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EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE
OF THE LAPLACE-BELTRAMI OPERATOR

by Frank PACARD & Pieralberto SICBALDI

Abstract. — We prove the existence of extremal domains with small pre-
scribed volume for the first eigenvalue of Laplace-Beltrami operator in some Rie-
mannian manifold. These domains are close to geodesic spheres of small radius
centered at a nondegenerate critical point of the scalar curvature.

Résumé. — Nous prouvons l’existence de domaines extrémaux avec volume
petit et fixé pour la première valeur propre de l’opérateur de Laplace-Beltrami
dans certaines variétés riemanniennes. Ces domaines ressemblent à des sphères
géodésiques de rayon petit centrées en un point critique non dégénéré de la courbure
scalaire.

1. Statement of the result

Assume that we are given (M, g) an n-dimensional Riemannian manifold.
If Ω is a domain (all domains we consider are assumed to be compact) with
smooth boundary in M , we denote by λΩ the first eigenvalue of −∆g, the
Laplace-Beltrami operator, in Ω with 0 Dirichlet boundary condition. A
smooth domain Ω0 ⊂ M is said to be extremal if Ω 7−→ λΩ is critical at
Ω0 with respect to variations of the domain Ω0 which preserve its volume.
In order to make this definition precise, we first introduce the definition of
deformation of Ω0.

Definition 1.1. — We say that {Ωt}t∈(−t0,t0) is a deformation of Ω0,
if there exists a vector field Ξ such that Ωt = ξ(t,Ω0) where ξ(t, ·) is the
flow associated to Ξ, namely

dξ

dt
(t, p) = Ξ(ξ(t, p)) and ξ(0, p) = p.

Keywords: Extremal domain, Laplace-Beltrami operator, first eigenvalue, scalar curva-
ture, geodesic sphere.
Math. classification: 53B20.
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The deformation is said to be volume preserving if the volume of Ωt does
not depend on t.

If {Ωt}t∈(−t0,t0) is a domain deformation of Ω0, we denote by λt the first
eigenvalue of −∆g on Ωt, with 0 Dirichlet boundary condition. Observe
that both t 7−→ λt and the associated eigenfunction t 7−→ ut (normalized
to be positive and have L2(Ωt) norm equal to 1) inherits the regularity of
the deformation of Ω0. These facts are standard and follow at once from the
implicit function theorem together with the fact that the least eigenvalue of
the Laplace-Beltrami operator with Dirichlet boundary condition is simple.

We can now give the definition of an extremal domain for the first eigen-
value of −∆g under Dirichlet boundary condition.

Definition 1.2. — A domain Ω0 is an extremal domain for the first
eigenvalue of −∆g if for any volume preserving deformation {Ωt}t of Ω0,
we have

dλt
dt
|t=0 = 0,

where λt is the first eigenvalue of −∆g on Ωt, with 0 Dirichlet boundary
conditions.

For all ε > 0 small enough, we denote by Bε(p) ⊂ M the geodesic ball
of center p ∈M and radius ε. We denote by B̊ε ⊂ Rn the Euclidean ball of
radius ε centered at the origin.

Now we can state the main result of our paper :

Theorem 1.3. — Assume that p0 is a nondegenerate critical point of
Scal, the scalar curvature function of (M, g). Then, for all ε > 0 small
enough, say ε ∈ (0, ε0), there exists a smooth domain Ωε ⊂M such that :

(i) The volume of Ωε is equal to the Euclidean volume of B̊ε.
(ii) The domain Ωε is extremal in the sense of definition 1.2.

Moreover, there exists c > 0 and, for all ε ∈ (0, ε0), there exists pε ∈ M

such that the boundary of Ωε is a normal graph over ∂Bε(pε) for some
function wε with

‖wε‖C2,α(∂Bε(pε)) 6 c ε3. and dist(pε, p0) 6 c ε.

To put this result in perspective let us digress slightly and recall a few
facts about the existence of constant mean curvature hypersurfaces in Rie-
mannian manifolds. It is well known that solutions of the isoperimetric
problem

Iτ := min
Ω⊂M : Vol Ω=τ

Vol ∂Ω

ANNALES DE L’INSTITUT FOURIER
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are (where they are smooth enough) constant mean curvature hypersur-
faces. O. Druet [1] has proved that for small volumes (i.e., τ > 0 small),
the solutions of the isoperimetric problem are close (in a sense to be made
precise) to geodesic spheres of small radius centered at a point where the
scalar curvature function on (M, g) is maximal. Independently, R. Ye [12]
has constructed constant mean curvature topological spheres which are
close to geodesic spheres of small radius centered at a nondegenerate crit-
ical point of the scalar curvature function on (M, g). Building on these
results and a result of F. Pacard and X. Xu [9], S. Narduli [8] has obtained
an asymptotic expansion of Iτ as τ tends to 0.

It is well known (see [3], [5], [6]) that the determination of the isoperi-
metric profile Iτ is related to the Faber-Krahn inequality where one looks
for the least value of the first eigenvalue of the Laplace-Beltrami operator
amongst domains with prescribed volume

FKτ := min
Ω⊂M : Vol Ω=τ

λΩ.

Observe that a solution to this minimizing problem (when it is smooth) is
an extremal domain in the sense of Definition 1.2. Therefore, Theorem 1.3
can be understood as a first step in understanding the asymptotics of FKτ

as τ is close to 0.
Given the crucial rôle played by the critical points of the scalar curvature

in the isoperimetric problem for small volumes, it is natural to expect that
the critical points of the scalar curvature function will also be at the center
of the study of FKτ as τ is close to 0 and Theorem 1.3 is an illustration
of such a link.

As a final remark, formal computations show that the estimate on pε can
be improved into

dist(pε, p0) 6 c ε2.

Since a rigorous proof of this estimate requires some extra technicalities
which would have complicated the proof, we have chosen not to provide a
proof of this fact.

2. Preliminary results

The following well known result gives a formula for the first variation of
the first eigenvalue for the Dirichlet problem under variations of the do-
main. This formula has been obtained by P. R. Garabedian and M. Schiffer
in [4] when the underlying manifold is the euclidean space and by A. El Soufi

TOME 59 (2009), FASCICULE 2
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and S. Ilias [2] (see Corollary 2.1) when the underlying manifold is a Rie-
mannian manifold. For the sake of completeness we give here a proof based
on arguments contained in a paper by D. Z. Zanger in [13] where a corre-
sponding formula is derived for the Neumann problem.

Let (M, g) be an n-dimensional Riemannian manifold. Assume that {Ωt}t
is a perturbation of a domain Ω0 using the vector field Ξ, as defined in
Definition 1.2. The outward unit normal vector field to ∂Ωt is denoted by
νt. Let ut ∈ C2(Ωt), be the corresponding smooth one-parameter family
of Dirichlet first eigenfunctions of Laplace-Beltrami operator (normalized
to be positive have L2(Ωt) norm equal to 1) with 0 Dirichlet boundary
condition. The associated eigenvalue is denoted by λt.

We have the :

Proposition 2.1. — [2] The derivative of t 7−→ λt at t = 0 is given by

dλt
dt
|t=0 = −

∫
∂Ω0

(g(∇u0, ν0))
2
g(Ξ, ν0) dvolg,

where dvolg is the volume element on ∂Ω0 for the metric induced by g and
ν0 is the normal vector field about ∂Ω0.

Proof. — We denote by ξ the flow associated to Ξ. By definition, we have

(2.1) ut(ξ(t, p)) = 0

for all p ∈ ∂Ω0. Differentiating (2.1) with respect to t and evaluating the
result at t = 0 we obtain

∂tu0 = −g(∇u0,Ξ),

on ∂Ω0. Now u0 ≡ 0 on ∂Ω0, and hence only the normal component of Ξ
plays a rôle in this formula. Therefore, we have

(2.2) ∂tu0 = − g(∇u0, ν0) g(Ξ, ν0),

on ∂Ω0.
We differentiate with respect to t the identity

(2.3) ∆g ut + λt ut = 0

and again evaluate the result at t = 0. We obtain

(2.4) ∆g∂tu0 + λ0 ∂tu0 = −∂tλ0 u0,

ANNALES DE L’INSTITUT FOURIER
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in Ω0. Now we multiply (2.4) by u0 and (2.3), evaluated the result at t = 0,
by ∂tu0, subtract the results and integrate it over Ω0 to get :

∂tλ0

∫
Ω0

u2
0 dvolg =

∫
Ω0

(∂tu0 ∆gu0 − u0 ∆g∂tu0) dvolg

=
∫
∂Ω0

(∂tu0 g(∇u0, ν0)− u0 g(∇∂tu0, ν0)) dvolg

= −
∫
∂Ω0

(g(∇u0, ν0))
2
g(Ξ, ν0) dvolg,

where we have used (2.2) and the fact that u0 = 0 on ∂Ω0 to obtain the
last equality. The result follows at once from the fact that u0 is normalized
to have L2(Ω0) norm equal to 1. �

This result allows us to state the problem of finding extremal domains
into the solvability of an over-determined elliptic problem.

Proposition 2.2. — A smooth domain Ω0 is extremal if and only if
there exists a positive function u0 and a constant λ0 such that

(2.5)


∆gu0 + λ0 u0 = 0 in Ω0

u0 = 0 on ∂Ω0

g(∇u0, ν0) = constant on ∂Ω0,

where ν0 is the normal vector field about ∂Ω0.

Proof. — Assume that u0 is a positive solution of (2.5). Observe that for
a volume preserving variation, we have∫

∂Ω0

g(Ξ, ν0) dvolg = 0.

Now, if λ0 is a solution of (2.5), it is the first eigenvalue of −∆g on Ω0,
under Dirichlet boundary conditions. Moreover, we have∫

∂Ω0

(g(∇u0, ν0))
2
g(Ξ, ν0) dvolg = 0,

and the previous Proposition shows that the domain Ω0 is extremal in the
sense of Definition 1.2.

Conversely, assume that Ω0 is extremal. Then given any function w such
that ∫

∂Ω0

w dvolg = 0,

TOME 59 (2009), FASCICULE 2
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it is easy to check that there exists a vector field Ξ which generates a volume
preserving deformation of Ω0 and which satisfies

Ξ = w ν0

on ∂Ω0. The result of the previous Proposition implies that∫
∂Ω0

(g(∇u0, ν0))
2
w dvolg = 0.

The function w being arbitrary, we conclude that g(∇u0, ν0) is a constant
function and hence u0 is a solution of (2.5). This completes the proof of
the result. �

Therefore, in order to find extremal domains, it is enough to find a do-
main Ω0 (regular enough) for which the over-determined problem (2.5) has
a nontrivial positive solution. We will not be able to solve this problem
in full generality but we will be able to find solutions whose volumes are
small.

3. Rephrasing the problem

To proceed, it will be useful to introduce the following notation. Given a
point p ∈M we denote by E1, . . . , En an orthonormal basis of the tangent
space to M at p. Geodesic normal coordinates x := (x1, . . . , xn) ∈ Rn at p
are defined by

X(x) := Expgp

 n∑
j=1

xj Ej

 .

We recall the Taylor expansion of the coefficients gij of the metric X∗g in
these coordinates.

Proposition 3.1. — At the point of coordinate x, the following expan-
sion holds :

(3.1) gij = δij +
1
3

∑
k,`

Rikj` x
k x` +

1
6

∑
k,`,m

Rikjl,m x
k x` xm +O(|x|4).

Here R is the curvature tensor of g and

Rikj` = g
(
R(Ei, Ek)Ej , E`

)
Rikj`,m = g

(
∇EmR(Ei, Ek)Ej , E`

)
,

are evaluated at the point p.
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The proof of this proposition can be found in [11], [7] or also in [10].
It will be convenient to identify Rn with TpM and Sn−1 with the unit

sphere in TpM . If x := (x1, . . . , , xn) ∈ Rn, we set

Θ(x) :=
n∑
i=1

xiEi ∈ TpM.

Given a continuous function f : Sn−1 7−→ (0,∞) whose L∞ norm is small
(say less than the cut locus of p) we define

Bgf (p) :=
{

Expp(Θ(x)) : x ∈ Rn 0 6 |x| < f(x/|x|)
}
.

The superscript g is meant to remind the reader that this definition depends
on the metric.

Our aim is to show that, for all ε > 0 small enough, we can find a point
p ∈M and a function v : Sn−1 −→ R such that

VolBgε(1+v)(p) = εn Vol B̊1

and the over-determined problem

(3.2)


∆g φ+ λφ = 0 in Bgε(1+v)(p)

φ = 0 on ∂Bgε(1+v)(p)

g(∇φ, ν) = constant on ∂Bgε(1+v)(p)

has a nontrivial positive solution, where ν is the normal vector field about
∂Bgε(1+v)(p).

Observe that, considering the dilated metric ḡ := ε−2 g, the above prob-
lem is equivalent to finding a point p ∈ M and a function v : Sn−1 −→ R
such that

VolBḡ1+v(p) = Vol B̊1

and for which the over-determined problem

(3.3)


∆ḡ φ̄+ λ̄ φ̄ = 0 in Bḡ1+v(p)

φ̄ = 0 on ∂Bḡ1+v(p)

ḡ(∇φ̄, ν̄) = constant on ∂Bḡ1+v(p)

has a nontrivial positive solution, where ν̄ is the normal vector field about
∂Bḡ1+v(p). The relation between the solutions of the two problems is simply
given by

φ = ε−n/2 φ̄

and
λ = ε−2 λ̄.

TOME 59 (2009), FASCICULE 2
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Let us denote by g̊ the Euclidean metric in Rn and λ1 the first eigenvalue
of −∆g̊ in the unit ball B̊1 with 0 Dirichlet boundary condition. We denote
by φ1 the associated eigenfunction

(3.4)

 ∆g̊φ1 + λ1 φ1 = 0 in B̊1

φ1 = 0 on ∂B̊1

which is normalized to be positive and have L2(B̊1) norm equal to 1.
For notational convenience, given a continuous function f : Sn−1 7−→

(0,∞), we set

B̊f := {x ∈ Rn : 0 6 |x| < f(x/|x|)} .

The following result follows from the implicit function theorem.

Proposition 3.2. — Given a point p ∈M , there exists ε0 > 0 and for
all ε ∈ (0, ε0) and all function v̄ ∈ C2,α(Sn−1) satisfying

‖v̄‖C2,α(Sn−1) 6 ε0,

and ∫
Sn−1

v̄ dvol̊g = 0,

there exists a unique positive function φ̄ = φ̄(ε, p, v̄) ∈ C2,α(Bḡ1+v(p)), a
constant λ̄ = λ̄(ε, p, v̄) ∈ R and a constant v0 = v0(ε, p, v̄) ∈ R such that

Volḡ(B1+v) = Vol̊g(B̊1)

where v := v0 + v̄ and φ̄ is a solution to the problem

(3.5)

 ∆ḡ φ̄+ λ̄ φ̄ = 0 in Bḡ1+v

φ̄ = 0 on ∂Bḡ1+v

which is normalized by

(3.6)
∫
Bḡ

1+v
(p)

φ̄2 dvolḡ = 1.

In addition φ̄, λ̄ and v0 depend smoothly on the function v̄ and the param-
eter ε and φ̄ = φ1, λ̄ = λ1 and v0 = 0 when ε = 0 and v̄ ≡ 0.

Proof. — Instead of working on a domain depending on the function
v = v0 + v̄, it will be more convenient to work on a fixed domain

B̊1 := {y ∈ Rn : |y| < 1},

ANNALES DE L’INSTITUT FOURIER
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endowed with a metric depending on both ε and the function v. This can
be achieved by considering the parameterization of Bḡ1+v(= Bgε(1+v)) given
by

Y (y) := Expḡp

((
1 + v0 + χ(y) v̄

(
y

|y|

)) ∑
i

yiEi

)
where χ is a cutoff function identically equal to 0 when |y| 6 1/2 and
identically equal to 1 when |y| > 3/4.

Hence the coordinates we consider from now on are y ∈ B̊1 and in these
coordinates the metric ĝ := Y ∗ḡ can be written as

ĝ = (1 + v0)2
(
g̊ +

∑
i,j

Cij dyi dyj

)
,

where the coefficients Cij ∈ C1,α(B̊1) are functions of y depending on ε,
v = v0 + v̄ and the first partial derivatives of v. Moreover, Cij ≡ 0 when
ε = 0 and v̄ = 0.

Observe that
(ε, v0, v̄) 7−→ Cij(ε, v),

are smooth maps.
Up to some multiplicative constant, the problem we want to solve can

now be rewritten in the form

(3.7)

 ∆ĝ φ̂+ λ̂ φ̂ = 0 in B̊1

φ̂ = 0 on ∂B̊1

with

(3.8)
∫
B̊1

φ̂2 dvolĝ = 1

and

(3.9) Volĝ(B̊1) = Vol̊g (B̊1).

When ε = 0 and v̄ ≡ 0, the metric ĝ = (1 + v0)2 g̊ is nothing but the
Euclidean metric and a solution of (3.4) is therefore given by φ̂ = φ1,
λ̂ = λ1 and v0 = 0. In the general case, the relation between the function φ̄
in the statement of the Proposition and the function φ̂ is simply given by

Y ∗φ̄ = φ̂ and λ̄ = λ̂.

For all ψ ∈ C2,α(B̊1) such that∫
B̊1

ψ φ1 dvol̊g = 0

TOME 59 (2009), FASCICULE 2
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we define

N(ε, v̄, ψ, v0) :=
(
∆g̊ψ + λ1 ψ + (∆ĝ −∆g̊ + µ) (φ1 + ψ) , Volĝ(B̊1)

−Vol̊g (B̊1)
)

where µ is given by

µ = −
∫
B̊1

φ1 (∆ĝ −∆g̊) (φ1 + ψ) dvol̊g

so that the first entry of M is L2(B̊1)-orthogonal to φ1. Observe that N
also depends on the choice of the point p ∈M .

We have
N(0, 0, 0, 0) = (0, 0).

It should be clear that the mapping N is a smooth map from a neigh-
borhood of (0, 0, 0, 0) in [0,∞)× C2,α

m (Sn−1)× C2,α
⊥ , 0(B̊1)×R into a neigh-

borhood of (0, 0) in C0,α
⊥ (B̊1)× R. Here the subscript ⊥ indicates that the

functions in the corresponding space are L2(B̊1)-orthogonal to φ1 (for the
Euclidean metric) and the subscript 0 indicates that the functions vanish
on the boundary of B̊1. Finally, the subscript m indicates that the functions
have mean 0 over the unit (Euclidean) sphere.

We claim that the partial differential of N with respect to ψ, computed
at (0, 0, 0, 0), is given by

DψN(0, 0, 0, 0) = (∆g̊ + λ1 , 0)

while the partial differential ofN with respect to v0, computed at (0, 0, 0, 0),
is given by

∂v0N(0, 0, 0, 0) =
(
0 , nVol̊g(B̊1)

)
.

There is no difficulty in getting the expression of the first partial differential
since ĝ = g̊ when ε = v0 = 0 and v̄ = 0 and hence

N(0, 0, ψ, 0) = (∆g̊ψ + λ1 ψ + µ (φ1 + ψ) , 0)

where µ = 0. The derivation of the partial differential with respect to
v0 is not hard either but requires some care. Indeed, this time we have
ĝ = (1 + v0)2 g̊ since v̄ ≡ 0 and ε = 0 and hence

N(0, 0, 0, v0) =
((

((1 + v0)−2 − 1)∆g̊ + µ
)
φ1, ((1 + v0)n − 1) Vol̊g(B̊1)

)
=
((
µ− λ1((1 + v0)−2 − 1)

)
φ1, ((1 + v0)n − 1) Vol̊g(B̊1)

)
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where µ is given by

µ = −((1 + v0)−2 − 1)
∫
B̊1

φ1 ∆g̊ φ1 dvol̊g = λ1 ((1 + v0)−2 − 1).

So we get

∂v0N(0, 0, 0, 0) =
(
(∂v0µ|v0=0 + 2λ1)φ1 , nVol̊g(B̊1)

)
and

∂v0µ|v0=0 = −2λ1.

The claim then follows at once.
Hence the partial differential of N with respect to both ψ and v0, com-

puted at (0, 0, 0, 0) is precisely invertible from C2,α
⊥,0(B̊1)×R into C0,α

⊥ (B̊1)×R
and the implicit function theorem ensures, for all (ε, v̄) in a neighbor-
hood of (0, 0) in [0,∞)× C2,α

m (Sn−1), the existence of a (unique) (ψ, v0) ∈
C2,α
⊥,0(B̊1)×R such that N(ε, v̄, ψ, v0) = 0. The function φ̂ := φ1 + ψ solves

(3.7) and in order to have (3.8) fulfilled, it is enough to divide it by its L2

norm. The fact that the solution depends smoothly on the parameter ε, the
function v̄ and the point p ∈ M is standard. This completes the proof of
the result. �

After canonical identification of ∂Bḡ1+v(p) with Sn−1, we define, the op-
erator F :

F (p, ε, v̄) = ḡ(∇φ̄, ν̄) |∂Bḡ
1+v

− 1
Volḡ(∂B

ḡ
1+v)

∫
∂Bḡ

1+v

ḡ(∇φ̄, ν̄) dvolḡ,

where ν̄ denotes the unit normal vector field to ∂Bḡ1+v and (φ̄, v0) is the
solution of (3.5) provided by the previous result. Recall that v = v0 + v̄.
Schauder’s estimates imply that F is well defined from a neighborhood of
M × (0, 0) in M × [0,∞) × C2,α

m (Sn−1) into C1,α
m (Sn−1). The subscript m

is meant to point out that the functions have mean 0. Our aim is to find
(p, ε, v̄) such that F (p, ε, v̄) = 0. Observe that, with this condition, φ̄ will
be the solution to the problem (3.3).

Following the proof of the previous result, we have the alternative ex-
pression for F .

F (p, ε, v̄) = ĝ(∇φ̂, ν̂) |∂B̊1
− 1

Volĝ(∂B̊1)

∫
∂B̊1

ĝ(∇φ̂, ν̂) dvolĝ,

where this time ν̂ is the the unit normal vector field to ∂B̊1 using the
metric ĝ.

We end this section by the proof of the :

TOME 59 (2009), FASCICULE 2
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Lemma 3.3. — There exists a constant c > 0 such that, for all p ∈ M

and all ε > 0 small enough we have

‖F (p, ε, 0)‖C1,α 6 c ε2.

For all a ∈ Rn, the following estimate holds∣∣∣∣∫
Sn−1

g̊(a, ·)F (p, ε, 0) dvol̊g − C ε3 g(∇Scal(p),Θ(a))
∣∣∣∣ 6 c ε4 ‖a‖,

where

C :=
1

2n(n+ 2)
1

∂rφ1(1)

∫
B̊1

r2 |∂rφ1|2 dvol̊g.

Proof. — We keep the notations of the proof of the previous result with
v̄ ≡ 0. In order to prove these estimates, we follow the construction of
F (p, ε, 0) step by step. First of all, since v̄ ≡ 0, we have

N(ε, 0, 0, 0) =
(
(∆ĝ −∆g̊ + µ)φ1 , Volĝ(B̊1)−Vol̊g (B̊1)

)
,

and

µ = −
∫
B̊1

φ1 (∆ĝ −∆g̊)φ1 dvol̊g.

If in addition v0 = 0, we can estimate

ĝij = δij +O(ε2),

hence

N(ε, 0, 0, 0) = O(ε2).

The implicit function theorem immediately implies that the solution of

N(ε, 0, ψ, v0) = 0

satisfies

‖ψ(ε, p, 0)‖C2,α + |v0(ε, p, 0)| 6 c ε2.

To complete the proof, observe that ν̂ = (1+v0)−1 ∂r when v̄ ≡ 0. Therefore

ĝ(∇φ̂, ν̂) = ∂rφ1 +O(ε2)

(be careful that ĝ is defined with v0 = v0(ε, p, 0) and v̄ ≡ 0). Since ∂rφ1 is
constant along ∂B̊1, we conclude that

F (p, ε, 0) = O(ε2)

and this proves the first estimate.
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We now turn to the proof of the second estimate. Instead of going through
the construction of φ̂ step by step, we compute∫

Sn−1
g̊(∇φ1, a)

∂φ̂

∂r
dvol̊g

=
∫
B̊1

g̊(∇φ1, a) (∆g̊ + λ1)φ̂dvol̊g −
∫
B̊1

φ̂ (∆g̊ + λ1)̊g(∇φ1, a) dvol̊g

=
∫
B̊1

g̊(∇φ1, a) (∆g̊ + λ1) φ̂dvol̊g

=
∫
B̊1

g̊(∇φ1, a)(∆g̊ −∆ĝ)φ̂dvol̊g + (λ1 − λ̂)
∫
B̊1

g̊(∇φ1, a)φ̂dvol̊g

=
∫
B̊1

g̊(∇φ1, a) (∆g̊ −∆ĝ)φ1 dvol̊g + (λ1 − λ̂)
∫
B̊1

g̊(∇φ1, a)φ1dvol̊g

+
∫
B̊1

g̊(∇φ1, a)(∆g̊ −∆ĝ) (φ̂− φ1) dvol̊g

+ (λ1 − λ̂)
∫
B̊1

(∇φ1 · a)(φ̂− φ1) dvol̊g

=
∫
B̊1

g̊(∇φ1, a)(∆g̊ −∆ĝ)φ1dvol̊g

+
∫
B̊1

g̊(∇φ1, a)(∆g̊ −∆ĝ)(φ̂− φ1)dvol̊g

+ (λ1 − λ̂)
∫
B̊1

g̊(∇φ1, a) (φ̂− φ1) dvol̊g.

The last two terms can be estimated easily since λ̂−λ1 = O(ε2), φ̂−φ1 =
O(ε2) and the coefficients of ∆g̊ −∆ĝ are bounded by a constant times ε2.
Therefore, we conclude that there exists a constant c such that∣∣∣∣∣
∫
Sn−1

g̊(∇φ1, a)
∂φ̂

∂r
dvol̊g −

∫
B̊1

g̊(∇φ1, a) (∆g̊ −∆ĝ)φ1 dvol̊g

∣∣∣∣∣ 6 c ε4 ‖a‖.

To proceed, we use the result of Proposition 3.1 to show that the coeffi-
cients of the metric ĝ can be expanded as

ĝij(y) = (1 + v0)2
(
δij +

1
3

∑
k,`

Rikj`y
ky`(1 + v0)2ε2

+
1
6

∑
k,`,m

Rikjl,my
ky`ym(1 + v0)3ε3 +O(ε4)

)
.
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Keeping in mind that v0 = O(ε2), this simplifies slightly into

ĝij(y) = (1+v0)2
(
δij+

1
3

∑
k,`

Rikj`y
ky`ε2+

1
6

∑
k,`,m

Rikjl,my
ky`ymε3+O(ε4)

)
.

This implies that

ĝij = (1 + v0)−2
(
δij −

1
3
Rikj`y

ky`ε2 − 1
6
Rikj`,my

ky`ymε3
)

+O(ε4)

log |ĝ| = 2n log(1 + v0) +
1
3
Rk`y

ky`ε2 +
1
6
Rk`,my

ky`ymε3 +O(ε4)

where

Rk` =
n∑
i=1

Riki` and Rk`,m =
n∑
i=1

Riki`,m.

Recall that

∆ĝ :=
∑
i,j

ĝij ∂yi
∂yj

+
∑
i,j

∂yi
ĝij ∂yj +

1
2

∑
i,j

ĝij ∂yi
log |ĝ| ∂yj

.

A straightforward calculation (still keeping in mind that v0 = O(ε2)) shows
that(

∆g̊ −∆ĝ

)
φ1 = −λ1 (1− (1 + v0)−2)φ1

+
1
3
ε2
∑
i,j,k,`

Rikj`

(yiyjyky`
r2

∂2
rφ1 +

yky`

r
δij ∂rφ1

− yiyjyky`

r3
∂rφ1

)
− 2

3
ε2
∑
i,j

Rij
yiyj

r
∂rφ1

+
1
6
ε3

∑
i,j,k,`,m

Rikj`,m
yiyjyky`ym

r2

(
∂2
rφ1 −

∂rφ1

r

)
+

1
6
ε3
∑
k,j,`

R·kj`,·
yjyky`

r
∂rφ1

+
1
4
ε3
∑
i,`,m

Ri`,m
yiy`ym

r
∂rφ1 +O(ε4),

where r := |y| and

R·kj`,· :=
n∑
i=1

Rikj`,i.

Observe that we have used the fact that R(X,X) ≡ 0 and the symmetries
of the curvature tensor for which if either i = k or j = ` then Rikj`,m = 0.
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Observe that, in the expansion of (∆g̊ −∆ĝ)φ1, terms which contain an
even number of coordinates, such as yiyjyky` or yiyj etc. do not contribute
to the result since, once multiplied by g̊(∇φ1, a), their average over Sn−1

is 0. Therefore, we can write∫
B̊1

g̊(∇φ1a)
(
∆g̊ −∆ĝ

)
φ1 dvol̊g

= ε3
∫
B̊1

∂rφ1 aσ
yσ

r

(
1
6

∑
i,j,k,`,m

Rikj`,m
ytykylyiyj

r2

(
∂2
rφ1 −

∂rφ1

r

)

+
1
2

∑
j,k,`

(1
3
R·kj`,· −

1
2
Rkj,`

) yky`yj
r

∂rφ1

)
+O(ε4).

We make use of the identities in the Appendix to conclude that∫
B̊1

g̊(∇φ1, a)
(
∆g̊ −∆ĝ

)
φ1 dvol̊g(3.10)

=
1

2n(n+ 2)
ε3 g
(
∇Scal(p),Θ(a)

) ∫
B̊1

r2 |∂rφ1|2 dvol̊g +O(ε4).

The second estimate follows at once from this computation together with
the fact that, when v̄ ≡ 0, ν̂ = (1 + v0) ∂r as already mentioned and

g̊(∇φ1, a) = ∂rφ1(1) g̊(a, ·),

on ∂B̊1 since this implies that∫
Sn−1

g̊(a, ·) ĝ(∇φ̂, ν̂)|∂B̊1
dvol̊g =

1 + v0
∂rφ1(1)

∫
Sn−1

g̊(∇φ1, a)
∂φ̂

∂r
dvol̊g.

This completes the proof of the result. �

Our next task will be to understand the structure of L0, the operator
obtained by linearizing F with respect to v̄ at ε = 0 and v̄ = 0. We will see
that this operator is a first order elliptic operator which does not depend
on the point p. Also, we will be interested in various properties of the
expansion of F (p, ε, 0) in powers of ε.

4. The structure of L0

We keep the notations of the previous section. We claim that, when ε = 0,
ḡ = g̊. Indeed, observe that, if we use coordinates

X̄(y) := Expgp
(
ε
∑
i

yiEi

)
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to parameterize a neighborhood of p in M , the coefficients ḡij of the metric
X̄∗ḡ = ε−2 X̄∗g can be expanded as

(4.1) ḡij(y) = δij+
1
3

∑
k,`

Rikj` y
k y` ε2+

1
6

∑
k,`,m

Rikjl,m y
k y` ym ε3+O(ε4)

and, when ε = 0, we conclude that X∗ḡ = g̊. Therefore, when ε = 0 we
have ḡ = g̊ and (3.5) becomes

(4.2)

 ∆g̊ φ̄+ λ̄ φ̄ = 0 in Bg̊1+v

φ̄ = 0 on ∂Bg̊1+v

with the normalization

(4.3)
∫
Bg̊

1+v

φ̄2 dvol̊g = 1

and the volume constraint

Vol̊g(B
g̊
1+v) = Vol̊g(B̊1).

Remember that we have set v := v0 + v̄.
We already have established the existence of a unique positive function

φ̄ ∈ C2,α(Sn−1) (close to φ1), a constant λ̄ ∈ R (close to λ1) and a constant
v0 ∈ R (close to 0), solutions to the above problem so we are going to
construct an expansion of φ̄, λ̄ and v0 in powers of v̄ and its derivatives.
This will lead to the structure of the linearized operator L0.

Recall that λ1 is the first eigenvalue of −∆g̊ in the unit ball B̊1 with 0
Dirichlet boundary condition and φ1 is the associated eigenfunction which
is normalized to be positive and have L2(B̊1) norm equal to 1. Observe
that in principle φ1 is only defined in the unit ball, however, this function
being radial, it is a solution of a second order ordinary differential equation
and as such can be extended at least in a neighborhood of ∂B̊1.

We start with the easy :

Lemma 4.1. — Assume that v̄ ∈ C2,α
m (Sn−1) is given. We define

φ0(x) = ∂rφ1(x) v̄ (x/|x|) .

Then

(4.4) ∆g̊φ0 + λ1 φ0 =
1
r2
∂rφ1 (∆Sn−1 + n− 1) v̄.

Proof. — This is a straightforward exercise. Using the fact that

∆g̊ ∂rφ1 = −λ1 ∂rφ1 +
n− 1
r2

∂rφ1 ,
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we find

∆g̊φ0 = v∆g̊∂rφ1 + ∂rφ1 ∆g̊ v̄ + 2∇v̄∇∂rφ1

= −λ1 φ0 +
1
r2
∂rφ1 (∆Sn−1 + n− 1) v̄.

This completes the proof of the result. �

For all v̄ ∈ C2,α
m (Sn−1) let ψ be the (unique) solution of

(4.5)

 ∆g̊ψ + λ1 ψ = 0 in B̊1

ψ = −∂rφ1 v̄ on ∂B̊1

which is L2(B̊1)-orthogonal to φ1. We define

(4.6) H(v̄) :=
(
∂rψ + ∂2

rφ1 v̄
)
|∂B̊1

.

Recall that the eigenvalues of the operator −∆Sn−1 are given by

µj = j (n− 2 + j)

for j ∈ N. The corresponding eigenspaces will be denoted by Vj .
We will need the following result :

Proposition 4.2. — The operator

H : C2,α
m (Sn−1) −→ C1,α

m (Sn−1),

is a self adjoint, first order elliptic operator. (Recall that the subscript m
is meant to point out that functions have mean 0 on Sn−1). The kernel of
H is given by V1, the eigenspace of −∆Sn−1 associated to the eigenvalue
n− 1. Moreover there exists c > 0 such that

‖w‖C2,α(Sn−1) 6 c ‖H(w)‖C1,α(Sn−1) ,

provided w is L2(Sn−1)-orthogonal to V0 ⊕ V1.

Proof. — The fact that H is a first order elliptic operator is standard
since it is the sum of the Dirichlet-to-Neumann operator for ∆g̊ + λ1 and
a constant times the identity. In particular, elliptic estimates yield

‖H(w)‖C1,α(Sn−1) 6 c ‖w‖C2,α(Sn−1).

The fact that the operator H is (formally) self-adjoint is easy. Let ψ1

(resp. ψ2) the solution of (4.5) corresponding to the function w1 (resp. w2).
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We compute

∂rφ1(1)
∫
∂B̊1

(H(w1)w2 − w1H(w2))dvol̊g

= ∂rφ1(1)
∫
∂B̊1

(∂rψ1 w2 − ∂rψ2w1) dvol̊g

=
∫
∂B̊1

(ψ1∂rψ2 − ψ2∂rψ1)dvol̊g

=
∫
B̊1

(ψ1∆g̊ψ2 − ψ2∆g̊ψ1)dvol̊g

= 0.

To prove the other statements, we define for all w ∈ C2,α
m (Sn−1), Ψ to be

the continuous solution of

(4.7)

 ∆g̊Ψ + λ1 Ψ = 1
r2 ∂rφ1 (∆Sn−1 + n− 1) w in B̊1

Ψ = 0 on ∂B̊1.

Observe that ∂rφ1 vanishes at first order at r = 0 and hence the right hand
side is bounded by a constant times r−1 near the origin. Standard elliptic
estimates then imply that the solution Ψ is at least continuous near the
origin. A straightforward computation using the result of Lemma 4.1 and
writing Ψ = ψ + ∂rφ1 w, shows that

(4.8) H(w) := ∂rΨ|∂B̊1
.

With this alternative definition, it should be clear that H preserves the
eigenspaces Vj and in particular, H maps into the space of functions whose
mean over Sn−1 is 0. Moreover, it is clear that V1 is included in the kernel
of H since (∆Sn−1 + n− 1) w = 0 for any w ∈ V1. We now prove that V1

is the only kernel of this operator.
We consider

w =
∑
j>1

wj

the eigenfunction decomposition of w. Namely wj ∈ Vj . Then

H(w) =
∑
j

αj wj

where the constants αj are given by

αj = ∂raj(1)
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where aj is the continuous solution of

(4.9) a′′j +
n− 1
r

a′j + λ1 aj −
1
r2
µj aj =

1
r2

(n− 1− µj) ∂rφ1,

with aj(1) = 0.
Observe that α1 = 0 and, in order to prove that the kernel of H is given

by V1, it is enough to show that αj 6= 0 for all j > 2.
We claim that

aj 6 0 ,

for all j > 2. This follows at once from the maximum principle since n −
1− µj < 0 for all j > 2 and ∂rφ1 6 0.

Proof of the claim : By definition of λ1, the operator ∆g̊ + λ1 is non-
positive, in the sense that

(4.10) −
∫
B̊1

u (∆g̊ + λ1)u dvol̊g =
∫
B̊1

(|∇u|2g̊ − λ1 u
2) dvol̊g > 0 .

Specializing this inequality to radial functions, we get∫ 1

0

(
(∂ru)2 − λ1 u

2
)
rn−1 dr > 0

provided u ∈ H1
0 (B̊1) is radial.

Now, assume that aj > 0 in [r1, r2] with aj(ri) = 0, then multiplying
(4.9) by aj rn−1 and integrating the result by parts between r1 and r2, we
get ∫ r2

r1

(
(∂raj)2 − λ1 a

2
j +

1
r2
µj a

2
j

)
rn−1 dr 6 0

and hence necessarily aj ≡ 0 on [r1, r2]. This completes the proof of the
claim.

The claim being proven, we use the fact that aj(1) = 0 for all j > 2 to
conclude that

0 6 ∂raj(1).

If ∂raj(1) = 0 then necessarily ∂2
raj(1) 6 0 but evaluation of (4.9) at r = 1

implies that

0 = (n− 1) a′j(1) = (n− 1− µj) ∂rφ1(1)− a′′j (1)

> (n− 1− µj) ∂rφ1(1)

> 0,

which immediately leads to a contradiction. Hence, ∂raj(1) > 0 for all j > 2
and this completes the proof of the fact that the kernel of the operator H
is equal to V1. �

The main result of this section is the following :
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Proposition 4.3. — The operator L0 is equal to H.

Proof. — By definition, the operator L0 is the linear operator obtained
by linearizing N with respect to v̄ at ε = 0 and v̄ = 0. In other words, we
have

L0(w̄) = lim
s→0

F (p, 0, s w̄)− F (p, 0, 0)
s

.

Since ε = 0, we have already seen that ḡ = g̊. Writing v̄ = s w̄, we argue as
in the proof of Proposition 3.2 and consider the parameterization of B̊1+v

given by

Y (y) :=
(

1 + v0 + s χ(y) w̄
(
y

|y|

))
y

where χ is a cutoff function identically equal to 0 when |y| 6 1/2 and
identically equal to 1 when |y| > 3/4. We set

ĝ := Y ∗g̊

so that φ̂ = Y ∗φ̄, λ̂ = λ̄ and v0 are solutions (smoothly depending on the
real parameter s) of ∆ĝ φ̂+ λ̂ φ̂ = 0 in B̊1

φ̂ = 0 on ∂B̊1

with ∫
B̊1

φ̂2 dvolĝ = 1

and
Volĝ(B̊1) = Vol̊g (B̊1).

We remark that φ̂1 := Y ∗φ1 is a solution of

∆ĝ φ̂1 + λ1 φ̂1 = 0

since ĝ = Y ∗g̊. Moreover

φ̂1(y) = φ1((1 + v0 + s w̄(y)) y) ,

on ∂B̊1. Writing φ̂ = φ̂1 + ψ̂ and λ̂ = λ1 + µ, we find that

(4.11)

 ∆ĝ ψ̂ + (λ1 + µ) ψ̂ + µ φ̂1 = 0 in B̊1

ψ̂ = −φ̂1 on ∂B̊1

with

(4.12)
∫
B̊1

(2 φ̂1 ψ̂ + ψ̂2) dvolĝ =
∫
B̊1

φ2
1 dvol̊g −

∫
B̊1+v0+sw̄

φ2
1 dvol̊g
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and

(4.13) Volĝ(B̊1) = Vol̊g (B̊1).

Obviously ψ̂, µ and v0 are smooth functions of s. When s = 0, we have
φ̄ = φ1, λ̄ = λ1 and v0 = 0. Therefore, ψ̂, µ and v0 all vanish and φ̂1 = φ1,
when s = 0. Moreover ĝ = g̊ when s = 0. We set

ψ̇ = ∂sψ̂|s=0, µ̇ = ∂sµ|s=0, and v̇0 = ∂sv0|s=0.

Differentiating (4.11) with respect to s and evaluating the result at s = 0,
we obtain

(4.14)

 ∆g̊ ψ̇ + λ1 ψ̇ + µ̇ φ1 = 0 in B̊1

ψ̇ = −∂rφ1 (v̇0 + w̄) on ∂B̊1.

Observe that, as already mentioned, φ̂1(y) = φ1((1+v0 +s w̄(y)) y) on ∂B̊1

and differentiation with respect to s at s = 0 yields ∂sφ̂1|s=0 = ∂rφ1 (v̇0 +
w̄).

Differentiating (4.12) with respect to s and evaluating the result at s = 0,
we obtain

(4.15)
∫
B̊1

φ1 ψ̇ dvol̊g = 0.

Indeed, the derivative of the right hand side of (4.12) with respect to s

vanishes when s = 0 since φ1 vanishes identically on ∂B̊1.
Finally, differentiating (4.13) with respect to s and evaluating the result

at s = 0, we obtain

(4.16)
∫
Sn−1

(v̇0 + w̄) dvol̊g = 0.

The last equality immediately implies (since, by definition, the average of
w̄ is 0) that v̇0 = 0. If we multiply the first equation of (4.14) by φ1 and
we integrate it, using the boundary condition and the fact that the average
of w̄ is 0 together with the fact that v̇0 = 0, we conclude that µ̇ = 0. And
hence ψ̇ is precisely the solution of (4.5). To summarize, we have proven
that

φ̂ = φ̂1 + sψ +O(s2)

where ψ is the solution of (4.5) and we also know that

v0 = O(s2).
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In particular, in B̊1 \ B̊3/4, we have

φ̂(y) = φ1

((
1 + s w̄(y/|y|)

)
y
)

+ sψ(y) +O(s2)

= φ1(y) + s
(
w̄(y/|y|) r ∂rφ1 + ψ

)
+O(s2)

where we have set r := |y|.
To complete the proof of the result, it suffices to compute the normal

derivative of the function φ̂ when the normal is computed with respect to
the metric ĝ. We use polar coordinates y = r z where r > 0 and z ∈ Sn−1.
Then the metric ĝ can be expanded in B̊1 \ B̊3/4 as

ĝ = (1+v0+sw̄)2 dr2+2 s (1+v0+sw̄) r dw̄ dr+r2 (1+v0+sw̄)2 h̊+s2 r2 dw̄2

where h̊ is the metric on Sn−1 induced by the Euclidean metric. It follows
from this expression together with the fact that v0 = O(s2) that the unit
normal vector field to ∂B̊1 for the metric ĝ is given by

ν̂ =
(
(1 + s w̄)−1 +O(s2)

)
∂r +O(s) ∂zj

where ∂zj
are vector fields induced by a parameterization of Sn−1. Using

this, we conclude that

ĝ(∇φ̂1, ν̂) = ∂rφ1 + s
(
w̄ ∂2

rφ1 + ∂rψ
)

+O(s2)

on ∂B̊1. The result then follows at once from the fact that ∂rφ1 is con-
stant while the term w̄ ∂2

rφ1 + ∂rψ has mean 0 on the boundary ∂B̊1. This
completes the proof of the proposition. �

We denote by Lε the linearization of F with respect to v̄, computed at
the point (p, ε, 0). Following the proof of the previous Proposition, it is easy
to check the :

Lemma 4.4. — There exists a constant c > 0 such that, for all ε > 0
small enough we have the estimate

‖(Lε − L0) v̄‖C1,α 6 c ε2 ‖v̄‖C2,α .

Proof. — Clearly both Lε and L0 are first order differential operators. To
prove the estimate, we simply use the fact that, when ε 6= 0, the difference
between the coefficients of ḡ = ε−2 g and g̊ can be estimated by a constant
times ε2. This implies that the discrepancy between the linearized operator
when ε = 0 and when ε 6= 0 is a first order differential operator whose
coefficients can be estimated by a constant times ε2. �
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The main result of this section is the fact that the linearized operator
L0 is given by H. Observe that the kernel of L0 is equal to V1 which
is the vector space spanned by the restriction of linear functions to the
unit sphere. This is geometrically very natural since, when ε = 0, a linear
function v̄ := g̊(a, ·) ∈ V1 correspond to infinitesimal translation of the unit
ball in the direction a ∈ Rn. Therefore we have

Bg̊1+s v̄(p) ∼ B̊1(p+ s a).

This implies that the solution of (3.3) is given by φ1 (modulo some O(s2)
term) and hence its normal data is constant (modulo some O(s2) term).
Therefore F (p, 0, v̄) = O(s2) which shows that L0v̄ = 0.

5. The proof of Theorem 1.3

We shall now prove that, for ε > 0 small enough, it is possible to solve
the equation

F (p, ε, v̄) = 0.

Unfortunately, we will not be able to solve this equation at once. Instead,
we first prove the :

Proposition 5.1. — There exists ε0 > 0 such that, for all ε ∈ [0, ε0]
and for all p ∈ M , there exists a unique function v̄ = v̄(p, ε) and a vector
a = a(p, ε) ∈ Rn such that

F (p, ε, v̄) + g̊(a, ·) = 0.

The function v̄ and the vector a depend smoothly on p and ε and we have

|a|+ ‖v̄‖C2,α(Sn−1) 6 c ε2.

Proof. — We fix p ∈M and define

F̄ (p, ε, v̄, a) := F (p, ε, v̄) + g̊(a, ·).

It is easy to check that F̄ is a smooth map from a neighborhood of (p, 0, 0, 0)
in M × [0,∞)× C2,α

m (Sn−1)× Rn into a neighborhood of 0 in C1,α(Sn−1).
Moreover,

F̄ (p, 0, 0, 0) = 0

and the differential of F̄ with respect to v̄, computed at (p, 0, 0, 0) is given
by H. Finally the image of the linear map a 7−→ g̊(a, ·) is just the vector
space V1. Thanks to the result of Proposition 4.2, the implicit function
theorem applies to get the existence of v̄ and a, smoothly depending on p

and ε such that F (p, ε, v̄) + g̊(a, ·) = 0. The estimate for v̄ and a follows at
once from Lemma 3.3. �
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In view of the result of the previous Proposition, it is enough to show
that, provided that ε is small enough, it is possible to choose the point
p ∈M such that a(p, ε) = 0. We claim that, there exists a constant C̃ > 0
(only depending on n) such that

Θ(a(p, ε)) = −ε3 C̃∇gScal(p) +O(ε4)

Indeed, for all b ∈ Rn we compute∫
Sn−1

g̊(a, ·) g̊(b, ·) dvol̊g = −
∫
Sn−1

F (p, ε, v̄) g̊(b, ·) dvol̊g

= −
∫
Sn−1

(F (p, ε, 0) + L0v̄) g̊(b, ·) dvol̊g

−
∫
Sn−1

(F (p, ε, v̄)− F (p, ε, 0)− Lεv̄)̊g(b, ·)dvol̊g

−
∫
Sn−1

(Lε − L0)v̄ g̊(b, ·) dvol̊g.

Now, we use the fact that v̄ is L2(Sn−1)-orthogonal to linear functions and
hence so is L0 v̄. Therefore,∫

Sn−1
L0 v̄ g̊(b, ·) dvol̊g = 0.

Using the fact that v̄ = O(ε2), we get

F (p, ε, v̄)− F (p, ε, 0)− Lεv̄ = O(ε4).

Similarly, it follows from the result of Lemma 4.4 that

(Lε − L0) v̄ = O(ε4).

The claim then follows from the second estimate in Lemma 3.3 and the
fact that∫

Sn−1
g̊(a, ·) g̊(b, ·) dvol̊g = g

(
Θ(a),Θ(b)

) ∫
Sn−1

(x1)2 dvol̊g

=
1
n

Vol̊g(Sn−1) g
(
Θ(a),Θ(b)

)
.

Now if we assume that p0 is a nondegenerate critical point of the scalar
curvature function, we can apply once more the implicit function theorem
to solve the equation

G(ε, p) := ε−3 Θ(a(p, ε)) = 0.
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It should be clear that G depends smoothly on ε ∈ [0, ε0) and p ∈ M .
Moreover, we have

G(0, p) = −C̃∇gScal(p)

and hence G(0, p0) = 0. By assumption the differential of G with respect
to p, computed at p0 is invertible. Therefore, for all ε small enough there
exists pε close to p0 such that

Θ(a(pε, ε)) = 0.

In addition we have
dist(p0, pε) 6 c ε.

This completes the proof the Theorem 1.3.

6. Appendix

Lemma 6.1. — For all σ = 1, . . . , n, we have∑
i,j,k,`,m

∫
Sn−1

Rikj`,m x
i xj xk x` xm xσ dvol̊g = 0.

Proof. — To see that we consider all terms of the above sum, obtained
fixing the 6-tuple (i, k, j, `,m, σ). We observe that if in such a 6-tuple there

is an element that appears an odd number of time then
∫
Sn−1

xixjxkx`xmxσ

dvol̊g = 0. Moreover, the symmetries of the curvature tensor imply that, if
either i = k or j = `, then Rikj`,m = 0. Therefore, we have to compute∑

i,k,σ

∫
Sn−1

R∗ (xi)2 (xk)2 (xσ)2 dvol̊g

where

R∗ := Rikik,σ +Rikiσ,k +Rikki,σ +Rikσi,k +Rikkσ,i +Rikσk,i +Riσik,k

+Rσkik,i +Riσki,k +Rσkki,i.

Again, we apply the symmetries of Riemann curvature which imply that
Rikik,σ +Rikki,σ = 0, Rikiσ,k +Rikσi,k = 0, Rikkσ,i +Rikσk,i = 0, Rσkik,i +
Rσkki,i = 0 and Riσik,k + Riσki,k = 0, and we conclude that the sum is
equal to 0. �

Lemma 6.2. — For all σ = 1, . . . , n, we have∑
j,k,`

∫
Sn−1

R·kj`,· x
j xk x` xσ dvol̊g = 0.
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Proof. — Arguing as in the previous proof, we find that
∫
Sn−1

xjxkx`xσ

dvol̊g = 0 unless the indices j, k, `, σ are pairwise equal. Hence, we can
write

∑
j,k,`

∫
Sn−1

R·kj`,·x
j xk x` xσ dvol̊g =

∫
Sn−1

R·σσσ,· (xσ)4 dvol̊g

+
∑
j 6=σ

∫
Sn−1

(
R·σjj,· +R·jσj,· +R·jjσ,·

)
(xσ)2 (xj)2 dvol̊g.

Using the symmetries of the Riemann curvature tensor, we get

R·σσσ,· = R·σjj,· = 0 and R·jσj,· +R·jjσ,· = 0.

This completes the proof of the result. �

Lemma 6.3. — For all σ = 1, . . . , n, we have

∑
i,`,m

∫
Sn−1

Ri`,m x
i x` xm xσ dvol̊g =

2
n(n+ 2)

Vol̊g(Sn−1) Scal,σ.

Proof. — Again, we find that
∫
Sn−1

xi x` xm xσ dvol̊g = 0 unless the

indices i, `,m, σ are pairwise equal. Hence we can write

∑
i,`,m,

∫
Sn−1

Ri`,m x
i x` xm xσ dvol̊g

= Rσσ,σ

∫
Sn−1

(xσ)4dvol̊g+
∑
j 6=σ

∫
Sn−1

(
Rσj,j+Rjσ,j+Rjj,σ

)
(xσ)2(xj)2dvol̊g

= Rσσ,σ

∫
Sn−1

(x1)4dvol̊g+
∑
j 6=σ

(Rσj,j+Rjσ,j+Rjj,σ)
∫
Sn−1

(x1)2(x2)2dvol̊g

= Rσσ,σ

(∫
Sn−1

(x1)4 dvol̊g − 3
∫
Sn−1

(x1)2 (x2)2 dvol̊g

)
+
∑
j

(Rσj,j +Rjσ,j +Rjj,σ)
∫
Sn−1

(x1)2 (x2)2 dvol̊g.

Now we use the fact that∫
Sn−1

(x1)4 dvol̊g = 3
∫
Sn−1

(x1)2 (x2)2 dvol̊g =
3

n(n+ 2)
Vol̊g(Sn−1) ,
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to conclude that∑
i,`,m,

∫
Sn−1

Ri`,m x
i x` xm xσ dvol̊g =

1
n(n+ 2)

Vol̊g(Sn−1)

×
∑
j

(Rσj,j +Rjσ,j +Rjj,σ) .

Finally, the second Bianchi identity yields∑
j

Rσj,j =
∑
j

Rjσ,j =
1
2

Scal,σ

and by definition
∑
j Rjj,σ = Scal,σ. Hence∑

i,`,m,

∫
Sn−1

Ri`,m x
i x` xm xσ dvol̊g =

2
n(n+ 2)

Vol̊g(Sn−1) Scal,σ.

This completes the proof of the result. �
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