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THE TIERED AUBRY SET FOR AUTONOMOUS
LAGRANGIAN FUNCTIONS

by Marie-Claude ARNAUD

Abstract. — Let L : TM → R be a Tonelli Lagrangian function (with M
compact and connected and dim M > 2). The tiered Aubry set (resp. Mañé set)
AT (L) (resp. NT (L)) is the union of the Aubry sets (resp. Mañé sets) A(L + λ)
(resp. N (L + λ)) for λ closed 1-form. Then

1. the set NT (L) is closed, connected and if dim H1(M) > 2, its intersection
with any energy level is connected and chain transitive;

2. for L generic in the Mañé sense, the sets AT (L) and NT (L) have no interior;
3. if the interior of AT (L) is non empty, it contains a dense subset of periodic

points.
We then give an example of an explicit Tonelli Lagrangian function satisfying 2
and an example proving that when M = T2, the closure of the tiered Aubry set
and the closure of the union of the K.A.M. tori may be different.

Résumé. — Soit L : TM → R un lagrangien de Tonelli (avec M compacte et
connexe et dim M > 2). L’ensemble d’Aubry (resp. de Mañé) étagé AT (L) (resp.
NT (L)) est la réunion des ensembles d’Aubry (resp. de Mañé) A(L + λ) (resp.
N (L + λ)) pour λ 1-forme fermée. On montre

1. NT (L) est fermé, connexe et si dim H1(M) > 2, sa trace sur chaque niveau
d’énergie est connexe et transitive par chaîne ;

2. si L est générique au sens de Mañé, les ensembles AT (L) et NT (L) sont
d’intérieur vide ;

3. si l’intérieur de AT (L) est non vide, il contient une partie dense de points
périodiques.

On donne ensuite un exemple explicite satisfaisant 2 et un exemple montrant que si
M = T2, AT (L) peut être différent de l’adhérence de la réunion des tores K.A.M.

1. Introduction

LetM be a compact and connected manifold endowed with a Riemannian
metric; we assume that dimM > 2. We will denote by (x, v) a point of the

Keywords: Lagrangian dynamics, Hamiltonian dynamics, Aubry-Mather theory, Mañé
set.
Math. classification: 37J45, 37J50, 37C20.



1734 Marie-Claude ARNAUD

tangent bundle TM with x ∈M and v a vector tangent at x. The projection
π : TM →M is then (x, v) → x. The notation (x, p) will designate a point
of the cotangent bundle T ∗M with p ∈ T ∗xM . and π∗ : T ∗M → M will be
the canonical projection (x, p) → x.

We consider a Lagrangian function L : TM → R which is C∞ and

• uniformly superlinear: uniformly on x ∈M , we have

lim
‖v‖→+∞

L(x, v)
‖v‖

= +∞;

• strictly convex: for all (x, v) ∈ TM , ∂
2L
∂v2 (x, v) is positive definite.

Such a Lagrangian function will be called a “Tonelli Lagrangian function”.
We can associate to such a Lagrangian function the Legendre map L =

LL : TM → T ∗M defined by L(x, v) = ∂L
∂v (x, v) which is a fibered C∞

diffeomorphism and the C∞ Hamiltonian function H : T ∗M → R defined
by H(x, p) = p

(
L−1(x, p)

)
−L(L−1(x, p)) (such a Hamiltonian function will

be called a “Tonelli Hamiltonian function”). The Hamiltonian function H

is then superlinear, strictly convex in the fiber and C∞. We denote by (fLt )
the Euler-Lagrange flow associated to L and (ΦHt ) the Hamiltonian flow
associated to H; then we have ΦHt = L ◦ fLt ◦ L−1.

If λ is a (C∞) closed 1-form of M , then the map Tλ : T ∗M → T ∗M

defined by Tλ(x, p) = (x, p + λ(x)) is a symplectic (C∞) diffeomorphism;
therefore, we have (ΦH◦Tλ

t ) = (T−1
λ ◦ Φt ◦ Tλ), i.e. the Hamiltonian flow

of H and H ◦ Tλ are conjugated. Moreover, the Hamiltonian function H ◦
Tλ is associated to the Tonelli Lagrangian function L − λ, and it is well-
known that (fLt ) = (fL−λt ): the two Euler-Lagrange flows are equal. Let
us emphasize that these flows are equal, but the Lagrangian functions, and
then the Lagrangian actions differ and so the minimizing “objects” may be
different.

The reader will find the whole necessary mathematical background con-
cerning Mather set, Aubry set and Mañé set in the Section 3.

For a Tonelli Lagrangian function (L or L− λ), J. Mather introduced in
[15] (see [13] too) a particular subset A(L− λ) of TM which he called the
“static set” and which is now usually called the “Aubry set” (this name is
due to A. Fathi)(1) . There exist different but equivalent definitions of this
set (see [8], [9], [13] and Section 3) and it is known that two closed 1-forms
which are in the same cohomological class define the same Aubry set

[λ1] = [λ2] ∈ H1(M) ⇒ A(L− λ1) = A(L− λ2).

(1) These sets extend the notion of “Aubry-Mather” sets for the twist maps.

ANNALES DE L’INSTITUT FOURIER



TIERED AUBRY SET 1735

It allows us to introduce the following notation: if w ∈ H1(M) is a coho-
mological class, Aw(L) = A(L−λ) where λ is any closed 1-form belonging
to w. Aw(L) is compact, non empty and invariant under (fLt ). Moreover,
J. Mather proved in [15] that it is a Lipschitz graph above a part of the
zero-section (see [9] or Section 3 too).

As we are as interested in the Hamiltonian dynamics as in the Lagrangian
ones, let us define the dual Aubry set

– if H is the Hamiltonian function associated to the Tonelli
Lagrangian function L, its dual Aubry set is A∗(H) = LL(A(L));

– if w ∈ H1(M) is a cohomological class, then A∗
w(H) = LL(Aw(L))

is the w-dual Aubry set; let us notice that for any closed 1-form λ

belonging to w, we have Tλ(A∗(H ◦ Tλ)) = A∗
w(H).

These sets are invariant under the Hamiltonian flow (ΦHt ).
Another important invariant subset in the theory of Tonelli Lagrangian

functions is the so-called Mather set. For it, there exists one definition
(which is in [9], [13], [14]): it is the closure of the union of the supports of the
minimizing measures for L; it is denoted by M(L) and the dual Mather set
is M∗(H) = LL(M(L)) which is compact, non empty and invariant under
the flow (ΦHt ). As for the Aubry set, if w ∈ H1(M) is a cohomological
class, we define Mw(L) = M(L − λ) which is independent of the choice
of the closed 1-form λ belonging to w. Then M∗

w(H) = LL(Mw(L)) =
Tλ(M∗(H ◦ Tλ)) is invariant under (ΦHt ); we name it the w-dual Mather
set.

In a similar way, if N (L) is the Mañé set, the dual Mañé set is
N ∗(H) = LL(N (L)); we note that if w ∈ H1(M) and λ ∈ w, then
Nw(L) = N (L − λ) is independent of the choice of λ ∈ w and then the
w-dual Mañé set is N ∗

w(H) = LL(Nw(L)) = Tλ(N ∗(H ◦Tλ)); it is invariant
under (ΦHt ), compact and non empty but is not necessarily a graph.

For every cohomological class w ∈ H1(M), we have the inclusion

M∗
w(H) ⊂ A∗

w(H) ⊂ N ∗
w(H).

Moreover, there exists a real number denoted by αH(w) such that
N ∗
w(H) ⊂ H−1(αH(w)) (see [3] and [14]), i.e. each dual Mañé set is con-

tained in an energy level. For w = 0, the value αH(0) is denoted by c(L)
and is named the “critical value” of L.

Definition. — If H : T ∗M → R is a Tonelli Hamiltonian function, the
tiered Aubry set, the tiered Mather set and the tiered Mañé set are

TOME 58 (2008), FASCICULE 5



1736 Marie-Claude ARNAUD

AT (L) =
⋃

w∈H1(M)

Aw(L); MT (L) =
⋃

w∈H1(M)

Mw(L);

N T (L) =
⋃

w∈H1(M)

Nw(L).

Their dual sets are

AT∗ (H) =
⋃

w∈H1(M)

A∗
w(H); MT

∗ (H) =
⋃

w∈H1(M)

M∗
w(H);

N T
∗ (H) =

⋃
w∈H1(M)

N ∗
w(H).

We shall prove in Proposition 14 that the map w → N ∗
w(L) is upper

semi-continuous (roughly speaking, these sets are “minimizing objects” ),
therefore N T

∗ (H) is a closed subset of T ∗M . It is unknown if such a result
is true or false for the Aubry sets (see [16]). Concerning the topological
structure of the tiered Mañé set, we have:

Proposition 1. — Let H : T ∗M → R be a Tonelli Hamiltonian func-
tion. Then N T

∗ (H) is closed, connected and if dimH1(M) > 2, for every
h ∈ R, the set N T

∗ (H)∩H−1(h) is compact, connected and the restriction
of (ΦHt ) to N T

∗ (H) ∩H−1(h) is chain transitive.

Examples.
1) At first, let us consider the most simple completely integrable Hamil-

tonian function: M = Tn and H(x, p) = 1
2‖p‖

2. In other words, we consider
the geodesic flow on the flat torus. Then we have

∀w ∈ H1(M),M∗
w(H) = A∗

w(H) = N ∗
w(H) = {(x, p); p = p0}

where p0 is a constant 1-form; i.e. each of these sets is an invariant La-
grangian torus, and all these sets fill up the phase space T ∗Tn = AT∗ (H) =
MT

∗ (H) = N T
∗ (H).

2) If we perturb a completely integrable Hamiltonian system for the
C∞ topology, we know that many invariant tori will persist (Theorems
K.A.M.): they are dual Mather, Aubry and Mañé sets for certain coho-
mological classes. The weak K.A.M. Theorems (see [9]) give an answer to
the following question: what did happen to the invariant tori which dis-
appeared during the perturbation? They prove the existence of positively
invariant graphs above the zero section (which are not continuous, but in a
certain sense Lagrangian), each of these graphs containing one dual Aubry
set A∗

c(H) (which is invariant by the Hamiltonian flow (ΦHt )) and possibly
some pieces of the stable manifold of this Aubry set.

ANNALES DE L’INSTITUT FOURIER



TIERED AUBRY SET 1737

For the unperturbed system (completely integrable), we have shown that
the Aubry sets fill up the phase space; but we shall prove that this situation
is not generic (the definition of genericity is just after the theorem).

Theorem 2. — Let H : T ∗M → R be a C∞ generic Tonelli Hamiltonian
function(2) . Then there exists a dense Gδ subset G(H) of R such that,
for every h ∈ G(H), then AT∗ (H) ∩ H−1(h) has no interior in H−1(h); in
particular, the interior of AT∗ (H) is empty.

In 1996, R. Mañé introduced the notion of “generic Lagrangian function”
in [12]: “A certain property holds for a generic Lagrangian L if, given a
strictly convex and superlinear Lagrangian L0, there exists a residual subset
O ⊂ C∞(M) such that the given property holds for every Lagrangian L of
the form L = L0 + ψ, ψ ∈ O”.

Then we define (it is the dual definition for the Hamiltonian functions).

Definition. — A certain property holds for a generic Hamiltonian H

if, given a Tonelli Hamiltonian function H0, there exists a residual subset
O ⊂ C∞(M) such that the given property holds for every Hamiltonian H

of the form H = H0 − ψ, ψ ∈ O.

Theorem 2 proves that in the sense of the Baire’s category the tiered
Aubry set is small (it is not true for the measure category whenM = Tn: see
the (strong) K.A.M. Theorems). We may ask ourselves the same question
for the Mañé set. Let us recall:

Definition. — If A is a closed set invariant under the flow (ΦHt ), its
stable manifold W s(A, (ΦHt )) (resp. its unstable manifold Wu(A, (ΦHt ))) is
defined by

W s(A, (ΦHt )) = {ξ ∈ T ∗M ; lim
t→+∞

d(ΦHt (ξ), A) = 0}

(resp.
Wu(A, (ΦHt )) = {ξ ∈ T ∗M ; lim

t→−∞
d(ΦHt (ξ), A) = 0}).

Then it is known that N ∗
c (H) ⊂W s(A∗

c(H); (ΦHt )) ∩Wu(A∗
c(H); (ΦHt ))

(see [9] for example); we obtain:

Corollary 3. — For H : T ∗M → R generic, the set

W s
(
AT∗ (H); (ΦHt )

)
∪Wu

(
AT∗ (H); (ΦHt )

)
has no interior; in particular, the tiered Mañé set N T

∗ (H) has no interior.

(2) Let us recall that we assume that dim M > 2; the result is false if dim M = 1.

TOME 58 (2008), FASCICULE 5



1738 Marie-Claude ARNAUD

Remark. — A usual default of the genericity results is that in general,
one proves these results by using Baire’s Theorem but one cannot exhibit
one single example of a “generic object”. It is not the case of our result,
and we obtain easily examples of such “generic Tonelli Hamiltonian func-
tions”. Let us consider a Hamiltonian function H whose flow is Anosov on
every regular energy level (for example the geodesic flow on a surface with
negative curvature). Then the restriction of the Hamiltonian flow to every
connected regular level is transitive; therefore, if c is the critical value of
H, the set D of the points p of T ∗M whose orbit is dense in their energy
level Ep above c is a dense Gδ subset G of {x ∈ TM ;H(x) > c}. But it is
known that every orbit of a point of N T

∗ (H) is a Lipschitz graph above a
part of the zero section, and therefore doesn’t meet G: its interior is then
empty.

Before proving Theorem 2, we shall prove the two following results, the
first one explaining in particular what happens in the “non generic case”
(when the interior of AT (L) is non empty), the second one stating precisely
which generic property we need:

Proposition 4. — Let L : TM → R be a Tonelli Lagrangian function;
then the interior of AT (L) has a dense subset of periodic points with period
in N∗ whose orbits are graphs above a part of the zero section, and have
no conjugate point.

Proposition 5. — For the Tonelli Lagrangian functions, the following
property is generic: “if P is a periodic orbit which is a graph above a part
of the zero section, which has no conjugate point and whose period is an
integer N > 1, then

• either P is hyperbolic and isolated among the N -periodic orbits;
• or in every neighborhood of P there exists an open subset of points

whose orbit has conjugate points”.

As we know that every orbit contained in AT (L) has no conjugate point
(see Section 2 for details), the last assertion of Theorem 2 is an easy con-
sequence of Propositions 4 and 5. Then, we use a standard Baire argument
to deduce the first assertion of Theorem 2 (see the end of Section 4 for the
details).

Let us now mention and comment on some related results (in these re-
sults, the notion of genericity is not exactly the one which we defined before)

1. in [11], M. Herman proved that for C∞ generic exact symplectic
twist maps of the annulus T ∗T1, there doesn’t exist any invariant
curve containing a periodic point (Section I.5): it implies that for

ANNALES DE L’INSTITUT FOURIER



TIERED AUBRY SET 1739

such a generic twist map, the closure of the union of the Aubry-
Mather sets has no interior;

2. in [10], M. Herman announced: for the C∞ generic exact symplectic
diffeomorphisms f of T ∗Tn which are homotopic to the identity, if
I(f) is the closure of the union the invariant K.A.M. tori, then I(f)
has no interior;

3. I proved in [2] that the generic C∞ symplectic diffeomorphisms of
any compact symplectic manifold verify: “the closure of the union
of the periodic K.A.M. tori is equal to the closure of the set of the
completely elliptic periodic points”; this implies of course that for
such a generic symplectic diffeomorphism, the closure of the union
of the K.A.M. tori has no interior.

We may ask ourselves the following question: when M = Tn, is our set (the
closure of AT (L)) different from the one introduced by M. Herman in [10]?
Let us give a definition.

Definition. — Let H : T ∗Tn → R be a Tonelli Hamiltonian function.
A K.A.M. torus for H is a Lagrangian C∞ graph G above the zero section
which is invariant by (ΦHt ) and such that the restriction of the flow to G
is conjugated to an ergodic flow: (θ → θ + tα).

The closure of the union of the K.A.M. tori for H is denoted by I(H).

These K.A.M. tori are in fact Lipschitz graphs and on every compact, the
Lipschitz constant may be chosen uniformly (it is only an adjustment of the
results of [10]). Moreover, it is proved in [9] that every exact Lagrangian
invariant C1 graph is the graph of the derivative of a so called “weak K.A.M.
solution”, and therefore every Lagrangian invariant C1 graph meets an
Aubry set (for a certain cohomology class); if such a Lagrangian graph is
a K.A.M. tori, it is in fact a Aubry set (because its dynamic is minimal).
We deduce I(H) ⊂ N T

∗ (H).
We shall build an example such that the tiered Aubry set is not in the

closure of the union of the K.A.M. tori.

Proposition 6. — There exists a C∞ Tonelli Lagrangian function
L : TT2 → R and an open subset U of C∞(T2) which contains 0 such
that, for every ψ ∈ U , there exists a periodic orbit P for (fL+ψ

t ) which
belongs to AT (L+ψ) , but LL(P ) is not in the closure of the union of the
K.A.M. tori for H − ψ (H is the Hamiltonian function associated to L).

Remark. — This result is not very surprising; it corresponds to the
existence of Birkhoff instability regions for twist maps: in these regions,

TOME 58 (2008), FASCICULE 5



1740 Marie-Claude ARNAUD

there exist periodic orbits which are some Mather sets, but there exists no
“K.A.M. curve”.

2. Peierls barrier, Mañé potential, Aubry and Mañé sets,
proof of Proposition 1

We gather in this section some well-known results; the ones concern-
ing the Peierls barrier are essentially due to A. Fathi (see [9]), the others
concerning Mañé potential are given in [12], [5] and [7].

At the end of this section, we prove some new results and Proposition 1.
In the whole section, L is a Tonelli Lagrangian function. At first, let

us introduce some notations (we simplify the notation of the critical value
c = c(L)).

Notations.
• Given two points x and y in M and T > 0, we denote by CT (x, y)

the set of absolutely continuous curves γ : [0, T ] →M with γ(0) = x

and γ(T ) = y;
• The Lagrangian action along an absolutely continuous curve γ :

[a, b] →M is defined by

AL(γ) =
∫ b

a

L(γ(t), γ̇(t))dt;

• for each t > 0, we define the function ht : M×M → R by ht(x, y) =
inf{AL+c(γ); γ ∈ Ct(x, y)};

• the Peierls barrier is then the function h : M ×M → R defined by

h(x, y) = lim inf
t→+∞

ht(x, y);

• we define the (Mañé) potential m : M × M → R by m(x, y) =
inf{AL+c(γ); γ ∈

⋃
T>0 CT (x, y)} = inf{ht(x, y); t > 0}.

Then, the Mañé potential verifies:

Proposition 7. — We have
1. m is finite and m 6 h;
2. ∀x, y, z ∈M,m(x, z) 6 m(x, y) +m(y, z);
3. ∀x ∈M,m(x, x) = 0;
4. if x, y ∈M , then m(x, y) +m(y, x) > 0;
5. if M1 = sup{L(x, v); ‖v‖ 6 1}, then ∀x, y ∈ M, |m(x, y)| 6 (M1 +
c)d(x, y);

6. m : M ×M → R is (M1 + c)-Lipschitz.

ANNALES DE L’INSTITUT FOURIER
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Now we can define:
Definition 8.

• A absolutely continuous curve γ : I → M defined on an interval I
is a ray if

∀[a, b] ⊂ I,AL+c(γ|[a,b]) = h(b−a)(γ(a), γ(b));

a ray is always a solution of the Euler-Lagrange equations;
• a absolutely continuous curve γ : I →M defined on an interval I is

semistatic if

∀[a, b] ⊂ I,mc(γ(a), γ(b)) = AL+c(γ|[a,b]);

a semistatic curve is always a ray;
• The Mañé set is then N (L) = {v ∈ TM ; γv is semistatic}

where γv designates the solution γv : R →M of the Euler-Lagrange
equations with initial condition v for t = 0; N (L) is contained in
the critical energy level;

• a absolutely continuous curve γ : I →M defined on an interval I is
static if

∀[a, b] ⊂ I,−mc(γ(b), γ(a)) = AL+c(γ|[a,b]);

a static curve is always a semistatic curve;
• the Aubry set is then A(L) = {v ∈ TM ; γv is static}.

The following result is proved in [7].

Proposition 9. — If v ∈ TM is such that γv|[a,b] is static for some
a < b, then γv : R →M is static, i.e. v ∈ A(L).

The Peierls barrier verifies (this proposition contains some results of [8],
[9] and [4]).

Proposition 10 (Properties of the Peierls barrier h).

1. the values of the map h are finite and m 6 h;
2. if M1 = sup{L(x, v); ‖v‖ 6 1}, then ∀x, y, x′, y′ ∈ M , |h(x, y) −
h(x′, y′)| 6 (M1 + c)(d(x, x′) + d(y, y′)); therefore h is Lipschitz;

3. if x, y∈M , then h(x, y)+h(y, x) > 0; we deduce ∀x∈M,h(x, x) > 0;
4. ∀x, y, z ∈M,h(x, z) 6 h(x, y) + h(y, z);
5. ∀x ∈M,∀y ∈ π(A(L)),m(x, y) = h(x, y) and m(y, x) = h(y, x);
6. ∀x ∈M,h(x, x) = 0 ⇐⇒ x ∈ π(A(L)).

The last item of this proposition gives us a characterization of the pro-
jected Aubry set π(A(L)). Moreover, we have:

TOME 58 (2008), FASCICULE 5
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Proposition 11 (A. Fathi, [9], 6.3.3). — When t tends to +∞, uni-
formly on M ×M , the function ht tends to the Peierls barrier h.

A corollary of this result is given in [7].

Corollary 12 ([7], 4-10.9). — All the rays defined on R are semistatic.

Let us give some properties of the Aubry and Mañé sets (see [13] and
[5]).

Proposition 13. — Let L : TM → R be a Tonelli Lagrangian function.
Then

• the Aubry and Mañé set are compact, non empty and A(L) ⊂
N (L);

• the Aubry set is a Lipschitz graph above a part of the zero section;
• if γ : R →M is semistatic, then (γ, γ̇) is a Lipschitz graph above a

part of the zero section;
• the ω and α-limit sets of every point of the Mañé set are contained

in the Aubry set.

We denote by Λ1(M) the set of (C∞) closed 1-forms of M and K(TM)
the set of non empty compact subsets of TM . Let us now prove:

Proposition 14. — Let L : TM → R be a Tonelli Lagrangian function.
The map K : (ψ, λ) ∈ C∞(M)×Λ1(M) → N (L+ψ+λ) ∈ K(TM) is upper
semi-continuous.

Proof of Proposition 14. — Let H : T ∗M → R be the Tonelli Hamilton-
ian function associated to L. We prove:

Lemma 15. — The map (ψ, λ) ∈ C∞(M) × Λ1(M) → αH−ψ(λ) =
c(L+ ψ − λ) is continuous.

Proof of Lemma 15. — We use the characterization of the critical value
with the holonomic (probability) measures (see [13] or [7] for the exact
definition of holonomic measure): −c(L) is the minimum of AL(µ) among
the holonomic measures µ; then each such minimizing measures is invariant
under (fLt ) and is contained in the energy level L−1

L (H−1(c(L))).
To prove that (ψ, λ) → αH−ψ(λ) = c(L+ ψ − λ) is continuous, we only

need to prove the continuity at (0, 0).
As L is superlinear, there exists a compact K ⊂ TM and a neighborhood

V of (0, 0) in C∞(M) × Λ1(M) such that, for every (ψ, λ) ∈ V, for every
holonomic measure µ such that the support of µ meets TM\K, µ is not
minimizing for L + ψ − λ. Indeed, let us fix µ0 any holonomic measure

ANNALES DE L’INSTITUT FOURIER
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on TM ; there exists a neighborhood V0 of (0, 0) in C∞(M) × Λ1(M) and
a constant ` ∈ R such that ∀(ψ, λ) ∈ V0, AL+ψ−λ(µ0) 6 `. Because L is
superlinear, there exists a constant C1 ∈ R such that ∀(ψ, λ) ∈ V0,∀(x, v) ∈
TM, (L + ψ − λ)(x, v) 6 ` ⇒ ‖v‖ 6 C1. The Hamiltonian function H

associated to L being superlinear too, there exists a constant C ∈ R such
that, if (ψ, λ) ∈ V0, if (x, v) and (x0, v0) are in the same energy level
for L + ψ − λ and if ‖v0‖ 6 C1, then ‖v‖ 6 C. Hence, if (ψ, λ) ∈ V0, if
µL+ψ−λ is a minimizing measure for L+ψ−λ, we have AL+ψ−λ(µL+ψ−λ) =
−c(L + ψ − λ) 6 `. It implies that there exists (x, v) ∈ supp(µL+ψ−λ)
such that (L + ψ − λ)(x, v) 6 ` and then ‖v‖ 6 C1. But, µL+ψ−λ being
minimizing, every point of its support has the same energy as (x, v) and
then ∀(X,V )∈supp(µL+ψ−λ), ‖V ‖ 6 C. We choose K = {(x, v); ‖v‖ 6 C}.

We have then to minimize a continuous function µ → AL+ψ−λ(µ) on
a compact set (the set of holonomic probabilities with support in K), we
know that the minimum depends continuously on (ψ, λ). �

From lemma 15 and the fact that N (L) ⊂ L−1(H−1(c(L))), we deduce
that the Mañé set cannot “explode”: for every (ψ, λ) ∈ C∞(M)× Λ1(M),
there exists a neighborhood V of (ψ, λ) and a compact K of TM such that
∀(ψ′, λ′) ∈ V,N (L+ ψ′ − λ′) ⊂ K.

Let us assume that Proposition 14 is not true. Then there exists a se-
quence (ψn, λn) in C∞(M) × Λ1(M) which converges to (ψ, λ) and a se-
quence (xn, vn) ∈ TM converging to (x, v) such that

• ∀n, (xn, vn) ∈ N (L+ ψn + λn);
• (x, v) /∈ N (L+ ψ + λ).

As (x, v) /∈ N (L + ψ + λ), the arc (t → γ(t) = π ◦ fL+ψ+λ
t (x, v)) is not a

ray for the Lagrangian L+ψ+λ and there exists [a, b] ⊂ R and ε > 0 such
that

AL+ψ+λ(γ|[a,b]) > hL+ψ+λ
(b−a) (γ(a), γ(b))− (b− a)c(L+ ψ + λ) + ε.

When n tends to the infinite, if we define γn(t) = π ◦ fL+ψn+λn

t (xn, vn),
then (γn, γ̇n) converges uniformly on any compact interval to (γ, γ̇).

We deduce that for n big enough, we have

AL+ψn+λn
(γn|[a,b]) > hL+ψn+λn

(b−a) (γn(a), γn(b))− c(L+ ψn + λn) +
ε

2
;

therefore γn is not a ray, and then is not semistatic. It is a contradiction. �

We deduce a part of Proposition 1.

Corollary 16. — The tiered Mañé set N T
∗ (H) =

⋃
c∈H1(M)N ∗

c (H) is
closed.
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Corollary 17. — Let L : TM → R be a Tonelli Lagrangian function
and let (x, v) ∈ TM be such that (x, v) /∈ N T (L).Then there exist

• an open neighborhood U of (x, v) in TM ;
• an open neighborhood U of 0 in C∞(M);

such that
∀ψ ∈ U , U ∩N T (L+ ψ) = ∅.

Proof of Corollary 17. — We know that (x, v) /∈ N T (L) and that N T (L)
is closed; thus there exists a compact neighborhood K of (x, v) in TM such
that K ∩N T (L) = ∅.

Let H be the Tonelli Hamiltonian function associated to L. Then
J. Mather proved (see [14] or [7]) that αH is convex and superlinear. There-
fore there exists a convex compact subset C of H1(M) and a real R > 0
such that

• ∀(x1, v1) ∈ K,H(LL(x1, v1)) < R
2 ;

• ∀w ∈ ∂C, αH(w) > R.
We deduce from Proposition 14 that if we define

N∂C(L) =
⋃

w∈∂C

Nw(L),

then the map ψ ∈ C∞(M) → N∂C(L+ψ) is upper semi-continuous. There-
fore, the map ψ ∈ C∞(M) → H ◦ LL(N∂C(L+ ψ)) = αH−ψ(∂C) is upper
semi-continuous too. We have

• αH(∂C) ⊂]R,+∞[;
• the map ψ ∈ C∞(M) → αH−ψ(∂C) is upper semi-continuous.

Then, there exists a neighborhood U of 0 in C∞(M) such that, ∀ψ ∈ U ,
αH−ψ(∂C) ⊂]R,+∞[. Moreover, if U is small enough, we have ∀ψ ∈ U ,
(H − ψ) ◦ LL(K) ⊂]−∞, R2 [. These two facts implies that

• ∀ψ ∈ U,∀w ∈ H1(M)\C,αH−ψ(w) > R;
• ∀ψ ∈ U,∀(x1, v1) ∈ K, (H − ψ)(LL(x, v)) < R

2 .
Then, if ψ ∈ U , for every w ∈ H1(M)\C, for every (x1, v1) ∈ K: (x1, v1) /∈
Nw(L+ ψ).

Moreover, the map ψ ∈ C∞(M) → NC(L+ ψ) =
⋃
w∈C Nw(L) is upper

semi-continuous (Proposition 14). There exists a neighborhood V of 0 in
C∞(M) such that ∀ψ ∈ V,NC(L+ ψ) ∩K = ∅.

We obtain the conclusion of the corollary with U ∩ V and the interior
of K. �

End of the proof of Proposition 1. — Let L be the Tonelli Lagrangian
function associated to H. We have proved in Proposition 14 that the map
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w ∈ H1(M) → Nw(L) ∈ K(TM) is upper semi-continuous. Moreover, we
know that each Mañé set Nw(L) is connected (and chain transitive). We
deduce:

Lemma 18. — For every arcwise connected subset C of H1(M), the re-
striction of (fLt ) to

⋃
w∈C Nw(L) is chain transitive (

⋃
w∈C Nw(L) is there-

fore connected when C is closed).

Proof of Lemma 18. — Let x, y be two points of
⋃
w∈C Nw(L) and T > 0,

ε > 0; we want to connect x to y via a (ε, T )-chain. Let w1, w2 ∈ C be such
that x ∈ Nw1(L) and y ∈ Nw2(L). The set C being arcwise connected, there
exists a continuous arc w : [0, 1] → C such that w(0) = w1 and w(1) = w2.
The map t ∈ [0, 1] → Nw(t)(L) is then upper semi-continuous. Therefore for
every t0 ∈ [0, 1], there exists α(t0) > 0 such that ∀t ∈ [0, 1]∩]t0−α(t0), t0 +
α(t0)[, ρ(Nw(t0)(L),Nw(t)(L)) < ε

3 where we define

ρ(A,B) = sup{d(b, A); b ∈ B}.

We deduce ∀t ∈ [0, 1]∩]t0 − α(t0), t0 + α(t0)[, d(Nw(t0)(L),Nw(t)(L)) < ε
3

where, if A,B ⊂ TM , we define d(A,B) = infa∈A,b∈B d(a, b). [0, 1] being
compact, using a finite covering, we find a finite sequence t0 = 0 < · · · <
tN = 1 such that ∀j, d(Nw(tj),Nw(tj+1)) <

ε
3 . Then we define a (finite)

sequence of points

• x0 = x; x2N+1 = y;
• for every j ∈ {0, . . . , N}, x2j , x2j+1 ∈ Nw(tj)(L);
• for every j ∈ {1, . . . , N}, d(x2j−1, x2j) < ε

3 .

Every xj being in the chain recurrent set of
⋃
w∈C Nw(L) and each x2j

being connected to x2j+1 by a ( ε3 , T ) chain of
⋃
w∈C Nw(L), we obtain

easily a chain passing through x, x1, . . . , x2N+1 = y. �

Using Lemma 18 for C = H1(M), we deduce that N T
∗ (H) is chain tran-

sitive and therefore connected.
To deduce the end of the proof of Proposition 1, we assume that

dimH1(M) > 2; in this case, we notice that if h ∈ R, α−1
H (h) is arc-

wise connected (it is either a convex subset of H1(M) or the boundary of
a compact convex subset of H1(M) whose dimension is at least 2, which is
homeomorphic to a connected sphere) and closed. Moreover, we have

N T
∗ (H) ∩H−1(h) =

⋃
w∈α−1

H
(h)

N ∗
w(L).

�
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3. Radially transformed set and Aubry set, proof of
Proposition 4

Definition. — Let T > 0; we define
• the set RT (L) of the T -radially transformed points under (fLt ) is

RT (L) = {(x, v) ∈ TM ;π(fLT (x, v)) = x};

its dual set is then R∗
T (H) = L(RT (L));

• the set PT (L) is the set of the T -periodic orbits of the Lagrangian
flow (fLt )

PT (L) = {(x, v) ∈ TM ; fLT (x, v) = (x, v)};

its dual set is then P∗T (H) = L(PT (L)).

We note that PT (L) ⊂ RT (L) and that if λ is a C∞ closed 1-form, we
have PT (L− λ) = PT (L), RT (L− λ) = RT (L).

Some of the radially transformed points which we described before are
minimizing in a certain sense.

Proposition 19 (and Definition). — Let λ be a closed C∞ 1-form of
M . Then for every x ∈M , the set

ΓT (L, λ;x) = {γ ∈ CT (x, x);∀η ∈ CT (x, x), AL−λ(γ) 6 AL−λ(η)}

is non empty and each γ ∈ ΓT (L, λ;x) is a solution of the Euler-Lagrange
equations.

Moreover, if µ is a closed 1-form such that [µ] = [λ], then ΓT (L, λ;x) =
ΓT (L, µ;x).

This allows us to define for every w ∈ H1(M): ΓT (L,w;x) = ΓT (L, λ;x)
if [λ] = w and

• RT (L,w;x) = {(γ(0), γ̇(0)); γ ∈ ΓT (L,w;x)} ;
• RT (L,w) =

⋃
x∈M RT (L,w;x);

the sets RT (L,w;x) and RT (L,w) are closed and we have RT (L,w) ⊂
RT (L).

This proposition is an easy consequence of Tonelli Theorem (see [9]).
Let us explain how the radially transformed minimizing points allow us

to approximate the Aubry set.

Proposition 20. — Let w ∈ H1(M), ε > 0 and let L : TM → R be a
Tonelli Lagrangian function. Then there exists T0 > 0 such that

∀T > T0,∀(x, v) ∈ RT (L,w), x ∈ π(Aw(L)) =⇒ d((x, v),Aw(L)) 6 ε.
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What this last proposition says is: the family (RT (L,w)∩π−1(Aw(L)))T>0

of non-empty compact subsets of TM tends to Aw(L) (for the Hausdorff
topology) when T tends to +∞. This will be one of the main ingredients
of our proof of Theorem 2, which will give us some points near the Aubry
set but not in the Aubry set (for generic Lagrangian functions).

Proof of Proposition 20. — Let us assume that the result is not true;
then we may find a sequence (Tn)n∈N in R∗

+ tending to +∞, a sequence
(xn, vn) of points of RTn

(L,w)∩π−1(Aw(L)) such that ∀n ∈ N, d((xn, vn),
Aw(L)) > ε.

Now we use Proposition 11: let λ be a closed 1-form such that
[λ] = w; then we know that if we define hλt : M ×M → R by hλt (x, y) =
inf{AL−λ+αH(w)(γ); γ ∈ Ct(x, y)} and hλ(x, y) = lim inft→+∞ hλt (x, y), the
functions hλt tend uniformly to hλ when t tends to +∞; moreover, we
know that hλ is Lipschitz and zero at every (x, x) with x ∈ Aw(L). If γn
designates the solution of the Euler-Lagrange equations with initial condi-
tion (γn(0), γ̇n(0)) = (xn, vn) we have then hλTn

(xn, xn) = AL−λ+αH(w)(γn)
tends to 0 when n tends to the infinite.

The sequence (xn, vn) is bounded (it is a consequence of the so-called
“a priori compactness lemma” (see [9], Corollary 4.3.2)); therefore we may
extract a converging subsequence: we call it (xn, vn) again and (x∞, y∞)
is its limit. Let us notice that x∞ ∈ π(Aw(L)) because Aw(L) is compact.
Moreover, we have d((x∞, v∞),Aw(L)) > ε.

Let γ∞ be the solution of the Euler-Lagrange equations such that

(γ∞(0), γ̇∞(0)) = (x∞, v∞).

We want to prove that γ∞ is static: we shall obtain a contradiction. When
n is big enough, γn(Tn) = γn(0) is close to γ∞(0) and γn(1) is close to
γ∞(1). Let us fix η > 0; then we define Γηn : [0, Tn + 2η] →M by

• Γηn|[0,1] = γ∞|[0,1];
• Γηn|[1,1+η] is a short geodesic joining γ∞(1) to γn(1);
• ∀t ∈ [1 + η, Tn + η],Γηn(t) = γn(t− η);
• Γηn|[Tn+η,Tn+2η] is a short geodesic joining γn(Tn) to γ∞(0).

If we choose carefully a sequence (ηn) tending to 0, we have

lim
n→∞

AL−λ+αH(w)(Γηn
n ) = lim

n→∞
AL−λ+αH(w)(γn) = 0.

Because the contribution to the action of the two small geodesic arcs tends
to zero (if the ηn are well chosen), this implies

AL−λ+αH(w)(γ∞|[0,1]) +mλ(γ∞(1), γ∞(0)) 6 0,
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where mλ designates Mañé potential for the Lagrangian function L−λ. We
deduce then from the definition of Mañé potential that mλ(γ∞(0), γ∞(1))+
mλ(γ∞(1), γ∞(0)) = 0 and that AL−λ+αH(w)(γ|[0,1]) = mλ(γ∞(0), γ∞(1)).
It implies then that AL−λ+αH(w)(γ|[0,1]) = −mλ(γ∞(1), γ∞(0)). Let us no-
tice that, changing slightly Γηn, we obtain too

∀[a, b] ⊂ [0,+∞[, AL−λ+αH(w)(γ|[a,b]) = −mλ(γ∞(b), γ∞(a));

therefore γ|[0,+∞[ is static. To conclude, we use Proposition 9. �

To finish this section we give a result which explains why in general the
radially transformed points are not in a Mañé set: in this case, they would
be periodic.

Proposition 21. — Let L be a Tonelli Lagrangian function and let
w ∈ H1(M) be a cohomology class; then, for every T > 0, we have

Nw(L) ∩RT (L) ⊂ PT (L) ∩RT (L,w) ∩ Aw(L).

Proof of Proposition 21. — By Proposition 13, we know that if (x, v) ∈
Nw(L), then its orbit is a Lipschitz graph above a part of the zero section.
Therefore, if (x, v) ∈ Nw(L)∩RT (L), then the orbit of (x, v) under (fLt ) is a
graph (above a part of the zero section); as π(fT (x, v)) = π(x, v), we deduce
that fT (x, v) = (x, v): (x, v) is T -periodic for (ft), i.e. (x, v) ∈ PT (L).
Moreover, γv is a ray: therefore it is minimizing between γv(0) and γv(T ):
(x, v) ∈ RT (L,w).

We deduce from from Proposition 13 that every periodic orbit contained
in Nw(L) is in Aw(L). Hence (x, v) ∈ Aw(L). �

Corollary 22. — Let L be a Tonelli Lagrangian function. Let (x, v) ∈
TM be such that (x, v) ∈ RT (L)\PT (L) for some T > 0. Then there exist

• an open neighborhood U of (x, v) in TM ;
• an open neighborhood U of 0 in C∞(M);

such that
∀ψ ∈ U , U ∩N T (L+ ψ) = ∅.

This result is an easy consequence of Proposition 21 and Corollary 17.
Let us now prove:

Proposition 23. — Let U be a non empty open subset of TM and
L : TM → R be a Tonelli Lagrangian function. Then

– either there exists a non empty open subset U ′ ⊂ U such that
U ′ ∩ AT (L) = ∅;
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– or there exists N ∈ N∗ and a sequence (xn, vn) of different N -
periodic points contained in AT (L) ∩ U such that

lim
n→∞

(xn, vn) = (x0, v0);

moreover the orbit of every (xn, vn) is a graph above a part or the
zero section, and has no conjugate point.

Of course, we deduce Proposition 4 from this lemma: if U ⊂ AT (L) is a
non empty open subset, we have found (x, v) ∈ U which is periodic, whose
orbit is a graph above a part or the zero section, and has no conjugate
point.

Proof of Proposition 23. — Let us consider a Tonelli Lagrangian function
L and let U be a non empty subset of TM . There are two cases

1. either U ∩ AT (L) = ∅: we have the first conclusion;
2. or there exists (x, v) ∈ U ∩ Aw(L) for a certain w ∈ H1(M).

Let us choose α > 0 such that B̄((x, v), α) ⊂ U . We know that Aw(L)
is a compact graph above a part of the zero section such that TxM ∩
Aw(L) = {(x, v)}. Therefore, there exists ε > 0 such that ∀(x, v1) ∈
TxM,d((x, v1),Aw(L)) < α ⇒ d((x, v1), (x, v)) < ε. By Proposition 20,
there exists N0 > 0 such that

∀N > N0,∀(x, v1) ∈ RN (L,w, ;x), d((x, v1),Aw(L)) 6 α.

We deduce that if N > N0: RN (L,w;x) ⊂ U .
Let us recall that the set RN (L,w) =

⋃
y∈M RN (L,w; y) is a closed sub-

set of TM (Proposition 19). Thus there exists a neighborhood U0 of x in
M such that ∀y ∈ U0,RN0(L,w; y) ⊂ U . Another time, we have two cases

1. either there exist x1 ∈ U0 and (x1, v1) ∈ RN0(L,w;x1) such that
(x1, v1) /∈ N T (L); N T (L) being closed, we have the conclusion for
the set U ′ = U\N T (L);

2. or
⋃
y∈U0

RN0(L,w; y) ⊂ N T (L); then by Proposition 21,⋃
y∈U0

RN0(L,w; y) is a union of periodic orbits with period N0

contained in AT (L). These orbits are graphs above a part of the
zero section, and have no conjugate point.

�

4. Green bundles, conjugate points and proofs of
Theorem 2 and Corollary 3

All the results contained in this section except the last proposition are
not new.
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Let us recall some definitions.

Definition. — Let L be a Tonelli Lagrangian function defined on TM
and (x, v) ∈ TM

• the “vertical” at (x, v) ∈ TM is the linear subspace V (x, v) =
kerDπ(x, v) of T(x,v)(TM); the vertical at (x, p) ∈ T ∗M is the (La-
grangian) linear subspace V (x, p) = kerDπ∗(x, p) = DLL(V (x, v))
of T(x,p)(T ∗M);

• the orbit of (x, v) has a conjugate point if there exists t 6= t′ such
that DfLt−t′(V (fLt′ (x, v))) ∩ V (fLt (x, v)) 6= {0}; then we say that t
and t′ are conjugate (along the orbit); the definition is the same for
(x, p).

We recall some results of [6].

Proposition 24. — Let (x, v) = (γ(t0), γ̇(t0)) be a point of a ray
γ : R →M for L; then its orbit has no conjugate point.

Proposition 25. — Let (x, v) be a point of TM which is not a fixed
point of the flow (fLt ) and which has no conjugate point; then there ex-
ists two (fLt ) invariant n-dimensional subbundles of T (TM), G− and G+,
named the Green bundles defined by

G−(x, v) = lim
t→+∞

DfL−t(V (φt(x, v)))

and

G+(x, v) = lim
t→+∞

DfLt (V (fL−t(x, v))).

Moreover, they are transverse to the vertical and if we define L−(x, v) =
DL(x, v)(G−(x, v)) and L+(x, v) = DL(x, v)(G+(x, v)), then L−(x, v) and
L+(x, v) are Lagrangian, their sum is contained in the tangent bundle of
the energy level of L(x, v) and their intersection contains the Hamiltonian
vector field.

Proposition 26. — Let (x, v) be a T -periodic point with no conjugate
point of (fLt ) which is not a fixed point of the flow. Then, if the dimension of
G−(x, v)+G+(x, v) is 2n-1, this orbit is hyperbolic and for every vectorW ∈
T(x,v)(TM)\ (G−(x, v) ∩G+(x, v)) (where G−(x, v) and G+(x, v) designate
the Green bundles): the family (DfLt (x, v)(W ))t∈R is unbounded.

Now we shall give a detailed description of the images of the vertical; to
do that we need to introduce some new notions.
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Definition. — Let L1, L2 be two Lagrangian subspaces of T(x,p)(T ∗M)
which are transverse to the vertical. Then the restrictions of Dπ∗(x, p) :
T(x,p)(T ∗M) → TxM to L1 and L2 are two isomorphisms, named F1 and F2.

The relative height between L1 and L2 is then the quadratic form
Q(L1,L2) defined on TxM by

∀δx ∈ TxM,Q(L1,L2)(δx) = ω(F−1
1 (δx), F−1

2 (δx)).

We say that L2 is above L1 if Q(L1,L2) is positive (i.e. if its index is 0),
that L2 is strictly above L1 if L2 is above L1 and the dimension of L1 ∩L2

is 0, i.e. if Q(L1,L2) is positive definite and that L2 is semi-strictly above
L1 if L2 is above L1 and the dimension of L1 ∩ L2 is 1, i.e. if Q(L1,L2) is
positive with nullity 1.

Remark. — The definition of the height (slightly different because given
in a chart) was given in [1].

Let us recall some results of [6] and [1].

Proposition 27. — We define Vt(x, p) = DΦHt
(
V (ΦH−t(x, p))

)
. Then

• let L be a Lagrangian subspace of T(x,p)(T ∗M) which is transverse
to V (x, p); for t > 0 small enough Vt(x, p) is strictly above L which
is strictly above V−t(x, p) (“small enough” is locally uniform in
(x, p));

• if 0 < t1 < t2 and the orbit has no conjugate point between 0 and
t2: Vt1(x, p) is strictly above Vt2(x, p);

• if 0 < t1 < t2 and the orbit has no conjugate point between −t2
and 0: V−t2(x, p) is strictly above V−t1(x, p);

• if t, t′ are strictly positive and the orbit has no conjugate point
between −t and t′, then Vt′(x, p) is strictly above V−t(x, p).

A first consequence is the well-known:

Corollary 28. — Let (x, p) be a point having no conjugate point for
H; then L+(x, p) is above L−(x, p).

Another consequence is:

Corollary 29. — Let H : T ∗M → R be a Tonelli Hamiltonian func-
tion. Then the subset U of C∞(M) × T ∗M defined by U = {(ψ, (x, p)) ∈
C∞(M)× T ∗M ; there are two conjugate points for H − ψ along the orbit
of (x, p)} is open.

Proof of Corollary 29. — Let us assume that there exist some conjugate
points along the orbit of (x, p) for H: there exist two real numbers t1 < t2
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such that DΦHt2−t1(V (φHt1(x, p))) ∩ V (ΦHt2(x, p)) contains at least one non
zero vector, named Y . To simplify the notations, we may assume that t1 = 0
and t2 = T > 0. We may assume too that T is the smallest t > 0 such that
0 and t are conjugate along the orbit of (x, p). We have

• if X is a non zero vector belonging to V (x, p) ∩ V−T (x, p) and if
Y = DΦHT (x, p)X, for u > 0, Z = DΦH−u−T (Y ) = DΦH−u(X) ∈
V−T−u(ΦH−u(x, p)) ∩ V−u(ΦH−u(x, p)).

• for u > 0 small enough Z ∈ V−u(ΦH−u(x, p)), the Lagrangian sub-
space V−2u(ΦH−u(x, p)) is strictly above V−u(ΦH−u(x, p)) (it is the
third point of Proposition 27); we choose then u such that u < T ;
then we have V−T−u(ΦH−u(x, p)) is not above V−2u(ΦH−u(x, p)): in-
deed, Z belongs to V−T−u(ΦH−u(x, p)) and to a Lagrangian subspace,
V−u(ΦH−u(x, p)), which is “strictly under” V−2u(ΦH−u(x, p)).

Finally, we have found (x1, p1) on the orbit of (x, p) and 0 < t1 < t2 such
that V−t2(x1, p1) is not above V−t1(x1, p1); this condition is clearly open
and implies the existence of conjugate points (see Proposition 27). �

Let us now prove Proposition 5.

Proposition 5. — For the Tonelli Lagrangian functions, the following
property is generic: “if P is a periodic orbit which is a graph above a part
of the zero section, which has no conjugate point and whose period is an
integer N > 1, then

• either P is hyperbolic and isolated among the N -periodic orbits;
• or in every neighborhood of P there exists an open subset of points

whose orbit has conjugate points”.

In the proof of Proposition 5, we will prove the following result, which is
the main ingredient of the proof.

Proposition 30. — Let L : TM → R be a Tonelli Lagrangian functions
and P be a non hyperbolic periodic orbit of (fLt ) which is a graph above a
part of the zero section, which has no conjugate point and whose period is
an integer N > 1, then: in every neighbourhood of 0 in C∞(M,R), there
exists a function ψ such that P is a periodic orbit for (fL+ψ

t ) with conjugate
points.

Proof of Proposition 5. — Let H : T ∗M → R be a Tonelli Hamiltonian
function. Let (Un) be a countable basis of open and relatively compact sub-
sets of T ∗M . The subset Un of C∞(M) is the set of ψ such that Un contains
a point whose orbit under (ΦH−ψt ) has a conjugate point. We deduce from
Corollary 29 that Un is open. Therefore Vn = Un∪(C∞(M)\Ūn) is an open
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and dense subset of the Baire space C∞(M) and G =
⋂
n∈N Vn is a dense

Gδ subset of C∞(M).
Let us consider ψ ∈ G and let (x, p) be a N -periodic point for (ΦH−ψt )

whose orbit is a graph above a part of the zero section, which has no
conjugate point. Let us assume that there exists a neighborhood Un of
(x, p) which contains no point whose orbit under (ΦH−ψt ) has a conjugate
point. As ψ ∈ G and ψ /∈ Un, we have ψ ∈ C∞(M)\Ūn.

Let us now consider the orbit of (x, p): as it has no conjugate points, we
can define the Green bundles L− and L+ along this orbit. There are two
cases

1) if these Green bundles are transverse in the energy level, we use
Proposition 26: L−(x, p) ∩ L+(x, p) = RXH(x, p) where XH is the
Hamiltonian vector field, the orbit is hyperbolic and the eigenvec-
tors of DΦHN (x, p) associated to the eigenvalue 1 are the vectors of
RXH(x, p) (because the orbits of the other vectors are unbounded);
it implies that this orbit is isolated among the N periodic orbits.

2) if the Green bundles are not transverse in the energy level, we shall
show that we may add to H−ψ = H̃ a small function ψ1 ∈ C∞(M)
to create conjugate points along the orbit of (x, p); it will imply that
ψ ∈ Un, it is a contradiction with ψ ∈ C∞(M)\Ūn.

Let us now build such a ψ1. We assume that (x, p) is not a fixed point of
the flow (this case is simpler that the case which we treat); then there exists
t0 > 0 such that, if we define γ(t) = π∗◦ΦH̃t (x, p), then γ̇(t0) 6= 0; we define
x0 = γ(t0). We choose C∞-coordinates (x1, . . . , xn) in a neighborhood
U ⊂ M of x0 such that if U ∩ γ = {γ(t); t ∈]t0 − ε, t0 + ε[}, then ∀t ∈
]t0 − ε, t0 + ε[, (x1, . . . , xn)(γ(t)) = (t, 0 . . . , 0). We work then in the dual
(symplectic) coordinates (x1, . . . , xn, p1, . . . , pn) on T ∗U : it means that the
point with coordinates (x1, . . . , xn, p1, . . . pn) is

∑n
k=1 p

kdxk. We define a
function ψ1 : M → R which is

– zero on M\U ;
– defined in the chart U by ψ1(x) = η

(∑n
i=1

(
xi

)2
) ∑n

j=2

(
xj

)2

where η : R → [0, 1] is a C∞ function which is zero outside ]−(
ε
2

)2
,
(
ε
2

)2 [ and strictly positive in ]−
(
ε
2

)2
,
(
ε
2

)2 [.

Then (x, p) has the same (periodic) orbit Γ for (ΦH̃t ) as for (ΦH̃+ψ1
t ).

Let us now assume that the orbit of (x, p) has no conjugate point for

(ΦH̃+ψ1
t ) (we shall show a contradiction). Then we may define along this

orbit the Green bundles L1
− and L1

+ (for H̃ + ψ1). We shall use:
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Lemma 31. — We consider (x, p) ∈ Γ, τ > 0 and L a Lagrangian sub-
spaces of T(x,p)(T ∗M) transverse to V (x, p) such that

a) for every t ∈ [0, τ ], DφH̃t (L) is transverse to V (φH̃(x, p));

b) for every t ∈ [0, τ ], DφH̃+ψ1
t (L) is transverse to V (φH̃(x, p)).

Then for every t ∈ [0, τ ], DφH̃t (L) is above (semi-strictly above if t > N)

DφH̃+ψ1
t (L).

Proof of Lemma 31. — We begin by proving a version of this lemma for
small t.

We say that (δx, δp) : R → T (T ∗M) is an infinitesimal solution along the
orbit of (x, p) for (φt) if (δx(t), δp(t)) ∈ Tφt(x,p)(T

∗M) and (δx(t), δp(t)) =
Dφt(δx(0), δp(0)). Let (δx1, δp1) (resp. (δx0, δp0)) be an infinitesimal so-
lution for H̃ + ψ1 (resp. H̃) along Γ. They satisfy the so-called linearized
Hamilton equations (given in coordinates)

δẋ1 =
∂2H̃

∂x∂p
δx1 +

∂2H̃

∂p2
δp1; δṗ1 = −∂

2H̃

∂x2
δx1 −

∂2H̃

∂p∂x
δp1 −

∂2ψ1

∂x2
(x)δx1;

δẋ0 =
∂2H̃

∂x∂p
δx0 +

∂2H̃

∂p2
δp0; δṗ0 = −∂

2H̃

∂x2
δx0 −

∂2H̃

∂p∂x
δp0.

We are interested in some infinitesimal solutions having the same initial
values: (δx0(0), δp0(0)) = (δx1(0), δp1(0)). We deduce from the linearized
Hamilton equations that, uniformly for (x, p) ∈ Γ close to (x0, p0), if the
two infinitesimal solutions have the same initial values, for t close to 0:

(∗) δx1(t) = δx0(t) +O(t2); δp1(t) = δp0(t)− t
∂2ψ1

∂x2
(x)δx1(t) +O(t2).

Let us assume that we work in a dual chart and that L is a Lagrangian
subspace of T(x,p)(T ∗M) transverse to V (x, p): then L is the graph of a

symmetric matrix S: δp = Sδx. In this chart, the coordinates of ΦH̃t (x, p)

are (x(t), p(t)). For t small enough DΦH̃t L = Lt and DΦH̃+ψ1
t L = L1

t are
Lagrangian subspace of T

ΦH̃
t (x,p)

(T ∗M) which are transverse to the vertical:

they are graphs of St, S1
t .

We distinguish two cases (even if they are not exhaustive)

a) there exists α > 0 such that the support of ψ doesn’t meet {x(t);
t ∈]0;α[}; in this case, for every t ∈ [0, α], DφH̃t (L) = DφH̃+ψ1

t (L);
b) there exists α > 0 such that {x(t); t ∈ [0;α]} is in the interior of

the support of ψ1; let (δx0, δp0) and (δx1, δp1) be some infinitesimal
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solutions as before such that (δx0(0), δp0(0)) = (δx1(0), δp1(0))∈L;
we have

δx1(t) = δx0(t) +O(t2);

δp0(t) = St(x, p)δx0(t);

δp1(t) = S1
t (x, p)δx1(t)

δp1(t) = δp0(t)− t
∂2ψ1

∂x2
(x)δx1(t) +O(t2)

= (St(x, p)− t
∂2ψ1

∂x2
(x))δx1(t) +O(t2).

We deduce that S1
t (x, p) = St(x, p) − t∂

2ψ1
∂x2 (x) + O(t2); therefore

St(x, p)−S1
t (x, p) a symmetric matrix which is positive with nullity

1 for t > 0 small enough. It is the matrix (in the chart) of the relative

eight Q(DφH̃+ψ1
t (L), DφH̃t (L)); thus, DφH̃t (L) is semi-strictly above

DφH̃+ψ1
t (L) for t small enough.

Let us notice that using a limit, we deduce from the case b) that if
{x(t); t ∈]0;α]} is in the interior of the support of ψ1, we have the same
conclusion: then we have dealt with all the possible cases for (x, p).

Now, to prove the lemma for large t, we notice that any symplectic flow
preserves the order between Lagrangian subspaces: if L1, L2 are such that
L2 is above L1 and such that for every t ∈ [0, τ ], Dφt(L1) and Dφt(L2) are
transverse to the vertical, then the relative height Q(Dφt(L1), Dφt(L2))
has a kernel varying continuously with t and whose dimension is constant
(it is dim(DφT (L1 ∩ L2)) = dim(L1 ∩ L2)); therefore its index is constant.

Let us now prove the first part of Lemma 31. We have proved that there
exists α > 0 such that, for every t ∈ [0, α], DφH̃t (L1) is above DφH̃+ψ1

t (L1).

Let us define τ1 = sup{R ∈ [0, τ ];∀t ∈ [0, R], Q(DφH̃+ψ1
t (L1), DφH̃t (L1)) >

0}. Let us assume that τ1 < τ ; at first, we notice that, by continuity,
the supremum is indeed a maximum: Q(DφH̃+ψ1

τ1 (L1), DφH̃τ1(L1)) > 0,

i.e. DφH̃τ1(L1) is above DφH̃+ψ1
τ1 (L1); because the flow preserves the or-

der between Lagrangian subspaces, we deduce that for any u ∈ [0, τ − τ1],
DφH̃τ1+u(L1) is above DφH̃u (DφH̃+ψ1

τ1 (L1)); but for u > 0 small enough, we

have DφH̃u (DφH̃+ψ1
τ1 (L1)) is above DφH̃+ψ1

τ1+u (L1); therefore, for u > 0 small
enough: τ1 + u contradicts the definition of τ1.

To obtain the “semi-strict” of the lemma, we notice that along a subarc
of the orbit of (x, p) (in the support of ψ1), we find locally a strict inequality
between the Lagrangian subspaces (it is the case b) before). �
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Using this lemma (the vertical is not transverse to itself, but we may use
an image of this vertical), we obtain, for every t > N ,DΦH̃t (V (ΦH̃−t(x, p))) is

semi-strictly above DΦH̃+ψ1
t (V (ΦH̃+ψ1

−t (x, p))); when t tends to +∞, we ob-

tain, L+(x, p) is above L1
+(x, p). As L1

+(x, p) is invariant under (DΦH̃+ψ1
t ),

we deduce that for every t > 0: DΦH̃+ψ1
t (L+(ΦH̃+ψ1

−t (x, p))) is semi-strictly
above L1

+(x, p). But by Lemma 31 and the fact that L+(x, p) is invari-
ant under (DΦH̃t ), we know that, for t > N , L+(x, p) is semi-strictly

above DΦH̃+ψ1
t (L+(ΦH̃+ψ1

−t (x, p))). Finally, L+(x, p) is semi-strictly above
L1

+(x, p).
In a similar way, we obtain that L1

−(x, p) is semi-strictly above L−(x, p).
Finally, we have

• L+(x, p) is semi-strictly above L1
+(x, p), i.e. Q(L1

+(x, p),L+(x, p))
has a 1-dimension kernel and is positive;

• L1
−(x, p) is semi-strictly above L−(x, p) i.e. Q(L−(x, p),L1

−(x, p))
has a 1-dimension kernel and is positive;

• dim(L−(x, p) ∩ L+(x, p) > 2) i.e. Q(L−(x, p),L+(x, p) is positive
and the dimension of its kernel is at least 2.

Therefore

Q(L1
−(x, p),L1

+(x, p)) = −Q(L−(x, p),L1
−(x, p))

+Q(L−(x, p),L+(x, p))−Q(L1
+(x, p),L+(x, p))

is strictly negative at any vector of kerQ(L−(x, p), L+(x, p))\ kerQ(L1
+(x, p),

L+(x, p)) and we obtain a contradiction with Corollary 28. �

Proof of Theorem 2. — We explained in the introduction how we deduce
the last assertion of Theorem 2 from Propositions 4 and 5.

The first part of the theorem is a consequence of the end of the theorem
and a result of Baire’s theory: we consider a generic Tonelli Lagrangian
function. The union R∗ of the regular level of H is a dense open subset of
R. We denote the set of the regular values of H by V .

Let us consider h0 ∈ V ; then there exists a diffeomorphism,
Φ: H−1(h0)×] − ε, ε[→ U ⊂ T ∗M such that ∀η ∈] − ε, ε[,Φ(H−1(h0) ×
{η}) = H−1(h0 + η). Then A = Φ−1(AT∗ (H) ∩ U) is a closed subset
of H−1(h0)×] − ε, ε[ which has no interior. Let (Un) be a basis of non
empty subsets of H−1(h0). We define Fn = {η ∈] − ε, ε[;Un × {η} ⊂
(H−1(h0) × {η}) ∩ A}. As A is closed, Fn is a closed subset of ] − ε, ε[.
Moreover, as A has no interior, Fn has no interior; therefore F =

⋃
n∈N Fn

has no interior (Baire’s theorem) and G = h0 + (]− ε, ε[\F ) is a dense Gδ
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subset of ]h0 − ε, h0 + ε[ such that, for every h ∈ G, H−1(h) ∩ AT∗ (H) has
no interior in H−1(h). �

Proof of Corollary 3. — We want to prove that the set

W s(AT∗ (H); (ΦHt )) ∪Wu(AT∗ (H); (ΦHt ))

has no interior. Let us assume that it is not true and let

U ⊂W s(AT∗ (H); (ΦHt )) ∪Wu(AT∗ (H); (ΦHt ))

be an open and non empty subset. Using theorem 2, we know that the open
set U ′ = U\AT∗ (H) is non empty. By Poincaré recurrence theorem, almost
every point in U ′ (for the volume form associated to the symplectic form)
is positively and negatively recurrent. But a point of U ′ is in(

W s(AT∗ (H); (ΦHt )) ∪Wu(AT∗ (H); (ΦHt ))
)
\AT∗ (H); (ΦHt ));

therefore, either it is not negatively recurrent or it is not positively recur-
rent, which contradicts the fact that U ′ is non empty. �

5. Proof of Proposition 6

We begin by defining a completely integrable Tonelli Hamiltonian func-
tion of T ∗T2, whose flow is the “product” of the flow of a pendulum and the
geodesic flow of the circle: if we identify T ∗T2 with the set T×R×T×R, if
the (global) coordinates are (θ1, p1, θ2, p2) ∈ T×R×T×R, the Hamiltonian
function H0 is defined by

H0(θ1, p1, θ2, p2) =
1
2
(p2

1 + p2
2) + cos(2πθ1)−

3
2
;

then the Hamiltonian flow of H0 is defined by

ΦH0
t ((θ1, p1, θ2, p2) = (ϕt(θ1, p1), ψt(θ2, p2))

where (ϕt) is the flow of the pendulum and (ψt) the geodesic flow of T.
Let w be the cohomological class of the 1-form dθ2. Then

M∗
w(H0) = A∗

w(H0) = N ∗
w(H0) = {(0, 0, t, 1); t ∈ T}.

If we perturb slightly H0, we may obtain a Hamiltonian function H1 such
that

1. Nw(H1) = Nw(H0) is a periodic hyperbolic orbit P (in fact, the
Mañé set Nw(H) depends continuously on H);

2. the intersections between the stable manifold W s(P, (ΦH1
t )) and the

unstable manifold Wu(P, (ΦH1
t )) are transverse in the energy level

Σ = H−1
1 (0) of P ;
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3. the surface S = {(θ1, p1, 0, p2);H1(θ1, p1, 0, p2) = 0} is transverse
to the flow in the 0 energy level and near the point (0, 0, 0, 1);

4. in any neighborhood V of (0, 0, 0, 1) in S, there exists another neigh-
borhood U of (0, 0, 0, 1) in S such that U ⊂ V and such that
δU = γ1 ∪ γ2 ∪ γ3 ∪ γ4 where the γi are some arcs such that
γ1 ∪ γ3 ⊂ W s(P, (ΦH1

t )) and γ2 ∪ γ4 ⊂ Wu(P, (ΦH1
t )) ; to ob-

tain such a result, we only have to ask that there is a transverse
homoclinic intersection on any local branch of W s(P, (ΦH1

t )) ∩ S
and Wu(P, (ΦH1

t )) ∩ S: then we obtain a kind of canvas by arcs of
W s(P, (ΦH1

t )) ∩ S and Wu(P, (ΦH1
t )) ∩ S around (0, 0, 0, 1) in S.

The situation which we just described is in fact open in the following sense:
there exist ε > 0 and an open subset U of C∞(M) containing 0 such that,
for every ψ ∈ U , for every h ∈ [−ε, ε], (H1 +ψ)−1(h) contains one periodic
orbit P ′ = P (ψ, h), the orbit of ξ, close to P and in any neighborhood V

of ξ in S′ = S(ψ, h) = {(θ1, p1, 0, p2); (H1 + ψ)(θ1, p1, 0, p2) = h}, there
exists another neighborhood U of ξ in S′ such that U ⊂ V and such that
δU = γ1 ∪ γ2 ∪ γ3 ∪ γ4 where the γi are some arcs such that γ1 ∪ γ3 ⊂
W s(P ′, (ΦH1+ψ

t )) and γ2 ∪ γ4 ⊂Wu(P ′, (ΦH1+ψ
t )).

Moreover, there exists a neighborhood V ⊂ U of 0 in C∞(M) such that,
for every ψ ∈ V, there exists h = h(ψ) ∈] − ε, ε[ such that Nw(H1 + ψ) =
P (ψ, h) (we have seen that the Mañé set depends continuously on ψ, and
an invariant set contained in a neighborhood of a hyperbolic orbit and in
an energy level is necessarily a periodic orbit). Let us prove that for ψ ∈ V,
Nw(H1 + ψ) is not a subset of I(H1 + ψ).

Let us consider ξ ∈ P (ψ, h)∩S(ψ, h) and let us assume that there exists
a sequence of K.A.M. tori (Ti)i∈N such that limi→∞ d(ξ, Ti) = 0. Being a
Lagrangian invariant torus, each Ti is in an energy level (H1 + ψ)−1(hi)
with, for i large enough: hi ∈] − ε, ε[ close to P (ψ, hi). Moreover, Ti is a
graph above the zero section. Therefore, {(θ1, p1, 0, p2); (θ1, p1, 0, p2) ∈ Ti}
is a curve Γi which is a graph above a circle. Moreover, this curve passes
very close to the point ξi which is the point of the periodic orbit P (ψ, hi)
which belongs to S(ψ, hi). This curve is then a curve which is traced on
S(ψ, hi), which has points very close to ξi and other points far from ξi.
Therefore it cuts the boundary of any sufficiently small neighborhood of
ξi in S(ψ, hi), and then contains some points of W s(P (ψ, hi), (Φ

H1+ψ
t )) ∪

W s(P (ψ, hi), (Φ
H1+ψ
t )). This contradicts the fact that the restriction of the

flow to any K.A.M. torus is minimal. �
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