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A FREĬMAN-TYPE THEOREM FOR LOCALLY
COMPACT ABELIAN GROUPS

by Tom SANDERS

Abstract. — Suppose that G is a locally compact abelian group with a Haar
measure µ. The δ-ball Bδ of a continuous translation invariant pseudo-metric is
called d-dimensional if µ(B2δ′ ) 6 2dµ(Bδ′ ) for all δ′ ⊂ (0, δ]. We show that if
A is a compact symmetric neighborhood of the identity with µ(nA) 6 ndµ(A)
for all n > d log d, then A is contained in an O(d log3 d)-dimensional ball, B, of
positive radius in some continuous translation invariant pseudo-metric and µ(B) 6
exp(O(d log d))µ(A).

Résumé. — Soit G un groupe abélien localement compact muni d’une mesure
de Haar µ. La δ-boule Bδ pour une pseudo-métrique continue et invariante par
translation sera dite de dimension d si µ(B2δ′ ) 6 2dµ(Bδ′ ) pour tout δ′ ⊂ (0, δ].
Nous montrons que si A est un voisinage compact symétrique de l’identité tel que
µ(nA) 6 ndµ(A) pour tout n > d log d, alors A est contenu dans une boule B de
dimension O(d log3 d) et de rayon strictement positif pour une pseudo-métrique
continue et invariante par translation ; de plus µ(B) 6 exp(O(d log d))µ(A).

1. Introduction

Suppose, as we shall throughout this paper, that G is a locally compact
abelian group endowed with a Haar measure µ. Our interest lies with sub-
sets of G which behave “roughly” like subgroups; it is instructive to begin
with an example.

Consider the group Rd endowed with Lebesgue measure. For each δ ∈
(0,∞) we write Bδ for the ball of radius δ in the usual `∞-norm — these
“balls” are “cubes”. Although each ball contains the identity and the in-
verses of all its elements, it is not a subgroup of Rd because it is not
(additively) closed. Indeed, addition maps Bδ × Bδ into B2δ which is 2d

Keywords: Frĕıman’s theorem, Fourier transform, balls in pseudo- metrics, polynomial
growth.
Math. classification: 43A25, 11B25.



1322 Tom SANDERS

times as large as Bδ. If, however, we introduce an asymmetry in the domain
of the additive operation we can recover a sort of “approximate closure”.

Suppose δ and δ′ are positive parameters and note that addition maps
Bδ ×Bδ′ into Bδ+δ′ . Now, if δ′ is small compared with δ/d then we have

µ(Bδ+δ′) =
(
2(1 + δ′δ−1)δ

)d = µ(Bδ)
(
1 + O(dδ′δ−1)

)
.

In this case Bδ+δ′ , which contains Bδ, is also not much larger than Bδ;
with think of addition as being “approximately closed’, in the sense that
Bδ +Bδ′ ≈ Bδ, and the balls (Bδ)δ as behaving “roughly” like a subgroup.

Naturally the above observation can be extended to an arbitrary locally
compact abelian group, although here the rôle of norm has to be replaced
by that of a continuous translation invariant pseudo-metric(1) ; suppose ρ is
such. We write Bδ for the usual ball of radius δ about the identity, that is

Bδ := {x ∈ G : ρ(x, 0G) 6 δ}.

As before these balls are symmetric compact neighborhoods of the identity,
and we should like to recover the same sort of “approximate closure”. This
was made possible in Rd by the presence of a growth condition which does
not occur in general; we say that the ball Bδ is d-dimensional if

µ(B2δ′) 6 2dµ(Bδ′) for all δ′ ∈ (0, δ].

A technical complication arises because it is not always true that if Bδ is
d-dimensional then Bδ + Bδ′ ≈ Bδ when δ′ is sufficiently small compared
with δ/d. However, in [2], Bourgain showed that a Vitali covering argument
can be used to recover a useful version of this fact on average over a range
of values of δ. See [12, Lemma 4.24] for a distillation of this.

The “approximate closure” property is often enough to allow the transfer
of arguments designed for groups to these “approximate groups”. Moreover,
“approximate groups” are far more abundant than genuine groups, which
in many cases makes them more useful. We refer the reader to [2, 4, 6,
8, 10] and [12] for examples. It is worth noting that the apparently more
general notion of Bourgain system was introduced in [6] as a candidate for
“approximate groups”, but we shall show in §3 that this notion and ours
are essentially equivalent.

Suppose now that ρ is a continuous translation invariant pseudo-metric
and Bδ is d-dimensional. It follows immediately that

µ(Bδ + Bδ) 6 µ(B2δ) 6 2dµ(Bδ),

(1) Recall that a pseudo-metric is simply a metric ρ without the identity condition that
ρ(x, y) = 0 implies x = y.

ANNALES DE L’INSTITUT FOURIER



FREĬMAN’S THEOREM FOR LOCALLY COMPACT ABELIAN GROUPS 1323

and it is natural to ask the inverse question: if A is a symmetric com-
pact neighborhood of the identity and µ(A + A) 6 2dµ(A), then how eco-
nomically is A contained in a finite dimensional ball of some continuous
translation invariant pseudo-metric? The answer to this question is called
Frĕıman’s theorem and a proof (for discrete abelian groups) may be found
in the paper [5] of Green and Ruzsa.

Theorem 1.1 (Weak Frĕıman’s theorem for discrete abelian groups).
Suppose that G is a discrete abelian group and A ⊂ G is a finite symmetric
neighborhood of the identity with |A + A| 6 2d|A|. Then A is contained in
a 2O(d)-dimensional ball, B, of positive radius in some translation invariant
pseudo-metric and |B| 6 exp(2O(d))|A|.

The essential parts of this theorem are the control on the dimension
and size of the ball. It is, of course, easy to define a translation invariant
pseudo-metric such that A is contained in the unit ball as follows:

By Ruzsa’s covering lemma (Lemma 4.1 below) there is a set T with
|T | = 2O(d) such that 2(A−A) ⊂ T + (A−A), and one may thus define a
translation invariant pseudo-metric via

ρ(x, 0G) := inf
{

l+
∑
t∈T

|lt| : x = l·a+
∑
t∈T

lt ·t for some l ∈ {0, 1}, a ∈ A−A
}

.

This does not, however, have the appropriate dimension and size bounds in
general. Despite this there is some utility in metrics of a similar type and
we refer the reader to [11] for details.

In actual fact the structure found in [5] is more explicit than “ball of
a metric”: it is a multi-dimensional coset progression, which explains the
introduction of the qualifier “weak” in the title of the theorem. In arbitrary
locally compact abelian groups multi-dimensional coset progressions are too
restrictive: consider, for example, how one might contain a short interval
in T in a multi-dimensional coset progression. In view of this we drop the
qualifier “weak” in more general results.

It is fairly easy to see that (up to the implied constants) this theorem is
best possible, which is a little unfortunate since we “lose an exponential”
in applying the result to a d-dimensional ball: the theorem tells us that
this ball is contained in a 2O(d)-dimensional ball of a, possibly different,
translation invariant pseudo-metric.

Of course, smaller balls in Bδ have considerably better growth estimates.
Indeed, if nδ′ 6 2δ then

µ(nBδ′) 6 µ(Bnδ′) 6 (2n)dµ(Bδ′) = nO(d)µ(Bδ′).

Proving a corresponding inverse theorem is the objective of this paper.

TOME 59 (2009), FASCICULE 4



1324 Tom SANDERS

Theorem 1.2 (A Frĕıman-type theorem for locally compact abelian
groups). — Suppose that G is a locally compact abelian group and A ⊂ G

is a compact symmetric neighborhood of the identity with µ(nA) 6 ndµ(A)
for all n > d log d. Then A is contained in an O(d log3 d)-dimensional ball,
B, of positive radius in some continuous translation invariant pseudo-metric
and µ(B) 6 exp(O(d log d))µ(A).

As soon as one begins to use the ball provided one typically loses factors
exponential in the dimension which renders the size bound largely sec-
ondary to the dimension bound. Moreover, it turns out that the dimension
bound cannot be significantly improved: return to our example of Rd and
suppose that A is its unit cube. It is immediate that µ(nA) 6 ndµ(A) for
all n. Now, suppose that Bδ is a d′-dimensional ball containing A. Since Bδ

contains A, Bδ has positive measure and it follows by the Brunn-Minkowski
theorem that

2dµ(Bδ) 6 µ(Bδ + Bδ) 6 µ(B2δ) 6 2d′µ(Bδ).

We immediately conclude that d′ > d, and so the dimension bound it tight
up to logarithmic factors.

A word of justification is in order regarding the name of the theorem.
One expects Frĕıman-type theorems to concern sets with assumptions on
µ(2A) or µ(3A) and the above theorem takes instead a hypothesis on µ(nA)
for n large. It follows trivially from Ruzsa’s covering lemma that one may
pass from a bound on µ(2A) to one on µ(nA) for n large. However, this
results in an exponential loss in the dimension bound on the metric (cf.
Theorem 1.1) and so we feel the above formulation is more natural: we can
pass between an explicit description of a low-dimensional ball in a metric
and an extrinsic growth condition with only logarithmic losses.

Although the formulation of Theorem 1.2 lends itself to efficient use,
it would probably not have been too difficult to adapt existing proofs of
Frĕıman’s theorem to yield this result. The real interest of this paper lies
in the new method of proof. On a technical level, it turns out to be more
convenient to work with not only balls in a pseudo-metric, but also a slightly
different definition of “large spectrum” (introduced in §2). On a conceptual
level, the main new contribution is in §5 where we show that Bohr sets
with highly structured frequency sets actually behave as if they have much
lower dimension than the trivial estimate would suggest. The rest of the
argument then involves many of the usual ingredients, in particular an easy
generalization of Bogolioùboff’s method and an idea of Schoen; the proof
is completed in fairly short order.

ANNALES DE L’INSTITUT FOURIER
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The paper now splits as follows. In §2 we record our notation; in §3, which
is logically unnecessary, we consider some examples of finite dimensional
balls to facilitate understanding; in §4, we record some covering lemmas;
§§5–8 contain the proof of the theorem; finally we conclude in §9 with some
conjectures and, in particular, relate our result to the so called Polynomial
Frĕıman-Ruzsa Conjecture.

2. Notation

The convolution of two functions f, g ∈ L1(µ) is denoted f ∗ g and is
defined by

f ∗ g(x) :=
∫

f(x′)g(x− x′)dµ(x′) for all x ∈ G.

We write Ĝ for the dual group of G, that is the locally compact abelian
group of continuous homomorphisms γ : G → S1, where S1 := {z ∈
C : |z| = 1}, and ν for its Haar measure. The Fourier transform maps
f ∈ L1(µ) to f̂ ∈ L∞(ν) defined by

f̂(γ) :=
∫

f(x)γ(x)dµ(x) for all γ ∈ Ĝ.

The dual group provides two natural metrics which we shall make con-
siderable use of.

Example (Bohr sets). — Suppose that Γ is a compact neighborhood in
Ĝ. For any z ∈ S1 we write ‖z‖ for the quantity (2π)−1|Arg z|, where the
argument is taken to have a value lying in (−π, π]. We define a continuous
translation invariant pseudo-metric on G by

ρ(x, y) := sup
{
‖γ(x− y)‖ : γ ∈ Γ

}
,

and write Bohr(Γ, δ) for the ball of radius δ in ρ, calling such sets Bohr
sets; Γ is the frequency set of the Bohr set. Note that since Γ is a compact
neighborhood, 0 < µ(Bohr(Γ, δ)) < ∞ whenever δ < 1/2.

Example (Large spectra). — Suppose that A is a compact neighborhood
in G. Recall that for functions f ∈ L2(µ) we have

‖f‖2
L2(µ(A)−21A∗1−A) :=

∫
A

∫
A

|f(a− a′)|2dada′

where the measures in the integral are µ restricted to A and normalized to
have total mass 1. Using this we define a continuous translation invariant

TOME 59 (2009), FASCICULE 4



1326 Tom SANDERS

pseudo-metric on Ĝ by

ρ(γ, γ′) := ‖γ − γ′‖L2(µ(A)−21A∗1−A) = ‖1− γγ′‖L2(µ(A)−21A∗1−A),

and write LSpec(A, δ) for the ball of radius δ in ρ, calling such sets large
spectra. The true utility of this definition emerges when one notes that

‖1− γ‖2
L2(µ(A)−21A∗1−A) = 2

(
1− µ(A)−2|1̂A(γ)|2

)
,

and hence

LSpec(A, δ) =
{

γ ∈ Ĝ : |1̂A(γ)| >
√

1− δ2/2µ(A)
}

.

It is, of course, this fact which motivates the name “large spectrum”.

3. Finite dimensional balls

There are two standard examples of finite dimensional balls which it is
instructive to consider.

Example (Multi-dimensional progressions). — Suppose that T is a finite
subset of a discrete abelian group G. We define a continuous translation
invariant pseudo-metric on G by

ρ(x, y) := inf
{

sup
t∈T

|σt| : σ ∈ ZT and x− y = σ · T
}

,

and write Prog(T,L) for the ball of radius L in ρ. It is easy to see that
putting XL := {b3L/2ct, bδL/2ct : t ∈ T}, we get the inclusion

Prog(T, 2L) ⊂ Prog(XL, 1) + Prog(T,L).

Since |Prog(XL, 1)| 6 3|XL| we get that Prog(T,L) is an O(|T |)-dimensional
ball.

Example (Bohr sets). — Suppose that Γ is a finite set of characters on
a compact abelian group G. In [12, Lemma 4.19] it is shown that Bohr sets
are O(|Γ|)-dimensional balls as follows:

For each θ ∈ TΓ define the set

Bθ :=
{
x ∈ G : ‖γ(x) exp(−2πiθγ)‖ 6 δ/2 for all γ ∈ Γ

}
.

If Bθ is non-empty let xθ be some member. The map x 7→ x − xθ is an
injection from Bθ into Bohr(Γ, δ), so putting

Tδ :=
{

xθ : θ ∈
∏
γ∈Γ

{−3δ/2,−δ/2, δ/2, 3δ/2}
}

ANNALES DE L’INSTITUT FOURIER



FREĬMAN’S THEOREM FOR LOCALLY COMPACT ABELIAN GROUPS 1327

we have that
Bohr(Γ, 2δ) ⊂ Tδ + Bohr(Γ, δ).

Since |Tδ| 6 4|Γ| we get that Bohr(Γ, δ) is an O(|Γ|)-dimensional ball.

Multi-dimensional progressions and Bohr sets were both brought under
the auspices of so called Bourgain systems in [6]. A d-dimensional Bourgain
system S in G is a collection (Sδ)δ∈(0,2] of subsets of G obeying the following
axioms:

(i) (Symmetric neighborhood) Sδ is a compact symmetric neighbor-
hood of the identity for all δ ∈ (0, 2];

(ii) (Nesting) Sδ′ ⊂ Sδ for all δ, δ′ ∈ (0, 2] with δ′ 6 δ;
(iii) (Subadditivity) Sδ +Sδ′ ⊂ Sδ+δ′ for all δ, δ′ ∈ (0, 2] with δ +δ′ 6 2;
(iv) (Growth) µ(S2δ) 6 2dµ(Sδ) for all δ ∈ (0, 1].

Certainly if Bδ is a d-dimensional ball in some continuous translation invari-
ant pseudo-metric ρ then (Bηδ)η∈(0,2] is a d-dimensional Bourgain system.
For all practical purposes, the Birkhoff group metric construction from [1]
provides a converse to this. We include the argument for completeness.

Proposition 3.1. — Suppose that S = (Sδ)δ∈(0,2] is a d-dimensional
Bourgain system. Then there is a continuous translation invariant pseudo-
metric such that Sδ/22 ⊂ Bδ ⊂ Sδ for all δ ∈ (0, 2]. In particular B1 is
O(d)-dimensional, S2−2 ⊂ B1 and µ(B1) 6 exp(O(d))µ(S2−2).

Proof. — Define the quantities ρ∗(x, y) := inf {2−k : x− y ∈ S3−k} and

ρ(x, y) := inf
{ n∑

k=1

ρ∗(xk−1, xk) : n ∈ N, x0 = x, xn = y

}
.

The fact that ρ is a continuous translation invariant pseudo-metric is imme-
diate. For the nesting conclusion it will be sufficient to show that
1
2ρ∗(x, y) 6 ρ(x, y) 6 ρ∗(x, y). The second inequality is also immediate
so it remains to prove the first.

Suppose we are given x0 = x, x1, . . . , xn−1, xn = y; write

P := ρ∗(x0, x1) + · · ·+ ρ∗(xn−1, xn)

and let h be maximal such that ρ∗(x0, x1) + · · · + ρ∗(xh−1, xh) 6 P/2. It
follows from the maximality that ρ∗(xh+1, xh+2)+· · ·+ρ∗(xn−1, xn) 6 P/2.

Now, by the subadditivity of Bourgain systems, we conclude that

ρ∗(x, xh) 6 exp
(

log 2
⌊
log3

h−1∑
k=0

ρ∗(xk, xk+1)log2 3
⌋)

6 2 · (P/2),

TOME 59 (2009), FASCICULE 4



1328 Tom SANDERS

where the second inequality is by nesting of norms. Similarly ρ∗(xh+1, y) 6
P and since ρ∗(xh, xh+1) 6 P is trivially true and 3 · S3−k ⊂ S3−(k−1) ,
it follows that ρ∗(x, y) 6 2P . This yields the required inequality and the
proof is complete. �

4. Covering lemmas

Covering lemmas are extremely useful in additive combinatorics and were
pioneered by Ruzsa in [7]. The most basic is the following which we state
for completeness and may be found as [12, Lemma 2.14].

Lemma 4.1 (Ruzsa’s covering lemma). — Suppose that B is a compact
neighborhood with µ(B + B) 6 2kµ(B). Then there is a set T ⊂ B with
|T | 6 2O(k) such that 2B − 2B ⊂ T + B −B.

The proof of this result is easy: simply let T be a maximal B-separated
subset of 2B − 2B. We leave the details to the reader as we do not require
the result.

There is a refinement of the above lemma due to Chang [3] which will be
of use to us. The following is a slight reformulation of the result as stated
in [12, Lemma 5.31] so we include a proof for completeness.

Lemma 4.2 (Chang’s covering lemma). — Suppose that B and B′ are
compact neighborhoods with µ(kB + B′) < 2kµ(B′). Then there is a set
T ⊂ B with |T | 6 k such that B ⊂ Prog(T, 1) + B′ −B′.

Proof. — Let T be a maximal B′-dissociated subset of B, that is a max-
imal subset of B such that

(σ · T + B′) ∩ (σ′ · T + B′) = ∅ for all σ, σ′ ∈ {0, 1}T .

Now suppose that x′ ∈ BrT and write T ′ := T ∪{x′}. By maximality of T

there are elements σ, σ′ ∈ {0, 1}T ′ such that (σ ·T ′+B′)∩(σ′ ·T ′+B′) 6= ∅.
Now if σx′ = σ′x′ then (σ|T · T + B′) ∩ (σ′|T · T + B) 6= ∅ contradicting the
fact that T is B′-dissociated. Hence, without loss of generality, σx′ = 1 and
σ′x′ = 0, whence

x′ ∈ σ′|T · T − σ|T · T + B′ −B′ ⊂ Prog(T, 1) + B′ −B′.

We are done unless |T | > k, so let T ′ ⊂ T be a set of size k. Denote
{σ · T ′ : σ ∈ {0, 1}T ′} by S and note that S ⊂ kB whence

2kµ(B′) 6 µ(S + B′) 6 µ(kB + B′) < 2kµ(B′).

This contradiction completes the proof. �

ANNALES DE L’INSTITUT FOURIER
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5. Growth of Bohr sets

When the frequency set of a Bohr set is structured in a particular way
there are better estimates for its growth; cf. §3.

Proposition 5.1. — Suppose that Γ is a compact symmetric neighbor-
hood of the trivial character with Γ + Γ ⊂ Prog(X, 1) + Γ for some finite
set X, and δ ∈ (0, 2−4] is a parameter. Then

µ(Bohr(Γ ∪X, 2δ)) 6 exp(O(|X| log |X|))µ(Bohr(Γ ∪X, δ)).

We require a preliminary result. Suppose that Λ is a set of characters, k is
a positive integer and δ ∈ (0, 1]. By the triangle inequality it is immediate
that Bohr(Λ, δ) ⊂ Bohr(kΛ, kδ); the following elementary lemma can be
used to provide a partial converse.

Lemma 5.2. — Suppose that t is a real number, k is a positive integer,
δ ∈ (0, 1] has kδ < 1/3 and(2) 〈rt〉 6 kδ for all r ∈ {1, . . . , k}. Then 〈t〉 6 δ.

Corollary 5.3. — Suppose that Λ is a set of characters containing
the trivial character and kδ < 1/3. Then Bohr(kΛ, kδ) ⊂ Bohr(Λ, δ), and
hence Bohr(kΛ, kδ) = Bohr(Λ, δ).

Proof. — Since 0
Ĝ
∈ Λ, we have that rλ ∈ kΛ for all r ∈ {1, . . . , k}. It

follows that if x ∈ Bohr(kΛ, kδ) then

‖λ(x)r‖ = ‖(rλ)(x)‖ 6 kδ for all r ∈ {1, . . . , k}.

If we define θx ∈ (−1, 1] to be such that λ(x) = exp(iπθx), then we can
rewrite the above as

〈rθx〉 6 kδ for all r ∈ {1, . . . , k}.

It follows from the preceding lemma that 〈θx〉 6 δ and hence that x ∈
Bohr(Λ, δ). The result is proved. �

Proof of Proposition 5.1. — For each θ ∈ TX define the set

Bθ :=
{
x ∈ G : ‖γ(x) exp(−2πiθγ)‖ 6 δ/22|X| for all γ ∈ X

}
.

Put I := {kδ/22|X| : − 24|X| 6 k 6 24|X|} and note that

Bohr(Γ ∪X, 2δ) ⊂
⋃
{Bθ ∩ Bohr(Γ, 2δ) : θ ∈ IX}.

For each θ ∈ IX let xθ be some element of Bθ ∩ Bohr(Γ, 2δ) (if the set is
non-empty); the map x 7→ x−xθ is an injection from Bθ ∩Bohr(Γ, 2δ) into

(2) Here 〈x〉 denotes the distance from x to the nearest integer.

TOME 59 (2009), FASCICULE 4



1330 Tom SANDERS

Bohr(X, δ/2|X|) ∩ Bohr(Γ, 22δ). Writing T for the set of all such xθs, we
have

Bohr(Γ ∪X, 2δ) ⊂ T + Bohr(Γ, 22δ) ∩ Bohr(X, δ/2|X|)

Now, by the triangle inequality, we have

Bohr(Γ, 22δ) ∩ Bohr(X, δ/2|X|) ⊂ Bohr(Γ + 23 Prog(X, 1), 23δ),

and since the trivial character is in Γ and Γ + Γ ⊂ Γ + Prog(X, 1) we have
Γ + 23 Prog(X, 1) ⊃ 23Γ and Γ + 23 Prog(X, 1) ⊃ 23 Prog(X, 1), whence

Bohr(Γ + 23 Prog(X, 1), 23δ) ⊂ Bohr(23Γ, 23δ) ∩ Bohr(23 Prog(X, 1), 23δ).

Finally, by Corollary 5.3 and the fact that X ⊂ Prog(X, 1) we have

Bohr(23Γ, 23δ) ∩ Bohr(23 Prog(X, 1), 23δ) ⊂ Bohr(Γ, δ) ∩ Bohr(X, δ)

and the result follows on noting that |T | 6 |I||X|. �

6. Growth of large spectra

The growth of large spectra is not as neat as that of Bohr sets. Nev-
ertheless, we have the following proposition which leverages a key idea of
Schoen [9] introduced to Frĕıman-type problems by Green and Ruzsa in [5].

Proposition 6.1. — Suppose that A is a compact neighborhood with
µ(nA) 6 ndµ(A) for all n > d log d, and ε ∈ (0, 1/2] is a parameter. Then

(i) either ε−1 = O(d log2 d) or there is a set X ⊂ LSpec(A, 2ε) with
|X| = O(d log2 ε−1d) such that

LSpec(A, ε) + LSpec(A, ε) ⊂ Prog(X, 1) + LSpec(A, ε);

(ii) we have the estimate

µ(Bohr(LSpec(A, ε), 1/2π)) 6 exp(O(d log ε−1d))µ(A).

The proof of the proposition rests on the following claim.

Claim. — For all η ∈ (0, 1/2] there is a positive integer kη,d with
d log d 6 kη,d = O(η−2d log η−1d) such that∫

LSpec(A,η)

|1̂A|2kη,ddν >
1
2

∫
|1̂A|2kη,ddν >

µ(A)2kη,d

2µ(kη,dA)
.

ANNALES DE L’INSTITUT FOURIER
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Proof. — Write f for the k-fold convolution of 1A with itself. By
Plancherel’s theorem and the Cauchy-Schwarz inequality we have

(6.1)
∫
|1̂A|2kdν =

∫
f2dµ >

1
µ(supp f)

(∫
fµ

)2

=
µ(A)2k

µ(kA)
.

We split the range of integration on the left into LSpec(A, η) and
LSpec(A, η)c:∫

LSpec(A,η)c

|1̂A|2kdν 6 (
√

1− η2/2µ(A))2k−2

∫
|1̂A|2dν

= (1− η2/2)k−1µ(A)2k−1,

by Parseval’s theorem.
Now µ(kA) 6 kdµ(A) for k > d log d, so there is a positive integer kη,d

with d log d 6 kη,d = O(η−2d log η−1d) and

(1− η2/2)kη,d−1 6 1/2kd
η,d 6 µ(A)/2µ(kη,dA),

whence ∫
LSpec(A,η)c

|1̂A|2kη,ddν 6
µ(A)2kη,d

2µ(kη,dA)
,

and the claim then follows from the triangle inequality and (6.1). �

Proof of Proposition 6.1 (i). — Since∫
LSpec(A,η)

|1̂A|2kdν 6 ν(LSpec(A, η))µ(A)2k

and ∫
|1̂A|2kdν > ν(LSpec(A, 2η))(

√
1− 2η2µ(A))2k,

we get from the claim that

ν(LSpec(A, 2η)) 6 2(1− 2η2)kη,dν(LSpec(A, η))

= exp(O(d log ε−1d))ν(LSpec(A, η))

for all η ∈ (ε/2, 1/2]. Hence, for an integer r > 1 with (2r + 1/2)ε 6 1, we
have

ν(LSpec(A, (2r + 1/2)ε)) 6 exp(O(d log r log ε−1d))ν(LSpec(A, ε/2)).

It follows that either ε−1 = O(d log2 d) or we may pick r with r =
O(d log2 ε−1d) such that (2r + 1/2)ε 6 1 and

ν(LSpec(A, (2r + 1/2)ε)) < 2rν(LSpec(A, ε/2)).
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Thus, since LSpec(A, (2r + 1/2)ε) ⊂ r LSpec(A, 2ε) + LSpec(A, ε/2), by
Chang’s covering lemma (Lemma 4.2) we have a set X with |X| 6 r such
that

LSpec(A, 2ε) ⊂ Prog(X, 1) + LSpec(A, ε/2)− LSpec(A, ε/2).

The result follows. �

Proof of Proposition 6.1 (ii). — We may assume µ(Bohr(LSpec(A, ε),
1/2π)) is positive (since otherwise there is nothing to prove) and hence
write β for the probability measure induced on Bohr(LSpec(A, ε), 1/2π)
by µ.

Suppose that γ ∈ LSpec(A, ε). Then, for every x ∈ Bohr(LSpec(A, ε),
1/2π) we have

|1− γ(x)| =
√

2(1− cos(π‖γ(x)‖)) 6 π‖γ(x)‖ 6 1/2.

Integrating the above calculation with respect to dβ tells us that |1−β̂(γ)| 6
1/2 and it follows by the triangle inequality that |β̂(γ)| > 1/2. Conse-
quently, by the claim, there is a kε,d with d log d 6 kε,d = O(ε−2d log ε−1d)
such that∫

|1̂A|2kε,d |β̂|2dν > 2−2

∫
LSpec(A,ε)

|1̂A|2kε,ddν >
µ(A)2kε,d

23µ(kε,dA)
.

On the other hand∫
|1̂A|2kε,d |β̂|2dν 6 µ(A)2kε,d−2‖1A ∗ β‖2

L2(µ)

6 µ(A)2kε,d−2‖1A ∗ β‖L1(µ)‖1A ∗ β‖L∞(µ)

by the Hausdorff-Young inequality, Parseval’s theorem and then Hölder’s
inequality. Since ‖1A ∗ β‖L1(µ) = µ(A) we conclude that

µ(A)
23µ(kε,dA)

6 ‖1A ∗ β‖L∞(µ) 6
µ(A)

µ(Bohr(LSpec(A, ε), 1/2π))
.

The result follows since kε,d > d log d. �

7. Bohr sets with large spectra as frequency sets

The following lemma describes how Bohr sets and large spectra can be
made to interact. It is only slightly more general than [12, Proposition 4.39].
The idea of considering the large spectrum of a sumset was, again, intro-
duced by Green and Ruzsa in [5] for the purpose of addressing Frĕıman-type
problems.
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Proposition 7.1. — Suppose that A is a compact neighborhood, l is
a positive integer such that µ(lA) 6 Kµ((l − 1)A) and ε ∈ (0, 1] is a
parameter. Then

A−A ⊂ Bohr(LSpec(lA, ε), 2ε
√

2K).

Proof. — Write δ = 1 −
√

1− ε2/2 and suppose that γ ∈ LSpec(lA, ε).
Then there is a (real) phase ω ∈ S1 such that∫

1lAωγdµ = ω1̂lA(γ) = |1̂lA(γ)| > (1− δ)µ(lA).

It follows that∫
1lA|1− ωγ|2dµ = 2

∫
1lA(1− ωγ)dµ 6 2δµ(lA).

If y0, y1 ∈ A then∫
1(l−1)A|1− ωγ(yi)γ|2dµ 6

∫
1lA|1− ωγ|2dµ 6 2δµ(lA).

The Cauchy-Schwarz inequality tells us that∣∣1− γ(y0 − y1)
∣∣2 6 2

(∣∣1− ωγ(y0)γ(x)
∣∣2 +

∣∣1− ωγ(y1)γ(x)
∣∣2)

for all x ∈ G, whence∫
1(l−1)A|1− γ(y0 − y1)|2dµ 6 23δµ(lA).

On the other hand

|1− γ(x)|2 = 2
(
1− cos(π‖γ(x)‖)

)
> 2−1‖γ(x)‖2,

from which the result follows. �

8. The proof of the main theorem

We are now in a position to prove our theorem.
Proof of Theorem 1.2. — By the pigeon-hole principle there is some

integer l with d log d 6 l 6 2d log d such that µ(lA) 6 215µ((l − 1)A).
Let C be the absolute constant implicit in the first conclusion, ε−1 =

O(d log2 d), of Proposition 6.1, (i), let d′ = O(d) be such that µ(n(lA)) 6
nd′µ(lA) for all n > d′ log d′, and finally let ε−1 := 213(1 + C)d′ log2 d′. In
view of this choice, by Proposition 6.1, (i) applied to lA there is some set
X with |X| = O(d log2 ε−1d) such that

LSpec(lA, ε) + LSpec(lA, ε) ⊂ Prog(X, 1) + LSpec(lA, ε).
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Consider the ball B = Bohr(LSpec(lA, ε) ∪ X, 2−4). First, by Proposi-
tion 5.1, this ball is O(d log3 d)-dimensional. Secondly, since LSpec(lA, ε)∪
X ⊂ LSpec(lA, 2ε) we have

A−A ⊂ Bohr(LSpec(lA, 2ε), 29ε) ⊂ Bohr(LSpec(lA, 2ε), 2−4) ⊂ B,

by Proposition 7.1. Finally, Proposition 6.1, (ii) ensures that

µ(B) 6 exp(O(d log d))µ(lA) 6 exp(O(d log d))µ(A).

�

9. Some concluding conjectures

The following is the Polynomial Frĕıman-Ruzsa Conjecture for locally
compact abelian groups.

Conjecture 9.1 (Polynomial Frĕıman-Ruzsa Conjecture). — Suppose
that G is a locally compact abelian group and A ⊂ G is a compact neighbor-
hood with µ(A+A) 6 Kµ(A). Then there is a subset A′ of A with µ(A′) >
K−O(1)µ(A) contained in a logO(1) K-dimensional ball, B of some contin-
uous translation invariant pseudo-metric and µ(B) 6 exp(logO(1) K)µ(A).

In view of Theorem 1.2 the Polynomial Frĕıman-Ruzsa Conjecture follows
from the next conjecture.

Conjecture 9.2 (Polynomial Balog - Szemerédi - Gowers Conjecture).
Suppose that G is a locally compact abelian group and A ⊂ G is a compact
neighborhood with µ(A+A) 6 Kµ(A). Then there is a compact neighbor-
hood A′ ⊂ A with µ(A′) > K−O(1)µ(A) such that µ(nA′) 6 nlogO(1) Kµ(A′)
for all n > logO(1) K.

In a different direction it is natural, as was done in [6], to conjecture
Theorem 1.2 in non-abelian groups.

Conjecture 9.3. — Suppose that G is a locally compact group and
A ⊂ G is a compact neighborhood with µ(An) 6 ndµ(A) for all n > d log d.
Then A is contained in a d1+o(1)-dimensional ball, B of some continuous
translation invariant pseudo-metric and µ(B) 6 exp(d1+o(1))µ(A).
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