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ON DIRICHLET SERIES AND PETERSSON
PRODUCTS FOR SIEGEL MODULAR FORMS

by Siegfried BÖCHERER & Francesco Ludovico CHIERA (*)

Abstract. — We prove that the Dirichlet series of Rankin–Selberg type asso-
ciated with any pair of (not necessarily cuspidal) Siegel modular forms of degree n
and weight k > n/2 has meromorphic continuation to C. Moreover, we show that
the Petersson product of any pair of square–integrable modular forms of weight
k > n/2 may be expressed in terms of the residue at s = k of the associated
Dirichlet series.

Résumé. — On démontre que la série de Dirichlet à la Rankin-Selberg associée
à toute paire de formes modulaires de Siegel (non nécessairement paraboliques)
de degré n et poids k > n/2 admet un prolongement méromorphe à C. En outre,
on montre que le produit de Petersson de toute paire de formes modulaires de
carré-intégrable et de poids k > n/2 a une expression en termes du résidu en s = k
de la série de Dirichlet associée. Ces résultats sont bien connus pour les formes
paraboliques. La méthode que nous adoptons généralise celle qui a été introduite
par Maass (dans le cas n = 2) et se base sur l’utilisation de certains opérateurs
différentiels invariants.

1. Introduction

The main purpose of the present paper is to consider Petersson products
of not–necessarily cuspidal Siegel modular forms and to extend to them
some properties which are well–known in the cuspidal case.

In 1983, Kalinin studied the analytic properties of the Rankin convolu-
tion of Siegel modular forms of degree n. He showed that given a pair F,G
of Siegel modular forms of which at least one is cuspidal, their Rankin con-
volution R(F,G; s) has a meromorphic continuation to the whole complex
plane. Moreover, he proved what we shall call the Petersson identity, i.e. an

Keywords: Rankin-Selberg method, Petersson product, non-cuspidal modular forms, in-
variant differential operators.
Math. classification: 11F46, 11F60, 11F66 .
(*) Partially supported by an INdAM fellowship for studies in foreign countries.
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identity (up to a suitable constant) between the relevant Petersson product
and the residue of the Rankin convolution at s = k, k being the weight of F
and G. Kalinin’s results generalize previous works of Rankin [25], Petersson
[24] and Maaß [21] (and many others). In fact, they basically follow from
an application of the Rankin–Selberg unfolding method.

The cuspidality condition seems to be essential for the Rankin–Selberg
method: it is needed to ensure the convergence of the integral which rep-
resents the Rankin convolution.

We shall however extend the Rankin–Selberg method to not necessarily
cuspidal Siegel modular forms by generalizing a technique introduced by
Maaß [21] for degree 2 modular forms (much later a variant was also given
by Mizuno [23] for degree 1 and attributed by him to Kudla). By means of
suitable Sp(n,R)–invariant differential operators we shall construct certain
rapidly decreasing functions whose convolution with the convenient weight
0 Eisenstein series will provide us with an integral representation of the
Rankin convolution. As a corollary we get the meromorphic continuation
of the Rankin convolution.

Whereas Maaß was able in [21] to carry out explicitly the calculus of
differential operators in degree 2, we have to adopt a more abstract strategy
developed by Deitmar and Krieg. In fact, the paper [6] implicitly provides
almost all the ingredients necessary to handle the differential operators for
arbitrary degrees.

Unlike the cuspidal case, the Petersson identity does not follow imme-
diately from the integral representation. Some results due to Shimura [30]
on the symmetry of certain “generalized Laplacians" (which generate the
algebra of Sp(n,R)–invariant differential operators) will play a crucial role
for the proof of this point.

It should be noted that in the case of degree (and level) 1 our results
are contained in those proved by Zagier in [33] by using a suitably “renor-
malized" Rankin–Selberg integral for a certain class of automorphic forms
(not of rapid decay). Extending Zagier’s method to groups of higher rank
would be extremely interesting, but it seems however a quite difficult task
(see e.g. [19]).

Let us now outline the content of the paper. In Section 2 we recall some
basic facts and useful results. In particular we state explicitly as Proposition
2.1 the result of Deitmar and Krieg we shall use. In Section 3 we prove the
meromorphic continuation of the Rankin convolution (Theorem 3.1). We
treat in Proposition 3.2 the case of forms of different weights. Section 4
is then devoted to the proof of the Petersson identity (Theorem 4.4). We
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collect in Section 5 some simple consequences of our results and a few final
remarks. For instance, we obtain an orthogonality property for “almost
singular" theta series associated with not rationally equivalent quadratic
forms. Some features of the bilinear form defined as the residue at s = k of
the Rankin convolution – which formally extends the Petersson product –
are also discussed.

It should be possible to use the procedure we propose here to deal with
similar situations. At least, this seems to be the case for the Dirichlet series
introduced by Kohnen, Skoruppa and Yamazaki ([17], [32]). We plan to take
up this point again in a future work.

Notation. — If M is a square matrix we write |M | and σ(M) for the
determinant and the trace of M , respectively. For z ∈ C, we abbreviate
e(z) = exp (πiz). We shall denote by

Hn := {Z = X + iY ∈Mat(n,C) | Z = tZ, Y > 0}

the Siegel upper half–space of degree n.

2. Background

Let m,n, q be positive integers. We consider the space M(Γn
0 [q], k, χ)

of Siegel modular forms of degree n and weight k = m/2 for the Hecke
subgroup of level q

Γn
0 [q] = {M = ( A B

C D ) ∈ Sp(n,Z) | C ≡ 0 mod q},

with respect to a Dirichlet character χ modulo q.
By definition, the Petersson product of a pair of modular forms F,G ∈
M(Γn

0 [q], k, χ) is

(2.1) 〈F,G〉 :=
1

[Sp(n,Z) : Γn
0 [q]]

∫
Fn,q

F (Z)G(Z)|Y |kd∗Z ,

whenever the integral converges. In the integral in (2.1) Fn,q is a fun-
damental domain for Γn

0 [q] and d∗Z is the Sp(n,R)–invariant measure
|Y |−(n+1)dXdY .

Given F,G ∈ M(Γn
0 [q], k, χ), with Fourier expansions

F (Z) =
∑

N>0

a(N)e(σ(NZ)), G(Z) =
∑

N>0

b(N)e(σ(NZ)),

TOME 58 (2008), FASCICULE 3



804 Siegfried BÖCHERER & Francesco Ludovico CHIERA

the Rankin convolution associated with F and G is the following Dirichlet
series

(2.2) R(F,G; s) :=
∑
{N}

a(N)b(N)
ε(N)|N |s

where {N} runs over all GL(n,Z) equivalence classes of positive even in-
tegral matrices of size n and ε(N) is the number of integral units of N .
Standard estimates for the Fourier coefficients of Siegel modular forms im-
ply that the series in the r.h.s. of (2.2) converges absolutely in the half–plane
<(s) > n+1

2 +m. R(F,G; s) is therefore holomorphic in that region. On the
other hand, if at least one among F and G is a cusp form, then

(1) R(F,G; s) has meromorphic continuation to C;
(2) R(F,G; s) has at most a simple pole at s = k and satisfies the

Petersson identity, i.e. there is a constant c 6= 0 (depending on n

and k) such that

< F,G >= c ·Ress=kR(F,G; s).

These facts both follow from the Rankin–Selberg method. One may indeed
take into account the Eisenstein series for Γn

0 [q] of weight 0,

Eq(Z, s) :=
∑

α∈Γn
∞\Γn

0 [q]

|Y |s|J(α,Z)|−2s (<(s) >
n+ 1

2
),

where Γn
∞ = {( A B

0 D ) ∈ Sp(n,Z)}, and, for any α = ( A B
C D ) ∈ Sp(n,R)

and Z ∈ Hn, J(α,Z) := |CZ + D|. In fact, the Eisenstein series Eq(Z, s)
has a meromorphic continuation to C with a simple pole at s = n+1

2 ,
with constant non–zero residue (see [7], Theorem 9.2, and [12]). Hence, the
above mentioned properties of R(F,G; s) are a consequence of the integral
representation

(2.3)
∫

Fn,q

Eq(Z, s)F (Z)G(Z)|Y |kd∗Z = γn,k(s)R
(
F,G; s+ k − n+ 1

2

)
,

for a certain gamma factor γn,k(s) (see [13] for more details).
In order to extend the above results to the case of not necessarily cuspidal

modular forms we shall use suitable differential operators to remove the
“singular terms” which would cause the integral in (2.3) to diverge. This
kind of technique has been introduced by Maaß in [21] for Siegel modular
forms of degree 2.

ANNALES DE L’INSTITUT FOURIER
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To construct the differential operator R = R(n, k) acting on smooth
functions on Hn, we have first to consider the GL(n,R)–invariant operator,

(2.4) R0 = |Y |n+1−m|∂Y ||Y |m+1−n|∂Y |,

where, as usual, ∂Y denotes the n× n matrix, whose entries are

(∂Y )(i,j) =
(1 + δ(i,j))

2
∂

∂Y(i,j)
,

where 1 6 i, j 6 n and δ(i,j) is Kronecker’s delta. Clearly,R0 acts on smooth
functions on the set Pn of n× n symmetric and positive real matrices,

Then, we choose R to be an Sp(n,R)–invariant differential operator such
that the following two identities hold

R[|Y |kF (Z)G(Z)] =(2.5)

=
∑

N1,N2>0
N1+N2>0

a(N1)b(N2)R[|Y |ke(σ((N1 −N2)X) + iσ((N1 +N2)Y ))],

(2.6)
∫

Symn(R/Z)

R[|Y |kF (Z)G(Z)]dX = |Y |kR0[Ξ(F,G;Y )],

where

(2.7) Ξ(F,G;Y ) =
∑
N>0

a(N)b(N)e(2iσ(NY )).

The existence of such an operator R is guaranteed by some results in [6]
(Theorem 1.1, Theorem 1.2 and Proposition 2.1, at pages 275, 276 and 278,
respectively). For the reader’s convenience, let us collect such results in one
statement. Consider the algebras D(Hn) and D(Pn) of invariant differential
operators w.r.t. Sp(n,R) and GL(n,R), respectively. Recall that if S(a) is
the symmetric algebra of the Lie algebra a = an of the maximal R–split
torus An of diagonal matrices in GL(n,R) (which is a maximal R–split
torus for Sp(n,R) as well) we have the isomorphisms

D(Pn) ' S(a)WGL(n,R) , D(Hn) ' S(a)WSp(n,R) ,

where WGL(n,R) and WSp(n,R) are the Weyl groups of GL(n,R) and Sp(n,R)
with respect to An. In this setting, WGL(n,R) is the group of all the permu-
tations of (a1, . . . , an) ∈ a, while WSp(n,R) is generated by WGL(n,R) and
all sign changes.
Next, if we consider the injective map

ϕ : C∞(Pn) → C∞(Hn),

TOME 58 (2008), FASCICULE 3



806 Siegfried BÖCHERER & Francesco Ludovico CHIERA

defined by
ϕ(f)(X + iY ) := f(Y ),

we may associate with ϕ a well defined map

ϕ∗ : D(Hn) → D(Pn);
D 7→ ϕ−1 ◦D ◦ ϕ.

Notice indeed that the image of ϕ consists of the functions invariant under
all one parameter subgroups of

U =
{(

In B

0 In

)
| B = tB ∈Mat(n,R)

}
6 Sp(n,R),

and every D ∈ D(Hn) leaves therefore that image invariant (see [6] page
274).

Let us now state the result of Deitmar and Krieg we resort to.

Theorem 2.1. — The map ϕ∗ is injective and the following diagram

D(Hn)� _

ϕ∗

��

' S(a)WSp(n,R)
� _

i

��
D(Pn) ' S(a)WGL(n,R)

is commutative. Moreover, for any r ∈ R, consider the differential operator

Dr = Dr,n := |Y |r|∂Y ||Y |1−r ∈ D(Pn),

then
DrDn+2−r ∈ ϕ∗(D(Hn)).

Finally, let
R\

0 := Dn+1−kD1+k = |Y |kR0|Y |−k,

R := (ϕ∗)−1(R\
0),

then the identities (2.5) and (2.6) hold.

Remark 2.2. — Deitmar and Krieg actually consider in their paper a
set-up which is slightly different from ours. Namely, they are concerned
with theta liftings of Eisenstein series and they need therefore to apply
their differential operators to certain theta–kernels. We believe it is worth
showing how the arguments of Proposition 2.1 in [6] can be adapted to get
(2.5). In other words, taking

f(Z) = |Y |ke(σ((N1 −N2)X + i(N1 +N2)Y )),

ANNALES DE L’INSTITUT FOURIER
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we want to prove that R[f ] = 0 if |N1 + N2| = 0. To this end, since R is
Sp(n,R)–invariant and N1, N2 are positive semi–definite, it is sufficient to
assume

N1 =
(

Ñ1 0
0 0

)
, N2 =

(
Ñ2 0
0 0

)
.

Consequently, if n > 1, we see that f lies in the image of the map

τ : C∞(Hn−1 ×H1) → C∞(Hn),

defined by

τ(h)
(
t ( I b

0 1 )
((

Z1 0
0 zn

)
+
(

0 a
ta 0

))
( I b

0 1 )
)

:= h(Z1, zn) ∀a, b ∈ Rn−1.

The conclusion then follows by combining the fact that τ−1 ◦ R ◦ τ is a
simple tensor in

D(Hn−1 ×H1) = D(Hn−1)⊗D(H1),

(which is Proposition 1.1 in [6]) with the identity

R(1, k)[yk
n] = 0.

This can again be read off [6] (Lemma 1.1), but it can also be checked
directly, since one knows that

R(1, k) = ∆− k(k − 1),

where ∆ is the usual non-Euclidean Laplacian (see [4]).

3. Meromorphic continuation

Theorem 3.1. — Let n 6 m and F,G ∈ M(Γn
0 [q], k, χ), then R(F,G; s)

has a meromorphic continuation to C.

Proof. — The function R[|Y |kF (Z)G(Z)] is of exponential decay, be-
cause (according to (2.5)) the Fourier expansion involves only positive def-
inite matrices; due to the invariance of R, this is true for all cusps. Hence,
for <(s) � 0, we may take into account the integral

(3.1) I(F,G; s) :=
∫

Fn,q

Eq

(
Z, s+

n+ 1
2

− k

)
R[|Y |kF (Z)G(Z)]d∗Z .

Then, by applying the Rankin–Selberg unfolding method, one gets

(3.2) I(F,G; s) =
∫

Mn

|Y |s−
n+1

2 R0[Ξ(F,G;Y )]dY ,

TOME 58 (2008), FASCICULE 3
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where Mn denotes the space of Minkowski reduced n×n positive matrices.
A direct evaluation of the r.h.s. of (3.2) then yields∑

N>0

a(N)b(N)
∫

Mn

|Y |s+n−mMn[|Y |m−n+1(−2π)n|N |e(2iσ(NY ))]d∗Y,

where Mn = |Y ||∂Y |, and d∗Y is the GL(n,R)–invariant measure
|Y |−n+1

2 dY . We may now first reduce the summation to a complete set
of representatives of the equivalence classes {N}, and then consider the
adjoint operator M̂n obtaining∑
{N}

a(N)b(N)
ε(N)

|N |(−2π)n2
∫

Pn

|Y |s+n−mMn[|Y |m−n+1e(2iσ(NY ))]d∗Y =

=
∑
{N}

a(N)b(N)
ε(N)

|N |(−2π)n2
∫

Pn

M̂n[|Y |s+n−m]|Y |m−n+1e(2iσ(NY ))d∗Y.

We recall that, for t ∈ R and T ∈ Pn, the following two well–known formu-
las hold (see [20], page 80, 81)

M̂n[|Y |t] = (−1)nφn(t)|Y |t;(3.3) ∫
Pn

|Y |t exp (−σ(TY ))d∗Y = π
n2−n

4 Γn(t)|T |−t,(3.4)

where

φn(t) :=
n−1∏
j=0

(t− j

2
), Γn(t) :=

n−1∏
j=0

Γ(t− j

2
).

A straightforward computation then shows:

(3.5) I(F,G; s) = 21−nsπ
n2−n

4 −nsΓn(s)φn(s)φn(s+ n−m)R(F,G; s) .

The meromorphic continuation of R(F,G; s) is thus a consequence of the
meromorphic continuation of Eq(Z, s). �

It is also possible to define the Rankin convolution (2.2) for pairs of
modular forms with different weights and characters. Indeed one can define
the Rankin convolution for n = 1 without any restriction on weights or
characters. For n > 1, given F of weight k and character χF , and G of
weight k′ and character χG, the condition

|U |kχF (|U |) = |U |k
′
χG(|U |), ∀U ∈ GL(n,Z)

is necessary for the formal definition of the Rankin convolution R(F,G; s).
Assuming one of the involved modular forms to be cuspidal and the

difference of the weights to be even, Kalinin showed in [13] the meromorphic
continuation of such Rankin convolutions. We can prove the same result

ANNALES DE L’INSTITUT FOURIER
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in the not–necessarily cuspidal case. To this purpose we need the so–called
Maaß–Shimura raising operators. Let us recall that the differential operator

δα :=
1

(2πi)n
|Y |−α+ n−1

2 |∂Z ||Y |α−
n−1

2

maps C∞ Siegel modular forms of weight α to C∞ Siegel modular forms of
weight α+2. For any positive integer l, Courtieu and Panchishkin described
explicitly in [5] the action of the iteration δ

(l)
k = δk+2l−2 ◦ · · · ◦ δk on the

Fourier expansion of a modular form of weight k. Let us quote Theorem
3.12 from [5]: let F (Z) =

∑
N>0

a(N)e(σ(NZ)) ∈ M(Γn
0 [q], k, χ), then

(3.6) δ
(l)
k [F (Z)] = |4πY |−l

∑
N

a(N)
l∑

t=0

(
l

t

)
|2πNY |l−t×

×
∑

|L|6nt−t

RL(
n+ 1

2
− k − l)λL(2πNY )e(σ(NZ)),

where L runs over all the multi–indices 0 6 l1 6 · · · 6 lt 6 n, such that
|L| = l1 + · · ·+ lt 6 nt− t, the coefficients RL(β) are certain polynomials
in Z[1/2][β] and, for any square matrix A

λL(A) =
t∏

j=1

λlj (A),

with

|xIn +A| =
n∑

i=0

λi(A)xn−i.

Proposition 3.2. — Let n 6 2k. For any positive integer l, given

F ∈ M(Γn
0 [q], k, χ), G ∈ M(Γn

0 [q], k + 2l, χ),

the Rankin convolution R(F,G; s) has a meromorphic continuation to C.

Proof. — We just sketch the main points. Consider the “test functions”

fN (Z) := e(σ(NZ)),

with N even and positive semi–definite. Essentially, the formula of Courtieu
and Panchishkin tells us that

δ
(l)
k [fN (Z)] =| 4πY |−l ·p(NY ) · fN (Z)

with a polynomial p = p(A), which is a function of the principal minors of
the matrix A, and is invariant under conjugation.

TOME 58 (2008), FASCICULE 3



810 Siegfried BÖCHERER & Francesco Ludovico CHIERA

We let µ := 2k+2l and we consider R = R(n, µ
2 ) = (φ∗)−1(Dn+1−µ

2
D1+ µ

2
).

Then we get for N,M > 0 with N +M 6> 0

R[(δ(l)k fN ) · fM · | Y |k+2l] = 0.

The same reasoning of Remark 2.2 applies also here: To cover the case
|N +M | = 0 we just have to consider N =

(
N1 0
0 0

)
and M =

(
M1 0
0 0

)
(i.e.

with |N+M | = 0), and observe that the resulting function lies in the image
of τ .
Then, for N +M > 0,∫

Symn(R/Z)

∫
Pn

R[δ(l)k [fN ]fM | Y |k+2l]|Y |s+
n+1

2 −µ
2 d∗Z

vanishes if N 6= M , and otherwise equals

(4π)−nl

∫
Pn

| Y |s R0[p(NY )e(2iσ(NY ))]d∗Y =

(4π)−nl|N |−s

∫
Pn

| Y |s R0[p(Y )e(2iσ(Y ))]d∗Y.

Using formula (3.3) twice this becomes

(4π)−nlφn(s+ n− µ)φn(s)|N |−s

∫
Pn

| Y |s p(Y )e(2iσ(Y ))d∗Y

and the last integral can be computed in a standard way, e.g. by using
(3.4) and applying the differential operator δ(l)k (w.r.t. the “complexified”
variable T ).

In conclusion, we see that the integral
(3.7)

I(F,G; s) :=
∫

Fn,q

Eq(Z, s+
n+ 1

2
− µ

2
)R[δ(l)k [F (Z)]G(Z)|Y |k+2l]d∗Z ,

converges for <(s) � 0, and it may be unfolded to get the integral repre-
sentation

(3.8) I(F,G; s) = γ(n, k, l, s)R(F,G; s) ,

where γ(n, k, l, s) has the following expression

21−n(s+2l)π
n2−n

4 −n(s+l)Γn(s)φn(s)φn(s+ n− µ)
l∏

j=1

φn(s− k − j +
n+ 1

2
).

�
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Remark 3.3. — One may introduce the modified Eisenstein series

E1(Z, s) := ξ(2s)
[ n
2 ]∏

j=1

ξ(4s− 2j)E1(Z, s),

where [n
2 ] denotes the largest integer less than or equal to n

2 , and

ξ(s) = π−
s
2 Γ(

s

2
)ζ(s).

Then it is well–known that E1(Z, s) satisfies the functional equation

(3.9) E1(Z,
n+ 1

2
− s) = E1(Z, s).

Thus, it follows from (3.9) and the integral representations (3.5), (3.8)
that the modified Rankin convolution of any pair of level 1 modular forms
F ∈ M(Sp(n,Z), k, 1), G ∈ M(Sp(n,Z), k + 2l, 1) (with l > 0)

R′(F,G; s) := 21−n(s+2l)π
n2−n

4 −n(s+l)Γn(s)
l∏

j=1

φn(s− k − j +
n+ 1

2
)×

× ξ(2s+ n+ 1− µ)
[ n
2 ]∏

j=1

ξ(4s+ 2n+ 2− 2µ− 2j)R(F,G; s)

satisfies the functional equation

(3.10) R′(F,G;µ− n+ 1
2

− s) = R′(F,G; s).

In the cuspidal case, Kalinin already showed (3.10) in [13]. It should be
also noted that the polynomial φn(s)φn(s+ n− µ) which appears in (3.5)
and (3.8) satisfies the same functional equation.

An estimate for Fourier coefficients of level 1 modular forms can be then
obtained as a consequence of the integral representation and the functional
equation for the Rankin convolution. Basically, given a modular form

F (Z) =
∑
N>0

a(N)e(σ(NZ)) ∈ M(Sp(n,Z), k, 1),

we may follow the same argument of Section 5 in [3], and apply Landau’s
Theorem (as given by Sato and Shintani in Section 3 of [27]) to the function

ψ(s) = (2π)−nsπ−(2[ n
2 ]+1)sζ(2s+ n+ 1−m)

[ n
2 ]∏

j=1

ζ(2(2s+ n+ 1−m− j))R(F, F ; s).
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In our case, the region of absolute convergence of the series ψ(s) is in
general different from that in [3]. This leads us to make a slightly different
choice for some parameters: namely, if we use the same notation of [3] (and
[27]), we set

µ1 = µ2 =
{
k + ε for n = m

m− n+1
2 + ε for n < m

(for any ε > 0).

In this way we get finally the estimates

a(N) = O(|N |
k
2−

1
2n+2+4[ n

2 ]+ 2
n+1

+ε
),

for n = 2k or n = 2k − 1, and

a(N) = O(|N |
k−n+1

4 − 1
2n+2+4[ n

2 ]+ 2
4k−(n+1)

+ε

),

for n 6 2k− 1. It seems, however, that such estimates are of some interest
only for small weights (see [14], [20]).

4. Petersson identity

We denote by

L2[M(Γn
0 [q], k, χ)] := {F ∈ M(Γn

0 [q], k, χ) | 〈f, f〉 <∞}

the space of square–integrable modular forms with respect to the Pe-
tersson product. It is well–known that cusp forms are square–integrable
and that in general they form a proper subspace of L2[M(Γn

0 [q], k, χ)].
Indeed, Satake, and more generally Weissauer, gave in [26] and [31] re-
spectively, a complete characterization of L2[M(Γn

0 [q], k, χ)]. For example,
it follows from their characterization that non–cuspidal square integrable
Siegel modular forms may occur only if n > k. Besides, they prove that
L2[M(Γn

0 [q], k, χ)] = M(Γn
0 [q], k, χ) if n > m. We point out that even though

Satake and Weissauer only treated modular forms of integral weight it is in
fact possible to extend their arguments to include the half integral weight
case as well.

Lemma 4.1. — Let n 6 m and F,G ∈ L2[M(Γn
0 [q], k, χ)], then

(4.1)
∫

Fn,q

R[|Y |kF (Z)G(Z)]d∗Z = h ·
∫

Fn,q

|Y |kF (Z)G(Z)d∗Z ,

where h = h(n, k) = φn(k)φn(n− k).
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Proof. — It is well known that the ring D(Hn) of Sp(n,R)–invariant dif-
ferential operators is isomorphic to a polynomial ring in n variables. More-
over, Shimura shows in [29] that D(Hn) is actually generated by certain
canonically defined “generalized Laplacians” Li (i ∈ {1, . . . , n}). We may
thus consider the following decomposition:

(4.2) R = h · I + p(L1, . . . ,Ln) ,

where h is a suitable constant (depending on n and k), I is the identity,
and p(X1, . . . , Xn) is a polynomial of positive degree.

Also, it is one of the main result of [30] (namely, Theorem 2.1) that,
under suitable convergence conditions, the operators Li are symmetric.

In our case the above mentioned convergence conditions are satisfied.
Indeed, F,G are square–integrable and the square–integrability is preserved
by the action of the universal enveloping algebra U(gC) of the complexified
Lie algebra gC of Sp(n,R) on the automorphic forms F and G (see Corollary
4.7.2 of [11], Theorem 1 of [9] and their proofs). Thus, we get∫

Fn,q

p(L1, . . . ,Ln)[|Y |kF (Z)G(Z)]d∗Z = 0.

In order to compute the constant h, we take into account the function
identically equal to 1 and we observe that

h = R[1] = R\
0[1].

Now the claim follows from the formula

|Y |νMn|Y |−ν [1] = φn(ν), (ν ∈ R).

�

Remark 4.2. — We point out that in the statement of Lemma 4.1 we
have h = φn(k)2 6= 0 for n = m, while h = 0 for k < n < m. This vanishing
will imply some complications in the proof of Theorem 4.4. The following
lemma will be needed to overcome such complications.

Lemma 4.3. — Following the same notation as above,

R[Eq(Z, s)] = φn(s+
n− 1

2
− k)φn(s− n+ 1

2
+ k)Eq(Z, s) .

In particular, s = k is not a pole for the function R[Eq(Z, s+ n+1
2 − k)] if

k < n < m.

Proof. — Since R is Sp(n,R)–invariant, the claim follows from

R[|Y |s] = R\
0[|Y |s] = φn(s+

n− 1
2

− k)φn(s− n+ 1
2

+ k)|Y |s .
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�

Theorem 4.4. — Let k < n 6 m and consider F,G ∈ M(Γn
0 [q], k, χ)

such that 〈F,G〉 is defined. There exists a constant c 6= 0 (depending on n
and k) such that

(4.3) < F,G >= c ·Ress=kR(F,G; s).

Proof. — Let us first consider the case n = m. Computing the residue
of I(F,G; s) at s = k, yields

Ress= n+1
2

∫
Fn,q

Eq(Z, s)R[|Y |kF (Z)G(Z)]d∗Z =

= K ·Ress=kR(F,G; s) ,(4.4)

where

K = 21−nkπ
n2
4 −n( 1

4+k)Γn(k)φ2
n(k).

By combining (4.4) and (4.1) we can write,

(4.5) (Ress= n+1
2
Eq(Z, s)[Sp(n,Z) : Γn

0 [q]])·〈F,G〉 =
K

h
·Ress=kR(F,G; s).

We now turn to the more delicate range n < m. To handle the extra
difficulties appearing in this case (see Remark 4.2), we adopt an approx-
imation technique. For this reason, we take into account the sequence of
functions

ψν(Z) := exp(−||E1(Z, n+ 1)||
ν

) ∈ C∞(Fn,q).

We notice that for any “differential operator with polynomial coefficients”
D the following properties hold (see [22]):

(1) ψν(Z) and D[ψν ](Z) are of rapid decay as Z approaches the bound-
ary of Fn,q;

(2) ψν → 1 as ν →∞;
(3) D[ψν ] → 0 uniformly as ν →∞.

Next, we put

h′ := h′(n,m, q) = lim
s→k

R[Eq(Z, s+
n+ 1

2
− k)]

= lim
s→k

φn(s)φn(s+ n−m)
s− k

·Ress= n+1
2
Eq(Z, s) .
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By standard arguments, we have

[Sp(n,Z) : Γn
0 [q]] · 〈F,G〉 =

∫
Fn,q

F (Z)G(Z)|Y |kd∗Z =

= lim
ν→∞

∫
Fn,q

ψν(Z)F (Z)G(Z)|Y |kd∗Z

=
1
h′

lim
ν→∞

∫
Fn,q

ψν(Z)F (Z)G(Z)|Y |k lim
s→k

R[Eq(Z, s+
n+ 1

2
− k)]d∗Z

=
1
h′

lim
ν→∞

lim
s→k

∫
Fn,q

ψν(Z)F (Z)G(Z)|Y |kR[Eq(Z, s+
n+ 1

2
− k)]d∗Z.

(4.6)

We observe that we can now move the differential operator R from
the Eisenstein series to the function ψν(Z)F (Z)G(Z)|Y |k. Applying any
holomorphic or antiholomorphic differential operator D on such a function
yields the function of rapid decay

(4.7) D[ψν(Z)F (Z)G(Z)|Y |k] =
∑

j

D(j)[ψν(Z)]D̃(j)[F (Z)G(Z)|Y |k]

for suitable differential operators D(j) and D̃(j). As it is stated by Shimura
([30], page 150) this condition is sufficient for the symmetry of the gener-
alized Laplacians which appear in the decomposition (4.2) of R. Thus we
may rewrite (4.6) as

(4.8)
1
h′

lim
ν→∞

lim
s→k

∫
Fn,q

R[ψν(Z)F (Z)G(Z)|Y |k]Eq(Z, s+
n+ 1

2
− k)d∗Z.

We may now proceed further and interchange the limits in (4.8) and then
move the limit with respect to ν inside the integral to obtain

1
h′

lim
s→k

lim
ν→∞

∫
Fn,q

R[ψν(Z)F (Z)G(Z)|Y |k]Eq(Z, s+
n+ 1

2
− k)d∗Z

=
1
h′

lim
s→k

I(F,G; s).
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Indeed, it is possible to perform the previous operations since

lim
s→k

∫
Fn,q

R[ψν(Z)F (Z)G(Z)|Y |k]Eq(Z, s+
n+ 1

2
− k)d∗Z

= lim
s→k

∫
Fn,q

ψν(Z)F (Z)G(Z)|Y |kR[Eq(Z, s+
n+ 1

2
− k)]d∗Z

exists and is uniform with respect to ν and

lim
ν→∞

∫
Fn,q

R[ψν(Z)F (Z)G(Z)|Y |k]Eq(Z, s+
n+ 1

2
− k)d∗Z

=
∫

Fn,q

lim
ν→∞

ψν(Z)R[F (Z)G(Z)|Y |k]Eq(Z, s+
n+ 1

2
− k)]d∗Z+

+
∑

j

∫
Fn,q

lim
ν→∞

R(j)[ψν(Z)]R̃(j)[F (Z)G(Z)|Y |k]Eq(Z, s+
n+ 1

2
− k)]d∗Z

=
∫

Fn,q

R[F (Z)G(Z)|Y |k]Eq(Z, s+
n+ 1

2
− k)d∗Z + 0

where we have used a notation similar to (4.7) and the uniform convergence
of the derivatives of ψν . Summing up, we obtain

[Sp(n,Z) : Γn
0 [q]] · 〈F,G〉 =

1
h′

lim
s→k

I(F,G; s)

=
1
h′

lim
s→k

21−nsπ
n2
4 −n( 1

4+s)Γn(s)φn(s)φn(s+ n−m)R(F,G; s)

=
K ′

h′
Ress=kR(F,G; s) ,

where

K ′ = lim
s→k

21−nsπ
n2
4 −n( 1

4+s)Γn(s)
φn(s)φn(s+ n−m)

s− k
.

In conclusion, for any n 6 m, we get the identity

〈F,G〉 =
21−nkπ

n2
4 −n( 1

4+k)Γn(k)
[Sp(n,Z) : Γn

0 [q]]Ress= n+1
2
Eq(Z, s)

·Ress=kR(F,G; s).

�
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5. Applications and remarks

As a first simple consequence of the above results, we wish to mention
the following statement about the orthogonality of certain theta series.

Corollary 5.1. — Let S1 and S2 be two even positive definite qua-
dratic forms of rank n and level dividing q. Assume that S1 and S2 are not
rationally equivalent. Then, if the corresponding theta series

ϑ(Sj , Z) =
∑

G∈Z(n,n)

e(σ(Sj [G]Z)) (j = 1, 2)

belong to the same space of modular forms M(Γn
0 [q], n/2, χ), they are or-

thogonal with respect to the Petersson inner product. Of course, the same
statement holds by definition if ϑ(Sj , Z) ∈ M(Γn

0 [q], n/2, χj) and χ1 6= χ2.

Remark 5.2. — We would like to observe that in the singular range
(i.e. for n > m) there is a result analogous to Theorem 4.4, at least if
the modular forms in question are (linear combinations of) theta series
attached to quadratic forms which are rationally equivalent. Of course one
has first to define an appropriate substitute for the Rankin convolution in
the case of singular modular forms. In fact, keeping in mind that singular
modular forms are generated by theta series, one may obtain a proof of
the relevant theorem by directly evaluating the scalar product of pairs of
theta series (see [2] for further details). There seems to be not much hope
to apply the Rankin–Selberg method directly in this case.

Remark 5.3. — Even though in the present paper we have considered
only modular forms with respect to the Hecke subgroups, we wish to stress
the fact that the given proofs work for general congruence subgroups Γ 6
Γn := Sp(n,Z) as well. Namely, given F ∈ M(Γ, k, χ) and G ∈ M(Γ, k +
2l, χ) (l > 0) with Fourier expansion

F (Z) =
∑

N>0

a(N)e(σ(NZ)), G(Z) =
∑

N>0

b(N)e(σ(NZ)),

(where the summations extend over the set of rational, symmetric, positive
semi–definite matrices of size n) one may define the Rankin–convolution as

R(F,G; s) :=
1

[GL(n,Z) : UΓ]

∑
{N}

a(N)b(N)
ε(N)|N |s

where
UΓ = {

(
U 0
0 tU−1

)
∈ Γ | U ∈ GL(n,Z)},
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{N} runs over the UΓ–equivalence classes of rational, symmetric, positive
definite matrices of size n and ε(N) is the order of the stabilizer of N in
UΓ. Moreover, the following Eisenstein series has to be taken into account

EΓ(Z, s) =
∑

γ∈Γ∞\Γ

|Y |s|J(α,Z)|−2s (Z ∈ Hn) ,

where Γ∞ = {( A B
0 D ) ∈ Γ}. It is shown in [7] that all the Eisenstein series

EΓ(Z, s) have a simple pole with constant residue in s = n+1
2 . Theorems

3.1 and 4.4 can then be stated and proved along the same lines we followed
for the Hecke subgroups. We may also observe that the results which are
obtained in this way do not depend on the level. Indeed,

(5.1) [Γ∞ : Γ′∞]EΓ(Z, s) =
∑

γ∈Γ′\Γ

EΓ′(γ〈Z〉, s) ,

for any Γ′ 6 Γ, of finite index, and the factor [Γn
∞:Γ∞]

[GL(n,Z):UΓ]
appears in the

general unfolding procedure.
Orthogonality relations as those in Corollary 5.1 could also be easily de-

rived for pairs of theta series belonging to the same space of modular forms
M(Γ, n/2, χ), which do not have Fourier coefficients relevant to rationally
equivalent matrices.

Let Γ be an arbitrary congruence subgroup of Sp(n,Z). We can define
an Hermitian form {, } on

⋃
Γ6Sp(n,Z)

M(Γ, k, χ) by

(5.2) {F,G} = Ress=kR(F,G; s), (F,G ∈ M(Γ, k, χ))

This is a natural extension of the Petersson product. The signature of {, }
is however not clear from the definition (it could even be degenerate!).
We notice moreover that, at least when the weight is large enough (k > n),
the value {F,G} of the Hermitian form equals up to a non–zero constant
the integral

(5.3)
1

[Sp(n,Z) : Γ]

∫
Γ\Hn

R[| Y |k F (Z)G(Z)]d∗Z.

Depending on the properties to be investigated, we may freely switch be-
tween these two definitions (if k is large enough).
Definition (5.3) of {, } is easily seen to share with the Petersson product
on cusp forms all the invariance properties described e.g. in the books of
Lang [18] or Freitag [8]; in particular, the Hecke operators “away from the
level” are self-adjoint (or normal in the case of nebentypus) for {, }. There-
fore eigenforms with different eigenvalues are orthogonal to each other. In

ANNALES DE L’INSTITUT FOURIER



ON DIRICHLET SERIES AND PETERSSON PRODUCTS 819

particular, (say for Γn = Sp(n,Z), k > 2n and χ = 1 for simplicity) the
Klingen decomposition, [15],

M(Γn, k, 1) = ⊕M(Γn, k)n,r

is an orthogonal decomposition, because (using an argument originally due
to Harris [10]) the subspaces M(Γn, k)n,r can be separated by eigenvalues.
We recall that by definition the space M(Γn, k)n,r is generated by Klingen–
Eisenstein series attached to cusp forms of degree r.

Remark 5.4. — It seems more complicated (though desirable) to obtain
these properties by using the definition of {, } in terms of the Rankin con-
volution. In case of level 1 one can use the functional equation to consider
the Rankin convolution at s = k − n+1

2 rather than s = k; then the self–
adjointness of the Hecke operators can also be obtained by considering the
explicit action of Hecke operators on the Fourier expansions.

For the special case n = 1, Γ = SL(2,Z) Zagier showed in [33] that {, } is
always non-degenerate and it is positive definite if and only if k ≡ 2 mod 4;
for k divisible by 4 the Eisenstein series has negative norm. We show here
that this is a special phenomenon for the full modular group.

For simplicity we consider here the congruence subgroups of type

Γ1[q] = {
(
a b

c d

)
∈ SL(2,Z) | c ≡ 0 mod q, a ≡ d ≡ 1 mod q}.

It is well known that M(Γ1[q], k, 1) = ⊕χM(Γ1
0[q], k, χ), where χ runs over

all characters mod q.

Proposition 5.5. — Assume that k > 3 and let p be any odd prime.
The space of Eisenstein series for Γ1[p] has dimension 2

p−1
2 ; as an Hermitian

space for {, } it is an orthogonal sum of p−1
2 hyperbolic planes.

Proof. — For primitive Dirichlet characters χmod p with χ(−1) = (−1)k

we consider the two Eisenstein series of nebentypus χ defined by

Eχ(z) := A(χ) +
∑
n>1

σk−1(n, χ)e(2nz)

and
Fχ(z) :=

∑
σ∗k−1(n, χ)e(2nz)

with
σr(n, χ) =

∑
d|n

χ(d)dr, σ∗r (n, χ) =
∑
d|n

χ(
n

d
)dr;

the exact shape of the constant A(χ) is not interesting for us.
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The Dirichlet series attached to these modular forms (in the sense of Hecke)
are

L(s, χ) =
∑

σk−1(n, χ)n−s = ζ(s) · L(s− k + 1, χ)

and

L∗(s, χ) =
∑

σ∗k−1(n, χ)n−s = ζ(s− k + 1) · L(s, χ).

Then we have to consider three Rankin convolutions; their factorizations
can be obtained from the factorizations above by a general principle (see e.g.
[28], Lemma 1); for two primitive characters χ1, χ2 mod p with appropriate
parity

R(Eχ1 , Eχ2 ; s) =
∑

σk−1(n, χ1) · σk−1(n, χ2)n−s =

ζ(s) · L(s− k + 1, χ1) · L(s− k + 1, χ2) · L(s− 2k + 2, χ1χ2)
L(2s− 2k + 2, χ1χ2)

and

R(Fχ1 , Fχ2 ; s) =
∑

σ∗k−1(n, χ1) · σ∗k−1(n, χ2)n−s =

ζ(s− 2k + 2) · L(s− k + 1, χ1) · L(s− k + 1, χ2) · L(s, χ1χ2)
L(2s− 2k + 2, χ1χ2)

and

R(Eχ1 , Fχ2 ; s) =
∑

σk−1(n, χ1) · σ∗k−1(n, χ2)n−s =

ζ(s− k + 1) · L(s− 2k + 2, χ1) · L(s, χ2) · L(s− k + 1, χ1χ2)
L(2s− 2k + 2, χ1χ2)

Then the first two convolutions do not have a pole at s = k; the last one
has a pole at s = k if and only if χ1 = χ2.

For the principal character we prefer a slightly modified treatment: we
put (again with a suitable constant A)

Eχ0(z) := A+
∑

σk−1(n)e(2nz)

and

Fχ0(z) =
∑

σ∗k−1(n)e(2nz).

Of course Eχ0 is of level one and σ∗r (n) =
∑

d|n d
r where n

d has to be
coprime to p.

By similar reasons as before Eχ0 and Fχ0 are orthogonal to the Eisenstein
series with nontrivial character.
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We get

R(Eχ0 , Eχ0 ; s) =
ζ(s) · ζ(s− k + 1)2 · ζ(s− 2k + 2)

ζ(2s− 2k + 2)
,

R(Fχ0 , Fχ0 ; s) =
ζp(s) · ζp(s− k + 1)2 · ζ(s− 2k + 2)

ζp(2s− 2k + 2)
,

R(Eχ0 , Fχ0 ; s) =
ζp(s) · ζp(s− k + 1) · ζ(s− k + 1) · ζ(s− 2k + 2)

ζp(2s− 2k + 2)
.

The Gram matrix for this two-dimensional space then equals

{Eχ0 , Eχ0} ×

(
1 (1−p−1)(1−p−k)

1−p−2

(1−p−1)(1−p−k)
1−p−2

(1−p−1)2(1−p−k)
1−p−2

)
.

The determinant of this matrix is negative (for k > 2), therefore we get
another hyperbolic plane! �

Remark 5.6. — The proof above also shows that for p = 2 the space of
Eisenstein series is a hyperbolic plane for {, }.

Remark 5.7. — There is another argument to show that {, } is in general
not positive definite (without obtaining any result about the signature):
by arguing as in Kohnen’s paper [16] the definiteness of {, } would give
estimates for Hecke eigenvalues for all eigenforms; these estimates would in
general be too sharp for noncuspidal eigenforms. This argument only works
if we include the case of congruence subgroups.

It may be of some interest to study (in the same way as was done above
for degree 1) the explicit arithmetic form of Rankin-Selberg convolutions
of Eisenstein series of higher degree. We describe some formulas for degree
2; here the Rankin-Selberg convolutions are of the form∑

D

γ(D)D−s

where D runs over all positive numbers satisfying D ≡ 3 mod 4. These D
can be written as D = D0f

2 where −D0 is a discriminant of an imaginary
quadratic field. In most cases γ(D0) has a simple form, and γ(D) can be
expressed (in a complicated way) in terms of γ(D0).

Example 5.8. — F is arbitrary, but G is in the Maaß space. Then

γ(D0) = b(D0)
∑
N

a(N)
ε(N)

where N runs over representatives of binary quadratic forms of determinant
D0 and b(D0) = b(N) (any such N) is a Fourier coefficient of a modular
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form (of half-integral weight) corresponding to G. Let us look at special
cases:
Case 1 F is also in the Maaß space. Then

γ(D0) = h(D0)a(D0)b(D0)

where h(D0) is the class number of the imaginary quadratic num-
ber field of discriminant −D0 (and again a(D0) := a(T ) for any
such T ).
In other words, the Rankin convolution for F and G is then a
kind of Rankin triple convolution for three modular forms of half-
integral weight.

Case 2 F = E2,1(f), where f is a (normalized) cuspidal Hecke eigenform
of degree 1 and E2,1(f) denotes the Klingen Eisenstein series at-
tached to it. From the explicit formulas for the Fourier coefficients
given in [1] we can get easily that∑

N

a(N)
ε(N)

∼ Dk−1
0 L(f, χD0 , k − 1)

where χD0 is the quadratic character associated to D0; then

γ(D0) ∼ Dk−1
0 L(f, χD0 , k − 1)b(D0)

which is a somewhat unfamiliar object.
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