi) of the
decomposition (Fi) such that each term yi belongs to SE and such that
R(mi, yi). Then any normalised block sequence (zi) of (yi) also satisfies
R(mi, zi) and hence also RΓ(mi, zi). So both (yi) and all of its normalised
block sequences are equivalent with (ei) and the latter is therefore perfectly
homogeneous. By Zippin’s Theorem and since E and hence [ei] is reflexive,
(ei) is equivalent with the unit vector basis (fi) in some `p, 1 < p <∞.
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By Proposition 4.6 we find that there must be a constant C > 0 such that
whenever (xi) is a Γ-block sequence such that RΓ(mi, xi), then (xi) ∼C

(fi). Letting Hi = ⊕m2i+1
m2i−1+1Fi, where m−1 = −1, we see then that for any

sequence (ui) in SE such that for some sequence (ti)

(4.1) ‖P⊕ti−1
j=ti−1+1Hj

(ui)− ui‖ < γi

we have (ui) ∼C′ (fi) for some constant C ′. (There is a hidden use of
subsymmetry of (fi) used here in order not to worry about a shift in the
indices.)

We are now in a position to finish our proof as in the proof of Theorem 4.1
in [14]. �

5. Subsequence extraction

It is interesting to see that the fact that every block tree has a branch
with a certain property is equivalent to I having a strategy to choose sub-
sequences in real time. We propose here to weaken the conditions on I by
instead letting her hesitate for a while or even to change her mind a couple
of times. This leads to less restrictive notions of subsequence selection that
might be of interest elsewhere.

We begin by defining the two games to be studied. Fix a Banach space
E with a basis (ei).

The 0’th subsequence game (SG)0 is defined as follows. Player I and II
alternate in choosing respectively finite strings s1, s2, . . . such that si ∈
{#, 0, 1}i and normalised blocks x1 < x2 < . . . ∈ E.

I s1 s2 s3 . . .

II x1 x2 x3 . . .

Moreover, we demand that the si satisfy the following coherence condition.
For each n, the sequence sn+1(n), sn+2(n), sn+3(n), etc. will begin by a
finite number of #’s and then followed by only 0’s or only 1’s. Thus, if we
interpret si(n) = # as I not yet having decided whether xn should belong
to the subsequence she is choosing, we see that she is allowed to hesitate
for a finite time, but must then decide once and for all.

We therefore see II as constructing an infinite normalised block ba-
sis (xi)i∈N, while I chooses a subsequence (xi)i∈A by letting n ∈ A ⇔
limi→∞ si(n) = 1.

It is not hard to see that any strategy naturally provides a continuous
function φ : bb(ei) → [N]N choosing subsequences.
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The 1’st subsequence game (SG)1 is defined as similarly. Player I and
II alternate in choosing respectively finite strings s1, s2, . . . such that si ∈
{0, 1}i and normalised blocks x1 < x2 < . . . ∈ E.

I s1 s2 s3 . . .

II x1 x2 x3 . . .

Moreover, we demand that the si only oscillate finitely, i.e., for every n,
limi→∞ si(n) exists.

Again we see II as constructing an infinite normalised block basis (xi)i∈N,
while I chooses a subsequence (xi)i∈A by letting n ∈ A⇔ limi→∞ si(n) =
1. However, in this case a strategy for I only provides a Baire class 1 function
φ : bb(ei) → [N]N choosing subsequences.

Example: Consider the space `1⊕ `2 with its usual basis (ei) having norm

‖
∑

i

aiei‖ = ‖
∑

i

a2i+1e2i+1‖1 + ‖
∑

i

a2ie2i‖2.

We let
A = {(yi) ∈ bb(ei)

∣∣ (yi) ∼ `1 or (yi) ∼ `2}
and

AK = {(yi) ∈ bb(ei)
∣∣ (yi) ∼K `1 or (yi) ∼K `2}.

We show that player I has a strategy in (SG)1 to choose subsequences in A.
On the other hand, there is no K such that every normalised block basis
has a subsequence in AK , and, in fact, even if we demand that II plays
blocks exclusively in S`1 ∪ S`2 , I still has no strategy in (SG)1 to play in
some AK . Also, I does not have a strategy in (SG)0 to choose subsequences
in A.

Thus, in particular, there is no equivalent version of Proposition 4.6 in
the game (SG)1, i.e., we cannot in general get uniformity results from the
mere existence of a winning strategy for I in the 1’st subsequence game.

First, any normalised block x ∈ `1 ⊕ `2 can be written uniquely as
λy1 + (1− λ)y2 for normalised block vectors y1 ∈ `1, y2 ∈ `2, and a scalar
λ ∈ [0, 1]. Moreover, suppose (xi) is a normalised block sequence with cor-
responding scalars (λi). Then if the λi are bounded away from 0 by some
ε > 0, the sequence (xi) will be equivalent with `1. However, the smaller we
need to take ε > 0, the worse the constant of equivalence with `1 becomes
and this explains why there is no uniform constant for equivalence. On the
other hand, if λi → 0 sufficiently fast, then (xi) is equivalent with `2. So
fix some εi > 0 converging to 0 sufficiently fast that if λi < εi for all i, then
(xi) ∼ `2.

TOME 59 (2009), FASCICULE 4



1382 Christian ROSENDAL

We now describe the strategy for I in response to a sequence (xi) with
corresponding scalars (λi) played by II. I will never first exclude some
xi from the subsequence and then later on include it, so therefore, each
coordinate will change value 0, 1 at most once and this will be from 1 to 0.

I chooses all vectors x1, x2, . . . until she meets the first λi1 < ε1. In this
case, she will eliminate all previous xi and only stick with xi1 . Now she will
continue by choosing all subsequent xi until she meets the first coordinate
i2 > i1 at which λi2 < ε2. She will then suppress all the xi between xi1

and xi2 and choose xi2 . Again she will choose all further xi until she meets
the first i3 > i2 such that λi3 < ε3, chooses this xi3 and suppresses all xi

between xi2 and xi3 , etc.
Thus at the end of the game, either there is some n such that all but

finitely many chosen λi are greater than εn or I has chosen a subsequence
(xil

) such that λil
< εl for all l. In the first case, the subsequence is equiv-

alent to `1 and in the latter case equivalent to `2. So I has a strategy in
(SG)1 to play in A.

Now assume that II is only allowed to play blocks in S`1 ∪ S`2 , i.e.,
such that the corresponding λ is either 0 or 1, and suppose towards a
contradiction that for some K > 1, I has a strategy in (SG)1 to play
in AK . Then there is some N > 0 such that I has a strategy to choose
subsequences all of whose terms, except at most N , belong to `1, or all
whose terms except at most N belong to `2. We fix such a strategy σ for
I. So σ is a function assigning to any normalised block sequence of vectors
from S`1 ∪ S`2 a binary sequence of equal length.

We let P be the set of finite block sequences (x1, . . . , xn) such that each
term belongs to S`1 ∪ S`2 . Set (x1, . . . , xn) > (y1, . . . , ym) if n 6 m and
x1 = y1, . . . , xn = yn.

We claim that for each M and p = 1, 2 the set

Ep
M ={(x1, . . . , xj)∈P | j>M &#(i6M |σ(x1, . . . , xj)(i)=1&xi∈`p)6N}

is dense in (P,6), i.e., any element of P has a minorant in Ep
M . To see

this, suppose (x1, . . . , xn), p and M are given. Choose normalised con-
secutive blocks xn+1, xn+2, . . . belonging to `3−p and let II play the in-
finite sequence x1, x2, . . .. Since σ is a strategy in (SG)1, we know that
s = limj→∞

(
σ(x1, . . . , xj)|M

)
exists in 2M and by assumption on σ, we

must have that

#(i 6 M | s(i) = 1 & xi ∈ `p) 6 N.

So fix some j > n+M such that σ(x1, . . . , xj)|M = s. Then (x1, . . . , xj) ∈
Ep

M and (x1, . . . , xn) > (x1, . . . , xj).
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Let now (x1, x2, x3, . . .) be an {Ep
M}p=1,2,M∈N-generic sequence, i.e., for

all M and p, (xi) has an initial segment belonging to Ep
M . Let also A ⊆ N be

the ultimate response of II to this sequence, i.e., i ∈ A ⇔
limj→∞ σ(x1, . . . , xj)(i) = 1. Fix p such that infinitely many terms in
(xi)i∈A belongs to `p and find M large enough that there are N + 1 many
i 6 M that belong to A and at the same time xi ∈ `p. Find l > M such
that for all j > l, σ(x1, . . . , xj)|M = χA|M . But then if j > l is such that
(x1, . . . , xj) ∈ Ep

M we get a contradiction.
To see that I has no strategy in the 0’th subsequence game to choose

subsequences in A is easier. For this it is enough to notice that we can let
II play vectors from `1 until I commits to take at least one of these, then
we let II continue to play vectors from `2 until I commits to at least one
of these, and II continues again with vectors from `1 etc. Thus in the end,
I will have chosen infinitely many vectors from both `1 and `2, so fails to
play in A.

It is proved in [4] that if (ei) is a normalised basic sequence such that
every normalised block basis of (ei) has a subsequence equivalent to (ei)
(i.e., (ei) is a Rosenthal basis), and, moreover, this subsequence can be cho-
sen continuously in the block basis, then (ei) is equivalent to the standard
unit vector basis of c0 or some `p. Thus, in particular, if I has a strategy in
(SG)0 to choose subsequences equivalent to (ei), then (ei) is equivalent to
c0 or `p. This provides another proof of Proposition 3.3. A natural question
is whether this condition can be weakened to I having a strategy in (SG)1.
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