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TWO GENERALIZATIONS OF CHEEGER-GROMOLL
SPLITTING THEOREM VIA BAKRY-EMERY RICCI

CURVATURE

by Fuquan FANG, Xiang-Dong LI & Zhenlei ZHANG (*)

Abstract. — In this paper, we prove two generalized versions of the Cheeger-
Gromoll splitting theorem via the non-negativity of the Bakry-Émery Ricci curav-
ture on complete Riemannian manifolds.

Résumé. — Dans cet article, nous obtenons deux généralisations du théorème
de scindage de Cheeger-Gromoll sur les variétés riemanniennes complètes à cour-
bure de Ricci non-négative au sens de Bakry-Émery.

1. Introduction

Cheeger and Gromoll’s splitting theorem [6] played an important role
in the study of manifolds with nonnegative or almost nonnegative Ricci
curvature. In this paper, we consider the manifolds with nonnegative Bakry-
Émery Ricci curvature and prove two generalized versions of the splitting
theorem on such manifolds.

Following Bakry-Émery [1], see also [17, 3, 15, 12], given a Riemann-
ian manifold (M, g) and a C2-smooth function φ, M is said to have non-
negative ∞-dimensional Bakry-Émery Ricci curvature associated to φ if
Ric+Hess(φ) > 0, where Ric denotes the Ricci curvature of g and Hess

denotes the Hessian with respect to g. As pointed out in Lott [15], in gen-
eral, the splitting theorem does not hold for manifolds with nonnegative
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∞-dimensional Bakry-Émery Ricci curvature. A trivial counterexample is
given by the hyperbolic n-space form Hn, where Ric+ 1

δHess(ρ
2) > 0 for

some small constant δ > 0 and the distance function ρ. Obviously there
are many lines in this space but it doesn’t split off a line. See [19].

If the manifold M is compact and its ∞-dimensional Bakry-Émery Ricci
curvature is positive, then π1(M) is finite. This was first proved by X.-M.
Li [13], see also [8, 19, 20, 21]. Also, from Lott’s work [15, Theorem 1],
a compact manifold with nonnegative ∞-dimensional Bakry-Émery Ricci
curvature has b1 parallel vector fields where b1 is the first Betti number of
M , which are orthogonal to the gradient field of φ. This indicates that the
universal Riemannian covering space of (M, g) should split off b1 lines. We
confirm this in this paper, as a corollary of the following theorem.

Theorem 1.1. — Let (M, g) be a complete connected Riemannian man-
ifold with Ric+Hess(φ) > 0 for some φ ∈ C2(M) which is bounded above
uniformly on M . Then it splits isometrically as N ×Rl, where N is a com-
plete Riemannian manifold without lines and Rl is the l-Euclidean space.
Furthermore, the function φ is constant on each Rl in this splitting.

Then the corollary reads as

Corollary 1.2. — Let (M, g) be a closed connected Riemannian man-
ifold with Ric + Hess(φ) > 0 for some smooth function φ on M . Then
we have an isometric decomposition for its universal Riemannian covering
space: M̃ ∼= N × Rl, where N is a closed manifold, Rl is the l-Euclidean
space and l > b1, the first Betti number of M . Furthermore, the lifted
function of φ, say φ̃, is constant on each Rl-factor.

If b1 equals the dimension of M , then (M, g) is the flat torus.

Another generalized version of splitting theorem can be described as
follows. According to [2, 3], we say that the symmetric diffusion operator
L = ∆−∇φ · ∇ satisfies the curvature-dimension condition CD(0,m) if

L|∇u|2 >
2|Lu|2

m
+ 2 < ∇u,∇Lu >, ∀ u ∈ C∞0 (M).

Following the notation used in [12], which is slightly different from [2, 3, 15],
we define the m-dimensional Bakry-Émery Ricci curvature of L = ∆−∇φ ·
∇ on an n-dimensional Riemaniann manifold as follows

Ricm,n(L) := Ric+Hess(φ)− ∇φ⊗∇φ
m− n

,

where m = dimBE(L) > n is called the Bakry-Émery dimension of L, which
is a constant and is not necessarily an integer. By [2, 3, 12], we know that
CD(0,m) holds if and only if Ricm,n(L) > 0. We now state the following
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SPLITTING THEOREM 565

Theorem 1.3. — Let (M, g) be a complete connected Riemannian n-
manifold and φ ∈ C2(M) be a function satisfying that Ricm,n(L) > 0 for
some constant m = dimBE(L) > n which is not necessarily an integer.
Then M splits isometrically as N × Rl, where N is a complete Riemann-
ian manifold N without line, and Rl is the l-dimensional Euclidean space.
Furthermore, the function φ is constant on each Rl-factor, and N has non-
negative (m− l)-dimensional Bakry-Émery Ricci curvature.

The Bakry-Émery Ricci curvature has been widely used in the liter-
ature. Recently, it was used by G. Perelman [16] to modify R. Hamil-
ton’s Ricci flow equation. Our paper provides us with two extensions of
the Cheeger-Gromoll splitting theorem on complete Riemannian manifolds
via the Bakry-Émery Ricci curvature. We would like to mention that a
very relevant and independent paper by Wei and Wylie [19] has been
posted recently in the Arxiv. One of their results (see Theorem 1.4 in [19])
says that if M is an n-dimensional complete Riemannian manifold with
Ric+Hess(f) > 0 for some bounded function f and contains a line, then
M splits into M ∼= Nn−1 × R and f is constant along the line. This result
is originally due to A. Lichnerowicz [14].

The paper is organized as follows: In Section 2, we show that the Buse-
mann function associated to the line has parallel gradient field. Then we
prove Theorems 1.1, 1.3 and Corollary 1.2 in Section 3. In Section 4, we
give some remarks on the Bakry-Émery Ricci curvature and the Cheeger-
Gromoll splitting theorem.

Acknowledgement. — The research was initiated during the first au-
thor’s visit to IHES in 2005 and the second author’s visit to the Université
Paris-Sud under a support of CNRS (the so-called délégation) in the 2005-
2006 academic year. The very first version of the paper was written in
2006. For some reason, we have not tried to work out quickly this paper
for a submission. In December 2005, the second author reported Theorem
1.3 and Theorem 4.1 in the First Sino-French Conference in Mathematics
organized by Zhongshan University at Zhuhai. He would like to thank Pro-
fessors D. Bakry, G. Besson, J.-P. Bourguignon, B.-L. Chen, D. Elworthy,
G.-F. Wei and X.-P. Zhu for their interest and helpful discussions. Finally,
we would like to thank the anonymous referee for his careful reading and
for helpful suggestions which lead us to improve the paper.
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2. Estimation of the Laplacian on Busemann function

So far, there have been at least three different proofs of the Cheeger-
Gromoll splitting theorem. All these proofs amount to showing that the
Busemann function is harmonic. The original proof of Cheeger and Gromoll
[6] uses the Jacobi fields theory and the elliptic regularity. The second one
by Eschenburg-Heintze [7] uses only the Laplacian comparison theorem
on distance function and the Hopf-Calabi maximum principle. The third
one, given by Schoen-Yau [18], uses the Laplacian comparison theorem
on distance and the sub-mean value inequality rather than the maximum
principle. For an elegant description of the proof of [7], see Besse [4]. We
will follow the lines given by [4, 6, 7, 18] to prove the L-harmonicity of the
Busemann function on M .

Assume that (M, g) is a complete Riemannian manifold and φ ∈ C2(M)
satisfies Ric+Hess(φ) > 0 over M . Fix p ∈M as a base point and denote
ρ(x) = dist(p, x) the distance function. Given any q ∈ M , let γ : [0, ρ] →
M be a minimal normal geodesic from p to q and {Ei(t)}n−1

i=1 be parallel
orthonormal vector fields along γ which are orthogonal to γ̇. Constructing
vector fields {Xi(t) = t

ρEi(t)}n−1
i=1 along γ and by the second variation

formula, we have the estimate

4ρ(q) 6
∫ ρ

0

n−1∑
i=1

(|∇γ̇Xi|2− < Xi, RXi,γ̇ γ̇ >)dt

=
∫ ρ

0

(
n− 1
ρ2

− t2

ρ2
Ric(γ̇, γ̇))dt

6
n− 1
ρ

+
∫ ρ

0

t2

ρ2
Hess(φ)(γ̇, γ̇)dt

=
n− 1
ρ

+
1
ρ2

∫ ρ

0

t2
d2

dt2
(φ ◦ γ)

=
n− 1
ρ

+ < ∇φ, γ̇ > (q)− 2
ρ2

∫ ρ

0

t
d

dt
(φ ◦ γ)dt

=
n− 1
ρ

+ < ∇φ, γ̇ > (q)− 2
ρ
φ(q) +

2
ρ2

∫ ρ

0

φ ◦ γdt.

Thus

(2.1) Lρ(q) 6
n− 1
ρ

− 2
ρ
φ(q) +

2
ρ2

∫ ρ

0

φ ◦ γdt, ∀q ∈M \ cut(p),

where γ is any minimal normal geodesic connecting p and q.

Lemma 2.1. — Let (M, g) be a complete Riemannian manifold and γ be
a ray. If Ric+Hess(φ) > 0 for some smooth function φ which is bounded
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SPLITTING THEOREM 567

from above uniformly on M , then the associated Buesman function of γ,
say bγ , satisfies that Lbγ > 0 in the barrier sense.

Remark 2.2. — We say that a continuous function f on M satisfies
Lf > 0 in the barrier sense, if for any given q ∈ M and ε > 0, there is a
C2 function fq,ε in a neighborhood of q, such that fq,ε 6 f , fq,ε(q) = f(q),
and Lfq,ε > −ε. Such fq,ε is called a support function of f . We say that
Lf 6 0 in the barrier sense if L(−f) > 0 in the barrier sense.

Proof of Lemma 2.1. — We use the same argument as in [4, 7], see also
Lemma 4.7 of [21]. Denote p = γ(0). The Busemann function along the
ray γ is defined by bγ(q) := limt→∞(t − d(q, γ(t))). By [4, 7, 21, 18], bγ is
1-Lipshitz. Following [4, 7, 21], for any fixed q ∈M , we define the support
functions around q as follows.

Let δtk
be a minimal geodesic connecting q and γ(tk). By [4, 7, 21], there

exists a subsequence of tk such that the initial vector δ̇tk
(0) converges to

some X ∈ TqM . Let δ be the ray emanating from q and generated by
X. Then q does not belong to the cut-locus of δ(r) for any r > 0. So
bγr (x) = r − d(x, δ(r)) + bγ(q) is C∞ around q and satisfies that bγr 6 bγ

with bγr (q) = bγ(q). On the other hand, by the estimate (2.1), we have

− Lbγr (x) = Ld(δ(r), x) 6
n− 1

d(δ(r), x)
− 2φ(x)
d(δ(r), x)

+
2

d(δ(r), x)2

∫ d(δ(r),x)

0

φ ◦ σdt

where σ is a minimal geodesic connecting δ(r) and x. Thus for any given
ε > 0, when r is large enough, Lbγr > −ε for x in a small neighborhood of
q. This shows that bγr is the desired support function for bγ . �

Remark 2.3. — If bγ is smooth at q, then ∇b+(q) = δ̇(0), where δ is the
ray emanating from q constructed in the proof of Lemma 2.1. See [6, 21].

Lemma 2.4 (The Calabi-Hopf maximum principal). — Let (M, g) be a
connected complete Riemaniann manifold, φ ∈ C2(M), and L = ∆−∇φ·∇.
Let f be a continuous function on M such that Lf > 0 in the barrier sense.
Then f attains a maximum if and only if it is constant.

Proof. — The proof is similar to the one in [5], see also [4]. �

Lemma 2.5. — Let (M, g) and φ be as in Lemma 2.1. Suppose M

contains a line γ, then the Busemann functions b± associated to rays
γ±(t) = γ(±t), t > 0, are both smooth and satisfy that Lb± = 0.

TOME 59 (2009), FASCICULE 2
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Proof. — By Lemma 2.1, L(b+ + b−) > 0 in the barrier sense. On the
other hand, b+ + b− = 0 on the line γ and the triangle inequality implies
that b+ + b− 6 0 over M . So b+ + b− ≡ 0 over M by Lemma 2.4. Now
Lb+ > 0 and L(−b+) = Lb− > 0 show that Lb+ = 0 in the barrier sense,
then from the elliptic regularity theorem b+ is smooth and Lb+ = 0 in the
canonical way, cf. section 6.3-6.4 of [9]. Similarly b− is smooth satisfying
that Lb− = 0. �

Next we consider the case where Ricm,n(L) > 0. We have the following

Lemma 2.6. — Let M be a complete Riemannian manifold, φ ∈ C2(M).
Suppose that there exists a constant m > n such that Ricm,n(L) > 0. Then
the Busemann functions b± associated to rays γ±(t) = γ(±t), t > 0, are
both smooth and satisfy that Lb± = 0.

Proof. — Let bγr (x) = t − d(x, δ(r)) + bγ(q) be the support function
defined in the proof of Lemma 2.1. By [12, Remark 3.2](pp. 1317-1318),
we have the Laplacian comparison theorem

Ld(·, x)|y 6
m− 1
d(y, x)

, ∀ x ∈M, y ∈M \ cut(x).

This yields that

Lbγr (x) = −Ld(x, δ(r)) > − m− 1
d(x, δ(r))

.

Hence, Lb+ > 0 holds in the barrier sense. Similarly, Lb− > 0 holds in the
barrier sense. By the same argument as used in the proof of Lemma 2.5, we
can conclude the result. Below we follow [18] to give an alternative proof
of Lemma 2.6. Indeed, for all ψ ∈ C∞0 (M) with ψ > 0, and for all t > 0,∫

M

Lbγt ψdµ = −
∫

M

Ld(x, γ(t))ψdµ

> −
∫

M

m− 1
d(x, γ(t))

ψdµ.

Taking t → ∞, we have Lb+ > 0 in the sense of distribution. Similarly,
Lb− > 0. Hence L(b+ + b−) > 0 holds in the sense of distribution. By the
strong maximum principle, since the L-subharmonic function b+ + b− has
an interior maximum on the geodesic ray γ, it must be identically constant.
Thus, b+ + b− = 0, Lb± = 0 and b± are smooth. �

Lemma 2.7. — Under the conditions as in Lemma 2.5 or Lemma 2.6,
∇b+ and ∇b− are unit parallel vector fields.

ANNALES DE L’INSTITUT FOURIER
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Proof. — By Remark 2.3, ∇b± are normal vector fields. To show they
are parallel, we will use a generalized version of the Bochner-Weitzenböck
formula. By Bakry-Emery [1], for any smooth function ψ, we have

(2.2) L|∇ψ|2 = 2|∇2ψ|2 +2 < ∇Lψ,∇ψ > +2(Ric+Hess(φ))(∇ψ,∇ψ).

Using Lemma 2.5 or Lemma 2.6 and applying (2.2) to ψ = b±, we see that
0 = L|∇b±|2 > 2|∇2b±|2 over M , since Ric +Hess(φ) > 0 in both cases.
Now the result follows. �

3. Proof of Theorems 1.1 and 1.3

We now are in a position to give a

Proof of Theorems 1.1 and 1.3. — By Lemma 2.7, X = ∇b+ is a parallel
unit vector field. Let φ(t) = etX be the one-parameter transformation group
of isometries generated by X. The level surface N = {x|b+(x) = 0} is a
totally geodesic submanifold of M , and the induced metric hN from g is
complete. Define the map F : N × R →M by

F (p, t) = φ(t)(p).

We have d
dtb

+(φ(t)p) = |∇b+|2(φ(t)p) ≡ 1. This implies F (N, t) ⊂ {x ∈
M |b+(x) = t}. We claim that F is bĳective. In fact, for any x ∈M , letting
q ∈ N be the nearest point to x and γ be the shortest normal geodesic from
q to x, then γ̇(q) = X(q) and γ(t) = φ(t)q by the uniqueness of the geodesic,
as φ(t)q is obviously a normal geodesic. So x ∈ γ ⊂ Im(F ). This proves that
F is surjective. By the semi-group property F (·, t) ◦F (·, s) = F (·, t+ s), F
is injective. The claim follows.

Next we prove that F is an isometry. To do so, notice that F (·, t) maps
N isometrically onto {x ∈ M |b+(x) = t} via φ(t). So it suffices to show
that for any vector v ∈ TN , we have

< dF (·, t)(v), dF (
∂

∂t
) >=< dφ(t)(v), X >≡ 0.

This is obviously true since dφ(t)(TN) ⊥ X. So F is an isometry.
Now identifying (M, g) with (N × R, hN ⊗ dt2) and applying (2.2) to

ψ = b+, we get

0 = L|∇b+|2 = 2(Ric+Hess(φ))(∇b+,∇b+) = 2
∂2

∂t2
φ.

So φ is linear on each line of M . Since φ is bounded from above, it must
be constant on each line. This proves Theorem 1.1.

TOME 59 (2009), FASCICULE 2
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Finally, if Ricm,n(L) > 0, then (2.2) yields

0 =
∂2

∂t2
φ >

1
m− n

| ∂
∂t
φ|2.

So φ is constant along each line of M and Theorem 1.3 follows. �

Proof of Corollary 1.2. — By Theorem 1.1 and using the same argument
as Cheeger and Gromoll in [6] we conclude. �

Remark 3.1. — All the arguments in the proof of Theorem 1.1 depend
only on the fact that the limit

lim
ρ→∞

1
ρ2

∫ ρ

0

φ ◦ σdt 6 0

on any ray σ, see Estimate (2.1). If so, then Theorem 1.1 remains true. In
particular, if φ(q)

d(p,q) = o(1) as 1
d(p,q) → 0, where p is a fixed base point, then

Theorem 1.1 and all corollaries considered above still hold.

Finally we state an alternative result about the splitting theorem, where
the boundedness of the potential function φ is removed.

Corollary 3.2. — Let (M, g) be an open complete connected Rie-
mannian manifold and X be a unit parallel vector field. If Ric+Hess(φ) >
cg for some φ ∈ C2(M) and a constant c > 0, then (M, g) splits off a line.
In particular, any open shrinking Ricci soliton with a parallel vector field
splits off a line.

Recall that a Riemannian manifold (M, g) is a shrinking Ricci soliton if
there exists a smooth function f such that Ric + Hess(f) = cg for some
positive constant c.

Proof. — By the result of [19, 20], such a manifold M has finite funda-
mental group π1(M). Denote by (M̃, g̃) the universal Riemannian covering
of (M, g) and let X̃ be the lifting of X. Let φ(t) = etX̃ and N be a maximal
integral submanifold of X̃⊥, the distribution orthogonal to X̃. Define the
map F as in the proof of Theorem 1.1 and Theorem 1.3. Then it can be
shown that F is an isometry by the simply connectedness of M̃ . So we can
identify (M̃, g̃) with (N ×R, hN ⊗ dt2), where hN is the restriction of g̃ on
N . Then the vector field X̃ equals ∂

∂t and is invariant under the action by
π1(M). We claim that π1(M) acts trivially on the R-factor.

Suppose not, then there is α ∈ π1(M) and (z0, t0) ∈ N × R such that
α(z0, t0) = (z1, t1) with t0 6= t1. Then α must maps the line {z0} × R
isometrically onto the line {z1} × R in the same direction and maps the
slice N × {t0} onto the slice N × {t1}, because it preserves ∂

∂t . Denote

ANNALES DE L’INSTITUT FOURIER
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by p : N × R → R the projection to the R-factor and i : R → N × R the
injection i(t) = (z0, t). Then ᾱ = p◦α◦i is a translation on R with variation
t1 − t0 6= 0. Now {ᾱk = p ◦ αk ◦ i}∞k=1 forms a subgroup of the isometry
group of R, which is generated by a translation. This shows that α is a free
element of π1(M), which contradicts the finiteness of π1(M). Hence π1(M)
acts trivially on the R-factor and consequently the base manifold (M, g)
splits off a line. �

It is natural to ask the following questions.

Question 1. — Construct a compact Riemannian manifold with nega-
tive Ricci curvature somewhere and with positive Bakry-Émery-Ricci cur-
vature everywhere.

Question 2. — Let (M, g) be an open complete Riemannian manifold
with Ric+Hess(φ) > cg for some function φ ∈ C2(M) and some constant
c ∈ R. If (M, g) contains a line, does it really split off a line? In particular,
is it true on a shrinking Ricci soliton?

4. The Gromov precompactness theorem

By the Bishop-Gromov volume comparison theorem for the weighted
volume measure and using the standard argument as used in Gromov’s
original proof [10, 11] for his famous theorem, we can extend the Gromov
precompactness theorem to compact Riemannian manifolds with weighted
measures via the finite dimensional Bakry-Émery Ricci curavture. More
precisely, we have the following

Theorem 4.1. — Let M(m,n, d,K) be the set of n-dimensional com-
pact Riemannian manifolds (M, g) equipped with C2-weighted volume mea-
sures dµ = e−φdv such that: n 6 dimBE(L) 6 m, diam(M) 6 d, and
RicdimBE(L),n(L) > K, where dimBE(L) is the Bakry-Emery dimension of
the diffusion operator L = ∆−∇φ · ∇. Then M(m,n, d,K) is precompact
in the sense of the measured Gromov-Hausdroff convergence.

To our knowledge, at least in the case dimBE(L) = m and φ ∈ C∞(M),
Theorem 4.1 has been already pointed out by Lott [15, Remark 3, p.
881]. Indeed, if L = ∆ − ∇φ · ∇ is a symmetric diffusion operator with
Ricm,n(L) > K for some m > n and K ∈ R, then it is obviously true
that Ricm′,n(L) > K for all m′ > m. So, if dimBE(L) 6 m and if
RicdimBE(L),n(L) > K, then obviously we have Ricm,n(L) > K. There-
fore, Theorem 4.1 can be recaptured from the above mentioned result due
to Lott [15], which holds obviously when φ ∈ C2(M).

TOME 59 (2009), FASCICULE 2
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