Paul-Émile PARADAN

Formal geometric quantization

<http://aif.cedram.org/item?id=AIF_2009__59_1_199_0>
FORMAL GEOMETRIC QUANTIZATION

by Paul-Émile PARADAN

Abstract. — Let K be a compact Lie group acting in a Hamiltonian way on a symplectic manifold (M, Ω) which is pre-quantized by a Kostant-Souriau line bundle. We suppose here that the moment map Φ is proper so that the reduced space $M_\mu := \Phi^{-1}(K \cdot \mu)/K$ is compact for all μ. Then, we can define the “formal geometric quantization” of M as

$$Q^-\infty_K(M) := \sum_{\mu \in \hat{K}} Q(M_\mu)V^K_\mu.$$

The aim of this article is to study the functorial properties of the assignment $(M, K) \mapsto Q^-\infty_K(M)$.

Résumé. — Considérons l’action hamiltonienne d’un groupe de Lie compact K sur une variété symplectique (M, Ω) préquantifiée par un fibré en droites de Kostant-Souriau. On suppose que l’application moment Φ est propre, ainsi les réductions symplectiques $M_\mu := \Phi^{-1}(K \cdot \mu)/K$ sont compactes pour tout μ. On peut alors définir la quantification formelle de M comme

$$Q^-\infty_K(M) := \sum_{\mu \in \hat{K}} Q(M_\mu)V^K_\mu.$$

Le but de ce travail est l’étude de certaines propriétés fonctorielles de l’application $(M, K) \mapsto Q^-\infty_K(M)$.

The aim of this article is to study the functorial properties of the “formal geometric quantization” process, which is defined on non-compact Hamiltonian manifolds when the moment map is proper. For this purpose, we introduce a technique of symplectic cutting that uses the (wonderful) compactifications of de Concini-Procesi [14, 15] and Brion [11], and we prove an extension of the “quantization commutes with reduction” theorem to the singular setting (here the singular manifolds that we consider are those obtained by symplectic reduction).

Keywords: Geometric quantization, moment map, symplectic reduction, index, transversally elliptic.

1. Introduction and statement of results

Let \((M, \Omega)\) be a symplectic manifold which is equipped with a Hamiltonian action of a compact connected Lie group \(K\). Let us denote by \(\mathfrak{t}^*\) the dual of the Lie algebra of \(K\). Let \(\Phi : M \rightarrow \mathfrak{t}^*\) be the moment map. We assume the existence of a \(K\)-equivariant line bundle \(L\) on \(M\) having a connection with curvature equal to \(-i\Omega\). In other words \(M\) is pre-quantizable in the sense of [21] and we call \(L\) a Kostant-Souriau line bundle.

In the process of quantization one tries to associate a unitary representation of \(K\) to the data \((M, \Omega, \Phi, L)\). When \(M\) is compact one associates to this data a virtual representation \(Q_K(M) \in R(K)\) of \(K\) defined as the equivariant index of a Dolbeault-Dirac operator: \(Q_K(M)\) is the geometric quantization of \(M\).

This quantization process satisfies the following functorial properties:

\[P1 \] When \(N\) and \(M\) are respectively pre-quantized compact Hamiltonian \(K_1\) and \(K_2\)-manifolds, the product \(M \times N\) is a pre-quantized compact Hamiltonian \(K_1 \times K_2\)-manifold, and we have

\[
Q_{K_1 \times K_2}(M \times N) = Q_{K_1}(M) \otimes Q_{K_2}(N)
\]

in \(R(K_1 \times K_2) \simeq R(K_1) \otimes R(K_2)\).

\[P2 \] If \(H \subset K\) is a closed and connected Lie subgroup, then the restriction of \(Q_K(M)\) to \(H\) is equal to \(Q_H(M)\).

Note that \([P1]\) and \([P2]\) give the following functorial property:

\[P3 \] When \(N\) and \(M\) are pre-quantized compact Hamiltonian \(K\)-manifolds, the product \(M \times N\) is a pre-quantized compact Hamiltonian \(K\)-manifold, and we have \(Q_K(M \times N) = Q_K(M) \cdot Q_K(N)\), where \(\cdot\) denotes the product in \(R(K)\).

Another fundamental property is the behaviour of the \(K\)-multiplicities of \(Q_K(M)\) that is known as “quantization commutes with reduction”.

Let \(T\) be a maximal torus of \(K\). Let \(\mathfrak{t}^*\) be the dual of the Lie algebra of \(T\) containing the weight lattice \(\wedge^*: \alpha \in \wedge^*\) if \(i\alpha : t \rightarrow i\mathbb{R}\) is the differential of a character of \(T\). Let \(C_K \subset \mathfrak{t}^*\) be a Weyl chamber, and let \(\hat{K} := \wedge^* \cap C_K\) be the set of dominant weights. The ring of characters \(R(K)\) has a \(\mathbb{Z}\)-basis \(V^K_{\mu}, \mu \in \hat{K}\): \(V^K_{\mu}\) is the irreducible representation of \(K\) with highest weight \(\mu\).

For any \(\mu \in \hat{K}\) which is a regular value of \(\Phi\), the reduced space (or symplectic quotient) \(M_\mu := \Phi^{-1}(K \cdot \mu)/K\) is an orbifold equipped with a symplectic structure \(\Omega_{\mu}\). Moreover \(L_{\mu} := (L|_{\Phi^{-1}(\mu)} \otimes \mathbb{C}_{-\mu})/K_{\mu}\) is a
Kostant-Souriau line orbibundle over \((M_\mu, \Omega_\mu)\). The definition of the index of the Dolbeault-Dirac operator carries over to the orbifold case, hence \(Q(M_\mu) \in \mathbb{Z}\) is defined. In [26], this is extended further to the case of singular symplectic quotients, using partial (or shift) desingularization. So the integer \(Q(M_\mu) \in \mathbb{Z}\) is well defined for every \(\mu \in \hat{K}\): in particular \(Q(M_\mu) = 0\) if \(\mu \notin \Phi(M)\).

The following theorem was conjectured by Guillemin-Sternberg [17] and is known as “quantization commutes with reduction” [25, 26, 31, 29]. For complete references on the subject the reader should consult [30, 33].

Theorem 1.1 (Meinrenken, Meinrenken-Sjamaar). — We have the following equality in \(R(K)\):

\[
Q_K(M) = \sum_{\mu \in \hat{K}} Q(M_\mu) V^K_\mu.
\]

Suppose now that \(M\) is **non-compact** but that the moment map \(\Phi: M \rightarrow \mathfrak{k}^*\) is assumed to be **proper** (we will simply say “\(M\) is proper”). In this situation the geometric quantization of \(M\) as an index of an elliptic operator is not well defined. Nevertheless the integers \(Q(M_\mu), \mu \in \hat{K}\) are well defined since the symplectic quotients \(M_\mu\) are **compact**.

Following Weitsman [34], we introduce the following definition.

Definition 1.2. — The **formal quantization** of \((M, \Omega, \Phi)\) is the element of \(R^{-\infty}(K) := \text{hom}_{\mathbb{Z}}(R(K), \mathbb{Z})\) defined by

\[
Q^{-\infty}_K(M) = \sum_{\mu \in \hat{K}} Q(M_\mu) V^K_\mu.
\]

A representation \(E\) of \(K\) is admissible if it has finite \(K\)-multiplicities: \(\dim(\text{hom}_K(V^K_\mu, E)) < \infty\) for every \(\mu \in \hat{K}\). Here \(R^{-\infty}(K)\) is the Grothendieck group associated to the \(K\)-admissible representations. We have a canonical inclusion \(i: R(K) \hookrightarrow R^{-\infty}(K)\): to \(V \in R(K)\) we associate the map \(i(V): R(K) \rightarrow \mathbb{Z}\) defined by \(W \mapsto \dim(\text{hom}_K(V, W))\). In order to simplify notation, \(i(V)\) will be written \(V\). Moreover the tensor product induces an \(R(K)\)-module structure on \(R^{-\infty}(K)\) since \(E \otimes V\) is an admissible representation when \(V\) and \(E\) are, respectively, a finite dimensional and an admissible representation of \(K\).

It is an easy matter to see that [P1] holds for the formal quantization process \(Q^{-\infty}\). Let \(N\) and \(M\) be respectively pre-quantized proper Hamiltonian \(K_1\) and \(K_2\)-manifolds: the product \(M \times N\) is then a pre-quantized proper Hamiltonian \(K_1 \times K_2\)-manifold. For the reduced spaces we have
(M \times N)_{(\mu_1, \mu_2)} \simeq M_{\mu_1} \times N_{\mu_2}, \text{ for all } \mu_1 \in \hat{K}_1, \mu_2 \in \hat{K}_2. \text{ It follows then that} \\
(1.2) \quad Q^{-\infty}_{K_1 \times K_2}(M \times N) = Q^{-\infty}_{K_1}(M) \otimes Q^{-\infty}_{K_2}(N) \\
in R^{-\infty}(K_1 \times K_2) \simeq R^{-\infty}(K_1) \otimes R^{-\infty}(K_2).

The purpose of this article is to show that the functorial property [P2] still holds for the formal quantization process $Q^{-\infty}$.

Theorem 1.3. — Let M be a pre-quantized Hamiltonian K-manifold which is proper. Let $H \subset K$ be a closed connected Lie subgroup such that M is still proper as a Hamiltonian H-manifold. Then $Q^{-\infty}_K(M)$ is H-admissible and we have the following equality in $R^{-\infty}(H)$:

$$
Q^{-\infty}_K(M)|_H = Q^{-\infty}_H(M).
$$

For $\mu \in \hat{K}$ and $\nu \in \hat{H}$ we denote $N^\mu_\nu = \dim(\text{hom}_H(V^H_\nu, V^K_\mu|_H))$ the multiplicity of V^H_ν in the restriction $V^K_\mu|_H$. In the situation of Theorem 1.3, the moment maps relative to the K and H-actions are Φ_K and $\Phi_H = p \circ \Phi_K$, where $p : \mathfrak{t}^* \to \mathfrak{h}^*$ is the canonical projection.

Corollary 1.4. — In the situation of Theorem 1.3, we have for every $\nu \in \hat{H}$:

$$
Q(M_{\nu,H}) = \sum_{\mu \in \hat{K}} N^\mu_\nu Q(M_{\mu,K}).
$$

Here $M_{\nu,H} = \Phi^{-1}_H(H \cdot \nu)/H$ and $M_{\mu,K} = \Phi^{-1}_K(K \cdot \mu)/K$ are respectively the symplectic reductions relative to the H and K-actions.

Since V^K_μ is equal to the K-quantization of $K \cdot \mu$, the “quantization commutes with reduction” theorem tells us that $N^\mu_\nu \neq 0$ implies that $\nu \in p(K \cdot \mu) \iff \mu \in K \cdot p^{-1}(\nu)$. Finally

$$
N^\mu_\nu Q(M_{\mu,K}) \neq 0 \implies \mu \in K \cdot p^{-1}(\lambda) \quad \text{and} \quad \Phi^{-1}_K(\mu) \neq \emptyset.
$$

These two conditions imply that we can restrict the sum of RHS of (1.4) to

$$
\mu \in \hat{K} \cap \Phi_K(K \cdot \Phi^{-1}_H(\nu))
$$

which is finite since Φ_H is proper.

Theorem 1.3 and (1.2) give the following extended version of [P3].

Theorem 1.5. — Let N and M be two pre-quantized Hamiltonian K-manifolds where N is compact and M is proper. The product $M \times N$ is then proper and we have the following equality in $R^{-\infty}(K)$:

$$
Q^{-\infty}_K(M \times N) = Q^{-\infty}_K(M) \cdot Q_K(N).
$$
For \(\mu, \lambda, \theta \in \widehat{K} \) we denote \(C_{\lambda, \theta}^\mu = \dim(\text{hom}_K(V^K_\mu, V^K_\lambda \otimes V^K_\theta)) \) the multiplicity of \(V^K_\mu \) in the tensor product \(V^K_\lambda \otimes V^K_\theta \). Since \(V^K_\lambda \otimes V^K_\theta \) is equal to the quantization of the product \(K \cdot (K \cdot \lambda \times K \cdot \theta) \), the “quantization commutes with reduction” theorem tells us that \(C_{\lambda, \theta}^\mu = Q((K \cdot (K \cdot \lambda \times K \cdot \theta))_\mu) \): in particular \(C_{\lambda, \theta}^\mu \neq 0 \) implies that (*) \(\| \lambda \| \leq \| \theta \| + \| \mu \| \).

Corollary 1.6. — In the situation of Theorem 1.5, we have for every \(\mu \in \widehat{K} \):

\[
(1.7) \quad Q((M \times N)_\mu) = \sum_{\lambda, \theta \in \widehat{K}} C_{\lambda, \theta}^\mu Q(M_\lambda) Q(N_\theta).
\]

Since \(N \) is compact, \(Q(N_\theta) \neq 0 \) for \(\theta \in \{ \text{finite set} \} \). Then (*) and (**) show that the sum in the RHS of (1.7) is finite.

Weitsman proved in [34] the validity of (1.6) in a particular case. The natural strategy to obtain Theorem 1.3 can be summarized as follows:

1. **Cut the non-compact manifold** \(M \) at different levels “\(n \)” to obtain Hamiltonian \(K \)-manifolds \(M^{(n)} \), possibly singular, but which are compact and pre-quantized. We require that the manifold \(M \) is the limit of the sequence \(M^{(n)} \) in the following sense. Each \(M^{(n)} \) contains an invariant and dense open subset \(U^n \) which is symplectomorphic to an invariant open subset \(\widetilde{U^n} \) of \(M \). The sequence \(\widetilde{U^n} \) is increasing and we have \(M = \bigcup_n \widetilde{U^n} \).

2. **Compute** \(Q_K(M^{(n)}) \).

We then expect to have another definition of \(Q^{-\infty}_K(M) \) as the limit of \(Q_K(M^{(n)}) \) when “\(n \)” goes to infinity. Then we can prove that “\(Q^{-\infty} \)” satisfies [P2].

Weitsman worked out point (1) in the case where \(K \) is the unitary group \(U(r) \). He defines the cut spaces \(M^{(n)} \) via symplectic reductions of \(M \times \text{Mat}_r(\mathbb{C}) \), where \(\text{Mat}_r(\mathbb{C}) \) is the vector space of complex \(r \times r \) matrices, viewed as a Hamiltonian \(U(r) \times U(r) \)-manifold. He could handle point (2) **under the hypothesis that all the cut spaces** \(M^{(n)} \) **are smooth**. Under this strong smoothness hypothesis, Weitsman was then able to show Theorem 1.5.

A natural way to carry out point (1) for any compact connected Lie group is by using another version of symplectic cutting due to C. Woodward [36] (see also [26]): each non-abelian cut space \(M^{(n)}_{CW} \) is defined by patching together abelian cut spaces (made on each symplectic slice of \(M \)). But the cut spaces \(M^{(n)}_{CW} \) are either singular or not pre-quantized, hence the main difficulty is point (2).
Let $K_{\mathbb{C}}$ be the complexification of the Lie group K. In this article, a smooth projective compactification of $K_{\mathbb{C}}$ is a smooth projective complex variety \mathcal{X} embedded in $\mathbb{P}(E)$ where

i) E is a $K_{\mathbb{C}} \times K_{\mathbb{C}}$-module,

ii) \mathcal{X} is $K_{\mathbb{C}} \times K_{\mathbb{C}}$-stable,

iii) \mathcal{X} contains an open and dense $K_{\mathbb{C}} \times K_{\mathbb{C}}$-orbit \mathcal{O} isomorphic to $K_{\mathbb{C}}$.

In this paper, we work out point (1) for any compact connected Lie group K by introducing another method of symplectic cutting which uses projective compactifications of $K_{\mathbb{C}}$. Each cut space $M_{\text{PEP}}^{(n)}$ is defined as the symplectic reduction of a Hamiltonian $K \times K$-manifold of the type $M \times \mathcal{X}$: here \mathcal{X} is a smooth projective compactification of $K_{\mathbb{C}}$ viewed as a Hamiltonian $K \times K$-manifold. We make the reduction relatively to one copy of K, so that the reduced space $M_{\text{PEP}}^{(n)}$ is a Hamiltonian K-manifold. These cut spaces are in general singular, but each of them contains an open and dense subset of smooth points which is symplectomorphic to an invariant open subset of M.

Originally, projective compactifications of $K_{\mathbb{C}}$ were defined by de Concini-Procesi in the case of an adjoint group: these compactifications were wonderful [14, 15]. This construction was extended by Brion [11] to the case of a connected reductive group. In Section 3.1, we recall the construction of these compactifications and we study them from the Hamiltonian point of view. We show in particular that the open $K_{\mathbb{C}} \times K_{\mathbb{C}}$-orbit in \mathcal{X} is $K \times K$-equivariantly symplectomorphic to an open subset of the cotangent bundle T^*K.

In order to work out point (2), we have to handle the non-smoothness of the cut spaces. For this purpose, we prove an extension of Theorem 1.1 to the singular setting.

Let N be a smooth pre-quantized Hamiltonian $K \times H$-manifold. Let us denote by $N_{\mathcal{O}}$ the symplectic reduction of N at 0 relatively to the H-action: we assume that the moment map relatively to H is proper so that $N_{\mathcal{O}}$ is a compact Hamiltonian K-manifold. Even if $N_{\mathcal{O}}$ is singular, one can still define its geometric quantization $Q_{K}(N_{\mathcal{O}}) \in R(K)$. In Section 2, we prove the following

Theorem 2.4 (Quantization commutes with reduction in the singular setting). — We have the following equality in $R(K)$:

$$Q_{K}(N_{\mathcal{O}}) = \sum_{\mu \in \hat{K}} Q\left((N_{\mathcal{O}})_{\mu}\right) V_{\mu}^{K},$$

where the reduced space $(N_{\mathcal{O}})_{\mu}$ is equal to $(N \times K \cdot \mu)_{\mathcal{O}} K \times H$.

ANNALES DE L'INSTITUT FOURIER
Note that Theorem 2.4 applies naturally to the cut spaces $M_{\text{PEP}}^{(n)}$, but a priori not to the cut spaces $M_{\text{CW}}^{(n)}$.

In a forthcoming paper, we will exploit these results to compute the multiplicities of the holomorphic discrete series representations of a real semi-simple Lie group S relatively to a compact subgroup $H \subset S$.

Acknowledgements. — I am grateful to Michel Brion and Nicolas Ressayre for enlightening discussions about the wonderful compactifications. I thank also Anton Alekseev for his remarks on a preliminary version of the paper.

2. Quantization commutes with reduction

In this section we give the precise definition of the geometric quantization of a smooth and compact Hamiltonian manifold. We extend the definition to the case of a singular Hamiltonian manifold and we prove a “quantization commutes with reduction” theorem in the singular setting.

Let K be a compact connected Lie group, with Lie algebra \mathfrak{k}. In the Kostant-Souriau framework, a Hamiltonian K-manifold (M, Ω, Φ) is pre-quantized if there is an equivariant Hermitian line bundle L with an invariant Hermitian connection ∇ such that

\begin{equation}
\mathcal{L}(X) - \nabla_{X_M} = i\langle \Phi, X \rangle \quad \text{and} \quad \nabla^2 = -i\Omega,
\end{equation}

for every $X \in \mathfrak{k}$. Here X_M is the vector field on M defined by $X_M(m) = \frac{d}{dt} e^{-tX} m|_0$.

(L, ∇) is also called a Kostant-Souriau line bundle. Remark that conditions (2.1) imply via the equivariant Bianchi formula the relation

\begin{equation}
\iota(X_M)\Omega = -d\langle \Phi, X \rangle, \quad X \in \mathfrak{k}.
\end{equation}

We will now recall the notion of geometric quantization.

2.1. Geometric quantization: the compact and smooth case

We suppose here that (M, Ω, Φ) is compact and is pre-quantized by a Hermitian line bundle L. Choose a K-invariant almost complex structure J on M which is compatible with Ω in the sense that the symmetric bilinear form $\Omega(\cdot, J\cdot)$ is a Riemannian metric. Let $\overline{\partial}_L$ be the Dolbeault operator with coefficients in L, and let $\overline{\partial}_{L*}$ be its (formal) adjoint. The Dolbeault-Dirac operator on M with coefficients in L is $D_L = \overline{\partial}_L + \overline{\partial}_{L*}$, considered as an operator from $\mathcal{A}^{0,\text{even}}(M, L)$ to $\mathcal{A}^{0,\text{odd}}(M, L)$.

TOME 59 (2009), FASCICULE 1
Definition 2.1. — The geometric quantization of (M, Ω, Φ) is the element $Q_K(M) \in R(K)$ which is defined as the equivariant index of the Dolbeault-Dirac operator D_L.

Remark 2.2.
- We can define the Dolbeault-Dirac operator D^J_L for any invariant almost complex structure J. If J_0 and J_1 are equivariantly homotopic the indices of $D^J_{L_0}$ and $D^J_{L_1}$ coincide (see [29]).
- Since the set of compatible invariant almost complex structures on M is path-connected, the element $Q_K(M) \in R(K)$ does not depend of the choice of J.

2.2. Geometric quantization: the compact and singular case

We are interested in defining the geometric quantization of singular compact Hamiltonian manifolds: here “singular” means that the manifold is obtained by symplectic reduction.

Let (N, Ω) be a smooth symplectic manifold equipped with a Hamiltonian action of $K \times H$; we denote $(\Phi_K, \Phi_H) : N \rightarrow \mathfrak{t}^* \times \mathfrak{h}^*$ the corresponding moment map. We assume that N is pre-quantized by a $K \times H$-equivariant line bundle L and we suppose that the map Φ_H is proper. One wants to define the geometric quantization of the (compact) symplectic quotient $N/\!/0_H := \Phi_H^{-1}(0)/H$.

When 0 is a regular value of Φ_H, $N/\!/0_H$ is a compact symplectic orbifold equipped with a Hamiltonian action of K; the corresponding moment map is induced by the restriction of Φ_K to $\Phi_H^{-1}(0)$. The symplectic quotient $N/\!/0_H$ is pre-quantized by the line orbibundle

$$L_0 := (L|_{\Phi_H^{-1}(0)}) / H.$$

Definition 2.1 extends to the orbifold case, so one can still define the geometric quantization of $N/\!/0_H$ as an element $Q_K(N/\!/0_H) \in R(K)$.

Suppose now that 0 is not a regular value of Φ_H. Let T_H be a maximal torus of H, and let $C_H \subset t_H^*$ be a Weyl chamber. Since Φ_H is proper, the convexity theorem says that the image of Φ_H intersects C_H in a closed locally polyhedral convex set, that we denote $\Delta_H(N)$, [23].

We consider an element $a \in \Delta_H(N)$ which is generic and sufficiently close to $0 \in \Delta_H(N)$; we denote H_a the subgroup of H which stabilizes a. When $a \in \Delta_H(N)$ is generic, one can show (see [26]) that

$$N/\!/a_H := \Phi_H^{-1}(a)/H_a$$
is a compact Hamiltonian K-orbifold, and that
$$L_a := \left(L|_{\Phi_H^{-1}(a)} \right) / H_a.$$

is a K-equivariant line orbibundle over $N//_a H$: we can then define, like in Definition 2.1, the element $Q_K(N//_a H) \in R(K)$ as the equivariant index of the Dolbeault-Dirac operator on $N//_a H$ (with coefficients in L_a).

Proposition-Definition 2.3. — The elements $Q_K(N//_a H) \in R(K)$ do not depend on the choice of the generic element $a \in \Delta_H(N)$, when a is sufficiently close to 0. Their common value will be taken as the geometric quantization of $N//_0 H$, and still be denoted by $Q_K(N//_0 H)$.

Proof. — When N is compact and $K = \{e\}$, the proof can be found in [26] and in [29]. The K-theoretic proof of [29] extends naturally to our case. \hfill \square

2.3. Quantization commutes with reduction: the singular case

In Section 2.2, we have defined the geometric quantization $Q_K(N//_0 H) \in R(K)$ of a compact symplectic reduced space $N//_0 H$. We will compute its K-multiplicities like in Theorem 1.1.

For every $\mu \in \hat{K}$, we consider the co-adjoint orbit $K \cdot \mu \simeq K/K_{\mu}$, which is pre-quantized by the line bundle $\mathbb{C}[\mu] \simeq K \times K_{\mu} \mathbb{C}_{\mu}$. We consider the product\(^{(1)}\) $N \times K^{-\mu}$ which is a Hamiltonian $K \times H$-manifold pre-quantized by the $K \times H$-equivariant line bundle $L \otimes \mathbb{C}_{[\mu]}^{-1}$. The moment map $N \times K^{-\mu} \rightarrow \mathfrak{k}^* \times \mathfrak{h}^*$, $(n, \xi) \mapsto (\Phi_K(n) - \xi, \Phi_H(n))$ is proper, so that the reduced space

$$\left(N//_0 H \right)_\mu := \left(N \times K^{-\mu} \right)/(0, 0) K \times H$$

is compact. Following Proposition 2.3, we can then define its quantization $Q((N//_0 H)_\mu) \in \mathbb{Z}$. The main result of this section is the

Theorem 2.4. — We have the following equality in $R(K)$:

$$Q_K(N//_0 H) = \sum_{\mu \in \hat{K}} Q \left((N//_0 H)_\mu \right) V^K_{\mu}.$$

Proof. — The proof will occupy the remainder of this section. The starting point is to state another definition of the geometric quantization of a symplectic reduced space which uses the Atiyah-Singer theory of transversally elliptic operators. \hfill \square

\(^{(1)}\) $K^{-\mu}$ denotes the co-adjoint orbit with the opposite symplectic form.
2.3.1. Transversally elliptic symbols

Here we give the basic definitions from the theory of transversally elliptic symbols (or operators) defined by Atiyah-Singer in [6]. For an axiomatic treatment of the index morphism see Berline-Vergne [8, 9] and for a short introduction see [29].

Let \(\mathcal{X} \) be a compact \(K_1 \times K_2 \)-manifold. Let \(p : T\mathcal{X} \to \mathcal{X} \) be the projection, and let \((\cdot, \cdot)_{\mathcal{X}} \) be a \(K_1 \times K_2 \)-invariant Riemannian metric. If \(E^0, E^1 \) are \(K_1 \times K_2 \)-equivariant complex vector bundles over \(\mathcal{X} \), a \(K_1 \times K_2 \)-equivariant morphism \(\sigma \in \Gamma(T\mathcal{X}, \text{hom}(p^*E^0, p^*E^1)) \) is called a symbol. The subset of all \((x, v) \in T\mathcal{X} \) where \(\sigma(x, v) : E^0_x \to E^1_x \) is not invertible is called the characteristic set of \(\sigma \), and is denoted by \(\text{Char}(\sigma) \).

Let \(T_{K_2}\mathcal{X} \) be the following subset of \(T\mathcal{X} \):

\[
T_{K_2}\mathcal{X} = \{ (x, v) \in T\mathcal{X}, \ (v, X_{\mathcal{X}}(x))_\chi = 0 \quad \text{for all } X \in \mathfrak{k}_2 \}.
\]

A symbol \(\sigma \) is elliptic if \(\sigma \) is invertible outside a compact subset of \(T\mathcal{X} \) (\(\text{i.e.} \ \text{Char}(\sigma) \) is compact), and is \(K_2 \)-transversally elliptic if the restriction of \(\sigma \) to \(T_{K_2}\mathcal{X} \) is invertible outside a compact subset of \(T_{K_2}\mathcal{X} \) (\(\text{i.e.} \ \text{Char}(\sigma) \cap T_{K_2}\mathcal{X} \) is compact). An elliptic symbol \(\sigma \) defines an element in the equivariant \(\mathbf{k} \)-theory of \(T\mathcal{X} \) with compact support, which is denoted by \(\mathbf{k}_{K_1 \times K_2}(T\mathcal{X}) \), and the index of \(\sigma \) is a virtual finite dimensional representation of \(K_1 \times K_2 \) [2, 3, 4, 5].

A \(K_2 \)-transversally elliptic symbol \(\sigma \) defines an element of \(\mathbf{k}_{K_1 \times K_2}(T_{K_2}\mathcal{X}) \), and the index of \(\sigma \) is defined as a trace class virtual representation of \(K_1 \times K_2 \) (see [6] for the analytic index and [8, 9] for the cohomological one): in fact Index\(^\mathcal{X}\)(\(\sigma \)) belongs to the tensor product \(R(K_1) \hat{\otimes} R^{-\infty}(K_2) \).

Remark that any elliptic symbol of \(T\mathcal{X} \) is \(K_2 \)-transversally elliptic, hence we have a restriction map \(\mathbf{k}_{K_1 \times K_2}(T\mathcal{X}) \to \mathbf{k}_{K_1 \times K_2}(T_{K_2}\mathcal{X}) \), and a commutative diagram

\[
\begin{array}{ccc}
\mathbf{k}_{K_1 \times K_2}(T\mathcal{X}) & \longrightarrow & \mathbf{k}_{K_1 \times K_2}(T_{K_2}\mathcal{X}) \\
\text{Index}^{\mathcal{X}} & & \text{Index}^{\mathcal{X}} \\
R(K_1) \otimes R(K_2) & \longrightarrow & R(K_1) \hat{\otimes} R^{-\infty}(K_2).
\end{array}
\]

Using the excision property, one can easily show that the index map \(\text{Index}^{\mathcal{U}} : \mathbf{k}_{K_1 \times K_2}(T_{K_2}\mathcal{U}) \to R(K_1) \hat{\otimes} R^{-\infty}(K_2) \) is still defined when \(\mathcal{U} \) is a \(K_1 \times K_2 \)-invariant relatively compact open subset of a \(K_1 \times K_2 \)-manifold (see [29], Section 3.1).
2.3.2. Quantization of singular spaces: second definition

Let \((\mathcal{X}, \Omega)\) be a Hamiltonian \(K_1 \times K_2\)-manifold pre-quantized by a \(K_1 \times K_2\)-equivariant line bundle \(L\). The moment map \(\Phi_2 : \mathcal{X} \to \mathfrak{k}_2^*\) relative to the \(K_2\)-action is supposed to be proper. Take a compatible \(K_1 \times K_2\)-invariant almost complex structure on \(\mathcal{X}\). We choose a \(K_1 \times K_2\)-invariant Hermitian metric \(\|v\|^2\) on the tangent bundle \(T\mathcal{X}\), and we identify the cotangent bundle \(T^*\mathcal{X}\) with \(T\mathcal{X}\). For \((x, v) \in T\mathcal{X}\), the principal symbol of the Dolbeault-Dirac operator \(\overline{\partial}_L + \overline{\partial}_L^*\) is the Clifford multiplication \(c_\mathcal{X}(v)\) on the complex vector bundle \(\Lambda^*T\mathcal{X} \otimes L_x\). It is invertible for \(v \neq 0\), since \(c_\mathcal{X}(v)^2 = -\|v\|^2\).

When \(\mathcal{X}\) is compact, the symbol \(c_\mathcal{X}\) is elliptic and then defines an element of the equivariant \(K\)-group of \(T\mathcal{X}\). The topological index of \(c_\mathcal{X} \in K_{K_1 \times K_2}(T\mathcal{X})\) is equal to the analytical index of the Dolbeault-Dirac operator \(\overline{\partial}_L + \overline{\partial}_L^*\):

\[
Q_{K_1 \times K_2}(\mathcal{X}) = \text{Index}^\mathcal{X}(c_\mathcal{X}) \quad \text{in} \quad R(K_1) \otimes R(K_2).
\]

When \(\mathcal{X}\) is not compact the topological index of \(c_\mathcal{X}\) is not defined. In order to give a topological definition of \(Q_{K_1}(\mathcal{X} \parallel_0 K_2)\), we will deform the symbol \(c_\mathcal{X}\) as follows. Consider the identification \(\mathfrak{k}_2^* \simeq \mathfrak{k}_2\) defined by a \(K_2\)-invariant scalar product on the Lie algebra \(\mathfrak{k}_2\). From now on the moment map \(\Phi_2\) will take values in \(\mathfrak{k}_2\), and we define the vector field on \(\mathcal{X}\)

\[
\kappa_x = (\Phi_2(x))|_\mathcal{X}(x), \quad x \in \mathcal{X}.
\]

We consider now the symbol

\[
c_\mathcal{X}^\kappa(v) = c(v - \kappa_x), \quad v \in T_x\mathcal{X}.
\]

Note that \(c_\mathcal{X}^\kappa(v)\) is invertible except if \(v = \kappa_x\). If furthermore \(v\) belongs to the subset \(T_{K_2}\mathcal{X}\) of tangent vectors orthogonal to the \(K_2\)-orbits, then \(v = 0\) and \(\kappa_x = 0\). Indeed \(\kappa_x\) is tangent to \(K_2 \cdot x\) while \(v\) is orthogonal.

Since \(\kappa\) is the Hamiltonian vector field of the function \(-\frac{1}{2}\|\Phi_2\|^2\), the set of zeros of \(\kappa\) coincides with the set \(\text{Cr}(\|\Phi_2\|^2)\) of critical points of \(\|\Phi_2\|^2\).

Let \(\mathcal{U} \subset \mathcal{X}\) be a \(K_1 \times K_2\)-invariant open subset which is relatively compact. If the boundary \(\partial \mathcal{U}\) does not intersect \(\text{Cr}(\|\Phi_2\|^2)\), then the restriction \(c_\mathcal{X}^\kappa|_\mathcal{U}\) defines a class in \(K_{K_1 \times K_2}(T_{K_2}\mathcal{U})\) since

\[
\text{Char}(c_\mathcal{X}^\kappa|_\mathcal{U}) \cap T_{K_2}\mathcal{U} \simeq \text{Cr}(\|\Phi_2\|^2) \cap \mathcal{U}
\]

is compact. In this situation the index of \(c_\mathcal{X}^\kappa|_\mathcal{U}\) is defined as an element \(\text{Index}^\mathcal{U}(c_\mathcal{X}^\kappa|_\mathcal{U}) \in R(K_1) \hat{\otimes} R^{-\infty}(K_2)\).

Theorem 2.5. — The \(K_2\)-invariant part of \(\text{Index}^\mathcal{U}(c_\mathcal{X}^\kappa|_\mathcal{U})\) is equal to:
• $Q_{K_1}(X\sslash_0 K_2)$ when $\Phi_2^{-1}(0) \subset \mathcal{U}$,
• 0 in the other case.

Proof. — When $K_1 = \{e\}$, the proof is done in [29] (see Section 7). This proof works equally well in the general case. \qed

Remark 2.6. — If X is compact we can take $\mathcal{U} = X$ in the last theorem. In this case the symbols c^κ_X and c_X define the same class in $K_{K_1 \times K_2}(TX)$ so they have the same index. Theorem 2.5 corresponds then to the traditional “quantization commutes with reduction” phenomenon: $[Q_{K_1 \times K_2}(X)]^{K_2} = Q_{K_1}(X\sslash_0 K_2)$.

>From now one we will work with this (topological) definition of the geometric quantization of the reduced K_1-Hamiltonian manifold $X\sslash_0 K_2$ (which is possibly singular):

$$(2.7) \quad Q_{K_1}(X\sslash_0 K_2) = [\text{Index}^\mathcal{U}(c_X^\kappa|_\mathcal{U})]^{K_2},$$

where \mathcal{U} is any relatively compact neighborhood of $\Phi_2^{-1}(0)$ such that $\partial \mathcal{U} \cap \text{Cr}(\|\Phi_2\|^2) = \emptyset$.

Remark 2.7. — In this topological definition of $Q_{K_1}(X\sslash_0 K_2)$ one has to check that such open subset \mathcal{U} exists. Take $\mathcal{U} = \{\|\Phi_2\|^2 < \epsilon\}$ for $\epsilon > 0$: one can check that $\partial \mathcal{U} = \{\|\Phi_2\|^2 = \epsilon\}$ does not intersect $\text{Cr}(\|\Phi_2\|^2)$ for ϵ small enough.

The functorial properties still hold in this singular setting. In particular:

[P2] If $H \subset K_1$ is a closed and connected Lie subgroup, then the restriction of $Q_{K_1}(X\sslash_0 K_2)$ to H is equal to $Q_H(X\sslash_0 K_2)$.

2.3.3. Proof of Theorem 2.4

We go back to the situation of Sections 2.2 and 2.3.

First we apply Theorem 2.5 to $X = N$, $K_1 = K$ and $K_2 = H$. (2.3) is trivially true when $0 \notin \text{Image}(\Phi_H)$. So we suppose now that $0 \in \text{Image}(\Phi_H)$, and we consider a $K \times H$-invariant open subset $\mathcal{U} \subset N$ which is relatively compact and such that

$$\Phi_H^{-1}(0) \subset \mathcal{U} \quad \text{and} \quad \partial \mathcal{U} \cap \text{Cr}(\|\Phi_H\|^2) = \emptyset.$$

We have $Q_K(N\sslash_0 H) = [\text{Index}^\mathcal{U}(c_N^\kappa|_\mathcal{U})]^H$ and one want to compute its K- multiplicities $m_\mu, \mu \in \hat{K}$. Here κ^H is the vector field on N associated to the moment map Φ_H (see (2.6)).
Take $\mu \in \hat{K}$. We denote $c_{-\mu}$ the principal symbol of the Dolbeault-Dirac operator on $\overline{K} \cdot \mu$ with values in the line bundle $C_{[-\mu]}$: we have $\text{Index}^{K\cdot\mu}(c_{-\mu}) = (V^\mu_K)_*$. We know then that the multiplicity of $[\text{Index}^U(c^\mu_N|_U \odot c_{-\mu})]^{K\times H}$ relatively to V^μ_K is equal to

\[(2.8) \quad m_\mu := \left[\text{Index}^V (c^\mu_N|_U \odot c_{-\mu}) \right]^{K\times H}, \]

with $V = U \times K\cdot \mu$. This identity is due to the fact that we have a “multiplication”

\[K_{K\times H}(T_H U) \times K_K(T(K\cdot\mu)) \longrightarrow K_{K\times H}(T_{K\times H}(U \times K\cdot\mu)) \]

\[(\sigma_1, \sigma_2) \longmapsto \sigma_1 \odot \sigma_2, \]

so that $\text{Index}^{U \times K\cdot\mu}(\sigma_1 \odot \sigma_2) = \text{Index}^U(\sigma_1) \cdot \text{Index}^{K\cdot\mu}(\sigma_2)$ in $R^{-\infty}(K \times H)$. See [6].

Consider now the case where $X = N \times \overline{K} \cdot \mu$, $K_1 = \{ e \}$ and $K_2 = K \times H$. By Theorem 2.5, we know that

\[(2.9) \quad Q((N//_0 H)_\mu) = \left[\text{Index}^V (c^\mu_N|_V) \right]^{K\times H}, \]

where κ is the vector field on $N \times \overline{K} \cdot \mu$ associated to the moment map

\[\Phi : N \times \overline{K} \cdot \mu \longrightarrow \mathfrak{k}^* \times \mathfrak{h}^* \]

\[(x,\xi) \longmapsto (\Phi_K(x) - \xi, \Phi_H(n)). \]

Note that $V = U \times K\cdot \mu$ is a neighborhood of $\Phi^{-1}(0) \subset (\Phi_H)^{-1}(0)$.

Our aim now is to prove that the quantities (2.8) and (2.9) are equal.

Since the definition of κ requires the choice of an invariant scalar product on the Lie algebra $\mathfrak{k} \times \mathfrak{h}$, we give a precise definition of it. Let $\| \cdot \|_K$ and $\| \cdot \|_H$ be two invariant Euclidean norms respectively on \mathfrak{k} and \mathfrak{h}. For any $r > 0$, we consider on $\mathfrak{k} \times \mathfrak{h}$ the invariant Euclidean norm $\|(X,Y)\|^2 = r^2\|X\|_K^2 + \|Y\|_H^2$.

Let κ^K be the vector field on $N \times \overline{K} \cdot \mu$ associated to the map $N \times \overline{K} \cdot \mu \rightarrow \mathfrak{k}^*$, $(x,\xi) \mapsto \Phi_K(x) - \xi$, and where the identification $\mathfrak{k} \simeq \mathfrak{k}^*$ is made via the Euclidean norm $\| \cdot \|_K$ (see (2.6)). For $(x,\xi) \in N \times \overline{K} \cdot \mu$, we have the decomposition

\[\kappa^K(x,\xi) = (\kappa_1(x,\xi), \kappa_2(x,\xi)) \in T_x N \times T_{\xi}(K\cdot\mu). \]

Let κ^H be the vector field on $N \times \overline{K} \cdot \mu$ associated to the map $N \times \overline{K} \cdot \mu \rightarrow \mathfrak{h}^*$, $(x,\xi) \mapsto \Phi_H(x)$, and where the identification $\mathfrak{h} \simeq \mathfrak{h}^*$ is made via the
Euclidean norm $\| \cdot \|_H$. For $(x, \xi) \in N \times K \cdot \mu$, we have the decomposition
\[\kappa^H(x, \xi) = (\kappa^H(x), 0) \in T_x N \times T_\xi (K \cdot \mu). \]
For any $r > 0$, we denote by κ_r the vector field on $N \times K \cdot \mu$ associated to the map (2.10), and where the identification $\mathfrak{k} \times \mathfrak{h} \simeq \mathfrak{t}^* \times \mathfrak{h}^*$ is made via the Euclidean norm $\| \cdot \|_r$. We have then
\[\kappa_r = \kappa^H + r \kappa^K = (\kappa^H + r \kappa_1, r \kappa_2). \]

Now we can specify (2.9). Take an invariant relatively compact neighborhood U of $\Phi^{-1}_H(0)$ such that $\partial U \cap \{ \text{zeros of } \kappa^H \} = \emptyset$. With the help of an invariant Riemannian metric on X we define
\[\varepsilon_H = \inf_{x \in \partial U} \| \kappa^H(x) \| > 0 \quad \text{and} \quad \varepsilon_K = \sup_{(x, \xi) \in \partial U \times K \cdot \mu} \| \kappa_1(x, \xi) \|. \]
Note that for any $0 \leq r < \frac{\varepsilon_H}{\varepsilon_K}$, we have $\partial U \times K \cdot \mu \cap \{ \text{zeros of } \kappa^H + r \kappa_1 \} = \emptyset$, and then $\partial V \cap \{ \text{zeros of } \kappa_r \} = \emptyset$ for the neighborhood $V := U \times K \cdot \mu$ of $\Phi^{-1}(0)$. We can then use Theorem 2.5: for $0 < r < \frac{\varepsilon_H}{\varepsilon_K}$ we have
\[Q((N \parallel_0 H)_\mu) = \left[\text{Index}^V (c_{\kappa_r}^{K \times H}) \right]^{K \times H}. \]

We are now close to the end of the proof. Let us compare the symbols $c_{\kappa_r}^{K \times H}|_V$ and $c_{\kappa^H}^{K \times H}|_U \odot c_{-\mu}$ in $K_{K \times H}(T_{K \times H}(U \times K \cdot \mu))$. First one sees that the symbol c_{κ_r} is equal to the product $c_N \odot c_{-\mu}$ hence the symbol $c_{\kappa^H}^{K \times H}|_U \odot c_{-\mu}$ is equal to $c_{\kappa^H}^{K \times H}|_V$ when $r = 0$. Since for $r < \frac{\varepsilon_H}{\varepsilon_K}$ the path $s \in [0, r] \to c_{\kappa_r}^{K \times H}|_V$ defines a homotopy of $K \times H$-transversally elliptic symbols on V, we get
\[\text{Index}^V (c_{\kappa_r}^{K \times H}|_V) = \text{Index}^V (c_{\kappa^H}^{K \times H}|_U \odot c_{-\mu}) \]
and then $m_\mu = Q((N \parallel_0 H)_\mu)$. \qed

3. Wonderful compactifications and symplectic cutting

In this section we use projective compactifications of $K_{\mathbb{C}}$ “à la de Concini-Procesi” [14, 15] to perform symplectic cutting. These compactifications are special cases of Spherical varieties, see [10].
3.1. Wonderful compactifications: definitions

Here we study the projective compactifications of K_C defined by Brion [11] from the Hamiltonian point of view. This construction generalizes previous work of de Concini-Procesi [14, 15], where wonderful compactifications of an adjoint group were defined.

We consider a compact connected Lie group K and its complexification K_C. Let T be a maximal torus of K, and let $W := N(T)/T$ be the Weyl group. Let t^\ast be the dual of the Lie algebra of T containing the lattice of weights \wedge^\ast. Let $C_K \subset t^\ast$ be a Weyl chamber and let $\hat{K} := \wedge^\ast \cap C_K$ be the set of dominant weights. An element $\xi \in t^\ast$ is called regular if its stabilizer subgroup K_ξ is equal to T.

We recall the notion of Delzant polytope [28]. Let P be a convex polytope in t^\ast.

Definition 3.1. — P is a Delzant polytope (relatively to \wedge^\ast) if:

i) the vertices of P belong to \wedge^\ast,

ii) P is simple: there are exactly $\dim(t^\ast)$ edges through each vertex,

iii) at each vertex ξ, the tangent cone to P at $\{\xi\}$ is generated by a \mathbb{Z}-basis of the lattice \wedge^\ast.

We need the following refinement of the notion of Delzant polytope.

Definition 3.2. — A convex polytope P in t^\ast is K-adapted if:

i) P is a Delzant polytope (relatively to \wedge^\ast),

ii) the vertices of P are regular elements of t^\ast,

iii) P is W-invariant.

Example 1. — When $K = T$ is a torus, a T-adapted polytope is just a Delzant polytope.

Example 2. — We consider the Lie groups $SU(3)$ and $PSU(3) := SU(3)/Z$, where $Z \simeq \mathbb{Z}/3\mathbb{Z}$ is the center of $SU(3)$. Note that $PSU(3)$ has a trivial center. In Figures 3.1 and 3.2, the lattice \wedge^\ast_{PSU} of weights for $PSU(3)$ is formed by the black dots and the lattice \wedge^\ast_{SU} of weights for $SU(3)$ is formed by all the dots (grey and black). In Figure 3.1, the polytope is a Delzant polytope relatively to \wedge^\ast_{PSU}, but it is not a Delzant polytope relatively to \wedge^\ast_{SU}: hence the polytope is $PSU(3)$-adapted but not $SU(3)$-adapted.

Example 3. — When K has trivial center, the convex hull of $W \cdot \mu$ is a K-adapted polytope for any regular dominant weight μ. Figure 3.1 is an example of this case for the Lie group $PSU(3)$.
Proposition 3.3. — For any compact connected Lie group K, there exist K-adapted polytopes in t^*.

Proof. — Let us use the dictionary between polytopes and projective fans [28]. Conditions $i)$ and $iii)$ of Definition 3.2 means that we are looking after a smooth projective W-invariant fan \mathcal{F} in t. Condition $ii)$ means that each cone of \mathcal{F} of maximal dimension should not be fixed by any element
of $W \setminus \{\text{Id}\}$. For a proof of the existence of such a fan, see [12, 13]. In particular condition $(*)$ in Proposition 2 of [13] implies ii).

In the rest of this section, we consider a K-adapted polytope P. Let

\begin{equation}
\{\lambda_1, \ldots, \lambda_N\}
\end{equation}

be the set of regular dominant weights which are on the edges of P (i.e. on the 1-dimensional faces of P). Note that some of the λ_i are the vertices of P which belong to the (interior) of the Weyl chamber.

Let V_{λ_i} be an irreducible representation of K with highest weight λ_i: this representation extends canonically to the complexification K_C. We denote $\rho: K_C \to \Pi_i^N GL(V_{\lambda_i})$ the representation of K_C on $V := \oplus_{i=1}^N V_{\lambda_i}$.

Let $T_C \subset K_C$ be the complexification of the (compact) torus $T \subset K$. Let $\Delta(T_C, V)$ be the set of weights relative to the action of T_C on V. Let us sum up the basic but essential properties concerning the set $\Delta(T_C, V)$.

Lemma 3.4.

- We have $W \cdot \{\lambda_1, \ldots, \lambda_N\} \subset \Delta(T_C, V) \subset P$.
- P is equal to the convex hull of $W \cdot \{\lambda_1, \ldots, \lambda_N\}$.
- For any vertex λ of P, the \mathbb{Z}-basis of the lattice \wedge^* which generates the tangent cone to P at $\{\lambda\}$ is of the form: $\alpha_1 - \lambda, \ldots, \alpha_r - \lambda$ where $\alpha_k \in \Delta(T_C, V)$.

Proof. — Since each λ_i is a weight for the action of T_C on V_{λ_i}, we have $\lambda_i \in \Delta(T_C, V)$. Using the W-invariance of $\Delta(T_C, V)$, we get one inclusion of the first point. The other inclusion follows from the fact that the set of weights relative to the action of T_C on V_{λ_i} is contained in the convex hull of $W \cdot \lambda_i$. The second point is due to the fact that all the vertices of P belong to $W \cdot \{\lambda_1, \ldots, \lambda_N\}$.

Let us prove the last point for a vertex λ which is dominant. Since P is a Delzant polytope, the tangent cone to P at $\{\lambda\}$ is generated by a \mathbb{Z}-basis of the lattice \wedge^* that we denote $\alpha_1 - \lambda, \ldots, \alpha_r - \lambda$. Let us show that all the α_k belong to $\Delta(T_C, V)$. We consider the segment $[\lambda, \alpha_k] \subset \mathfrak{t}^*$ which is part of an edge of P. If $[\lambda, \alpha_k]$ is included in the interior of the Weyl chamber, we have then $\alpha_k \in \{\lambda_1, \ldots, \lambda_N\} \subset \Delta(T_C, V)$. Suppose now that the segment $[\lambda, \alpha_k]$ intersects the wall Π_α of the Weyl chamber defined by a simple root α. Let $s_\alpha \in W$ be the symmetry relative to the wall Π_α. Since P is W-invariant, the segment

$$[s_\alpha(\lambda), s_\alpha(\alpha_k)] = s_\alpha([\lambda, \alpha_k])$$

TOME 59 (2009), FASCICULE 1
is also part of an edge of P, and it intersects $[\lambda, \alpha_k]$. Since two distinct edges can intersect only at the vertices, the line (λ, α_k) must be invariant under s_α.

Let us sum up the properties of the weight α_k: the segment $[\lambda, \alpha_k]$ intersects the wall Π_α orthogonally and $\lambda - \alpha_k$ is part of a \mathbb{Z}-basis of \wedge^*. There are only two possibilities: either $\alpha_k \in \Pi_\alpha$ or $\alpha_k = s_\alpha(\lambda)$. Both of them implies that

$$\alpha_k = \lambda - \alpha.$$

Finally, it is a standard fact of representation theory that, for any simple root α and any regular dominant weight λ, $\lambda - \alpha$ is a weight relative to the action of T_C on V_λ. We have proved that $\alpha_k = \lambda - \alpha \in \Delta(T_C, V)$. \square

We consider now the vector space

$$E = \bigoplus_{i=1}^N \text{End}(V_{\lambda_i})$$

equipped with the action of $K_C \times K_C$ given by: $(g_1, g_2) \cdot f = \rho(g_1) \circ f \circ \rho(g_2)^{-1}$. Let $\mathbb{P}(E)$ be the projective space associated to E: it comes equipped with an algebraic action of the reductive group $K_C \times K_C$. We consider the map $g \mapsto [\rho(g)]$ from K_C into $\mathbb{P}(E)$, and we denote it $\bar{\rho}$.

Lemma 3.5. — The map $\bar{\rho}: K_C \to \mathbb{P}(E)$ is an embedding.

Proof. — Let $g \in K_C$ such that $\bar{\rho}(g) = [\text{Id}]$: there exists $a \in \mathbb{C}^*$ such that $\rho(g) = a \text{Id}$. The Cartan decomposition gives

$$\rho(k) = \frac{a}{|a|} \text{Id} \quad \text{and} \quad \rho(e^{iX}) = |a| \text{Id}$$

for $g = ke^{iX}$ with $k \in K$ and $X \in \mathfrak{k}$. Since there exist $Y, Y' \in \mathfrak{k}$ and $u, u' \in K$ such that $k = ue^Y u^{-1}$ and $X = u' \cdot Y'$, (3.2) gives

$$\rho(e^Y) = \frac{a}{|a|} \text{Id} \quad \text{and} \quad \rho(e^{iY'}) = |a| \text{Id}.$$

and then

$$e^{i(\alpha - \alpha', Y)} = 1 \quad \text{and} \quad e^{i(\alpha - \alpha', Y')} = 1,$$

for every $\alpha, \alpha' \in \Delta(T_C, V)$. Using now the last point of Lemma 3.4, we see that (3.3) implies $Y' = 0$ and $Y \in \ker(Z \in \mathfrak{k} \to e^Z)$. We have proved that $g = e$. \square

We can now define the projective compactification \mathcal{X}_P of K_C.

Definition 3.6. — Let P be a K-adapted polytope in \mathfrak{k}^*. Let $\{\lambda_1, \ldots, \lambda_N\}$ be the set of regular dominant weights which are on the edges of P. Let $E := \bigoplus_{i=1}^N \text{End}(V_{\lambda_i})$. We define the varieties:

- \mathcal{X}_P which is the Zariski closure of $\bar{\rho}(K_C)$ in $\mathbb{P}(E)$,
• $\mathcal{Y}_P \subset \mathcal{X}_P$ which is the Zariski closure of $\bar{\rho}(T_C)$ in $\mathbb{P}(E)$.

Since $\bar{\rho}(K_C) = K_C \times K_C \cdot [\text{Id}]$ and $\bar{\rho}(T_C) = T_C \times T_C \cdot [\text{Id}]$ are orbits of algebraic group actions their Zariski closures coincide with their closures for the Euclidean topology.

Theorem 3.7. — The varieties \mathcal{X}_P and \mathcal{Y}_P are smooth.

The proof will be given in the next section.

Remark 3.8. — In the definition of \mathcal{X}_P, we work with the representation $V = \bigoplus_{i=1}^N V_{\lambda_i}$, where the λ_i run over the set of regular dominant weights that belong to the edges of P. We can be interested to work with a subset $\Delta \subset \{\lambda_1, \ldots, \lambda_N\}$. We consider then the representations $V(\Delta) := \bigoplus_{\lambda \in \Delta} V_{\lambda}$ and $E(\Delta) := \bigoplus_{\lambda \in \Delta} \text{End}(V_{\lambda})$. We define the variety $\mathcal{X}(\Delta)$ as the Zariski closure of $\bar{\rho}(K_C)$ in $\mathbb{P}(E(\Delta))$.

Suppose now that Δ contains all the vertices of P which are in the Weyl chamber: the first two points of Lemma 3.4 apply to $\Delta(T_C, V(\Delta))$. One can show by the method described in Section 3.2 that $\mathcal{X}(\Delta)$ is smooth if $\Delta(T_C, V(\Delta))$ satisfies the third point of Lemma 3.4. In other words we have the following

Smoothness criterion for $\mathcal{X}(\Delta)$: for any vertex λ of P, the \mathbb{Z}-basis of the lattice $\wedge^* \mathfrak{a}$ which generates the tangent cone to P at $\{\lambda\}$ is of the form: $\alpha_1 - \lambda, \ldots, \alpha_r - \lambda$ where $\alpha_k \in \Delta(T_C, V(\Delta))$.

When K has trivial center (see Figure 3.1) one can work with the polytope equal to the convex hull of $W \cdot \mu$, with μ a regular dominant weight. In this case one can take $\Delta := \{\mu\}$: the variety $\mathcal{X}(\Delta) \subset \mathbb{P}(\text{End}(V_{\mu}))$ is a smooth compactification of K_C. This was the situation studied originally by de Concini-Procesi [14].

In the example of Figure 3.1, if one takes $\Delta := \{\lambda_2, \lambda_3\}$, the variety $\mathcal{X}(\Delta)$ is a smooth compactification of $\text{SL}(3, \mathbb{C})$.

3.2. Smoothness of \mathcal{X}_P and \mathcal{Y}_P

Let E be a complex vector space equipped with a linear action of a reductive group G. Let $Z \subset \mathbb{P}(E)$ be a projective variety which is G-stable. We have the classical fact

Lemma 3.9.

- Z has closed G-orbits.
- Z is smooth if Z is smooth near its closed G-orbits.
\(Z \) is smooth near an orbit \(G \cdot z \) if \(Z \) is smooth near \(z \).

We are interested here respectively in
\(\bullet \) the \(K_C \times K_C \)-variety \(\mathcal{X}_P \subset \mathbb{P}(E) \subset \mathbb{P}(\text{End}(V)) \),
\(\bullet \) the \(T_C \times T_C \)-variety \(\mathcal{Y}_P \subset \mathbb{P}(E) \).

Since the diagonal \(Z_C = \{(t, t) | t \in T_C \} \) stabilizes \([\text{Id}]\), its action on \(\mathcal{Y}_P \) is trivial. Hence we will restrict ourselves to the action of \(T_C \times T_C / Z_C \simeq T_C \) on \(\mathcal{Y}_P \): for \(t \in T_C \) and \([y] \in \mathcal{Y}_P \) we take \(t \cdot [y] = [\rho(t) \circ y] \).

3.2.1. The case of \(\mathcal{Y}_P \)

We apply Lemma 3.9 to the \(T_C \)-variety \(\mathcal{Y}_P = T_C / [\text{Id}] \) in \(\mathbb{P}(E) \). Let \(\{\alpha_j, j \in J\} \) be the \(T_C \)-weights on \(V = \oplus_{i=1}^N V_{\lambda_i} \), counted with their multiplicities. We suppose that a \(K \)-invariant Hermitian metric is fixed on each representation \(V_{\lambda_i} \).

Their exists an orthonormal basis \(\{v_j, j \in J\} \) of \(V = \oplus_{i=1}^N V_{\lambda_i} \) such that \(\text{Id} = \sum_{j \in J} v_j \otimes v_j^* \) and
\[
\rho(e^Z) = \sum_{j \in J} e^{i(\alpha_j, Z)} v_j \otimes v_j^*, \quad Z \in t_C.
\]

So the action of \(e^Z \in T_C \) on \([\text{Id}] \in \mathbb{P}(E)\) is \(e^Z \cdot [\text{Id}] = \left[\sum_{j \in J} e^{i(\alpha_j, Z)} v_j \otimes v_j^* \right] \).

We introduce a subset \(J' \) of \(J \) such that for every \(j \in J \) there exists a unique \(j' \in J' \) such that \(\alpha_j = \alpha_{j'} \). So the variety \(\mathcal{Y}_P \) lives into \(\mathbb{P}(E') \) where \(E' = \oplus_{j' \in J'} \mathbb{C}m_{j'} \) with \(m_{j'} = \sum_{j \in J, \alpha_j = \alpha_{j'}} v_j \otimes v_j^* \). The closed \(T_C \)-orbits in \(\mathbb{P}(E') \) are the fixed points \([m_{j'}], j' \in J' \).

Lemma 3.10. — \([m_{j_o}] \in \mathcal{Y}_P \) if and only if \(\alpha_{j_o} \) is a vertex of the polytope \(P \).

Proof. — If \(\alpha_{j_o} \) is a vertex of \(P \), there exists \(X \in t \) such that \(\langle \alpha_{j_o}, X \rangle > \langle \alpha_j, X \rangle \) whenever \(\alpha_{j_o} \neq \alpha_j \). Hence \(e^{-isX} \cdot [\text{Id}] \) tends to \([m_{j_o}]\) when \(s \to +\infty \). If \(\alpha_{j_o} \) is not a vertex of \(P \), we can find \(L \subset J' \setminus \{j_o\} \) such that \(\alpha_{j_o} = \sum_{l \in L} a_l \alpha_l \) with \(0 < a_l < 1 \) and \(\sum_{l} a_l = 1 \). So \(\mathcal{Y}_P \) is included into the closed subset defined by
\[
\left\{ \left[\sum_{j' \in J'} \delta_{j'} m_{j'} \right] \in \mathbb{P}(E') : \prod_{l \in L} |\delta_l|^{a_l} = |\delta_{j_o}| \right\}.
\]
Hence \([m_{j_o}] \notin \mathcal{Y}_P \). \(\square \)

Remark 3.11. — When \(\alpha_j \) is a vertex of the polytope \(P \), the multiplicity of \(\alpha_j \) in \(\oplus_{i=1}^N V_{\lambda_i} \) is one, so \(m_j = v_j \otimes v_j^* \).
Consider now a vertex \(\alpha_{j_o} \) of \(P \) (for \(j_o \in J' \)). We consider the open neighborhood \(\mathcal{V} \subset \mathbb{P}(E') \) of \([m_{j_o}] \) defined by \([\sum_{j' \in J'} \delta_{j'} m_{j'}] \in \mathcal{V} \Leftrightarrow \delta_{j_o} \neq 0 \), and the diffeomorphism \(\psi : \mathcal{V} \rightarrow \mathbb{C}' \setminus \{ j_o \} \), \(\sum_{j' \in J'} \delta_{j'} m_{j'} \mapsto (\delta_{j'})_{j' \neq j_o} \). The map \(\psi \) realizes a diffeomorphism between \(\mathcal{V}_P \cap \mathcal{V} \) and the affine subvariety

\[
\mathcal{Z} := \{(t^{\alpha_{j'} - \alpha_{j_o}})_{j' \neq j_o} \mid t \in T'_C \} \subset \mathbb{C}' \setminus \{ j_o \}.
\]

The set of weights \(\{ \alpha_{j}, j \in J \} \) contains all the lattice points that belong to the edges of \(P \). Since the polytope \(P \) is \(K \)-adapted, there exists a subset \(L_{j_o} \subset J' \) such that \(\alpha_l - \alpha_{j_o}, l \in L_{j_o} \) is a \(\mathbb{Z} \)-basis of the group of weights \(\Lambda^* \). And for every \(j' \neq j_o \) we have

\[
\alpha_{j'} - \alpha_{j_o} = \sum_{l \in L_{j_o}} n_{j'}(\alpha_l - \alpha_{j_o}) \quad \text{with} \quad n_{j'} \in \mathbb{N}.
\]

We define on \(\mathbb{C}^{L_{j_o}} \) the monomials \(P_{j'}(Z) = \Pi_{l \in L_{j_o}} (Z_l)^{n_{j'}} \). Note that \(P_{j'}(Z) = Z_l \) when \(j' = l \in L_{j_o} \). Now it is not difficult to see that the map

\[
\mathbb{C}^{L_{j_o}} \longrightarrow \mathbb{C}' \setminus \{ j_o \}
\]

\[
Z \mapsto (P_{j'}(Z))_{j' \neq j_o}
\]

realizes a diffeomorphism between \(\mathbb{C}^{L_{j_o}} \) and \(\mathcal{Z} \).

We have shown that \(\mathcal{Y}_P \) is smooth near \([m_{j_o}] \); hence \(\mathcal{Y}_P \) is a smooth subvariety of \(\mathbb{P}(E) \). Since \(T'_C \) acts on \(\mathcal{Y}_P \) with a dense orbit, \(\mathcal{Y}_P \) is a smooth projective toric variety.

3.2.2. The case of \(X_P \)

Recall that \(E := \bigoplus_{i=1}^N \text{End}(V_{\lambda_i}) \). The closed \(K_C \times K_C \)-orbits in \(\mathbb{P}(E) \) are those passing through \([v_{\lambda_i} \otimes v_{\lambda_i}^*] \) where \(v_{\lambda_i} \in V_{\lambda_i} \) is a highest weight vector. Recall that all the \(\lambda_i \) are regular elements of \(t^* \).

Lemma 3.12. — \([v_{\lambda_i} \otimes v_{\lambda_i}^*] \in X_P \) if and only if \(\lambda_i \) is a vertex of the polytope \(P \).

Proof. — If \(\lambda_i \) is a vertex of \(P \), we have proved in Lemma 3.10 that \([v_{\lambda_i} \otimes v_{\lambda_i}^*] \) belongs to \(\mathcal{Y}_P \) and so belongs to \(X_P \). We shall prove the converse in Corollary 3.17. \(\square \)

For the remainder of this section we consider a vertex \(\lambda_{i_o} \in \hat{R} \) of the polytope \(P \). Let \(B^+, B^- \) be the subgroups fixing respectively the elements \([v_{\lambda_{i_o}}] \in \mathbb{P}(V_{\lambda_i}) \) and \([v_{\lambda_{i_o}}^*] \in \mathbb{P}(V_{\lambda_i}^*) \): since \(\lambda_{i_o} \) is regular, \(B^+ \) and \(B^- \) are
We consider the open subset \(V_{\text{End}} \subset \mathbb{P}(E) \) of elements \([f]\) such that \(\langle v_{\lambda_{io}}^*, f(v_{\lambda_{io}}) \rangle \neq 0\): \(V_{\text{End}} \) is a \(B^- \times B^+ \)-stable neighborhood of \([v_{\lambda_{io}} \otimes v_{\lambda_{io}}^*]\). Consider the open subsets \(V \subset \mathbb{P}(V_{\lambda_{io}}) \) and \(V^* \subset \mathbb{P}(V_{\lambda_{io}}^*) \) defined by:

- \([v] \in V \iff \langle v_{\lambda_{io}}^*, v \rangle \neq 0\): \(V \) is \(B^- \) stable,
- \([\xi] \in V^* \iff \langle \xi, v_{\lambda_{io}} \rangle \neq 0\): \(V^* \) is \(B^+ \) stable.

We define now the rational maps \(l : \mathbb{P}(E) \rightarrow \mathbb{P}(V_{\lambda_{io}}), [f] \mapsto [f(v_{\lambda_{io}})] \) and \(r : \mathbb{P}(E) \rightarrow \mathbb{P}(V_{\lambda_{io}}^*), [f] \mapsto [v_{\lambda_{io}}^* \circ f] \). The maps \(l \) and \(r \) are defined on \(V_{\text{End}} \): they define respectively a \(B^- \)-equivariant map from \(V_{\text{End}} \) to \(V \), and a \(B^+ \)-equivariant map from \(V_{\text{End}} \) to \(V^* \).

The orbits \(K_C \cdot [v_{\lambda_{io}}] \subset \mathbb{P}(V_{\lambda_{io}}) \) and \(K_C \cdot [v_{\lambda_{io}}^*] \subset \mathbb{P}(V_{\lambda_{io}}^*) \) are closed and we have

\[
K_C \cdot [v_{\lambda_{io}}] \cap V = N^- \cdot [v_{\lambda_{io}}] \simeq N^- \\
K_C \cdot [v_{\lambda_{io}}^*] \cap V^* = N^+ \cdot [v_{\lambda_{io}}^*] \simeq N^+.
\]

The rational map \((l, r) : \mathbb{P}(E) \rightarrow \mathbb{P}(V_{\lambda_{io}}) \times \mathbb{P}(V_{\lambda_{io}}^*) \) then induces a map

\[
g : V_{\text{End}} \cap \chi_P \rightarrow N^- \times N^+
\]

which is \(N^- \times N^+ \)-equivariant: \(q((n^-, n^+) \cdot x) = (n^-, n^+) \cdot q(x) \) for \(x \in V_{\text{End}} \cap \chi_P \), and \(n^\pm \in N^\pm \).

We can now finish the proof. The set \(N^- T_C N^+ \subset K_C \) is dense in \(K_C \), so it is now easy to see that the map

\[
N^- \times N^+ \times (\mathcal{Y}_P \cap V_{\text{End}}) \longrightarrow \chi_P \cap V_{\text{End}} \\
(n^-, n^+, y) \longmapsto (n^-, n^+) \cdot y
\]

is a diffeomorphism. We proved above that \(\mathcal{Y}_P \cap V_{\text{End}} \) is a smooth affine variety, hence \(\chi_P \) is smooth near \([v_{\lambda_{io}} \otimes v_{\lambda_{io}}^*] \in \chi_P \cap V_{\text{End}} \). Lemma 3.9 then tells us that \(\chi_P \) is a smooth variety.

3.3. Hamiltonian actions

First consider a Hermitian vector space \(V \). The Hermitian structure on \(\text{End}(V) \) is \((A, B) := \text{Tr}(AB^*)\), hence the associated symplectic structure on \(\text{End}(V) \) is defined by the relation \(\Omega_{\text{End}}(A, B) := -\text{Im}(\text{Tr}(AB^*)) \).

Let \(U(V) \) be the unitary group and \(u(V) \) its Lie algebra. We will use the identification \(\epsilon : u(V) \simeq u(V)^*, X \mapsto \epsilon_X \) where \(\epsilon_X(Y) = -\text{Tr}(XY) \). The
action of $U(V) \times U(V)$ on $\mathrm{End}(V)$ is $(g, h) \cdot A = gAh^{-1}$. The moment map relative to this action is

$$\begin{array}{c}
\mathrm{End}(V) \rightarrow u(V)^* \times u(V)^* \\
A \mapsto - \frac{1}{2} (iAA^*, -iA^*A) .
\end{array}$$

We now consider the projective space $\mathbb{P}(\mathrm{End}(V))$ equipped with the Fubini-Study symplectic form Ω_{FS}. Here the action of $U(V) \times U(V)$ on $\mathbb{P}(\mathrm{End}(V))$ is Hamiltonian with moment map

$$\begin{array}{c}
\mathbb{P}(\mathrm{End}(V)) \rightarrow u(V)^* \times u(V)^* \\
[A] \mapsto - \frac{1}{\|A\|^2} (\pi_K(iAA^*), -\pi_K(iA^*A)).
\end{array}$$

where $\|A\|^2 = \mathrm{Tr}(AA^*)$ (see [27], Section 7). If $\rho : K \hookrightarrow U(V)$ is a closed connected Lie subgroup, we can consider the action of $K \times K$ on $\mathbb{P}(\mathrm{End}(V))$. Let $\pi_K : u(V)^* \rightarrow \mathfrak{t}^*$ be the projection which is dual to the inclusion $\rho : \mathfrak{t} \hookrightarrow u(V)$. The moment map for the action of $K \times K$ on $(\mathbb{P}(\mathrm{End}(V)), \Omega_{FS})$ is then

$$(3.6) \quad \mathbb{P}(\mathrm{End}(V)) \rightarrow \mathfrak{t}^* \times \mathfrak{t}^*$$

$$[A] \mapsto \frac{1}{\|A\|^2} (\pi_K(iAA^*), -\pi_K(iA^*A)).$$

Here we are interested in

- the projective variety $\mathcal{X}_P \subset \mathbb{P}(\mathrm{End}(V))$ with the action of $K \times K$,
- the projective variety $\mathcal{Y}_P \subset \mathbb{P}(\mathrm{End}(V))$ with the action of $T \times T$,

where $V = \bigoplus_{i=1}^N V_{\lambda_i}$. The Fubini-Study two-form restricts to symplectic forms on \mathcal{X}_P and \mathcal{Y}_P. The action of $K \times K$ on \mathcal{X}_P is Hamiltonian with moment map

$$(3.7) \quad \Phi_{K \times K} : \mathcal{X}_P \rightarrow \mathfrak{t}^* \times \mathfrak{t}^*$$

$$[x] \mapsto \frac{1}{\|x\|^2} (\pi_K(ixx^*), -\pi_K(ix^*x)).$$

Since the diagonal $Z = \{(t, t) | t \in T\}$ acts trivially on \mathcal{Y}_P we restrict ourselves to the action of $T \times T / Z \simeq T$ on \mathcal{Y}_P. Let us compute the moment map $\Phi_T : \mathcal{Y}_P \rightarrow \mathfrak{t}^*$ associated to this action. First we have

$$(3.8) \quad \Phi_T([y]) = \frac{\pi_T(iy^*y)}{\|y\|^2} = \frac{\pi_T(iyy^*)}{\|y\|^2}$$

where $\pi_T : u(V)^* \rightarrow \mathfrak{t}^*$ is the projection which is dual to $\rho : \mathfrak{t} \rightarrow u(V)$. Since $\rho(X) = i \sum_{j \in J} \alpha_j(X)v_j \otimes v_j^*$, a small computation shows that for
B ∈ u(V) ∼= u(V)∗ we have πT(B) = −i∑j∈J(Bv,j,v)aj. Finally for any [y] ∈ YP we get

$$\Phi_T([y]) = \sum_{j \in J} \frac{\|y v_j\|^2}{\|y\|^2} \alpha_j.$$

Together with the action of T, we also have an action of the Weyl group

$$W = N(T)/T$$
on YP: for \(\bar{w}\) \in W we take

$$(3.9) \quad \bar{w} \cdot [y] = [\rho(w) \circ y \circ \rho(w)^{-1}], \quad [y] \in Y_P.$$

This action is well defined since the diagonal \(Z \subset T \times T\) acts trivially on \(Y_P\). The set of weights \(\{\alpha_j, j \in J\}\) is stable under the action of \(W\), hence it is easy to verify that the map \(\Phi_T\) is \(W\)-equivariant.

A dense part of \(Y_P\) is formed by the elements \(e^Z \cdot [\text{Id}] = [\rho(e^Z)]\) with \(Z = X + iY \in \mathfrak{t}_C\). We have \(\Phi_T(e^Z \cdot [\text{Id}]) = \psi_T(Y) \in \mathfrak{t}^*\) with

$$(3.10) \quad \psi_T(Y) = \frac{1}{\sum_{j \in J} e^{-2(\alpha_j,Y)}} \sum_{j \in J} e^{-2(\alpha_j,Y)} \alpha_j.$$

Hence the image of the moment map \(\Phi_T : Y_P \rightarrow \mathfrak{t}^*\) is equal to the closure of the image of the map \(\psi_T : \mathfrak{t} \rightarrow \mathfrak{t}^*\).

Proposition 3.13. — The map \(\psi_T\) realizes a diffeomorphism between \(\mathfrak{t}\) and the interior of the polytope \(P \subset \mathfrak{t}^*\).

Proof. — Consider the function \(F_T : \mathfrak{t} \rightarrow \mathbb{R}, F_T(Y) = \ln \left(\sum_j e^{\langle \alpha_j, Y \rangle}\right)\), and let \(L_T : \mathfrak{t} \rightarrow \mathfrak{t}^*\) be its Legendre transform: \(L_T(X) = dF_T|_X\). Note that we have \(L_T(-2Y) = \psi_T(Y)\).

We see that \(F_T\) is strictly convex. So, it is a classical fact that \(L_T\) realizes a diffeomorphism of \(\mathfrak{t}\) onto its image, and for \(\xi \in \mathfrak{t}^*\) we have

$$\xi \in \text{Image}(L_T) \iff \lim_{Y \rightarrow \infty} F_T(Y) - \langle \xi, Y \rangle = \infty$$

$$\iff \lim_{Y \rightarrow \infty} \sum_{j \in J} e^{\langle \alpha_j - \xi, Y \rangle} = \infty.$$

In order to conclude we need the following

Lemma 3.14. — Let \(\{\beta_j, j \in J\}\) be a sequence of elements of \(\mathfrak{t}^*\), and let \(Q\) be its convex hull. We have

$$\lim_{Y \rightarrow \infty} \sum_{j \in J} e^{\langle \beta_j, Y \rangle} = \infty \iff 0 \in \text{Interior}(Q).$$
Proof. — First we see that $0 \notin \text{Interior}(Q)$ if and only there exists $v \in t - \{0\}$ such that $\langle \beta_j, v \rangle \leq 0$ for all j: for such a vector v, the map $t \to \sum_{j \in J} e^{t \langle \beta_j, v \rangle}$ is bounded for $t \geq 0$. Suppose now that $\lim_{Y \to \infty} \sum_{j \in J} e^{t \langle \beta_j, Y \rangle} \neq \infty$. Then there exists a sequence $(X_k)_k \in t$ such that $\lim_k |X_k| = \infty$ and for all j the sequence $(\langle \beta_j, X_k \rangle)_k$ remains bounded from above. If v is a limit of a sub-sequence of $(\frac{X_k}{|X_k|})_k$ we have then $\langle \beta_j, v \rangle \leq 0$ for all j.

Lemma 3.15. — For $[y] \in \mathcal{Y}_P$ we have $\Phi_{K \times K}([y]) = (\Phi_T([y]), -\Phi_T([y]))$.

Proof. — It is sufficient to consider the case

$$y = \rho(e^Z) = \sum_{j \in J} e^{i\langle \alpha_j, Z \rangle} v_j \otimes v_j^*, \text{ for } Z = X + iY \in t_C.$$

Then $yy^* = y^*y = \sum_{j \in J} e^{-2\langle \alpha_j, Y \rangle} v_j \otimes v_j^* = \rho(e^{2iY})$. So what remains to prove is that $\pi_K(iyy^*) = \pi_T(iyy^*)$. We have to check that $\langle \pi_K(iyy^*), [U, V] \rangle = 0$ for $U \in t$ and $V \in t$

$$\langle \pi_K(iyy^*), [U, V] \rangle = -i \text{ Tr} \left(yy^* \rho([U, V]) \right) = -i \text{ Tr} \left(\rho(e^{2iY}) \rho(U) \rho(V) \right) = -i \text{ Tr} \left([\rho(e^{2iY}), \rho(U)] \rho(V) \right) = 0.$$

Theorem 3.16. — We have

- $\text{Image}(\Phi_T) = P$,
- $\text{Image}(\Phi_{K \times K}) = \{ (k_1 \cdot \xi, -k_2 \cdot \xi) \mid \xi \in P \text{ and } k_1, k_2 \in K \}$,
- $\mathcal{Y}_P \subset \Phi_{K \times K}^{-1}(t^* \times t^*)$,
- $\Phi_{K \times K}^{-1}(\text{interior}(C)) \subset \mathcal{Y}_P$, where $C = C_K \times -C_K$.

Proof. — The first point follows from Proposition 3.13. Since the map $(k_1, t_2, k_2) \mapsto k_1tk_2$ from $K \times T_C \times K$ to K_C is onto, we have

$$\mathcal{X}_P = (K \times K) \cdot \mathcal{Y}_P.$$

So if $[x] \in \mathcal{X}_P$, there exist $[y] \in \mathcal{Y}$ and $k_1, k_2 \in K$ such that $[x] = (k_1, k_2) \cdot [y]$, hence

$$\Phi_{K \times K}([x]) = (k_1, k_2) \cdot \Phi_{K \times K}([y]) = (k_1 \cdot \Phi_T([y]), -k_2 \cdot \Phi_T([y])).$$

The second point is proved. The third point follows also from the identity (3.12) when $k_1 = k_2 = e$. Consider now $[x] = (k_1, k_2) \cdot [y]$ such that $\Phi_{K \times K}([x])$ belongs to the interior of the cone $C_K \times -C_K$. Then $k_1 \cdot \Phi_T([y])$
and \(k_2 \cdot \Phi_T([y])\) are regular points of \(C_K\). This implies that \(k_1, k_2 \in N(T)\) and \(k_2 k_1^{-1} \in T\). So

\[
[x] = (k_1, k_2) \cdot [y] = (e, k_2 k_1^{-1}) \cdot ((k_1, k_1) \cdot [y]) \in \mathcal{Y}_P
\]

since \(\mathcal{Y}_P\) is stable under the actions of \(T \times T\) and \(W\).

Let \(O_i\) be the closed \(K_C \times K_C\)-orbit in \(\mathbb{P}(E)\) passing through \([v_{\lambda_i} \otimes v_{\lambda_i}^*]\), where \(v_{\lambda_i} \in V_{\lambda_i}\) is a highest weight vector and \(\lambda_i\) is regular dominant weight.

Corollary 3.17. — If \(O_i \subset \mathcal{X}_P\) then \(\lambda_i\) is a vertex of the polytope \(P\).

Proof. — Let \(x = v_{\lambda_i} \otimes v_{\lambda_i}^*\), and suppose that \([x]\) belongs to \(\mathcal{X}_P\). In order to show that \([x]\) belongs to \(\mathcal{Y}_P\), we compute \(\Phi_{K \times K}([x])\). We see that \(xx^* = x^* x = x\) and \(\|x\| = 1\), so \(\Phi_{K \times K}([x]) = (\pi_K(ix), -\pi_K(ix))\). For \(X \in \mathfrak{k}\) we have

\[
\langle \pi_K(ix), X \rangle = -i \ \text{Tr} \left(v_{\lambda_i} \otimes v_{\lambda_i}^* \rho(X) \right) = -i \ (\rho(X)v_{\lambda_i}, v_{\lambda_i}) = \langle \lambda_i, X \rangle.
\]

We then have \(\Phi_{K \times K}([x]) = (\lambda_i, -\lambda_i)\) with \(\lambda_i\) being a regular point of \(C_K\): then the last point of Theorem 3.16 shows that \([x] \in \mathcal{Y}_P\). Now we can conclude with the help of Lemma 3.10. Since \([v_{\lambda_i} \otimes v_{\lambda_i}^*]\) belongs to \(\mathcal{Y}_P\), the weight \(\lambda_i\) is a vertex of the polytope \(P\).

Remark 3.18. — In this section, Theorem 3.16 was obtained without using the fact that the varieties \(\mathcal{X}_P\) and \(\mathcal{Y}_P\) are smooth. Hence Corollary 3.17 can be used to prove the smoothness of \(\mathcal{X}_P\) (cf. Lemma 3.12).

3.4. Symplectic cutting

Let \((M, \Omega_M, \Phi_M)\) be a Hamiltonian \(K\)-manifold. At this stage the moment map \(\Phi_M\) is not assumed to be proper. We also consider the Hamiltonian \(K \times K\)-manifold \(\mathcal{X}_P\) associated to a \(K\)-adapted polytope \(P\).

The purpose of this section is to define a symplectic cutting of \(M\) which uses \(\mathcal{X}_P\). The notion of symplectic cutting was introduced by Lerman in [22] in the case of a torus action. Later Woodward [36] extended this procedure to the case of a non-abelian group action (see also [25, 26]). The method of symplectic cutting that we define in this section is different from that of Woodward.
We have two actions of K on \mathcal{X}_P: the action from the left (resp. right), denoted \cdot_l (resp. \cdot_r), with moment map $\Phi_l : \mathcal{X}_P \to \mathfrak{k}^*$ (resp. Φ_r). We consider now the product $M \times \mathcal{X}_P$ with
- the action $k \cdot_1 (m, x) = (k \cdot m, k \cdot_r x)$: the corresponding moment map is $\Phi_1(m, x) = \Phi_M(m) + \Phi_r(x)$,
- the action $k \cdot_2 (m, x) = (m, k \cdot_l x)$: the corresponding moment map is $\Phi_2(m, x) = \Phi_l(x)$.

Definition 3.19. — We denote M_P the symplectic reduction at 0 of $M \times \mathcal{X}_P$ for the action \cdot_1: $M_P := (\Phi_1)^{-1}(0)/K$.

Note that M_P is compact when Φ_M is proper. The action \cdot_2 on $M \times \mathcal{X}_P$ induces an action of K on M_P. The moment map Φ_2 induces an equivariant map $\Phi_{M_P} : M_P \to \mathfrak{k}^*$. Let $Z \subset (\Phi_1)^{-1}(0)$ be the set of points where (K, \cdot_1) has a trivial stabilizer.

Definition 3.20. — We denote M'_P the quotient $Z/K \subset M_P$.

M'_P is an open subset of smooth points of M_P which is invariant under the K-action. The symplectic structure of $M \times \mathcal{X}_P$ induces a canonical symplectic structure on M'_P that we denote $\Omega_{M'_P}$. The action of K on $(M'_P, \Omega_{M'_P})$ is Hamiltonian with moment map equal to the restriction of $\Phi_{M_P} : M_P \to \mathfrak{k}^*$ to M'_P.

We start with the easy

Lemma 3.21. — The image of $\Phi_{M_P} : M_P \to \mathfrak{k}^*$ is equal to the intersection of the image of $\Phi_M : M \to \mathfrak{k}^*$ with $K \cdot P$.

Let $\mathcal{U}_P = K \cdot \text{Interior}(P) \subset K \cdot P$. We will show now that the open and dense subset $\Phi_{M_P}^{-1}(\mathcal{U}_P)$ of M_P is contained in M'_P. Afterwards we will prove that $\Phi_{M_P}^{-1}(\mathcal{U}_P)$ is quasi-symplectomorphic to the open subset $\Phi_{M_P}^{-1}(\mathcal{U}_P)$ of M.

We consider the open and dense subset of \mathcal{X}_P which is equal to the open orbit $\bar{\rho}(K_C)$. From Lemma 3.5, we know that

$$\Theta : K \times \mathfrak{k} \longrightarrow \bar{\rho}(K_C)$$

$$(k, X) \longmapsto [\rho(k e^{iX})]$$

is a diffeomorphism. Via Θ, the action of $K \times K$ on $K \times \mathfrak{k}$ is $k \cdot_1 (a, X) = (ka, X)$ for the action “from the left” and $k \cdot_r (a, X) = (ak^{-1}, k \cdot X)$ for the action “from the right”.

TOME 59 (2009), FASCICULE 1
We now consider the map $\psi_K : \mathfrak{k} \rightarrow \mathfrak{k}^*$ defined by $\psi_K(X) = \Phi_l(\rho(e^{iX}))$. In other words,

$$\psi_K(X) = \frac{\pi_K(i\rho(e^{i2X}))}{\text{Tr}(\rho(e^{i2X}))}.$$

Consider the function $F_K : \mathfrak{k} \rightarrow \mathbb{R}$, $F_K(X) = \ln(\text{Tr}(\rho(e^{-iX})))$. Let $L_K : \mathfrak{k} \rightarrow \mathfrak{k}^*$ be its Legendre transform.

Proposition 3.22.

- We have $\psi_K(X) = L_K(-2X)$, for $X \in \mathfrak{k}$.
- The function F_K is strictly convex.
- The map ψ_K realizes an equivariant diffeomorphism between \mathfrak{k} and U_P.
- The image of $\Phi_l : X_P \rightarrow \mathfrak{k}^*$ is equal to the closure of U_P.
- $\Phi_l^{-1}(U_P) = \overline{\rho(K_C)}$.

Proof. — For $X, Y \in \mathfrak{k}$ we consider the function $\tau(s) = F_K(X + sY)$. Since F_K is K-invariant we can restrict our computation to the case where $X \in \mathfrak{t}$. We will use the decomposition of $Y \in \mathfrak{k}$ relatively to the T-weights on \mathfrak{k}_C: $Y = \sum \alpha Y_\alpha$ where $\text{ad}(Z)Y_\alpha = i\alpha(Z)Y_\alpha$ for any $Z \in \mathfrak{t}$, and $Y_0 \in \mathfrak{t}$. We have

$$\tau'(s) = \frac{-i}{\text{Tr}(\rho(e^{-iX_s}))} \text{Tr} \left(\rho(e^{-iX_s}) \rho \left(\frac{e^{i\text{ad}(X_s)}}{i\text{ad}(X_s)} - 1 \right) Y \right)$$

$$= \frac{-i}{\text{Tr}(\rho(e^{-iX_s}))} \text{Tr} \left(\rho(e^{-iX_s}) \rho(Y) \right)$$

$$= \frac{1}{\text{Tr}(\rho(e^{-iX_s}))} \langle \pi_K(i\rho(e^{-iX_s})), Y \rangle$$

where $X_s = X + sY$. Since by definition $\tau'(0) = \langle L_K(X), Y \rangle$, the first point is proved. For the second derivative we have

$$\tau''(0) = -\left(\frac{\text{Tr}(\rho(e^{-iX})\rho(iY))}{\text{Tr}(\rho(e^{-iX}))} \right)^2 + \frac{\text{Tr} \left(\rho(e^{-iX}) \rho \left(\frac{e^{i\text{ad}(X)}}{i\text{ad}(X)} - 1 \right) Y \rho(iY) \right)}{\text{Tr}(\rho(e^{-iX}))}$$

$$= R_1 + R_2$$

where

$$R_1 = \frac{\text{Tr} \left(\rho(e^{-iX}) \rho(iY_0) \rho(iY_0) \right)}{\text{Tr}(\rho(e^{-iX}))} - \left(\frac{\text{Tr}(\rho(e^{-iX}) \rho(iY_0))}{\text{Tr}(\rho(e^{-iX}))} \right)^2$$

$$= \frac{\sum_j e^{-\langle \alpha_j, X \rangle} \langle \alpha_j, Y_0 \rangle^2}{\sum_j e^{-\langle \alpha_j, X \rangle}} - \left(\frac{\sum_j e^{-\langle \alpha_j, X \rangle} \langle \alpha_j, Y_0 \rangle}{\sum_j e^{-\langle \alpha_j, X \rangle}} \right)^2$$
and
\[
R_2 = \frac{1}{\text{Tr}(\rho(e^{-iX}))} \sum_{\alpha \neq 0, \beta \neq 0} \frac{e^{-\langle \alpha, X \rangle} - 1}{-\langle \alpha, X \rangle} \text{Tr} \left(\rho(e^{-iX})\rho(iY_\alpha)\rho(iY_\beta) \right)
\]
\[
= \frac{1}{\text{Tr}(\rho(e^{-iX}))} \sum_{\alpha \neq 0, j} \frac{e^{-\langle \alpha, X \rangle} - 1}{-\langle \alpha, X \rangle} e^{-\langle \alpha_j, X \rangle} \|\rho(Y_\alpha)v_j\|^2.
\]

It is now easy to see that \(R_1 \) and \(R_2 \) are nonnegative and that \(R_1 + R_2 > 0\) if \(Y \neq 0\). We have proved that \(F_K\) is strictly convex. So, its Legendre transform \(L_K\) realizes a diffeomorphism of \(\mathfrak{k}\) onto its image. Using the first point we know that \(\psi_K\) realizes a diffeomorphism of \(\mathfrak{k}\) onto its image. The map \(\psi_K\) is equivariant and coincides with \(\psi_T\) on \(\mathfrak{t}\). We have proved in Proposition 3.13 that the image of \(\psi_T\) is equal to the interior of \(P\), hence the image of \(\psi_K\) is \(U_P\).

For the last two points we first remark that
\[
(3.14) \quad \Phi_I(\rho(ke^{iX})) = k \cdot \psi_K(X)
\]

hence the image of \(\Phi_I\) is the closure of \(U_P\). If we use the fact that \(\psi_K\) is a diffeomorphism from \(\mathfrak{k}\) onto \(U_P\), (3.14) shows that \(\Phi_I^{-1}(K \cdot \xi) \cap \tilde{\rho}(K_C)\) is a non empty and closed subset of \(\Phi_I^{-1}(K \cdot \xi)\) for any \(\xi \in U_P\) (in fact it is a \(K \times K\)-orbit). On the other hand \(\Phi_I^{-1}(K \cdot \xi) \cap (\mathcal{X}_P \setminus \tilde{\rho}(K_C))\) is also a closed subset of \(\Phi_I^{-1}(K \cdot \xi)\) since \(\tilde{\rho}(K_C)\) is open in \(\mathcal{X}_P\). Since \(\Phi_I^{-1}(K \cdot \xi)\) is connected the second subset is empty: in other words \(\Phi_I^{-1}(K \cdot \xi) \subset \tilde{\rho}(K_C)\).

We introduce now the equivariant diffeomorphism
\[
(3.15) \quad \Upsilon : K \times U_P \longrightarrow \tilde{\rho}(K_C)
\]
\[
(k, \xi) \longmapsto \Theta(k, \psi_K^{-1}(\xi)).
\]

We now consider \(K \times U_P\) equipped with the symplectic structure \(\Upsilon^*(\Omega_{\mathcal{X}_P})\), and the Hamiltonian action of \(K \times K\): the moment maps satisfy
\[
(3.16) \quad \Upsilon^*(\Phi_I)(k, \xi) = k \cdot \xi \text{ and } \Upsilon^*(\Phi_T)(k, \xi) = -\xi.
\]

Proposition 3.23. — We have
\[
\Upsilon^*(\Omega_{\mathcal{X}_P}) = d\lambda + d\eta
\]
where \(\lambda\) is the Liouville 1-form on \(K \times \mathfrak{k}^* \simeq T^*K\) and \(\eta\) is an invariant 1-form on \(U_P \subset \mathfrak{k}^*\) which is killed by the vectors tangent to the \(K\)-orbits.

Proof. — Let \(E_1, \ldots, E_r\) be a basis of \(\mathfrak{k}\), with dual basis \(\xi^1, \ldots, \xi^r\). Let \(\omega^i\) the 1-form on \(K\), invariant by left translation and equal to \(\xi^i\) at the identity. The Liouville 1-form is \(\lambda = -\sum_{i} \omega^i \otimes E_i\). For \(X \in \mathfrak{k}\) we denote \(X_l(k, \xi) = \frac{d}{dt}|_{t=0} e^{-tX} \cdot l(k, \xi)\) and \(X_r(k, \xi) = \frac{d}{dt}|_{t=0} e^{-tX} \cdot r(k, \xi)\) the vector
fields generated by the action of $K \times K$. Since $\iota(X) d\lambda = -d(\Phi_t, X)$ and $\iota(X_r) d\lambda = -d(\Phi_r, X)$, the closed invariant 2-form $\beta = \Upsilon^* (\Omega_{\Phi_r}) - d\lambda$ is $K \times K$ invariant and is killed by the vectors tangent to the orbits: (*) $
abla^*(\Phi_r)$.

We have $\iota(X) \beta = \iota(X_r) \beta = 0$ for all $X \in \mathfrak{k}$. We have $\beta = \beta_2 + \beta_1 + \beta_0$ where $\beta_2 = \sum_{i,j} a_{ij} (\xi) \omega^i \wedge \omega^j$, $\beta_1 = \sum_{i,j} b_{ij} (\xi) \omega^i \wedge dE_j$, and β_0 is an invariant 2-form on U_P. The equalities (*) gives $\iota(X) \beta_2 = \iota(X) \beta_1 = 0$ which imply that $\beta_2 = \beta_1 = 0$. So $\beta = \beta_0$ is a closed invariant 2-form on U_P which is killed by the vectors tangent to the K-orbits. Since U_P admits a retraction to $\{0\}$, $\beta = d\eta$ where η is an invariant 1-form on U_P which is killed by the vectors tangent to the K-orbits.

If $(m, x) \in M \times X_P$ belongs to $\Phi_1^{-1}(0)$, we denote $[m, x]$ the corresponding element in M_P. By definition we have $\Phi_{M_P}([m, x]) = \Phi_t(x)$ for $[m, x] \in M_P$, hence the image of Φ_{M_P} is included in the closure of U_P. We see also that $[m, x] \in \Phi_{M_P}^{-1}(U_P)$ if and only if $x \in \Phi_{M_P}^{-1}(U_P) = \rho(K_C)$. Since (K, \cdot, r) acts freely on $\rho(K_C)$, we see that $(K, \cdot, 1)$ acts freely on $\Phi^{-1}_{M_P}(U_P)$: the open and dense set $\Phi_{M_P}^{-1}(U_P) \subset M_P$ is then contained in M_P.

Now, we can state our main result which compares the open invariant subsets $\Phi_M^{-1}(U_P) \subset M$ and $\Phi_{M_P}^{-1}(U_P) \subset M_P$ equipped respectively with the symplectic structures Ω_M and Ω_{M_P}.

Theorem 3.24. — $\Phi_{M_P}^{-1}(U_P)$ is an open and dense subset of smooth points in M_P. There exists an equivariant diffeomorphism $\Psi : \Phi_{M_P}^{-1}(U_P) \to \Phi_{M_P}^{-1}(U_P)$ such that

$$\Psi^* (\Omega_{M_P}) = \Omega_M + d\Phi_M^* \eta.$$

Here η is an invariant 1-form on U_P which is killed by the vectors tangent to the K-orbits. Moreover the path $\Omega^t = \Omega_M + t d\Phi_M^* \eta$, defines a homotopy of symplectic 2-forms between Ω_M and $\Psi^* (\Omega_{M_P}).$

Remark 3.25. — The map Ψ will be called a quasi-symplectomorphism.

Proof. — Consider the immersion

$$\psi : \Phi_{M}^{-1}(U_P) \longrightarrow M \times X_P,$$

$$m \longmapsto (m, \Upsilon(e, \Phi_M(m))).$$

We have $\Phi_1(\psi(m)) = \Phi_M(m) + \Upsilon^* \Phi_r(e, \Phi_M(m)) = 0$, and $\Phi_2(\psi(m)) = \Upsilon^* \Phi_t(e, \Phi_M(m)) = \Phi_M(m) \in U_P$ (see (3.16)). Hence for all $m \in \Phi_{M}^{-1}(U_P)$, we have $\psi(m) \in \Phi_{M}^{-1}(0)$, and its class $[\psi(m)] \in M_P$ belongs to $\Phi_{M_P}^{-1}(U_P)$.

We denote $\Psi : \Phi_{M}^{-1}(U_P) \to \Phi_{M_P}^{-1}(U_P)$ the map $m \mapsto [\psi(m)]$. Let us show that it defines a diffeomorphism. If $\Psi(m) = \Psi(m')$, there exists $k \in K$ such
that
\[(m, \Upsilon(e, \Phi_M(m))) = k \cdot 1 (m', \Upsilon(e, \Phi_M(m'))) \]
\[= (k \cdot m', k \cdot \Upsilon(e, \Phi_M(m'))) \]
\[= (k \cdot m', \Upsilon(k^{-1}, k \cdot \Phi_M(m'))) \].

Since \(\Upsilon \) is a diffeomorphism, we must have \(k = e \) and \(m = m' \): the map \(\Psi \) is one to one. Consider now \((m, x) \in \Phi^{-1}_1(0)\) such that \(\Phi_{M_p}([m, x]) = \Phi_{t}(x) \in \mathcal{U}_P \): then \(x \in \Phi^{-1}_1(\mathcal{U}_P) = \tilde{\rho}(K_C) = \text{Image}(\Upsilon) \). We have \(x = \Upsilon(k, \xi) \) where \(\xi = -\Phi_r(x) = \Phi_M(m) \). Finally
\[(m, x) = (m, \Upsilon(k, \Phi_M(m))) \]
\[= k^{-1} \cdot 1 (k \cdot m, \Upsilon(e, k \cdot \Phi_M(m))) \]
\[= k^{-1} \cdot 1 \psi(k \cdot m). \]

We have proved that \(\Psi \) is onto.

In order to show that \(\Psi \) is a submersion we must show that for \(m \in \Phi_{M}^{-1}(\mathcal{U}_P) \)
\[\text{Image}(T_m\psi) \oplus T_{\psi(m)}(K \cdot 1 \psi(m)) = T_{\psi(m)}\Phi^{-1}_1(0). \]

Here \(T_m\psi : T_mM \rightarrow T_{\psi(m)}(M \times \mathcal{X}_P) \) is the tangent map, and \(T_{\psi(m)}(K \cdot 1 \psi(m)) \) denotes the tangent space at \(\psi(m) \) of the \((K, \cdot 1)\)-orbit. We have \(\dim(\text{Image}(T_m\psi)) + \dim(T_{\psi(m)}(K \cdot 1 \psi(m))) = \dim(T_{\psi(m)}\Phi^{-1}_1(0)) \) so it is sufficient to prove that
\[\text{Image}(T_m\psi) \cap T_{\psi(m)}(K \cdot 1 \psi(m)) = \{0\}. \]

Consider \((v, w) \in \text{Image}(T_m\psi) \cap T_{\psi(m)}(K \cdot 1 \psi(m)) \). There exists \(X \in \mathfrak{X} \) such
\[(v, w) = \frac{\partial}{\partial t} \Upsilon(e, \Phi_M(e^{tX} \cdot m)) \]
\[= \frac{\partial}{\partial t} e^{tX} \cdot m \]
\[= \frac{\partial}{\partial t} e^{tX} \cdot \Upsilon(e, \Phi_M(m)). \]

On the other hand, since \((v, w) \in \text{Image}(T_m\psi), \) we have
\[w = \frac{\partial}{\partial t} \Upsilon(e, \Phi_M(e^{tX} \cdot m)). \]

Since \(e^{tX} \cdot \Upsilon(e, \Phi_M(m)) = \Upsilon(e^{-tX}, \Phi_M(e^{tX} \cdot m)) \) we obtain that
\[\frac{\partial}{\partial t} \Upsilon(e^{-tX}, \Phi_M(e^{tX} \cdot m)) = \frac{\partial}{\partial t} \Upsilon(e, \Phi_M(e^{tX} \cdot m)), \]
or in other words \(\frac{\partial}{\partial t} \Upsilon(e^{-tX}, \Phi_M(m)) = 0 \). Since \(\Upsilon \) is a diffeomorphism we have \(X = 0 \), and then \((v, w) = 0\).
We can now compute the pull-back by Ψ of the symplectic form $\Omega_{M'}$. We have
\[\Psi^*(\Omega_{M'}) = \psi^*(\Omega_M + \Omega_{X_P}) = \Omega_M + \Phi_M^* \Upsilon^*(\Omega_{X_P}) = \Omega_M + d\Phi_M^* \eta.\]

It remains to prove that for every $t \in [0, 1]$, the 2-form $\Omega^t = \Omega_M + td\Phi_M^* \eta$ is non-degenerate. Take $t \neq 0$, $m \in \Phi_M^{-1}(U_P)$ and suppose that the contraction of $\Omega^t|_m$ by $v \in T_m M$ is equal to 0. For every $X \in \mathfrak{t}$ we have
\[0 = \Omega^t(X_M(m), v) = -\iota(v)d(\Phi_M, X)|_m + t\iota(v)d(X_M)d\Phi_M^* \eta|_m = -\iota(v)d(\Phi_M, X)|_m,
\]
since $\iota(X_M)d\Phi_M^* \eta = d\Phi_M^*(\iota(X_P) \eta) = 0$. Thus we have $T_m \Phi_M(v) = 0$, and then $\iota(v)d\Phi_M^* \eta = 0$. Finally we have that $0 = \iota(v)\Omega^t|_m = \iota(v)\Omega_M|_m$. But Ω_M is non-degenerate, so $v = 0$. \hfill \Box

3.5. Formal quantization: second definition

We suppose here that the Hamiltonian K-manifold (M, Ω_M, Φ_M) is proper and admits a Kostant-Souriau line bundle L. Now we consider the complex $K \times K$-submanifold X_P of $\mathbb{P}(E)$. Since $\mathcal{O}(-1)$ is a $K \times K$-equivariant Kostant-Souriau line bundle on the projective space $\mathbb{P}(E)$ the restriction
\[(3.17) \quad L_P = \mathcal{O}(-1)|_{X_P},\]
is a Kostant-Souriau line bundle on X_P. Hence $L \boxtimes L_P$ is a Kostant-Souriau line bundle on the product $M \times X_P$. In Section 2.2 we have defined the quantization $\mathcal{Q}_K(M_P)$ of the (singular) reduced space $M_P := (M \times X_P)/\{0(K, \cdot_1)\}$.

Notation. — $O_K(r)$ will be any element $\sum_{\mu \in \mathbb{R}} m_\mu V^K_\mu$ of $R^{-\infty}(K)$ where $m_\mu = 0$ if $\|\mu\| < r$. The limit $\lim_{r \to +\infty} O_K(r) = 0$ defines the notion of convergence in $R^{-\infty}(K)$.

Proposition 3.26. — Let $\varepsilon_P > 0$ be the radius of the biggest ball center at $0 \in t^*$ which is contained in the polytope P. We have
\[(3.18) \quad \mathcal{Q}_K(M_P) = \sum_{\|\mu\| < \varepsilon_P} \mathcal{Q}(M_\mu)V^K_\mu + O_K(\varepsilon_P).\]
Proof. — Theorem 2.4—“Quantization commutes with reduction in the singular setting”—tells us that $Q_K(M_P) = \sum_{\mu \in \hat{K}} Q((M_P)_{\mu}) V^K_{\mu}$ where $(M_P)_{\mu}$ is the symplectic reduction $(M_P \times K_{\mu})/\gamma_{0}K$.

Since the image of Φ_M is equal to the intersection of $K \cdot P = \mathcal{U}_P$ with the image of Φ_M, we have $Q((M_P)_{\mu}) = 0$ if $\mu \not\in P \cap \text{Image}(\Phi_M)$. We will now exploit Theorem 3.24 to show that $Q((M_P)_{\mu}) = Q(M_{\mu})$ if μ belongs to the interior of P.

There exists a quasi-symplectomorphism Ψ between the open subset $\Phi^{-1}_M(U_P)$ of M and the open and dense subset $\Phi^{-1}_M(U_P)$ of M_P. Moreover one can see easily that the restriction of the Kostant-Souriau line bundle $L_P \to \chi_P$ to the open subset $\bar{\rho}(K_C)$ is trivial. If L_M is the Kostant-Souriau line bundle on M_P induced by $L \otimes L_P$, then the pull-back of the restriction $L_M|_{\Phi^{-1}_M(U_P)}$ by Ψ is equivariantly diffeomorphic to the restriction of L to $\Phi^{-1}_M(U_P)$.

Take now $\mu \in \hat{K}$ that belongs to the interior of the polytope P. The element $Q((M_P)_{\mu}) \in \mathbb{Z}$ is given by the index of a transversally elliptic symbol defined in a (small) neighborhood of $\Phi^{-1}_M(\mu) \subset M_P$. This symbol is defined through two auxiliary data: the Kostant-Souriau line bundle L_M and a compatible almost complex structure J which is defined in a neighborhood of $\Phi^{-1}_M(\mu)$. If we pull back everything by Ψ, we get a transversally elliptic symbol living in a (small) neighborhood of $\Phi^{-1}_M(\mu) \subset M$ which is defined by the Kostant-Souriau line bundle L and an almost complex structure J_1 compatible with the symplectic structure $\Omega_1 := \Omega_M + d\Phi^*_M\eta$. But since $\Omega_t = \Omega_M + t\Phi^*_M\eta$ defines a homotopy of symplectic structures, any almost complex structure compatible with Ω_M is homotopic to J_1. We have then shown that $Q(M_{\mu}) = Q((M_P)_{\mu})$ for any μ belonging to the interior of P. So we have

$$Q_K(M_P) = \sum_{\mu \in \text{Interior}(P)} Q(M_{\mu}) V^K_{\mu} + \sum_{\nu \in \partial P} Q((M_P)_{\nu}) V^K_{\nu}.$$

Since for $\nu \in \partial P$ we have $\|\nu\| \geq \varepsilon_P$, the last equality proves (3.18).

We work now with the dilated polytope nP, for any integer $n \geq 1$. The polytope nP is still K-adapted, so one can consider the reduced space (2) M_{nP} and Proposition 3.26 gives that

$$Q_K(M_{nP}) = \sum_{\|\mu\| < n\varepsilon_P} Q(M_{\mu}) V^K_{\mu} + O_K(n\varepsilon_P).$$

(2) These are the cut spaces denoted M_{nP} in the introduction.
for any integer \(n \geq 1 \). We can summarize the result of this section in the following

Proposition 3.27. — Let \((M, \Omega_M)\) be a pre-quantized Hamiltonian \(K \)-manifold, with a proper moment map \(\Phi_M \).

- For any integer \(n \geq 1 \), the (singular) compact Hamiltonian manifold \(M_{nP} \) contains as an open and dense subset, the open subset \(\Phi_M^{-1}(nU_P) \) of \(M \).
- We have \(Q_K^{-\infty}(M) = \lim_{n \to \infty} Q_K(M_{nP}) \).

4. Functorial properties: Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We will use in a crucial way the characterisation of \(Q^{-\infty}_K \) given in Proposition 3.27.

Let \(H \subset K \) be a closed and connected Lie subgroup. Here we consider a pre-quantized Hamiltonian \(K \)-manifold \(M \) which is proper as a Hamiltonian \(H \)-manifold. We want to compare \(Q_K^{-\infty}(M) \) and \(Q_H^{-\infty}(M) \).

For \(\mu \in \hat{K} \) and \(\nu \in \hat{H} \) we denote \(N^\mu_\nu \) the multiplicity of \(V^H_\nu \) in the restriction \(V^K_\mu|_H \). We have seen in the introduction that \(N^\mu_\nu Q(M_\mu,K) \neq 0 \) only for the \(\mu \) belonging to finite subset \(\hat{K} \cap \Phi_K(K \cdot \Phi_H^{-1}(\nu)) \). Then \(Q_K^{-\infty}(M) \) is \(H \)-admissible and we have the following equality in \(R^{-\infty}(H) \):

\[
Q_K^{-\infty}(M)|_H = \sum_{\nu \in \hat{H}} m_\nu V^K_\nu
\]

with \(m_\nu = \sum_\mu N^\mu_\nu Q(M_\mu,K) \). We will now prove that

\[
Q_K^{-\infty}(M)|_H = Q_H^{-\infty}(M).
\]

Lemma 4.1. — The restriction \(Q_K^{-\infty}(M)|_H \) is equal to \(\lim_{n \to \infty} Q_K(M_{nP})|_H \).

Proof. — Let us denote by \(P^o \) and \(\partial P \) respectively the interior and the boundary of the \(K \)-adapted polytope \(P \). We write

\[
Q_K^{-\infty}(M) = \sum_{\mu \in nP^o} Q(M_{\mu,K})V^K_\mu + \sum_{\mu \notin nP^o} Q(M_{\mu,K})V^K_\mu.
\]

On the other side

\[
Q_K(M_{nP}) = \sum_{\mu \in nP^o} Q(M_{\mu,K})V^K_\mu + \sum_{\mu \in \partial P} Q((M_{nP})_{\mu,K})V^K_\mu.
\]

So the difference \(D(n) = Q_K^{-\infty}(M) - Q_K(M_{nP}) \) is equal to

\[
D(n) = \sum_{\mu' \in \partial P} Q((M_{nP})_{\mu',K})V^K_{\mu'} + \sum_{\mu \notin nP^o} Q(M_{\mu,K})V^K_\mu.
\]
We show now that the restriction \(D(n)|_H \) tends to 0 in \(R^{-\infty}(H) \) as \(n \) goes to infinity. For this purpose, we will prove that for any \(c > 0 \) there exists \(n_c \in \mathbb{N} \) such that \(D(n)|_H = O_H(c) \) for any \(n \geq n_c \).

For \(c > 0 \) we consider the compact subset of \(\mathfrak{P}^* \) defined by

\[
K_c = \Phi_K \left(K \cdot \Phi_H^{-1}(\xi \in \mathfrak{h}^*, \|\xi\| \leq c) \right).
\]

Let \(n_c \in \mathbb{N} \) such that \(K_c \) is included in \(K \cdot (n_c P^o) \); hence \(K_c \subset K \cdot (nP^o) \) for any \(n \geq n_c \). We know that for \(\mu \in \hat{K} \), we have \(N^\mu_{\nu} Q(M_{\mu, K}) \neq 0 \) only for \(\mu \in \Phi_K \left(K \cdot \Phi_H^{-1}(\nu) \right) \), and for \(\mu' \in \hat{K} \), we have \(N^\mu_{\nu'} Q((M_{nP})_{\mu', K}) \neq 0 \) only for \(\mu' \in nP \cap \Phi_K \left(K \cdot \Phi_H^{-1}(\nu) \right) \).

Then if \(n \geq n_c \), we have

\[
N^\mu_{\nu} Q(M_{\mu, K}) = N^\mu_{\nu'} Q((M_{nP})_{\mu', K}) = 0
\]

for any \(\nu \in \hat{H} \cap \{ \xi \in \mathfrak{h}^*, \|\xi\| \leq c \} \), \(\mu \notin nP^o \) and \(\mu' \in nP \). This means that \(D(n)|_H = O_H(c) \) for any \(n \geq n_c \). \(\square \)

Since \(Q_K(M_{nP})|_H = Q_H(M_{nP}) \), we are led to the

Lemma 4.2. — The limit \(\lim_{n \to \infty} Q_H(M_{nP}) \) is equal to \(Q_H^{-\infty}(M) \).

Proof. — Theorem 2.4 – “Quantization commutes with reduction in the singular setting” – tells us that \(Q_H(M_{nP}) = \sum_{\nu \in \hat{H}} Q((M_{nP})_{\nu, H})V^\nu_H \) where \((M_{nP})_{\nu, H} \) is the symplectic reduction

\[
(M_{nP} \times \overline{H} \cdot \nu)|_0 H \cong (M \times X_{nP} \times \overline{H} \cdot \mu)|_{(0, 0)} H \times K.
\]

For \(c > 0 \) we consider the compact subset of \(\mathcal{K}_c \) defined in (4.2). Let \(n_c \in \mathbb{N} \) such that \(\mathcal{K}_c \subset K \cdot (nP^o) \) for any \(n \geq n_c \). This implies that

\[
\Phi_H^{-1}(\xi \in \mathfrak{h}^*, \|\xi\| \leq c) \subset \Phi_K^{-1}(K \cdot (nP^o))
\]

for \(n \geq n_c \). Since \(M_{nP} \) “contains” the open subset \(\Phi_K^{-1}(K \cdot (nP^o)) \), arguments similar to those used in the proof of Proposition 3.26 show that \(Q((M_{nP})_{\nu, H}) = Q(M_{\nu, H}) \) for \(\|\nu\| \leq c \) and \(n \geq n_c \). This means that

\[
Q_H(M_{nP}) = \sum_{\|\nu\| \leq c} Q(M_{\nu, H})V^\nu_H + O_H(c) \quad \text{when} \quad n \geq n_c.
\]

It follows that \(\lim_{n \to \infty} Q_H(M_{nP}) = \sum_{\nu \in \hat{H}} Q(M_{\nu, H})V^\nu_H = Q_H^{-\infty}(M). \) \(\square \)

5. The case of a Hermitian vector space

Let \((E, h) \) be a Hermitian vector space of dimension \(n \).
5.1. The quantization of E

Let $U := U(E)$ be the unitary group with Lie algebra \mathfrak{u}. We use the isomorphism $\epsilon : \mathfrak{u} \to \mathfrak{u}^*$ defined by $\langle \epsilon(X), Y \rangle = -\text{Tr}(XY) \in \mathbb{R}$. For $v, w \in E$, let $v \otimes w^* : E \to E$ be the linear map $x \mapsto h(x, w)v$.

Let $E_\mathbb{R}$ be the space E view as a real vector space. Let Ω be the imaginary part of $-h$, and let J the complex structure on $E_\mathbb{R}$. Then on $E_\mathbb{R}$, Ω is a (constant) symplectic structure and $\Omega(-, J-)$ defines a scalar product. The action of U on $(E_\mathbb{R}, \Omega)$ is Hamiltonian with moment map $\Phi : E \to \mathfrak{u}^*$ defined by $\langle \Phi(v), X \rangle = \frac{1}{2}\Omega(Xv, v)$. Via ϵ, the moment map Φ is defined by

$$\Phi(v) = \frac{1}{2i}v \otimes v^*.$$ (5.1)

The pre-quantization data $(L, \langle -, -, \nabla \rangle)$ on the Hamiltonian U-manifold $(E_\mathbb{R}, \Omega, \Phi)$ is a trivial line bundle L with a trivial action of U equipped with the Hermitian structure $\langle s, s' \rangle_v = e^{-\frac{h(v, v)}{2}}ss^\top$ and the Hermitian connexion $\nabla = d - i\theta$ where θ is the 1-form on E defined by $\theta = \frac{1}{2}\Omega(v, dv)$.

The traditional quantization of the Hamiltonian U-manifold $(E_\mathbb{R}, \Omega, \Phi)$, that we denote $Q_U^{L^2}(E)$, is the Bargman space of entire holomorphic functions on E which are L^2 integrable with respect to the Gaussian measure $e^{-\frac{h(v, v)}{2}}\Omega^n$. The representation $Q_U^{L^2}(E)$ of U is admissible. The irreducible representations of U that occur in $Q_U^{L^2}(E)$ are the vector subspaces $S^j(E^*)$ formed by the homogeneous polynomials on E of degree $j \geq 0$.

On the other hand, the moment map Φ is proper (see (5.1)). Hence we can consider the formal quantization $Q_U^{-\infty}(E) \in R^{-\infty}(U)$ of the U-action on E.

Lemma 5.1. — The two quantizations of (E, Ω, Φ), $Q_U^{L^2}(E)$ and $Q_U^{-\infty}(E)$ coincide in $R^{-\infty}(U)$. In other words, we have

$$Q_U^{-\infty}(E) = S^*(E^*) := \sum_{j \geq 0} S^j(E^*) \quad \text{in} \quad R^{-\infty}(U).$$ (5.2)

Proof. — Let $T \subset U$ be a maximal torus with Lie algebra $\mathfrak{t} \subset \mathfrak{u}$. There exist an orthonormal basis $(e_k)_{k=1,\ldots,n}$ of E and characters $(\chi_k)_{k=1,\ldots,n}$ of T such that $t \cdot e_k = \chi_k(t)e_k$ for all k. The family $(ie_k \otimes e_k^*)_{k=1,\ldots,n}$ is then a basis of \mathfrak{t} such that $\frac{i}{2} d\chi_l(ie_k \otimes e_k^*) = \delta_{l,k}$. The set $\tilde{U} \subset \mathfrak{t}^* \subset \mathfrak{u}^*$ of dominant weights is composed, via ϵ, by the elements

$$\lambda = i \sum_{k=1}^n \lambda_k e_k \otimes e_k^*,$$

where $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ is a decreasing sequence of integers.
The formal quantization \(Q_U^{-\infty}(E) \in R^{-\infty}(U) \) is defined by
\[
Q_U^{-\infty}(E) = \sum_{\lambda_1 \geq \ldots \geq \lambda_n} Q(E_{\lambda}) V_{\lambda}
\]
where \(E_{\lambda} = \Phi^{-1}(U \cdot \lambda)/U \) is the reduced space and \(V_{\lambda} \) is the irreducible representation of \(U \) with highest weight \(\lambda \).

It is now easy to check that \(E_{\lambda} = \begin{cases} \{ \text{pt} \} & \text{if } \lambda = (0, \ldots, 0, -j) \text{ with } j \geq 0, \\ \emptyset & \text{in the other cases,} \end{cases} \)
and then
\[
Q(E_{\lambda}) = \begin{cases} 1 & \text{if } \lambda = (0, \ldots, 0, -j) \text{ with } j \geq 0, \\ 0 & \text{in the other cases.} \end{cases}
\]
Finally (5.2) follows from the fact that \(V_{(0, \ldots, 0, -j)} = S^j(E^*) \). \(\square \)

5.2. The quantization of \(E \) restricted to a subgroup of \(U \)

Let \(K \subset U \) be a closed connected Lie subgroup with Lie algebra \(\mathfrak{k} \). Let \(K_C \subset \text{GL}(E) \) be its complexification. The moment map relative to the \(K \)-action on \((E_{\mathbb{R}}, \Omega)\) is the map
\[
\Phi_K : E \to \mathfrak{k}^* \equiv \text{the composition of } \Phi \text{ with the projection } u^* \to \mathfrak{k}^*.
\]
equal to the composition of \(\Phi \) with the projection \(u^* \to \mathfrak{k}^* \).

Lemma 5.2. — The following conditions are equivalent:

(a) the map \(\Phi_K \) is proper,
(b) \(\Phi^{-1}_K(0) = \{0\} \),
(c) \(\{0\} \) is the only closed \(K_C \)-orbit in \(E \),
(d) for every \(v \in E \) we have \(0 \in \overline{K_C \cdot v} \),
(e) \(S^{\ast}(E^*) \) is an admissible representation of \(K \),
(f) the \(K \)-invariant polynomials on \(E \) are the constant polynomials.

Proof. — The equivalence \((a) \iff (b)\) is due to the fact that \(\Phi_K \) is quadratic.

Let \(\mathcal{O} \) be a \(K_C \)-orbit in \(E \). Classical results of Geometric Invariant Theory \([27, 19]\) assert that \(\overline{\mathcal{O}} \cap \Phi^{-1}_K(0) \neq \emptyset \) and that \(\mathcal{O} \) is closed if and only if \(\mathcal{O} \cap \Phi^{-1}_K(0) \neq \emptyset \). Hence \((b) \iff (c) \iff (d)\).

>From Lemma 5.1 we know that \(Q^{-\infty}_U(E) = S^{\ast}(E^*) \). Since \(Q^{-\infty}_U(E) \) is \(K \)-admissible when \(\Phi_K \) is proper (see Section 4), we have \((a) \implies (e)\).
For every $\mu \in \hat{K}$, the μ-isotopic component $[S^\bullet(E^\ast)] \mu$ is a module over $[S^\bullet(E^\ast)] \mu = [S^\bullet(E^\ast)]^K$. Hence $\dim [S^\bullet(E^\ast)] \mu < \infty$ implies that $[S^\bullet(E^\ast)]^K = \mathbb{C}$. We have $(e) \implies (f)$.

Finally $(f) \implies (d)$ follows from the following fundamental fact. For any $v, w \in E$ we have $K \cdot v \cap K \cdot w \neq \emptyset$ if and only if $P(v) = P(w)$ for all $P \in [S^\bullet(E^\ast)]^K$. □

Theorem 1.3 implies the following

Proposition 5.3. — Let $K \subset U(E)$ be a closed connected subgroup such that $S^\bullet(E^\ast)$ is an admissible representation of K. For every $\mu \in \hat{K}$, we have

$$\dim ([S^\bullet(E^\ast)] \mu) = Q(E_{\mu,K})$$

where $[S^\bullet(E^\ast)] \mu$ is the μ-isotopic component of $S^\bullet(E^\ast)$ and $E_{\mu,K}$ is the reduced space $\Phi_{K}^{-1}(K \cdot \mu)/K$.

In the following examples the condition $\Phi_{K}^{-1}(0) = \{0\}$ is easy to check.

1) the subgroup $K \subset U(E)$ contains the center of $U(E)$,
2) $E = \wedge^2 \mathbb{C}^n$ or $E = S^2(\mathbb{C}^n)$ and $K = U(n) \subset U(E)$,
3) $E = M_{n,k}$ is the vector space of $n \times k$-matrices and $K = U(n) \times U(k) \subset U(E)$.

BIBLIOGRAPHY

Paul-Émile PARADAN

Paul-Émile PARADAN
Université Montpellier II
Institut de Mathématiques et de Modélisation de Montpellier (I3M)
Place Eugène Bataillon
34095 MONTPELLIER (France)
paradan@math.univ-montp2.fr