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INFINITE-DIMENSIONAL HYPERKÄHLER
MANIFOLDS ASSOCIATED WITH

HERMITIAN-SYMMETRIC AFFINE COADJOINT
ORBITS

by Alice Barbara TUMPACH (*)

Abstract. — In this paper, we construct a hyperkähler structure on the com-
plexification OC of any Hermitian symmetric affine coadjoint orbit O of a semi-
simple L∗-group of compact type, which is compatible with the complex symplectic
form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of O. By a
relevant identification of the complex orbit OC with the cotangent space TO of
O induced by Mostow’s decomposition theorem, this leads to the existence of a
hyperkähler structure on TO compatible with Liouville’s complex symplectic form
and whose restriction to the zero section is the Kähler structure of O. Explicit
formulas of the metric in terms of the complex orbit and of the cotangent space
are given. As a particular case, we obtain the one-parameter family of hyperkähler
structures on a natural complexification of the restricted Grassmannian and on
the cotangent space of the restricted Grassmannian previously constructed by the
author via a hyperkähler reduction.

Résumé. — Dans cet article, nous construisons une métrique hyperkählerienne
sur l’orbite complexifiée OC de toute orbite coadjointe affine hermitienne symé-
trique O d’un L∗-groupe semi-simple de type compact, qui est compatible avec la
forme symplectique complexe de Kirillov-Kostant-Souriau et qui se restreint en la
structure kählérienne de O. Grâce à une identification pertinente de l’orbite com-
plexifiée OC avec l’espace cotangent TO de l’orbite de type compact O induite par
le théorème de décomposition de Mostow, nous en déduisons l’existence d’une struc-
ture hyperkählérienne sur TO compatible avec la forme symplectique complexe de
Liouville et dont la restriction à la section nulle est la structure kählérienne de
O. Des formules explicites de la métriques en termes de l’orbite complexifiée et de
l’espace cotangent sont données. Comme cas particulier, nous retrouvons la famille
à un paramètre de structures hyperkählériennes sur une complexification naturelle
de la grassmannienne restreinte et sur l’espace cotangent de la grassmannienne
restreinte précédemment obtenue par l’auteur via une réduction hyperkählérienne.

Keywords: Infinite-dimensional hyperkähler manifolds, affine coadjoint orbit, Hermitian-
symmetric spaces, hyperkähler reduction, cotangent space, strongly orthogonal roots,
L∗-algebra, restricted Grassmannian.
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1. Introduction

In finite dimension, each (co-)adjoint orbit O of a compact semi-simple
Lie group G is an homogeneous Kähler manifold (hence of dimension 2n,
n ∈ N). There exists a unique complex semi-simple Lie group GC such
that G embeds into GC and such that this embedding induces the natural
injection of the Lie algebra g of G into the complex Lie algebra gC := g⊕ig.
In this setting, adjoint and coadjoint orbits of G (resp. GC) are identified via
the Killing form of g (resp. gC). The complexification OC of O is defined as
the orbit of any element in O under the coadjoint action of GC. It is natural
to ask whether the coadjoint orbit OC (which is of dimension 4n) admits
a hyperkähler structure compatible with the complex symplectic form of
Kirillov-Kostant-Souriau. In the same circle of idea, one can ask whether the
cotangent space of O (which is again a 4n-dimensional manifold) admits a
hyperkähler structure compatible with Liouville’s complex symplectic form.
These two questions have been answered by the affirmative by O. Biquard
in [7] and independently by A.G. Kovalev in [18]. More precisely, a family
of hyperkähler structures on the complex adjoint orbit OC of an element
τ ∈ g answering the first question is given by Theorem 1 in [7] and Theorem
1 in [18] applied to the triple (0, τ, 0). Adding the requirement that the
hyperkähler structure should extend the Kähler structure of G · τ =: O,
specifies the hyperkähler structure in the family. A family of hyperkähler
structures on the cotangent space of O answering the second question is
given by Theorem 2, 2) in [7] with τ r = iτ and τ c = 0. The restriction to the
zero section of one of these hyperkähler structures is the Kähler structure of
O. The aforementioned results are based on the study of different forms of
Nahm’s equations and extend related results obtained by P. B. Kronheimer
([19], [20]). Unfortunately the hyperkähler metrics involved are not explicit.

In the special case of compact Hermitian-symmetric orbits O, an ex-
plicit formula for the unique G-invariant hyperkähler metric on OC, which
restricts to the Kähler metric of O and is compatible with the complex
symplectic form of Kirillov-Kostant-Souriau, is given by O. Biquard and
P. Gauduchon in [9] in terms of the curvature of O. Its construction is
based on the existence of a fiber bundle structure on OC over O. A pro-
jection from the complex orbit onto the orbit of compact type exists for
general adjoint orbits as a consequence of Mostow’s decomposition theo-
rem (see [32]). Nevertheless, only in the Hermitian-symmetric case it has
the property of minimizing the distance in gC to the orbit of compact type
(with respect to the Hermitian product on gC whose restriction to g is
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INFINITE-DIMENSIONAL HYPERKÄHLER MANIFOLDS 169

the opposite of the Killing form). This metrical characterization is cru-
cial in the proof of the aforementioned result. In [8], the same authors
express in terms of the curvature of O the unique G-invariant hyperkähler
metric on the cotangent space T ′O compatible with Liouville’s symplectic
form, whose restriction to the zero section is the Kähler metric of O. The
finishing touches to the picture are given in [10], where the hyperkähler
manifolds OC and T ′O are identified. In the present work, we extend the
aforementioned results of [9], [8] and [10] to the infinite-dimensional setting,
considering Hermitian-symmetric affine coadjoint orbits of semi-simple L∗-
groups of compact type. As far as we know, the case of a general orbit of
an L∗-group is an open problem.

The necessity of considering affine coadjoint orbits instead of simply
coadjoint orbits is motivated by the example of the connected components
of the restricted Grassmannian, which are affine coadjoint orbits of the
unitary L∗-group U2 (see below for the precise definition of this group)
but not coadjoint orbits of U2 in the usual sense. The non-equivalence of
these two notions in the infinite-dimensional case is related to the fact that
not every derivation of an infinite-dimensional semi-simple L∗-algebra is
inner. In other words, every derivation D of a L∗-algebra defines an affine
coadjoint orbit OD of the corresponding L∗-group, which is a coadjoint
orbit if and only if the derivation is inner.

The classification of irreducible infinite-dimensional Hermitian-sym-
metric affine (co-)adjoint orbits of compact type has been carried out in [30],
generalizing the classification given in the finite-dimensional case by J. Wolf
in [35]. The classification of Hermitian-symmetric spaces has been obtained
by W. Kaup in [17] using the algebraic notion of Hermitian Jordan Tripel-
systems (see [16]). It is noteworthy that Hermitian-symmetric affine ad-
joint orbits of L∗-groups exhaust the set of all Hermitian-symmetric spaces
(compare [30] and [17]), so the notion of affine coadjoint orbit appear to be
the right notion to recover the equivalence between Hermitian-symmetric
spaces and coadjoint orbits valid in the finite-dimensional case (see for
instance Theorem 8.89 in [6]).

A first step toward the generalization of the results of O. Biquard and
P. Gauduchon mentioned above to the infinite-dimensional setting has been
carry out by the author in [33]. An infinite-dimensional hyperkähler quo-
tient of a Banach manifold by a Banach Lie group has been used to con-
struct hyperkähler structures on a natural complexification of the restricted
Grassmannian and on the cotangent space of the restricted Grassmannian.
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170 Alice Barbara TUMPACH

The approach here is more conceptual and applies to every Hermitian-
symmetric affine coadjoint orbit.

A first tool used in this paper is the analogue of Mostow’s decompo-
sition theorem for L∗-groups, which has been discussed by the author in
[32] and independently by G. Larotonda in [21] (see also [22] for the finite-
dimensional proof and [2] for a generalization to some von Neumann al-
gebras). The second tool needed is the theory of strong orthogonal roots,
which has to be adapted to the infinite-dimensional setting. With these
tools in hand we are able to prove the main Theorems of this work, namely
Theorem 3.1, Theorem 4.1 and Theorem 6.1.

The structure of the paper is as follows. The next section contains the
notation and definitions used throughout the paper, as well as some known
results on which the present work is based. Section 3 is devoted to the
proof of the fiber bundle structure of a complexified Hermitian-symmetric
affine coadjoint orbit OC

D over the corresponding orbit of compact type OD,
precisely described in Theorem 3.1. In section 4, the hyperkähler structure
of OC

D is constructed (Theorem 4.1). In section 5, a natural isomorphism
between the complex orbit OC

D and the cotangent space T ′OD is given
(Theorem 5.1). In Theorem 6.1 of section 6, the pull-back of the hyperkäh-
ler structure constructed in section 4 by the isomorphism constructed in
section 5 is described in terms of the cotangent space T ′OD. The reader
will find in the Appendix the general results on strongly orthogonal roots
in L∗-algebras that are used in the proves of the Theorems.

2. Preliminaries

In the following, H will denote a separable infinite-dimensional complex
Hilbert space. Let us first recall some basic facts about L∗-algebras and
L∗-groups.

An L∗-algebra g over K ∈ {R, C} is a Lie-algebra over K which is also
an Hilbert space endowed with an involution ∗ satisfying

〈[x , y] , z〉 = 〈y , [x∗, z]〉

for every x, y and z in g. An L∗-algebra g is semi-simple if g = [g , g], and
simple if g is non-commutative and if every closed ideal in g is trivial. Every
L∗-algebra decomposes into an Hilbert sum of its center and a sequence
of closed simple ideals (this was proved by J.R. Schue in [28]). According
to [28], every simple separable infinite-dimensional L∗-algebra over C is
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isomorphic to one of the non-isomorphic algebras

gl2, o2(C) or sp2(C),

where gl2 denotes the Lie-algebra of Hilbert-Schmidt operators on H ,
o2(C) is the subalgebra of gl2 consisting of skew-symmetric operators with
respect to a given real Hilbert space structure on H , and where sp2(C) is
the subalgebra of gl2 consisting of operator x whose transpose xT satisfies

xT = −JxJ−1,

for the linear operator J defined on a basis {en}n∈Z\{0} of H by

Jen = −e−n if n < 0 ; Jen = +e−n if n > 0.

To every L∗-algebra is associated a connected Hilbert-Lie group, called L∗-
group (see Theorem 4.2 in [24]). The L∗-group associated to gl2, denoted
by GL2, is the group of invertible operators on H which differ from the
identity by Hilbert-Schmidt operators. A non-connected L∗-group with Lie
algebra o2(C) is the subgroup O2(C) of GL2 consisting of operators which
preserve the C-bilinear symmetric form β defined by

β(x , y) = Tr (xT y),

for every x, y in H . The L∗-group Sp2(C), whose Lie algebra is sp2(C),
is the subgroup of GL2 preserving the C-bilinear skew-symmetric form γ

given by
γ(x , y) = Tr (xT Jy).

An L∗-algebra g is said to be of compact type if x∗ = −x for every x ∈ g.
Every simple separable infinite-dimensional L∗-algebra of compact type is
isomorphic to one of the non-isomorphic real L∗-algebras

u2 := {x ∈ gl2, x
∗ = −x}; o2 := o2(C) ∩ u2; sp2 := sp2(C) ∩ u2.

(This result can be found in [4], [13] and [34].) An Hermitian-symmetric
space is a smooth strong Riemannian manifold (M, g) endowed with a
g-orthogonal complex structure and which admits, for every x in M , a
globally defined isometry sx (the symmetry with respect to x) preserving
the complex structure, such that x is a fixed point of sx, and such that
the differential of sx at x is minus the identity of TxM . Every infinite-
dimensional Hermitian-symmetric space M decomposes into an orthogonal
product M0 ×M+ ×M−, where M0 is flat, M+ is simply-connected with
positive sectional curvature and M− is simply-connected with negative sec-
tional curvature ([17]). An Hermitian-symmetric space with positive (resp.
negative) sectional curvature is said to be of compact type (resp. of non-
compact type). An Hermitian-symmetric space is called irreducible if it is
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172 Alice Barbara TUMPACH

not flat and not locally isomorphic to a product of Hermitian-symmetric
spaces with non-zero dimensions. Every Hermitian-symmetric space of com-
pact or non-compact type can be decomposed into a product of (possi-
bly infinitely many) irreducible pieces. The irreducible infinite-dimensional
Hermitian-symmetric spaces have been classified by W. Kaup in [17] using
techniques developed in [16]. According to [30], every irreducible infinite-
dimensional Hermitian-symmetric space of compact type is an affine coad-
joint orbit (see below for the definition) of a simple L∗-group G of compact
type.

An affine adjoint (resp. coadjoint) action of an L∗-group on its Lie algebra
g (resp. on the continuous dual g′ of its Lie algebra) is given by a group
homomorphism from G into the affine group of transformations of g (resp.
g′), whose linear part is the adjoint action of G on g (resp. the coadjoint
action of G on g′). An affine (co-)adjoint orbit of G is the orbit of an element
in g (resp. g′) under the affine (co-)adjoint action of G (see section 2 in
[24]). For the simple L∗-groups introduced above, affine coadjoint orbits and
affine adjoint orbits are identified by the trace. Every irreducible Hermitian-
symmetric affine adjoint orbit of compact type is the orbit of 0 in g ∈
{u2, o2, sp2} under the affine adjoint action AdD of G given by

(2.1)
AdD : G → GL(g) o g

g 7→ (Ad(g),ΘD(g)) ,

where
ΘD : G → g

g 7→ ΘD(g) = gDg−1 −D

for a bounded skew-Hermitian operator D on H with two different eigen-
values (see Theorem 4.4 in [24] and Proposition 3.7 in [30]). For a bounded
skew-Hermitian operator D, we will denote by OD the orbit of 0 under
the affine adjoint action AdD of G. The projective space of an infinite-
dimensional separable complex Hilbert space, and the connected compo-
nents of the restricted Grassmannian associated to a polarized Hilbert space
are examples of such an orbit.

Throughout in the following O=OD will denote an irreducible Hermi-
tian-symmetric affine adjoint orbit of a (simple) connected L∗-group of
compact type G with Lie algebra g, and D the corresponding bounded
linear operator. In particular

OD = {gDg−1 −D, g ∈ G} = G/K.

where K is the isotropy group of 0 ∈ OD. The Lie algebra of K is

k0 := {x ∈ g | [D,x] = 0}.

ANNALES DE L’INSTITUT FOURIER
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We will denote by D the derivation [D , ·], and use the following notation :
ad(x)(y) := [x , y]. The tangent space at 0 ∈ OD is isomorphic to the
orthogonal m0 of k0 in g. The complex structure at 0 is given by the operator

I :=
1
c
D|m0

on the tangent space T0OD ' m0, where c is the positive constant defined
by

[D , [D , ·]]|m0
= −c2 idm0 .

The orbit OD being a homogeneous symmetric space of G, the following
commutation relations hold

(2.2) [k0 , k0] ⊂ k0; [k0 ,m0] ⊂ m0; [m0 ,m0] ⊂ k0.

For every x = gDg−1 −D in OD, we will denote by kx the Lie subalgebra
of g which fixes x, and mx its orthogonal in g. One has kx = gk0g

−1 and
mx := gm0g

−1.
The complexified orbit OC

D of OD is defined as the complex affine adjoint
orbit of 0 under the complexification GC of G with Lie-algebra

gC := g⊕ ig,

for the affine adjoint action which extend naturally AdD (and which will be
also denoted by AdD in the following). Note that the derivation D = [D , ·]
applies gC onto m0 ⊕ im0. Mostow’s decomposition theorem (see [22] for
the finite-dimensional case, [21] or [32] for infinite-dimensional L∗-groups)
states that, for every x in OD, there exists a homeomorphism

GC ' G exp(imx) exp(ikx).

The complexified orbit OC
D is a strong symplectic manifold for the Kirillov-

Kostant-Souriau symplectic form ωC defined as the GC-invariant 2-form
whose value at the tangent space T0OC

D at 0 is given by

(2.3) ωC(X ,Y ) = 〈X∗, [D , Y ]〉

for X, Y in T0OC
D (see Theorem 4.4 in [24]). Note that this convention

differs from the convention usually used in the finite-dimensional case by
the multiplicative constant c2.

3. The complex orbit OC as a fiber bundle over the orbit
of compact type O

This section is devoted to the below “fiber bundle Theorem” which spec-
ifies the metric properties acquired, in the case of a Hermitian-symmetric
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orbit, by the projection π : OC
D → OD defined in [32]. It is a generalization

of Proposition 1 in [9] to the case of an affine coadjoint action. We give
below some details of the proof since traces of operators are involved and
the computation as given in [9] does not make sense in our context (recall
that 〈·, ·〉 denotes the Hermitian product in the L∗-algebra g which is given
by the trace). Let us emphasize that the minimizing property described in
this theorem and its finite-dimensional counterpart is the key step in the
construction of the hyperkähler metrics on Hermitian-symmetric spaces by
the method developped in [9], [8] and [10] and which we will follow. For a
general complex coadjoint orbit, this key step is missing and the current
method can not be applied (for the construction of hyperkähler metrics on
finite-dimensional complex coadjoint orbits of general type see [19], [20], [7],
[18]). At the end of this section, the Proposition 3.2 gives an isomorphism
between the tangent space to OC

D at any y and the tangent space to OC
D at

π(y) ∈ OD. It is the infinite-dimensional version of Lemma 4 in [9]. These
identifications of tangent spaces are crucial for a good understanding of the
expression of the hyperkähler metrics constructed in sections 4 and 6. For
this reason we include a detailed proof.

Theorem 3.1. — Every element y of the complex affine adjoint orbit
OC

D can be written uniquely as

y = AdD

(
eia
)
(x)

where x belongs to OD and where a is in mx. The element x is characterized
by the property that it minimizes the distance in gC between y and the orbit
of compact typeOD. The fibers of the orthogonal projection π which takes y

inOC
D to the corresponding x inOD are the sets of the form AdD (Gn.c.

x ) (x),
where x ∈ OD and where Gn.c.

x denotes the real connected L∗-subgroup of
GC with Lie algebra kx ⊕ imx. Moreover, π is G-equivariant.

Proof of Theorem 3.1. — By Mostow decomposition theorem, every el-
ement g ∈ GC can be uniquely written as g = u exp ia exp ic with u ∈ G,
a ∈ m0, and c ∈ k0. Therefore every y = AdD(g)(0) = g · 0 in the affine
adjoint orbit OC

D has a unique expression of the form

y = AdD(eiuau−1
)(x)

where x := AdD(u)(0) = u · 0 and uau−1 ∈ mx (see [32]). Let us show
that x minimizes the distance in gC between y and OD. Every element x′

in a neighborhood of x in OD can be joint to x by a (minimal) geodesic.
Since OD is a symmetric space, every geodesic starting from x is of the
form t 7→ exp(tb′) · x, where b′ belongs to mx (see Proposition 8.8 in [3],
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Corollary 3.33 in [11], or Proposition 25 p 313 in [26] for a description of the
geodesics in finite-dimensional symmetric spaces, or its infinite-dimensional
versions as given in Example 3.9 in [23] or in [32]). For

x′ = AdD(eb′)(x) = eb′uDu−1e−b′ −D,

where b′ belongs to mx, consider the geodesic

xt := AdD(etb′)(x) = etb′uDu−1e−tb′ −D, t ∈ [0 , 1]

from x to x′, and the following function

f(t) =
1
2
‖y − xt‖2.

Set b := u−1b′u ∈ m0. The explicit expression of f is the following

f(t) =
1
2

∥∥∥eiuau−1
uDu−1e−iuau−1

− etb′uDu−1e−tb′
∥∥∥2

=
1
2

∥∥eiaDe−ia − etbDe−tb
∥∥2

=
1
2
〈
eiaDe−ia − etbDe−tb, eiaDe−ia − etbDe−tb

〉
.

One has

(3.1) f ′(t) = <〈eiaDe−ia −D,−[b, etbDe−tb]〉

+ <〈etbDe−tb −D, [b, etbDe−tb]〉.

From the commutation relations (2.2) which characterize a symmetric orbit,
one deduce that eiaDe−ia−D belongs to the direct sum k0⊕ im0, whereas
−[b, etbDe−tb] belongs to k0 ⊕ m0. Hence only the projections on k0 are
involved in the scalar product. Let us consider each term of the sum (3.1)
separately.

First,

<
〈
eiaDe−ia −D,−

[
b, etbDe−tb

]〉
= <

〈
cosh ad(ia)− 1

ad(ia)2
[
a, [D, a]

]
,
sin ad(itb)

ad(itb)
[
tb, [D, b]

]〉

=
c2

t
<
〈

cosh ad(ia)− 1
ad(ia)2

[a, Ia] ,
sin ad(itb)

ad(itb)
[tb, Itb]

〉
,

where, for any analytic function f , the notation f (ad(ia)) denotes the
operator obtained by applying the expansion of f to the Hermitian operator
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ad(ia). From Lemma A.9 in the Appendix of the present paper, it follows
that

<
〈
eiaDe−ia −D,−

[
b, etbDe−tb

]〉
=

c2

t
< 〈[a′′, Ia′′] , [b′′, Ib′′]〉 ,

=
c2

t

(
‖ [a′′, b′′] ‖2 + ‖ [a′′, Ib′′] ‖2

)
where a′′ :=

√
cosh ad(iIa)−1

ad(iIa)2 (a) and b′′ :=
√

sin ad(iItb)
ad(iItb) (tb), the latter ex-

pression being valid only for t 6 π
2‖b‖ .

Secondly, let us remark that 〈etbDe−tb −D, [b, etbDe−tb −D]〉 is purely
imaginary. It follows that

<
〈
etbDe−tb −D, [b, etbDe−tb]

〉
= <

〈
etbDe−tb −D, [b, D]

〉
.

Using the commutation relations (2.2), note that etbDe−tb −D belongs to
k0 ⊕m0, and [b, D] is in m0. One has

<
〈
etbDe−tb −D, [b, D]

〉
= <

〈
sin ad(itb)

ad(itb)
[tb, D], [b, D]

〉

= tc2<
〈

sin ad(itb)
ad(itb)

Ib, Ib

〉
,

which is positive for t in (0, π
2‖b‖ ) since sin ad(itb)

ad(itb) is an Hermitian operator.
We conclude that both terms in the sum (3.1) are positive for t in

(0, π
2‖b‖ ), whence f ′(t) > 0 for t in this interval. The second derivative

of f at 0 is given by
(3.2)
f ′′(0) = <

〈
eiaDe−ia −D,−

[
b, [b, D]

]〉
+ < 〈[b, D], [b, D]〉

= <
〈[

b, eiaDe−ia −D
]
, [b, D]

〉
+ < 〈[b, D], [b, D]〉

= <
〈[

b,
cosh(ad(ia))− 1

ad(ia)2
([

ia, [ia, D]
])]

, [b, D]
〉

+ < 〈[b, D], [b, D]〉

= <
〈

cosh(ad(ia))− 1
ad(ia)

([
a, [D, a]

])
,
[
b, [D, b]

]〉
+ c2‖b‖2

= c2<
〈

cosh(ad(ia))− 1
ad(ia)2

[a, Ia], [b, Ib]
〉

+ c2‖b‖2.
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Using again Lemma A.9, one has

(3.3)
f ′′(0) = c2< 〈[a′′, Ia′′] , [b, Ib]〉+ c2‖b‖2

= c2
(
‖[a′′, b]‖2 + ‖[a′′, Ib]‖2 + ‖b‖2

)
,

where a′′ =
√

cosh ad(iIa)−1
ad(iIa)2 (a). Hence the second derivative of f at 0 is

positive. Let us define the function

fy : OD → R
x′ 7→ 1

2‖y − x′‖2.

From the second line of computation (3.2), the Hessian of fy at 0 is positive-
definite and has the following expression

(3.4) Hess(Xc, Xd) = <〈[c, eiaDe−ia], [d, D]〉,

where Xc and Xd are the vectors induced at 0 by the infinitesimal action
of c, d ∈ m0 respectively. It follows that x minimizes the distance between
y and OD. In the finite dimensional case, the discussion above would be
sufficient to conclude that x is the unique minimum of the distance between
y and OD because the Hopf-Rinow Theorem guarantees that every element
x′ in OD can be reached by a geodesic of OD starting at x, and because f is
strictly increasing along a minimizing geodesic. In the infinite-dimensional
setting, Hopf-Rinow Theorem does not hold anymore, thus an argument
implying the uniqueness of the minimum has to be added. We give this
argument below, (for a more general one, see [1]), but let us first remark
that the fiber of the projection π over x is the set of y′ such that y′ =
AdD

(
eia
)
(x) for some a in mx. Therefore it is the orbit of x under the group

Gn.c.
x . The G-equivariance of π is a direct consequence of the definition and

implies that it remains only to prove that 0 is the unique minimum of the
distance between a given element y in the fiber π−1(0) and OD.

Let a be an element in m0 and y = eiaDe−ia−D ∈ π−1(0). As before con-
sider for b ∈ m0, the function f(t) = 1

2‖y−xt‖2, where xt = etbDe−tb−D.
In particular f(0) = 1

2‖y‖
2. Consider a ball of radius r ∈ (0, 1

2 ) centered at
0 ∈ T0OD on which the Riemannian exponential map realizes a diffeomor-
phism onto a neighborhood V of 0 in OD. We will show that there exists
a constant δ > 0 such that, for any b in the unit sphere of T0OD, the
following inequality holds

(3.5) f(r)− f(0) > r2δf(0).

Before doing so, let us explain why this will lead to uniqueness of the
minimum of the distance between y and OD. Suppose there exists another
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minimum x of the distance between y and OD, distinct of 0. If x can be
joined to 0 by a geodesic, then the increase of the distance to y along a
geodesic starting at 0 proved before leads to a contradiction. In the case
where x can’t be joined to 0 by a geodesic, consider two small open balls
in gC centered at 0 and x respectively with empty intersection. Adjust the
radius r such that the neighborhood V of 0 in OD is contained in the first
ball (this is possible by the smoothness of the adjoint action of G on gC).
Choose ε small enough such that

√
1 + r2δ − ε > 1 and such that the ball

in gC centered at x of radius ε‖y‖ and V do not intersect. By Theorem B
in [12], the set of points which can be joined to 0 by a minimal geodesic is
a dense Gδ set, therefore there exists x′ in the ball centered at x of radius
ε‖y‖ which can be joined to 0 by a geodesic. Since x′ does not belong to
V, one has 1

2‖y − x′‖2 > f(r). But then it follows that

‖y − x‖ > ‖y − x′‖ − ε‖y‖ > ‖y‖(
√

1 + r2δ − ε) > ‖y‖,

which contradicts the minimizing property of x.
In order to prove equation (3.5), let us compute the second derivative

of f for any t ∈ R. Deriving equation (3.1) and using the commutation
relations (2.2), one has

f ′′(t) = <
〈
eiaDe−ia −D,−

[
b, [b, etbDe−tb]

]〉
+ <

〈
[b, etbDe−tb], [b, etbDe−tb]

〉
+<

〈
etbDe−tb −D,

[
b, [b, etbDe−tb]

]〉
= c2<

〈
cosh(ad(ia))− 1

ad(ia)2
[a, Ia], cos

(
ad(itb)

)
[b, Ib]

〉
−t2c2 <

〈
[b, Ib],

1− cos(ad(itb))
ad(itb)2

[b, Ib]
〉

+ c2‖b‖2.

By Lemma A.9, the first term in this sum equals

c2 < 〈[a′′, Ia′′], [b′, Ib′]〉 = c2
(
‖[a′′, b′]‖2 + ‖[a′′, Ib′]‖2

)
,

where a′′ :=
√

cosh ad(iIa)−1
ad(iIa)2 (a) and b′ =

√
cos
(
ad(itb)

)
(b) for t ∈ (0, π

2‖b‖ ),

hence is positive. Since the norm of the hermitian operator 1−cos(ad(itb))
ad(itb)2

is less then 1, the second term in the sum above is bounded from below
by −t2c2 ‖[b, Ib]‖2 = −2t2c2‖b‖4. It follows that for any b ∈ T0OD with
‖b‖ = 1, and any t ∈ (− 1

2 , 1
2 ), f ′′(t) > c2

2 . By integration, this leads to
f(t)− f(0) > t2c2

4 . In particular f(r)− f(0) > r2c2

4 , and δ = c2

8f(0) satisfies
equation (3.5). �
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Proposition 3.2. — For y = AdD(eia)(x) ∈ OC
D, where x ∈ OD, and

a ∈ mx, the map
ρ : mx ⊕ imx → TyOC

D

c 7→ Xc

is an isomorphism. The kernel of π∗ : TyOC
D → TxOD is Vy := {Xic, c ∈

mx}, and π∗ induces an isomorphism from Hy := {Xc, c ∈ mx} onto mx.

Proof of Proposition 3.2. — By G-equivariance, it is sufficient to con-
sider the case where x is equal to 0. Let us consider an element y =
eiaDe−ia−D in π−1(0) where a belongs to m0. A tangent vector to OC

D at
y is given by the action of an element c in the complex Lie algebra g⊕ ig,
i.e. is the derivative at 0 of the function

Φc(t) = etceiaDe−iae−tc −D.

It is therefore of the form

Xc = [c, eiaDe−ia] = eia[e−iaceia, D]e−ia.

For c ∈ m0 ⊕ im0,

[e−iaceia, D] = [Ad(e−ia)(c), D] = [exp (ad(−ia)) (c), D]

= −cI cosh (ad(−ia)) (c).

Note that the operator cosh (ad(−ia)) from gC to gC is Hermitian and one-
to-one, thus an isomorphism, and preserves the subspace m0 ⊕ im0. Since
the tangent space to OC

D at y is eia(m0 ⊕ im0)e−ia, it follows that ρ is an
isomorphism.

Let us show that for c ∈ m0, one has π∗(Xic) = 0. Consider the curve

Φic(t) = eitc eia · 0.

By Mostow’s decomposition theorem (see [22], [21], [32]), for every t ∈ R,
there exists ut in G, bt in m0 and dt in k0 such that

eitc eia = ut eibt eidt .

It follows that

π
(
Φic(t)

)
= π

(
eitc eia · 0

)
= π

(
ute

ibt · 0
)

= π
(
eiutbtu

−1
t · (ut · 0)

)
= ut · 0,

since utbtu
−1
t belongs to the subspace mut·0. Hence

π∗
(
Xic(y)

)
:=

d

dt |t=0
π
(
Φic(t)

)
=

d

dt |t=0
(ut) · 0.
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Let us show that d
dt |t=0

(ut) ∈ k0. The curve Φic(t) belongs to k0 ⊕ im0 for
all t ∈ R, thus its derivative at t = 0 also. One has

d

dt |t=0
Φic(t) = ic · (eia · 0) =

d

dt |t=0
(ut) · (eia · 0) +

d

dt |t=0
(eibt) · 0.

Note that for t = 0, u0 is the unit element in G and that b0 = a. Since bt

belongs to m0 for all t, the curve eibt · 0 belongs to k0 ⊕ im0 for all t ∈ R,
hence its derivative at t = 0 also. It follows that

d

dt |t=0
(ut) · (eia · 0) :=

[
d

dt |t=0
(ut) , eia · 0

]
belongs to k0⊕im0. From this, one deduces that the component of d

dt |t=0
(ut)

along m0 vanishes because it has to stabilize eia · 0 and because m0 ∩
eia k0 e−ia = {0}. Whence d

dt |t=0
(ut) belongs to k0 thus π∗(Xic(y)) = 0.

Let us now show that for c ∈ m0, one has π∗ (Xc(y)) = c · 0. One has

π (Φc(t)) = π
(
etc eia · 0

)
= π

(
eAd(etc)(ia) · (etc · 0)

)
= etc · 0.

It follows that π∗ (Xc(y)) = c · 0 and the proof is complete. �

4. Hyperkähler structure on the complex orbit OC

In this section, we will use the particular property of the projection π

of minimizing the distance in gC to the orbit of compact type in order
to construct a hyperkähler structure on OC

D and thereby generalize Theo-
rem 3 in [9] to the case of complexifications of Hermitian-symmetric affine
adjoint orbits of L∗-groups of compact type. Note that it is sufficient to
consider the case of an irreducible orbit OC

D. The notation we introduce
in Theorem 4.1 below is in correspondence with the one of Theorem 3 in
[9], and, using this correspondence, the proof of Theorem 3 in [9] can be
formally followed without substantial changes. For this reason we omit the
details in the proof. Let us however emphasize that the objects handled in
our setting are conceptually different to the ones appearing in the finite-
dimensional theory : a based point in the infinite-dimensional orbit is de
facto distinguished (the element 0 ∈ OD), and an element y in OC

D is of the
form gDg−1−D, where g ∈ G and where D does not necessarily belong to
g. For further comments, see remark 4.2.

Theorem 4.1. — The complex affine adjoint orbit OC
D admits a G-

invariant hyperkähler structure compatible with the complex symplectic
form ωC of Kirillov-Kostant-Souriau and extending the natural Kähler
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structure of the Hermitian-symmetric affine adjoint orbit of compact type
OD. The Kähler form ω1 associated with the complex structure i of OC

D is
given by ω1 = ddcK, where the potential K has the following expression

(4.1) K(y) = c<〈y, π(y)〉,

for every y in OC
D. The explicit expressions of the symplectic form ω1 and

the Riemannian metric g are the following

ω1(Xc+ic′ , Xd+id′) = c=
(
〈Xic′ , π∗(Xd)〉 − 〈Xid′ , π∗(Xc)〉

)
g(Xc, Xd) = g(Xic, Xid) = c<〈Xc(y), Xd(π(y))〉, g(Xc, Xid) = 0,

where c, c′, d and d′ belong to mπ(y). The complex structure I2 is given at
y ∈ π−1(0) by

I2X
d = X[D

c ,d], I2X
id = −Xi[ D

c ,d],

where c and d belong to m0.

Proof of Theorem 4.1. — The formulas for ω1 and g appearing in the
Theorem can easily be computed following [9]. The G-equivariance of π

implies the G-invariance of g. To check that g is positive-definite, it is
therefore sufficient to consider g at an element y = eiaDe−ia − D in the
fiber π−1(0). In this case, one has

(4.2) g(Xc, Xd) = g(Xic, Xid) = c<〈[c, eiaDe−ia], [d, D]〉,

which, according to equation (3.4) in the proof of Theorem 3.1, is equal
to the Hessian at 0 of the function fy modulo the positive multiplicative
constant c. It follows that g is positive-definite. It remains to show that
g is hyperkähler and compatible with ωC. For this, we will use (as it has
been done in [9]) lemma 6.8 of Hitchin’s paper [15], which implies that it
is sufficient to show that the endomorphism I2 defined by

g(X, Y ) = <ωC(X, I2Y )

satisfies (I2)
2 = −1. Recall that the natural complex symplectic form ωC

on OC
D is the G-invariant 2-form whose value at 0 ∈ OC

D is given by

(4.3) ωC(X, Y ) = 〈X∗, [D,Y ]〉,

where X, Y belong to T0OC
D. By the G-invariance of g and ωC, the prob-

lem reduces to the study of I2 at an element of the fiber over 0. An easy
computation then leads to

g(Xc, Xd) = <ωC
(
Xc, X[D

c ,d]
)
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for c and d in m0. Hence, for d ∈ m0, the expression of I2 is I2X
d = X[D

c ,d].
A similar computation gives I2X

id = −Xi[ D
c ,d], where d ∈ m0. Since the

operator I := [D
c , .] is the complex structure of the orbit of compact type,

thus of square −1, it follows that (I2)
2 = −1. �

Remark 4.2. — Let us make a few comments on formula (4.1) in com-
parison to the formula given in the finite-dimensional case in Theorem 3
of [9]. First, as mentioned above, the convention for the definition of the
complex symplectic form ωC in the infinite-dimensional case given by (4.3)
differs from the usual convention for the finite-dimensional case by the mul-
tiplicative constant c2. This explain the different multiplicative constants
in the expressions of the potentials (1/κ in the finite-dimensional formula,
and c in the infinite-dimensional formula, with κ = c). Secondly, despite
the fact that formula (4.1) looks very similarly to its finite-dimensional
version, it differs by a non-trivial element in the kernel of the operator ddc

which encodes the affine structure of the orbit. Indeed, the elements y and
π(y) in OD represent the differences between a conjugate of D and D itself.
Note in particular that the values of the potential (4.1) and its derivative
vanish along the fiber π−1(0).

5. From the complex affine coadjoint orbit OC to the
cotangent space T ′O

Let us denote by <y (resp. =y) the projection on the first (resp. second)
factor g in the direct sum

gC = g⊕ ig of an element y ∈ gC. The following Theorem is the infinite-
dimensional analogue of Theorem 3 (iv) in [10]. It gives a relevant iden-
tification of OC and TO, which will be used in next section to transport
the hyperkähler structure of OC

D constructed in Theorem 4.1 to the (co-
)tangent bundle of OD. We give a self-contained proof of this Theorem since
the proof in [10] uses a compactness argument which fails in our setting
(lemma 5 appearing in the proof of Theorem 3 (iv) in [10] is based on the
completeness of a vector field, derived from the compactness of the orbit
O (Proposition 5 in [10]), which can not be showed easily in our context).

Theorem 5.1. — The map

Υ : OC
D → TOD

y 7→ − 1
c Iπ(y)=y

is an isomorphism which commutes with the natural projections π : OC
D →

OD and p : TOD → OD.
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Proof of Theorem 5.1. — Let us remark that for every y ∈ OC
D in the

fiber π−1(x) over x ∈ OD, =y belongs to mx, thus can be viewed as an ele-
ment of TxOD. The G-equivariance of the projection π and of the complex
structure I of OD imply that Υ is G-equivariant and commutes with the
projections π and p. To show that Υ is bĳective, it is therefore sufficient to
show that Υ identifies the fiber π−1(0) with m0.

Let us define the function f1 : m0 → m0 by f1(a) = Υ(y) where y =
eiaDe−ia −D. One has

f1(a) := −1
c
I=y =

i

c
I sinh (ad(ia)) (D)

=
i

c
I
sinh ad(ia)

ad(ia)
([ia, D]) = I

sinh ad(ia)
ad(ia)

Ia.

The eigenvalues of the operator sinh ad(ia)
ad(ia) from g to g being greater or equal

to 1, the condition =y = 0 implies a = 0, hence y = 0.
Let V ∈ m0 ' T0OD. Let us show that there exists y ∈ OC

D such that
=y = cIV . To do this, let us first suppose that V belongs to a maximal
Abelian subalgebra A of m0 generated by a maximal subset Ψ of strongly
orthogonal roots xα :

A := ⊕α∈ΨRxα

For every α ∈ Ψ, set yα = Ixα and hα = 1
2i [xα, yα]. For every α, β ∈ Ψ,

the following commutation relations hold :

[xα, yβ ] = 2ihαδαβ ; [hα, xβ ] = −2iyαδαβ ; [hα, yβ ] = 2ixαδαβ .

Now, for a ∈ A with decomposition

a =
∑
α∈Ψ

aαxα

with respect to the basis xα, one has

ad(ia)2nIa =
∑
α∈Ψ

(2aα)2naαyα,

and consequently
i

c
I sinh ad(ia)(D) = I

sinh ad(ia)
ad(ia)

Ia =
1
2
I
∑
α∈Ψ

sinh(2aα)yα

=
1
2

∑
α∈Ψ

sinh(2aα)xα.

Thus, for any V in A with decomposition

V =
∑
α∈Ψ

vαxα
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with respect to the basis xα, the element y in OC
D defined by y = eiaDe−ia−

D where
a :=

1
2

∑
α∈Ψ

argsinh(2vα)xα

satisfies − 1
c I=y = V . It follows from the computation above that

a = I
argsinh (ad(iV ))

ad(iV )
(IV ).

Let us define the function f2 : m0 → m0 by

f2(V ) := I
argsinh (ad(iV ))

ad(iV )
(IV ).

One has f1 ◦ f2 = f2 ◦ f1 = Id on A. To conclude the proof of the Theo-
rem, let us remark that the union of maximal Abelian subalgebras of m0

generated by a system of strongly orthogonal roots are dense in m0 (indeed
m0 = ∪g∈KAd(g)(A), see the Appendix). It follows that the range of the
restriction of Υ to the fiber π−1(0) is dense in T0OD. From the arguments
above, it also follows that f2 ◦ f1 = Id and f1 ◦ f2 = Id on Ad(K)A. From
the continuity of f1 and f2, this implies that f2 ◦ f1 = Id and f1 ◦ f2 = Id
on m0. Hence Υ identifies the fiber π−1(0) of OC

D with T0OD. �

6. The hyperkähler metric on the cotangent space T ′O

In Theorem 6.1 below, we give explicitly the hyperkähler structure of
T ′OD (identified with the tangent space TOD by the trace) obtained from
the hyperkähler structure of OC

D via the map Υ defined in Theorem 5.1. By
a standard argument as in Lemma 2.1 in [8], the metric g̃ obtained is in fact
the unique metric on T ′OD ' TOD which restricts to the Kähler metric
on OD, is compatible with the Liouville complex symplectic form of T ′OD

and for which the natural horizontal and vertical distributions HorV and
VerV (see below) are g̃-orthogonal. Let us mention that the last condition
on g̃ has to be a priori added in comparison to the finite-dimensional case
to ensure uniqueness (in the proof of Lemma 2.1 in [8], α can be chosen
H-invariant because H is compact, but this averaging procedure can not be
applied in our case). We recall this uniqueness property in Proposition 6.2.
The formulas for the metric given in Theorem 6.1 are identical to the ones
appearing in Theorem 1.1 in [8]. The proof is however completely differ-
ent and has no finite-dimensional analogue in the work of O. Biquard and
P. Gauduchon. Moreover it provides a shortcut which avoids the computa-
tions of section 4 in [8]. Let us first state the Theorem. We will denote by
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gO the Kähler metric of the affine adjoint orbit of compact type OD whose
expression at 0 is the following

gO(Xc, Xd) = c< 〈[c, D], [d, D]〉 = c3< 〈c, d〉 ,

where c and d are in m0. This metric is strongly Kähler. This implies in
particular that the Levi-Civita connection ∇ is well-defined. At an element
V of the tangent space TOD, the space TV (TOD) splits into the Hilbert
direct sum HorV ⊕ VerV , where VerV is the tangent space to the fiber
of the natural projection p : T (TOD) → TOD, and where HorV is the
horizontal space at V associated with the connection ∇. For any V in the
fiber p−1(x), x ∈ OD, the space VerV will be naturally identified with
imx, the vertical element cV corresponding to c ∈ imx being cV = ic. The
horizontal space HorV will be identified with mx via the differential of p.
For c ∈ mx, the horizontal lift of c ·x will be denoted by cH ∈ HorV . Let us
denote by g0 the metric on T (TOD) obtained from the metric gO on OD

by these identifications together with the requirement that HorV and VerV

are g0-orthogonal. The pull-back by Υ−1 of the hyperkähler metric g will
be denoted by g̃.

Theorem 6.1. — The hyperkähler metric g̃ on the tangent space TOD

is obtained from g0 by the endomorphism whose decomposition with re-
spect to the direct sum TV (TOD) = HorV ⊕VerV is the following(

AV 0
0 A−1

V

)
with

AV = Id + IRIϕ(IRIV,V )(V ),ϕ(IRIV,V )(V ),

where

ϕ(x) =
(√

1 + x− 1
x

) 1
2

.

Proposition 6.2 (Lemma 2.1 in [8]). — The metric g̃ is the unique
hyperkähler metric on TOD which restricts to the Kähler metric of OD,
is compatible with the pull-back of Liouville’s complex symplectic form by
the identification T ′OD ' TOD, and for which the horizontal and vertical
distributions HorV and VerV are g̃-orthogonal.

Let us proceed to the proof of Theorem 6.1. We will need the following
Lemmas.
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Lemma 6.3. — For any a in m0, one has

(6.1)
cosh(ad(ia))− 1

ad(ia)2
([Ia, a]) =

√
1 + ad(iV )2 − 1

ad(iV )2
[IV, V ],

where a and V are related by Υ
(
AdD(eia)(0)

)
= V or equivalently V =

f1(a) = I sinh ad(ia)
ad(ia) Ia.

Proof of Lemma 6.3. — By continuity of the operators involved and
density of maximal Abelian subalgebras of m0 generated by maximal sub-
sets of strongly orthogonal roots, it is sufficient to verify equation (6.1) for
an element a in a maximal Abelian subalgebra A generated by a basis xα,
α ∈ Ψ, where Ψ is a system of maximal strongly orthogonal roots. Using
the notation introduced in the proof of Theorem 5.1, one has

V =
∑
α∈Ψ

vαxα,

and

a =
∑
α∈Ψ

aαxα =
1
2

∑
α∈Ψ

argsinh(2vα)xα.

For ϕ(x) =
cosh(x)− 1

x2
, the following is true

ϕ (ad(ia)) ([Ia, a]) =
∑
α∈Ψ

ϕ(2aα)[aαyα, aαxα]

=
∑
α∈Ψ

cosh(2aα)− 1
(2aα)2

[aαyα, aαxα]

=
∑
α∈Ψ

1
4

(cosh (argsinh(2vα)− 1)) [yα, xα]

=
∑
α∈Ψ

√
1 + (2vα)2 − 1

(2vα)2
[vαyα, vαxα]

=

√
1 + ad(iV )2 − 1

ad(iV )2
[IV, V ].

�

Lemma 6.4. — For any V ∈ m0 and any positive analytic function ϕ,
one has

ϕ
(
ad(iIV )2

)
(V ) = ϕ (IRIV,V ) (V ).
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Proof of Lemma 6.4. — With the notations introduced above,

IRIV,V = I[IV, V ] = I
∑
α∈Ψ

[vαyα, vαxα] = I
∑
α∈Ψ

v2
α(−2i)hα,

and

(IRIV,V )V = I
∑
α∈Ψ

v2
α(−2i)[hα, vαxα] = I

∑
α∈Ψ

v2
α(−2i)(−2i)vαyα

= −I
∑
α∈Ψ

(2vα)2vαyα =
∑
α∈Ψ

(2vα)2vαxα.

On the other hand,

(ad(iIV ))2 (V ) = ad(iIV )

(∑
α∈Ψ

i[vαyα, vαxα]

)
= ad(iIV )

(∑
α∈Ψ

2v2
αhα

)

=
∑
α∈Ψ

2iv3
α[yα, hα] =

∑
α∈Ψ

(2vα)2vαxα = (IRIV,V )V.

Hence, it follows that

(IRIV,V )n(V ) =
∑
α∈Ψ

(2vα)2nvαxα = (ad(iIV ))2n (V )

Consequently, for any positive analytic function ϕ, one has

ϕ
(
ad(iV )2

)
[IV, V ] = ϕ (IRIV,V ) (V ).

�

Proof of Theorem 6.1. — Let us recall that the tangent space to OC
D at

y = AdD(eia)(x) (x ∈ OD, a ∈ mx) is the subspace eia(mx⊕imx)e−ia of gC.
It is identified with mx⊕imx by the application ρ defined in Proposition 3.2,

ρ : mx ⊕ imx → TyOC
D

c 7→ Xc.

The vertical space Vy := ρ(imx) is the kernel of π, and ρ restricts to an
isomorphism from mx onto the horizontal space Hy := ρ(mx). The metric
g is G-invariant and its expression at a point y = eiaDe−ia−D in the fiber
π−1(0) over 0 is

(6.2) g (ρ(c), ρ(d)) = g (ρ(ic), ρ(id)) = c<〈[c, eiaDe−ia], [d, D]〉,
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where c, d ∈ m0. It follows that for any c and d in m0, one has
(6.3)
g (ρ(c), ρ(d))

= c<
〈[

c, cosh (ad (ia)) (D)
]
, [d, D]

〉
= c< 〈[c, D] , [d, D]〉+ c<

〈[
c,

cosh(ad(ia))− 1
ad(ia)2

([
ia, [ia, D]

])]
, [d, D]

〉

= c3< 〈c, d〉+ c2<
〈[

c,
cosh(ad(ia))− 1

ad(ia)2
(
[a, Ia]

)]
, [d, D]

〉

= c3< 〈c, d〉+ c3<
〈

I

[
cosh(ad(ia))− 1

ad(ia)2
(
[Ia, a]

)
, c

]
, d

〉
.

The identification Υ of OC
D and TOD commutes with the projections π :

OC
D → OD and p : TOD → OD. It follows that the differential of Υ maps

the vertical space Vy onto the vertical space VerV , where y and V are
related by V = Υ(y). The horizontal space Hy is identified with mx by ρ−1

and HorV is identified with mx by dp. The G-invariance of the metrics g
and g0 allows us to suppose w.l.o.g. that y belongs to the fiber π−1(0). By
Lemma 6.3, one has

g (ρ(c), ρ(d)) = c3< 〈c, d〉+ c3<

〈
I

[√
1 + ad(iV )2 − 1

ad(iV )2
[IV, V ], c

]
, d

〉
.

From Lemma A.9 in Appendix A, it follows that

g (ρ(c), ρ(d)) = c3<〈c, d〉+ c3<
〈
I
[
[IV ′, V ′], c

]
, d
〉
,

with

V ′ =

(√
1 + ad(iIV )2 − 1

ad(iIV )2

) 1
2

(V ).

Hence

g (ρ(c), ρ(d)) = c3<〈c, d〉+ c3<〈IRIV ′,V ′c, d〉.

By Lemma 6.4, it follows that

g (ρ(c), ρ(d)) = c3<〈
(
Id + IRIϕ(IRIV,V )(V ),ϕ(IRIV,V )(V )

)
c, d〉,

where ϕ(x) =
(√

1+x−1
x

) 1
2

. Since Υ is G-equivariant, for any c ∈ mx,

Υ∗ρ(c) is horizontal. Since both Υ∗ρ(c) and cH projects on c · x by p∗, one
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has Υ∗ρ(c) = cH . Consequently for any c and d in m0, the metric g̃ applied
to the horizontal lifts cH and dH is equal to

g̃(cH , dH) = g (ρ(c), ρ(d)) = g0(AV c, d)

with
AV = Id + IRIϕ(IRIV,V )(V ),ϕ(IRIV,V )(V ),

where

ϕ(x) =
(√

1 + x− 1
x

) 1
2

.

Hence the Theorem is proved in the horizontal directions. Further the or-
thogonality of the subspaces Hy and Vy implies the orthogonality of HorV

and VerV . It follows that the hyperkähler metric g̃ can be deduced from
the metric g0 via an operator of the form(

A 0
0 B

)
,

where B defines the metric in the directions tangent to the fibers of the
projection p. Let us remark that for any c and d in imx, one has

g(ρ(c), ρ(d)) = g(ρ(−ic), ρ(−id)).

The multiplication by i exchanges Vy and Hy and induces a complex struc-
ture on the tangent space TOD at V whose expression with respect to g0

is given by an endomorphism J3 exchanging VerV and HorV , i.e whose ex-
pression with respect to the direct sum TV (TOD) = HorV ⊕VerV has the
following form

J3 =
(

0 C

D 0

)
.

Let us recall that the real symplectic form ω1 = g(i· , ·) associated to the
complex structure i on OC

D has the following expression

ω1 (ρ(c + c′), ρ(d + d′)) = c= (〈ρ(c′), π∗ρ(d)〉 − 〈ρ(d′), π∗ρ(c)〉) ,

where c, d belong to mx, and c′, d′ belong to imx. Note that only the projec-
tions of ρ(c′) and ρ(d′) on imx contribute in the above formula. Denoting by
p+ : gC → imx the orthogonal projection onto imx, one has for c′ ∈ imx,
Υ∗ρ(c′) = i

cIπ(y)p+ (ρ(c′)), hence p+ = i c Iπ(y)Υ∗ on Vy. It follows that
p+

(
Υ−1
∗
(
(c′)V

))
= i c Iπ(y)(c′)V = i c Iπ(y)(ic′) = c′ · x. Since moreover

π∗Υ−1
∗ dH = p∗d

H , it follows that the symplectic form Ω3 = Υ∗ω1 on TOD

associated with the complex structure J3 is Liouville 2-form

Ω3

(
cH + (c′)V , dH + (d′)V

)
= c3< (〈ic′, d〉 − 〈id′, c〉) ,
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where c, d belong to mx, and c′, d′ belong to imx. The symplectic form Ω3

can be deduce from g0 via an endomorphism whose block decomposition
with respect to the direct sum TV (TOD) = HorV ⊕VerV is(

0 i

i 0

)
.

The equation g̃(J3· , ·) = Ω3(· , ·) implies the followings conditions on the
operators A, B, C and D:(

A 0
0 B

)(
0 C

D 0

)
=
(

0 i

i 0

)
,

i.e AC = i and BD = i. On the other hand, the condition (I3)
2 = −1

implies CD = −1. It follows that B = A−1, and J3 is represented by the
following operator

J3 =
(

0 iA−1

iA 0

)
.

�

x x

ρ

c

−ic

imx

−i

mx

TOD

Υ

π−1(x)
p−1(x)

VerV

Vy

V
yHy

HorV

cV

OC
D

ρ(c)

Figure 6.1. The expression of the hyperkähler metric on TOD can be
easily deduced from the expression of the hyperkähler metric on OC

D
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Remark 6.5. — The restricted Grassmannian Grres(H+,H−) of a po-
larized Hilbert space H = H+ ⊕ H− (where H+ and H− are infinite-
dimensional closed orthogonal subspaces of H ) is defined as the set of
closed subspaces P of H such that the orthogonal projection from P on
H+ is Fredholm and the orthogonal projection from P on H− is a Hilbert-
Schmidt operator (for further information on this manifold see [27] and
[38]). The connected component Gr0res(H+,H−) of Grres(H+,H−) contain-
ing the subspace H+ is an homogeneous space of the unitary group

U2 =
{
u ∈ U(H) | u− id ∈ L2(H)

}
which is a simple L∗-group of compact type (a geometrical proof of this
fact is given in [5]). The manifold Gr0res(H+,H−) can be identified with a
family of affine adjoint orbits of the Lie algebra u2 of U2. The corresponding
derivations Dk = [Dk, ·] are the following

Dk := ik (p+ − p−) ,

where p± is the orthogonal projection onto H±. The Kähler structures
on Gr0res(H+,H−) obtained by these identifications are proportional to
the standard one as defined in [27] or [38]. The complexified orbit OC

Dk

is the set of operators on H with two distinct eigenvalues ik and −ik

such that the corresponding eigenspaces Pik and P−ik belong respectively
to Gr0res(H+,H−) and Gr0res(H−,H+). It can be identified with a natural
complexification

(
Gr0res(H+,H−)

)C
of Gr0res(H+,H−) consisting of pairs of

subspaces (P,Q) such that P ∈ Gr0res(H+,H−), Q ∈ Gr0res(H+,H−) and
P ∩Q⊥ = {0}. The family of hyperkähler structures on

(
Gr0res(H+,H−)

)C
and T ′Gr0res(H+,H−) obtained by applying Theorem 4.1 and Theorem 6.1
to ODk

, k 6= 0, was obtained by hyperkähler reduction in [33].

Appendix A. Strongly orthogonal roots in L∗-algebras

We refer to [36] for more information on the fine structure of finite-
dimensional Hermitian-symmetric orbits. Let OD = G/K be a Hermitian-
symmetric affine coadjoint orbit of an L∗-group of compact type G. Denote
be g the Lie algebra of G, k the Lie algebra of K, and m the orthogonal of
k in g. The following commutation relations hold :

(A.1) [k, k] ⊂ k, [k,m] ⊂ m [m,m] ⊂ k.

If A is a subalgebra of g contained in m, then the third commutation relation
in (A.1) implies that A is commutative. Abusing slightly the terminology,
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one says that A in an Abelian subalgebra of m. The next Lemma general-
izes Theorem 8.6.1 (iii) in [37] or Lemma 6.3 (iii) in [14] to the case of a
Hermitian-symmetric affine coadjoint orbit of an L∗-group.

Lemma A.1. — Let A be a maximal Abelian subalgebra of m. Then

m = ∪g∈KAd(g)A.

Proof of Lemma A.1. — Since OD can be decomposed in a product
of irreducible pieces, it is sufficient to consider the case where OD is an
irreducible Hermitian-symmetric coadjoint orbit of a classical simple L∗-
group of compact type G. There exists an increasing sequence {gn}n∈N of
finite-dimensional subalgebras of g and an increasing sequence {kn}n∈N of
finite-dimensional subalgebras of k such that (see Proposition 3.11 in [30])

g = ∪n∈Ngn

k = ∪n∈Nkn

[kn,mn] ⊂ mn [mn,mn] ⊂ kn,

where mn denotes the orthogonal of kn in gn. Let Kn be the connected
subgroup of G with Lie algebra kn. For all n ∈ N, An := A ∩ gn is a
maximal Abelian subalgebra of gn. From the finite-dimensional theory (see
Theorem 8.6.1 (iii) in [37], or Lemma 6.3 in [14]), one has

mn = Ad(Kn)(An).

Since m = ∪n∈Nmn, and ∪n∈NAd(Kn)(An) ⊂ Ad(K)(A) and since m ⊃
Ad(K)(A), one has

m = ∪g∈KAd(g)A.

�

Remark A.2. — In the finite-dimensional case, every maximal Abelian
subalgebra of m is the centralizer of one of its elements and every maximal
Abelian subalgebras of m are conjugate. In particular, the Cartan subalge-
bras of a compact semi-simple Lie group are conjugate. This is no longer
true in the infinite-dimensional case (see [5]).

In this subsection, OD will denote an irreducible Hermitian-symmetric
affine coadjoint orbit of compact type associated with the derivation D :=
[D , ·] (see the list in Theorem 1.1 in [30]) . Let gC be the L∗-algebra g⊕ ig,
kC the L∗-algebra k⊕ik, and mC the complex closed vector subspace m⊕im.
The subspace mC decomposes into mC = m+ ⊕m−, where m± is the direct
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sum of eigenspaces V±cα of D with eigenvalues ±icα, cα > 0. The natural
complex structure of OD is given by

I :=
∑
α

1
cα

D|Vcα⊕V−cα

Let h be a Cartan subalgebra contained in k (see Theorem 4.4 in [24] for
the existence of such a Cartan subalgebra), R the set of roots and

gC = hC ⊕
⊕
α∈A

V α ⊕
⊕

β∈B+

(V β + V −β)

the decomposition of gC into eigenspaces of ad(h), where the notation V α

stand for the eigenspace corresponding to α, and where A and B are subsets
of R such that (Proposition 3.3 in [30])

kC = hC ⊕
⊕

α∈A V α; m± = ⊕β∈B±V β .

Definition A.3. — Two roots α and β are called strongly orthogonal
if neither α + β nor α− β is a root.

Remark A.4. — Two strongly orthogonal roots are orthogonal for the
scalar product of h′.

Remark A.5. — By Zorn’s Lemma, there exists maximal sets of (mutu-
ally) strongly orthogonal roots.

Remark A.6. — Since OD is irreducible, for any order on the set of
roots, there exists a unique simple root in B (see Lemma 3.9 in [30]). Let
R+ (resp. R−) be the set of positive (resp. negative) roots. Exchanging R+

and R− if necessary, one can suppose that B+ ⊂ R+. Then, for every root
α, there exists (hα, eα, e−α) ∈ ih× V α × V −α such that [hα, e±α] = ±2eα,
[eα, e−α] = hα and xα := eα − e−α ∈ g. Set yα := Ixα. One has

[xα, yα] = 2ihα ; [hα, xα] = −2iyα ; [hα, yα] = 2ixα.

Proposition A.7. — If Ψ is a maximal set of strongly orthogonal roots,
then the Hilbert sum

A := ⊕α∈ΨRxα

defines a maximal Abelian subalgebra m such that

[A, IA] = ⊕α∈ΨRihα.

In particular, m = Ad(K)(A).

Proof of Proposition A.7. — This follows directly from the commutation
relation [V α, V β ] ⊂ V α+β and from the hypothesis that Ψ is a maximal set
of strongly orthogonal roots. �
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Proposition A.8. — With the notation above, the curvature R of the
symmetric orbit OD satisfies

Rxα,Ixαxα = 4Ixα

Rxα,Ixα
xβ = 0

Rxα,Ixβ
= Rxα,xβ

= 0,

for every α and β, α 6= β, in a maximal set Ψ of strongly orthogonal roots.

Proof of Proposition A.8. — This is an easy consequence of the ex-
pression of the curvature of a symmetric homogeneous space (see [6]). In
particular,

Rxα,Ixα
xα =

[
[xα, Ixα], xα

]
.

�

The following Lemma is the infinite-dimensional analogue of Lemma 2
in [8].

Lemma A.9. — For every a, b in m, one has

〈[a, Ia], [b, Ib]〉 = ‖[a, b]‖2 + ‖[a, Ib]‖2.

Moreover if φ is an analytic positive function such that φ(x) = φ(−x), then

φ(ad(ia))[a, Ia] = [a′, Ia′],

where a′ =
√

φ(ad(iIa))(a).

Proof of Lemma A.9. — By product, it is enough to consider the case
where g is simple and OD irreducible. In this case, the complex structure
is I = 1

cD for some positive constant c, and

[a, Ib] =
1
c

[
a, [D, b]

]
=

1
c

[
[a, D], b

]
+

1
c

[
D, [a, b]

]
.

Since [m,m] ⊂ k, for a, b ∈ m, one has

[a, Ib] = −[Ia, b].

In the same way, for a, b ∈ m, one has

[Ia, Ib] =
1
c2

[
[D, a], [D, b]

]
=

1
c2

[
D,
[
a, [D, b]

]]
− 1

c2

[
a,
[
D, [D, b]

]]
= [a, b].

Since every element of g is skew-symmetric, it follows that

〈[a, Ia], [b, Ib]〉 = −〈Ia,
[
a, [b, Ib]

]
〉

= −〈Ia,
[
[a, b], Ib

]
〉 − 〈Ia,

[
b, [a, Ib]

]
〉

= 〈[Ia, Ib], [a, b]〉+ 〈[b, Ia], [a, Ib]〉

= ‖[a, b]‖2 + ‖[a, Ib]‖2.
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To prove the second assertion of the Lemma, let us first consider the case
when a belongs to a maximal Abelian subalgebra in m of the form

A := ⊕α∈ΨRxα

where Ψ is a maximal set of strongly orthogonal roots. With the notation
introduced above, a =

∑
α aαxα, Ia =

∑
α aαyα and [a, Ia] =

∑
α a2

α2ihα.
Using the commutation relations

[xα, yβ ] = 2ihαδαβ ; [hα, xβ ] = −2iyαδαβ ; [hα, yβ ] = 2ixαδαβ ,

one has
ad(ia)2n[a, Ia] =

∑
α

(2aα)2n(a2
α2ihα).

Thus for every positive analytic function φ such that φ(x) = φ(−x), one
has

φ(ad(ia))[a, Ia] =
∑
α

φ(2aα)a2
α2ihα

=
∑
α

φ(2aα)a2
α[xα, yα]

=
∑
α

[
√

φ(2aα)aαxα,
√

φ(2aα)aαyα].

Moreover, the adjoint action of the element iIa is given by

ad(iIa)2n(a) =
∑
α

(2aα)2naαxα.

Thus
∑

α

√
φ(2aα)aαxα =

√
φ(ad(iIa)(a), which conclude the proof of the

second assertion of the Lemma for a in A. By adjoint action of K, this
assertion is still true for a belonging in ∪g∈KAd(g)(A). The continuity
of φ and of the bracket then imply that it is true for every a in m =
Ad(K)(A). �
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