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A RELATIONSHIP BETWEEN THE NON-ACYCLIC
REIDEMEISTER TORSION AND A ZERO OF THE

ACYCLIC REIDEMEISTER TORSION

by Yoshikazu YAMAGUCHI (*)

Abstract. — We show a relationship between the non-acyclic Reidemeister
torsion and a zero of the acyclic Reidemeister torsion for a λ-regular SU(2) or
SL(2, C)-representation of a knot group. Then we give a method to calculate the
non-acyclic Reidemeister torsion of a knot exterior. We calculate a new example
and investigate the behavior of the non-acyclic Reidemeister torsion associated to
a 2-bridge knot and SU(2)-representations of its knot group.

Résumé. — Nous montrons une relation entre la torsion de Reidemeister non-
acyclique et un zéro de la torsion de Reidemeister acyclique pour une représenta-
tion λ-régulière dans SU(2) ou SL(2, C) du groupe d’un nœud. Alors nous pouvons
donner une méthode pour calculer la torsion de Reidemeister non-acyclique de l’ex-
térieur d’un nœud. Nous calculons un nouvel exemple et étudions le comportement
de la torsion de Reidemeister non-acyclique associée à un nœud à deux-ponts et
une SU(2)-représentations du groupe du nœud.

1. Introduction

The Reidemeister torsion is an invariant for a CW-complex and a repre-
sentation of its fundamental group. In other words, this invariant associates
with the local system for a representation of the fundamental group. Orig-
inally the Reidemeister torsion is defined if the local system is acyclic, i.e.,
all homology groups vanish. However we can extend the definition of the
Reidemeister torsion to non-acyclic cases [12, 19]. In this paper, we focus
on the non-acyclic cases.

Keywords: Reidemeister torsion, twisted Alexander invariant, knots, representation
spaces.
Math. classification: 57Q10, 57M05, 57M27.
(*) This research is partially supported by the 21st century COE program at Graduate
School of Mathematical Sciences, the University of Tokyo.
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It is known that the Fox calculus plays important roles in the study
of the Reidemeister torsion [4, 9, 10, 13, 15, 19]. The many results were
obtained by using the Fox calculus for the acyclic Reidemeister torsion. In
particular, there are important results related to the Alexander polynomial
in the knot theory [9, 10, 13, 19]. The Fox calculus is also important for
non-acyclic cases [4, 15]. It is related to the cohomology theory of groups.

This paper contributes to the study of the non-acyclic Reidemeister tor-
sion by using the Fox calculus. Our purpose is to apply the Fox calculus
for the acyclic cases to the study of the non-acyclic Reidemeister torsion
by using a relationship between the acyclic Reidemeister torsion and the
non-acyclic one. Our main theorem says that the non-acyclic Reidemeister
torsion for a knot exterior is given by the differential coefficients of the
twisted Alexander invariant of the knot. The twisted Alexander invariant
of a knot is the acyclic Reidemeister torsion and expressed as a one variable
rational function [10]. A conjecture due to J. Dubois and R. Kashaev [6]
will be solved in [22] by using our main theorem.

In the latter of this paper, we apply this relationship to study the Rei-
demeister torsion for the pair of a 2-bridge knot and SU(2)-representation
of its knot group. We give an explicit expression of the non-acyclic Reide-
meister torsion associated to 52 knot. This is a new example of calculation
of the non-acyclic Reidemeister torsion. Furthermore, we investigate where
the non-acyclic Reidemeister torsion associated to a 2-bridge knot has crit-
ical points. Note that the non-acyclic Reidemeister torsion is parametrized
by the representations of a knot group. Moreover this Reidemeister torsion
turns into a function on the character variety of the knot group. We will see
that the critical points of the non-acyclic Reidemeister torsion associated
to a 2-bridge knot are binary dihedral representations and these represen-
tations are related to the geometry of the character variety of a 2-bridge
knot group.

This paper is organized as follows. In Section 2, we review the Reidemeis-
ter torsion. In particular, we give the notion of the non-acyclic Reidemeister
torsion of knot exteriors [4, 15].

Section 3 includes our main theorem on a relationship between the non-
acyclic Reidemeister torsion and the twisted Alexander invariant for knot
exteriors. We give a formula of the non-acyclic Reidemeister torsion for a
knot exterior by using a Wirtinger presentation of a knot group.

In Section 4, we apply the results of Section 3 to study the non-acyclic
Reidemeister torsion for a 2-bridge knot group and SU(2)-representation
of its knot group.
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2. Review on the non-abelian twisted
Reidemeister torsion

2.1. Notation

In this paper, we use the following notations.
• F is the field R or C.
• G is the Lie group SU(2) (resp. SL(2, C)) if F is R (resp. C). The

symbol g denotes the Lie algebra of G.
• Ad denotes the adjoint action of G to the Lie group g.
• ( , )g : g×g → F is a product on the g, which is defined by (X, Y )g =

Tr(tXȲ ).
• V denotes an n-dimensional vector space over F.
• For two ordered bases a and b in a vector space, we denote by

(a/b) the base-change matrix from b to a satisfying a = b(a/b).
We write simply [a/b] for the determinant det(a/TK

γ b) of (a/b).
We deal with ordered bases in this paper.

2.2. Torsion of a chain complex

We recall the definition of the torsion.
Let C∗ = (0 → Cn

∂n−→ Cn−1
∂n−1−−−→ · · · ∂1−→ C0 → 0) be a chain complex

over F. For each i let Zi denote the kernel of ∂i, Bi the image of ∂i+1 and
Hi the homology group Zi/Bi. We say that C∗ is acyclic if Hi vanishes for
every i.

Let ci be a basis of Ci and c be the collection {ci}i>0. We call the
pair (C∗, c) a based chain complex, c the preferred basis of C∗ and ci the
preferred basis of Ci. Let hi be a basis of Hi.

We construct another basis as follows. By the definitions of Zi, Bi and
Hi, the following two split exact sequences exist.

0 → Zi → Ci
∂i→ Bi−1 → 0,

0 → Bi → Zi → Hi → 0.

Let B̃i−1 be a lift of Bi−1 to Ci and H̃i a lift of Hi to Zi. Then we can
decompose Ci as follows.

Ci = Zi ⊕ B̃i−1

= Bi ⊕ H̃i ⊕ B̃i−1

= ∂i+1B̃i ⊕ H̃i ⊕ B̃i−1.

TOME 58 (2008), FASCICULE 1
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We choose bi a basis of Bi. We write b̃i for a lift of bi and h̃i for a lift of
hi. By the construction, the set ∂i+1(̃bi) ∪ h̃i ∪ b̃i−1 forms another ordered
basis of Ci. We denote simply this new basis by ∂i+1(̃bi)h̃ib̃i−1. Then the
definition of tor(C∗, c, h) is as follows.

tor(C∗, c, h) =
n∏
i

[
∂i+1(̃bi)h̃ib̃i−1/ci

](−1)i+1

∈ F∗.

It is well known that tor(C∗, c, h) is independent of the choices of {bi}i>0,
the lifts {b̃i}i>0 and {h̃i}i>0.

We also define the torsion Tor(C∗, c, h) with the sign term (−1)|C∗| as
follows [19]

Tor(C∗, c, h) = (−1)|C∗| · tor(C∗, c, h).

Here
|C∗| =

∑
i>0

αi(C∗) · βi(C∗),

where αi(C∗) =
∑i

k=0 dim Ck and βi(C∗) =
∑i

k=0 dim Hk.

2.3. Twisted chain complex and twisted cochain complex for
CW-complex

Let W be a finite connected CW-complex and W̃ its universal covering
with the induced CW-structure. Since the fundamental group π1(W ) acts
on W̃ by the covering transformation, the chain complex C∗(W̃ ; Z) has a
natural structure of a left Z[π1(W )]-module. We denote by ρ a homomor-
phism from π1(W ) to G. We regard the Lie group g as a right Z[π1(W )]-
module by g × π1(W ) 3 (v, γ) 7→ Adρ(γ−1)(v) ∈ g. We use the notation
gρ for g with the right Z[π1(W )]-module structure. Following [9, 15], we
introduce the following notations. Set

C∗(W ; gρ) = g⊗Ad ◦ρ C∗(W̃ ; Z),

C∗(W ; g̃ρ) = g(t)⊗α⊗Ad ◦ρ C∗(W̃ ; Z)

where g(t) is F(t)⊗g and α is a surjective homomorphism from π1(W ) to the
multiplicative group 〈t〉. Note that f⊗v⊗(γ ·σ) = f ·tα(γ)⊗Adρ(γ−1)(v)⊗σ.
We call C∗(W ; gρ) the gρ-twisted chain complex and C∗(W ; g̃ρ) the g̃ρ-
twisted chain complex of W . We also denote by C∗(W ; gρ) the F-module
consisting of the π1(W )-equivalent homomorphisms from C∗(W̃ ; Z) to g,
i.e., a homomorphism h satisfies h(γ · σ) = h(σ) · γ−1 for γ ∈ π1(W ).
We call C∗(W ; gρ) the gρ-twisted cochain complex of W . H∗(W ; gρ) and

ANNALES DE L’INSTITUT FOURIER
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H∗(W ; gρ) denote the homology and cohomology groups of the gρ-twisted
chain and cochain complexes.

2.4. The Reidemeister torsion for twisted chain complex

We keep the notation of the previous subsection. Let e
(i)
1 , . . . , e

(i)
ni be the

set of i-dimensional cells of W . We take a lift ẽ
(i)
j of the cell e

(i)
j in W̃ .

Then, for each i, c̃i = {ẽ(i)
1 , . . . , ẽ

(i)
ni } is a basis of the Z[π1(W )]-module

Ci(W̃ ; Z). Let B = {a,b, c} be a basis of g. Then we obtain the following
basis of Ci(W ; gρ):

cB =
{

. . . ,a⊗ ẽ
(i)
1 ,b⊗ ẽ

(i)
1 , c⊗ ẽ

(i)
1 , . . . ,a⊗ ẽ(i)

ni
,b⊗ ẽ(i)

ni
, c⊗ ẽ(i)

ni
, . . .

}
.

When hi = {hi
1, . . . , h

i
ki
} is a basis of Hi(W ; gρ), we denote by h the basis

{h0, . . . ,hdim W } of H∗(W ; gρ). Then Tor(C∗(W ; gρ), cB,h) ∈ F∗ is well
defined. Furthermore adding a sign-refinement term into Tor(C∗(W ; gρ),
cB,h), we define the Reidemeister torsion of (W,ρ) as a vector in some
1-dimensional vector space as follows.

Definition 2.4.1 ([4, 5]). — Let cR be the basis over R of C∗(W ; R).
Choose an orientation o of the real vector space ⊕i>0Hi(W ; R) and provide
H∗(W ; R) with a basis ho = {h0, . . . , hdim W } such that each hi is a basis
of Hi(W ; R) and the orientation determined by ho agrees with o. Let τ0 be
either +1 or −1 according to the sign of Tor(C∗(W ; R), cR, ho). Then we
define the Reidemeister torsion T (W, gρ, o) by

T (W, gρ, o) = τ0 · Tor(C∗(W ; gρ), cB,h)⊗i>0 dethi ∈ Det H∗(W ; gρ),

where dethi = h
(i)
1 ∧ . . . ∧ h

(i)
ki

and

Det H∗(W ; gρ) = ⊗dim W
i=0 (∧dim HiHi(W ; gρ))(−1)i

.

Here V −1 means the dual space of a vector space V and the dual basis of
dethi = h

(i)
1 ∧ . . .∧ h

(i)
ki

is h
(i)∗
1 ∧ . . .∧ h

(i)∗
ki

where h
(i)∗
j is the dual element

of h
(i)
j .

We made some choices in the definition of T (W, gρ, o). However the fol-
lowing well-definedness is known [15, p. 10]:

• The sign of T (W, gρ, o) is determined by the homology orientation o

i.e., if we choose the other homology orientation, then the sign of
T (W, gρ, o) changes;

TOME 58 (2008), FASCICULE 1
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• T (W, gρ, o) does not depend on the choice of the lift ẽ
(i)
j for each

cell e
(i)
j ;

• T (W, gρ, o) does not depend on the choice of the basis h in
⊕i>0Hi(W ; gρ).

We also have the following well-definedness.

Lemma 2.4.2. — If the Euler characteristic of W is equal to zero, then
T (W, gρ, o) does not depend on the choice of the basis of g.

Proof. — This follows from the definition. �

Similarly we define the Reidemeister torsion of the twisted g̃ρ-chain com-
plex.

Definition 2.4.3. — We define T (W, g̃ρ, o) by

T (W, g̃ρ, o) = τ0 · Tor(C∗(W ; g̃),1⊗ cB,h)⊗i>0 dethi.

T (W, g̃ρ, o) has the indeterminacy of tm where m ∈ Z. This indetermi-
nacy is caused by the choice of the lifts {ẽ(i)

j } and the action of α.

It is also known that the sign refined torsion τ0 ·Tor(C∗(W ; gρ), cB,h) has
the invariance under simple homotopy equivalences, and that it satisfies the
following Multiplicativity property . Suppose we have the following exact
sequence of based chain complexes:

(1) 0 → (C ′
∗, c

′) → (C∗, c
′ ∪ c̄′′) → (C ′′

∗ , c′′) → 0

where these chain complexes are based chain complexes which consist of
vector spaces with bases. Here we denote bases of C ′

∗, C
′′
∗ by c′, c′′ and a

lift of c′′ to C∗ by c̄′′. For each i, fix the volume forms on C ′
i, Ci, C

′′
i by

using given bases and choose volume forms on Hi(C ′
∗),Hi(C∗) and Hi(C ′′

∗ ).
There exists the long exact sequence in homology associated to the short
exact sequence (1):

· · · → Hi(C ′
∗) → Hi(C∗) → Hi(C ′′

∗ ) → Hi−1(C ′
∗) → · · · .

We denote by H∗ this acyclic complex. Note that this acyclic complex is a
based chain complex.

Proposition 2.4.4 (Multiplicativity property [12, 20]). — We have

Tor(C∗) = (−1)α(C′
∗,C′′

∗ )+ε(C′
∗,C∗,C′′

∗ ) Tor(C ′
∗) · Tor(C ′′

∗ ) · tor(H∗),

ANNALES DE L’INSTITUT FOURIER
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where

α(C ′
∗, C

′′
∗ ) =

∑
i>0

αi−1(C ′
∗)αi(C ′′

∗ ) ∈ Z/2Z,

ε(C ′
∗, C∗, C

′′
∗ ) =

∑
i>0

[
(βi(C∗) + 1)(βi(C ′

∗) + β(C ′′
∗ ))

+ βi−1(C ′
∗)β(C ′′

∗ )
]
∈ Z/2Z.

2.5. On the representation spaces

Let π be a finitely generated group and we denote by R(π,G) the space
of G-representations of π. We define the topology of this space by compact-
open topology. Here we assume that π has the discrete topology and the
Lie group G has the usual one. A representation ρ : π → G is called central
if ρ(π) ⊂ {±1}.

A representation ρ is called abelian if its image ρ(π) is an abelian sub-
group of G. A representation ρ is called reducible if there exists a proper
non-trivial subspace U of C2 such that ρ(g)(U) ⊂ U for any g ∈ π. A
representation ρ is called irreducible if it is not reducible. We denote by
Rred(π,G) the subset of reducible representations and by Rirr(π,G) the
subset of irreducible ones. Note that all abelian representations are re-
ducible. The Lie group G acts on R(π,G) by conjugation. We write [ρ] for
the conjugacy class of ρ ∈ R(π,G), and we denote by R̂(π,G) the quotient
space R(π,G)/G.

If G is SU(2), then one can see that the reducible representations are
exactly abelian ones. Note that this does not hold for the case of SL(2, C)-
representations. The action by conjugation of SU(2) on R(π,SU(2)) factors
through SO(3) = SU(2)/{±1}. This action is free on the Rirr(π,SU(2)). We
set R̂irr(π,SU(2)) = Rirr(π,SU(2))/ SO(3).

If G is SL(2, C), then the quotient space R̂(π,SL(2, C)) is not Haus-
dorff in general. Following [14], we will focus on the character variety
X(π; SL(2, C)) which is the set of characters of π. Associated to the rep-
resentation ρ ∈ R(π,SL(2, C)), its character χρ : π → C, defined by
χρ(g) = Tr(ρ(g)). In some sense, X(π,SL(2, C)) is the “algebro quotient”
of R(π,SL(2, C)) by PSL(2, C). It is well known that R(π,SL(2, C)) and
X(π) have the structure of complex algebraic affine sets and two irreducible
representations of π in SL(2, C) with the same character are conjugate by
an element of SL(2, C). (For the details, see [14].)

TOME 58 (2008), FASCICULE 1



344 Yoshikazu YAMAGUCHI

2.6. The Reidemeister torsion for knot exteriors

In this subsection, we recall λ-regular representations and how to con-
struct distinguished bases of gρ-twisted homology groups of knot exteriors
for a λ-regular representation ρ. These definitions have originally been given
in [15]. The original definitions are written in terms of the gρ-twisted co-
homology group. We introduce the homology version by using the duality
between the twisted homology and cohomology associated to the Kronecker
pairing C∗(W ; gρ)× C∗(W ; gρ) 3 (ξ ⊗ σ, v) 7→ (v(σ), ξ)g ∈ F [15, p. 11].

Let K be a knot in a homology three sphere M . We give a knot exterior
MK the canonical homology orientation defined as follows. It is well known
that the R-vector space

H∗(MK ; R) = H0(MK ; R)⊕H1(MK ; R)

has the basis {[pt], [µ]}. Here [pt] is the homology class of a point and [µ]
is the homology class of a meridian of K. We denote by o the orientation
induced by {[pt], [µ]}.

We calculate the twisted homology groups of a circle and a 2-dimensional
torus before giving the definition of a natural basis of H∗(MK ; gρ). Here
S1 consists of one 0-cell e(0) and one 1-cell e(1).

Lemma 2.6.1. — Suppose that G is SU(2). If ρ ∈ R(π1(S1), G) is cen-
tral, then H∗(S1; gρ) = g⊗H∗(S1; R). If ρ is non-central, then we have

H1(S1; gρ) = R[Pρ ⊗ ẽ(1)],
and

H0(S1; gρ) = R[Pρ ⊗ ẽ(0)]

where Pρ is a vector in g, which satisfies that Ad(ρ(γ))(Pρ) = Pρ for any
γ ∈ π1(S1).

Suppose that G is SL(2, C). If ρ ∈ R(π1(S1), G) is central, then
H∗(S1; gρ) = g⊗H∗(S1; C). If ρ is non-central and ρ(π1(S1)) has no par-
abolic elements, then we have

H1(S1; gρ) = C[Pρ ⊗ ẽ(1)],
and

H0(S1; gρ) = C[Pρ ⊗ ẽ(0)]

where Pρ is a vector in g, which satisfies that Ad(ρ(γ))(Pρ) = Pρ for any
γ ∈ π1(S1). If ρ is non-central and the subgroup ρ(π1(S1)) is contained in
a subgroup which consists of parabolic elements, then we have

H1(S1; gρ) = C[Pρ ⊗ ẽ(1)].
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Proof. — This is a consequence of the following fact of homology of
groups. For G = Z, it follows that H0(G;N) = H1(G;N) = NG and
H0(G;N) = H1(G;N) = NG where G is a group, N is a N -module, NG

is the group of invariants of N and NG is the group of co-invariants of N

(for the details, see [1]). �

We denote by T 2 a 2-dimensional torus. Here T 2 consists of one 0-cell e(0),
two 1-cells e

(1)
1 , e

(1)
2 and one 2-cell e(2). We denote each cell e(0), e

(1)
1 , e

(1)
2

and e(2) by pt, µ, λ and T 2. One can also calculate the gρ-twisted homology
groups of C∗(T 2; gρ) as follows.

Lemma 2.6.2. — Suppose that G is SU(2). If ρ ∈ R(π1(T 2), G) is cen-
tral, then H∗(T 2; gρ) = g⊗H∗(T 2; R). If ρ ∈ R(π1(T 2), G) is non-central,
then we have

H2(T 2; gρ) = R[Pρ ⊗ T̃ 2],

H1(T 2; gρ) = R[Pρ ⊗ µ̃ ]⊕ R[Pρ ⊗ λ̃ ],

H0(T 2; gρ) = R[Pρ ⊗ p̃t ]

where Pρ is a vector of g such that Adρ(γ)(Pρ) = Pρ for any γ ∈ π1(T 2).
Suppose that G is SL(2, C). If ρ ∈ R(π1(T 2), G) is central, then

H∗(T 2; gρ) = g ⊗ H∗(T 2; C). If ρ ∈ R(π1(T 2), G) is non-central and
ρ(π1(T 2)) contains a non-parabolic element, then we have

H2(T 2; gρ) = C[Pρ ⊗ T̃ 2],

H1(T 2; gρ) = C[Pρ ⊗ µ̃ ]⊕ C[Pρ ⊗ λ̃ ],

H0(T 2; gρ) = C[Pρ ⊗ p̃t ]

where Pρ is a vector of g such that Adρ(γ)(Pρ) = Pρ for any γ ∈ π1(T 2).
If ρ ∈ R(π1(T 2), G) is non-central and the subgroup ρ(π1(T 2)) is con-

tained in a subgroup which consists of parabolic elements, then we have

H2(T 2; gρ) = C[Pρ ⊗ T̃ 2]

and [Pρ ⊗ λ̃] is a non-zero class in H1(MK ; gρ).

Proof. — This is a consequence of [15, Proposition 3.18]. �

Next we give the definition of regular representations for π1(MK) in
terms of the twisted gρ-chain complex.

Definition 2.6.3 (regular representations [15, p. 83]). — We say that
ρ is regular if ρ is irreducible and dimF H1(MK ; gρ) = 1.

We let γ be a simple closed curve in ∂MK . We say that ρ is γ-regular if:
(1) ρ is regular;

TOME 58 (2008), FASCICULE 1
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(2) an inclusion ι : γ ↪→ MK induces the surjective homomorphism

ι∗ : H1(γ; gρ) → H1(MK ; gρ);

and
(3) if Tr(ρ(π1(∂MK))) ⊂ {±2}, then ρ(γ) 6= ±1.

We fix an invariant vector Pρ ∈ g as above. Let γ be a simple closed curve
in ∂MK . An inclusion ι : γ ↪→ MK and the the Kronecker pairing between
homology and cohomology induce the linear form fρ

γ : H1(MK ; gρ) → F.
By Lemma 2.6.1, it is explicitly described by

fρ
γ (v) = (ι∗([γ̃ ⊗ Pρ]), v) = (Pρ, v(γ̃))g for any v ∈ H1(MK ; gρ).

An alternative formulation of γ-regular representations is given in [5, 15].
Similarly, we can also give the following alternative formulation of the γ-
regularity in our conventions.

Proposition 2.6.4. — A representation ρ ∈ Rirr(π1(MK), G) is γ-
regular if and only if the linear form fρ

γ : H1(MK ; gρ) → F is an iso-
morphism.

Proof. — If fρ
γ is an isomorphism, then we have that dimF H1(MK ; gρ) =

1 and ι∗([Pρ ⊗ γ̃]) is a non-zero class in H1(MK ; gρ). It follows from the
Kronecker pairing between the gρ-twisted homology and cohomology that
dimF H1(MK ; gρ) is also one. Hence ι∗ is surjective. If ρ is γ-regular, then
we have that dimF H1(MK ; gρ) = 1 and ι∗ : H1(γ; gρ) → H1(MK ; gρ) is
surjective. We denote a generator of H1(MK ; gρ) by σ. There exists an
element [v ⊗ γ̃] of H1(γ; gρ) such that ι∗([v ⊗ γ̃]) = σ.

If ρ(γ) is central, then v satisfies that Ad(ρ(γ′))(v) = v for any γ′ ∈
π1(∂MK). Therefore ι∗([v ⊗ γ̃]) induces the isomorphism fρ

γ .
Suppose that ρ(γ) is non-central, then H1(γ; gρ) is generated by [Pρ⊗ γ̃ ].

There exists an element c ∈ F∗ such that [v ⊗ γ̃] = c[Pρ ⊗ γ̃]. Hence
ι∗([Pρ⊗γ̃]) is a non-zero class in H1(MK ; gρ). Therefore ι∗([Pρ⊗γ̃]) induces
the isomorphism fρ

γ . �

We define a reference generator of H1(MK ; gρ) by using the above iso-
morphism fρ

γ .
Let ρ be a λ-regular representation of π1(MK). By Lemma 2.6.2, the

reference generator of H1(MK ; gρ) is defined by

h(1)
ρ (λ) = ι∗

(
[Pρ ⊗ λ̃ ]

)
.

Moreover the reference generator of H2(MK ; gρ) is defined as follows.
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Lemma 2.6.5 (Cor. 3.23 [15]). — Let i : ∂MK ↪→ MK be an inclusion
map. If ρ ∈ R(π1(MK), G) is γ-regular, then we have the isomorphism
i∗ : H2(∂MK ; gρ) → H2(MK ; gρ).

Using this isomorphism i∗, we define the reference generator of H2(MK ;
gρ) by

h(2)
ρ = i∗([Pρ ⊗ ∂̃MK ]).

Remark 2.6.6. — The reference generators of H1(MK ; gρ) and H2(MK ;
gρ) have been defined in [4, 5, 15] by using another metric of g. If we define
reference generators of H1(MK ; gρ) and H2(MK ; gρ) by using our metric
( , )g, then the resulting generators become the dual bases of h

(1)
ρ (λ) and

h
(2)
ρ from the above propositions. (For the details, see [5, 15].)

We recall the definition of the twisted Reidemeister torsion for knot exte-
riors. Let ρ : π1(MK) → G be a λ-regular representation. We define TK

ρ by
the coefficient of the Reidemeister torsion T (MK , gρ, o) where we choose
the reference generators h

(1)
ρ (λ), h(2)

ρ as a basis of H∗(MK ; g̃), i.e., TK
λ is

given explicitly by

TK
λ (ρ) = τ0 · Tor

(
C∗(MK ; gρ), cB,

{
h(1)

ρ (λ), h(2)
ρ

})
∈ F∗.

Given the reference generator of H∗(MK ; gρ), the basis of the determi-
nant line Det H∗(MK ; gρ) is also given. This means that a trivialization
of the line bundle Det H∗(MK ; gρ) at ρ is given. The Reidemeister torsion
T (MK , gρ, o) is a section of the line bundle Det H∗(MK ; gρ). We can regard
TK

λ as a section of the line bundle Det H∗(MK ; gρ) over λ-regular repre-
sentations with respect to the trivialization by {h(1)

ρ (λ), h(2)
ρ }. We also call

TK
λ the twisted Reidemeister torsion.

3. A relationship between acyclic Reidemeister torsion
and non-acyclic Reidemeister torsion

3.1. The statement of main theorem

Our purpose is to express the twisted Reidemeister torsion by using a
limit of the acyclic Reidemeister torsion.

Let K be a knot in a homology three sphere M and MK its exterior.
One of the invariants which we will investigate is the twisted Reidemeister
torsion TK

λ . The other is the acyclic Reidemeister torsion T (MK , g̃ρ, o).
This invariant coincides with the twisted Alexander invariant of π1(MK)
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[10]. The twisted Alexander invariant is computed by using the Fox calculus
[9, 10]. We prove that the twisted Reidemeister torsion may be expressed
as the differential coefficient of the twisted Alexander invariant of π1(MK).

The invariant T (MK , g̃ρ, o) is only defined when the local system
C∗(MK ; g̃ρ) is acyclic. On the other hand, the twisted Reidemeister tor-
sion TK

λ is defined on the set of λ-regular representations of π1(MK). We
need to check whether the local system C∗(MK ; g̃ρ) is acyclic for a λ-regular
representation ρ.

Proposition 3.1.1. — Let ρ be an SU(2) or SL(2, C)-representation of
a knot group. If ρ is λ-regular, then the twisted chain complex C∗(MK ; g̃ρ)
is acyclic.

Note that for a knot exterior in a homology 3-sphere, the homomorphism
α satisfies α(µ) = t where µ is the meridian of the knot.

Therefore TK
λ and T (MK , g̃ρ, o) are well defined on λ-regular representa-

tions. By the definitions, the twisted Reidemeister torsion TK
λ is an element

of F∗ and the twisted Alexander invariant T (MK , g̃ρ, o) is an element of
F(t)∗. Actually the following relation between TK

λ ∈ F∗ and the rational
function T (MK , g̃ρ, o) ∈ F(t)∗.

Theorem 3.1.2. — If ρ is a λ-regular representation, then the acyclic
Reidemeister torsion T (MK , g̃ρ, o) for ρ has a simple zero at t = 1. More-
over the following holds:

TK
λ (ρ) = − lim

t→1

T (MK , g̃ρ, o)(t)
t− 1

= − d

dt
T (MK , g̃ρ, o)

∣∣∣∣
t=1

.

This says that we can compute the twisted Reidemeister torsion TK
λ

algebraically by using Fox calculus of the twisted Alexander invariant of K.

3.2. Proof of Proposition 3.1.1

We prove Proposition 3.1.1 by using the λ-regularity of ρ.
Proof of Proposition 3.1.1. — It is well known that any compact con-

nected triangulated 3-manifold whose boundary is non-empty and consists
of tori can be collapsed into a 2-dimensional sub-complex (see II. Cor.
11.9 in [19]). Moreover, by the simple-homotopy extension theorem, every
CW-complex has the simple-homotopy type of a CW-complex which has
only one vertex. We denote this 2-dimensional CW-complex by W and this
deformation from MK to W by ϕ. Since two g̃ρ-twisted homology groups
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H∗(MK ; g̃ρ) and H∗(W ; g̃ρ) are isomorphic, we prove that H∗(W ; g̃ρ) van-
ishes in the following.

The fact that H0(W ; g̃ρ) = 0 is proved in [9, Proposition 3.5]. Since the
Euler characteristic of W is zero, the dimension of H1(W ; g̃ρ) is equal to
that of H2(W ; g̃ρ). We must prove that the dimension of H2(W ; g̃ρ) over
F(t) is zero. It is enough to prove that the rank over F[t, t−1] of the second
homology group of the following local system is zero:

C∗(W ; gρ[t, t−1]) = g[t, t−1]⊗α⊗Ad ◦ρ C∗(W̃ ; Z)

where g[t, t−1] is F[t, t−1]⊗ g. We denote the homology group of this chain
complex by H∗(W;gρ[t, t−1]). Suppose that the rank of H2(W;gρ[t, t−1])>0.

There exists the long exact homology sequence [18]:

0 → H2(W ; gρ[t, t−1])
(t−1)·−−−−→ H2(W ; gρ[t, t−1])

t=1−−→ H2(W ; gρ)
∆−→ H1(W ; gρ[t, t−1]) → · · ·

associated to the short exact sequence:

0 → g[t, t−1]
(t−1)·−−−−→ g[t, t−1] t=1−−→ g → 0.

Since the rank of H2(W ; gρ[t, t−1]) is not zero, the multiplication with (t−1)
is not surjective. Hence the image of the evaluation map (t = 1) is not trivial
and therefore surjective since the dimension of H2(W ; gρ) is only one. This
implies that ∆ is trivial. On the other hand the equation

∂(1⊗ Pρ ⊗ ˜ϕ(∂MK)) = (t− 1) · (1⊗ Pρ ⊗ ϕ̃(λ))

implies that ∆([Pρ ⊗ ˜ϕ(∂MK)]) = [1 ⊗ Pρ ⊗ ϕ̃(λ)]. But [1 ⊗ Pρ ⊗ ϕ̃(λ)]
can not be trivial since it is mapped under the evaluation map (t = 1) to
[Pρ⊗ϕ̃(λ)] and the chain Pρ⊗ϕ̃(λ) represents a non-zero homology class in
H1(W ; gρ). This is a contradiction. Therefore the rank of H2(W ; gρ[t, t−1])
over F[t, t−1] is zero. Hence we have that dimF(t) H2(W ; g̃ρ) = 0. Also
dimF(t) H1(W ; g̃ρ) is zero. �

3.3. Proof of Theorem 3.1.2

At first, we prepare some notations and an algebraic proposition.
Let C∗ is an n-dimensional chain complex which consists of left G-

modules Mi (1 6 i 6 n) where G is a group. We denote by C∗(V ) the
chain complex which consists of the vector spaces V ⊗ρ Mi where V is a
right G-vector space over F and ρ is a homomorphism from G to Aut(V ).
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Let H∗(V ) be the homology groups of C∗(V ), C ′
∗(V ) the subchain complex

which consists of a lift of H∗(V ) to C∗(V ) and C ′′
∗ (V ) the quotient of C∗(V )

by C ′
∗(V ). We denote by h(V ), c′ and c′′ the bases of H∗(V ), C ′

∗(V ) and
C ′′
∗ (V ). Note that c′ is a lift of h(V ) to C∗(V ). If there exists a homomor-

phism α from G to the multiplicative group 〈t〉, we denote by C∗(V (t))
which consists of vector spaces V (t) ⊗α⊗ρ Mi. Here we denote F(t) ⊗ V

by V (t). Moreover let C ′
∗(V (t)) be the subchain complex which is given by

extending the coefficients of C ′
∗(V ) to F(t) by using α and C ′′

∗ (V (t)) the
quotient of C∗(V (t)) by C ′

∗(V (t)).

Proposition 3.3.1. — We assume that C∗(V (t)) and C ′
∗(V (t)) are acy-

clic. The following relation holds:

(1) lim
t→1

(−1)α′ Tor(C∗(V (t)), 1⊗ c′ ∪ 1⊗ c̄′′)
Tor(C ′

∗(V (t)), 1⊗ c′)

= (−1)ε′+|C∗(V )| Tor(C∗(V ), c′ ∪ c̄′′, h(V ))

where c̄′′ is a lift of c′′ to C∗(V ), α′ is α(C ′
∗(V (t)), C ′′

∗ (V (t))) in Proposi-
tion 2.4.4, and ε′ ∈ Z/2Z is given by

∑n−1
i=0 dimF C ′′

i (V ) · βi(C∗(V )).

Proof. — The chain complex C ′′
∗ (V (t)) is also acyclic from the long exact

sequence of the pair (C∗(V (t)), C ′
∗(V (t))). We can apply Proposition 2.4.4

for the short exact sequence:

0 → (C ′
∗(V (t)), 1⊗c′) → (C∗(V (t)), 1⊗c′∪1⊗c̄′′) → (C ′′

∗ (V (t)), 1⊗c′′) → 0.

Then, we obtain the following equation of the torsions.

(2) (−1)α′ Tor(C∗(V (t)), 1⊗ c′ ∪ 1⊗ c̄′′)

= Tor(C ′
∗(V (t)), 1⊗ c′) · Tor(C ′′

∗ (V (t)), 1⊗ c′′).

Note that ε(C ′
∗(V (t)), C∗(V (t)), C ′′

∗ (V (t))) = 0 because C∗(V (t)), C ′
∗(V (t))

and C ′′
∗ (V (t)) are acyclic.

Next we consider Tor(C ′′
∗ (V (t)), c′′). It follows from the long exact se-

quence of the pair (C∗(V ), C ′
∗(V )) and the definition of C ′

∗(V ) that the
chain complex C ′′

∗ (V ) is also acyclic. Since C ′′
∗ (V ) is acyclic, we can choose

a basis b̃′′i of B̃′′
i for each i. Here B̃′′

i is a lift of B′′
i = Im ∂i+1(C ′′

i+1(V )) to
C ′′

i+1(V ).

Claim 3.3.2. — A subset 1⊗ b̃′′i in C ′′
i+1(V (t)) generates a subspace on

which the boundary operator ∂i+1 is injective.

Proof of Claim 3.3.2. — If the determinant of the boundary operator
restricted on F(t)〈1 ⊗ b̃′′i〉 is zero, then substituting 1 for the parameter t
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we have that the determinant of the boundary operator restricted on F〈̃b′′i〉
is also zero. This is a contradiction to the choices of b̃′′i. �

Therefore Tor(C ′′
∗ (V (t)), 1⊗ c′′) is represented as

n∏
i=0

[
∂i+1(1⊗ b̃′′i)1⊗ b̃′′i−1/1⊗ c′′i

](−1)i+1

.

We denote by b̃i a lift 1⊗ b̃′′i to C∗(V (t)) simply. Note that

n∏
i=0

[
∂i+1(1⊗ b̃′′i) 1⊗ b̃′′i−1/1⊗ c′′i

](−1)i+1

=
n∏

i=0

[
(1⊗ c′i) ∂i+1(̃bi) b̃i−1/1⊗ c′i ∪ 1⊗ c̄′′i

](−1)i+1

.

We substitute these results into the equation (2) Then we have

Tor(C∗(V (t)), 1⊗ c′ ∪ 1⊗ c̄′′)
Tor(C ′

∗(V (t)), 1⊗ c′)
(3)

= Tor(C ′′
∗ (V (t)), 1⊗ c′′)

=
n∏

i=0

[
(1⊗ c′i) ∂i+1(̃bi) b̃i−1/1⊗ c′i ∪ 1⊗ c̄′′i

](−1)i+1

=
n∏

i=0

(−1)dimF B′′
i ·dimF Hi(V )

[
∂i+1(̃bi) (1⊗ c′i) b̃i−1/1

⊗ c′i ∪ 1⊗ c̄′′i
](−1)i+1

.

The acyclicity of C ′′
∗ (V ) shows that

n∑
i=0

dimF B′′
i · dimF Hi(V ) ≡

n−1∑
i=0

dimF C ′′
i (V ) · βi(C∗(V )) (mod 2).

Substituting 1 for t, the right hand side (3) turns into

(−1)ε′
n∏

i=0

[
∂i+1(̃bi) h̃i b̃i−1/c′i ∪ c̄′′i

](−1)i+1

.

This is equal to (−1)ε′+|C∗(V )| Tor(C∗(V ), c′ ∪ c̄′′, h(V )).
Although the left hand side is determined up to a factor tm(m ∈ Z), the

limit at t = 1 is determined because the factor tm does not affect taking a
limit at t = 1. �

We can prove Theorem 3.1.2 as an application of Proposition 3.3.1.
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Proof of Theorem 3.1.2. — As in the proof of Proposition 3.1.1, let W

be a 2-dimensional CW-complex with a single vertex which has the same
simple-homotopy type as MK . We denote the deformation from MK to W

by ϕ. The compact 3-manifold MK is simple homotopy equivalent to W .
It is enough to prove the theorem for W because of the invariance of the
simple homotopy equivalence for the Reidemeister torsion. Let ρ be a λ-
regular representation of π1(MK). We denote by the same symbols ρ and o

the representation of π1(W ) and the homology orientation of H∗(W ; R)
induced from that of MK under the map ϕ.

We define the subchain complex C ′
∗(W ; gρ) of the gρ-twisted chain com-

plex C∗(W ; gρ) by

C ′
2(MK ; gρ) = F〈Pρ ⊗ ˜ϕ(∂MK)〉, C ′

1(W ; gρ) = F〈Pρ ⊗ ϕ̃(λ)〉

and Ci(W ; gρ) = 0 (i 6= 1, 2) where Pρ is an invariant vector of g such that
Adρ(γ)(Pρ) = Pρ for any γ ∈ π1(ϕ(∂MK)). The modules of this subchain
complex are lifts of homology groups H∗(W ; gρ). By the definition, the
boundary operators of C ′

∗(W ; gρ) are zero homomorphisms. Let C ′′
∗ (W ; gρ)

be the quotient of C∗(W ; gρ) by C ′
∗(W ; gρ). Similarly, we define the sub-

complex C ′
∗(W ; g̃ρ) of C∗(W ; g̃ρ) to be

C ′
2(W ; g̃ρ) = F(t)〈1⊗ Pρ ⊗ ˜ϕ(∂MK)〉, C ′

1(W ; g̃ρ) = F(t)〈1⊗ Pρ ⊗ ϕ̃(λ)〉

and C ′
i(W ) = 0 for i 6= 1, 2. The boundary operators of C ′

∗(W ; g̃ρ) is given
by

0 → C ′
2(W ; g̃ρ)

(t−1)·−−−−→ C ′
1(W ; g̃ρ) → 0.

This shows that the subchain complex C ′
∗(MK ; g̃ρ) is acyclic. By Proposi-

tion 3.1.1, the g̃ρ-twisted chain complex C∗(MK ; g̃ρ) is also acyclic.
The twisted chain complex C ′

∗(W ; gρ) has the natural basis:

c′ = {Pρ ⊗ ˜ϕ(∂MK), Pρ ⊗ ϕ̃(λ)}.

Let c′′ be a basis of C ′′
∗ (W ; gρ) and c̄′′ a lift of c′′ to C∗(W ; gρ). Applying

Proposition 3.3.1, we have

(4) lim
t→1

(−1)α′ Tor(C∗(W ; g̃ρ), 1⊗ c′ ∪ 1⊗ c̄′′)
Tor(C ′

∗(W ; g̃ρ), 1⊗ c′)

= (−1)ε′+|C∗(W ;gρ)| Tor
(
C∗(W ; gρ), c′ ∪ c̄′′,

{
h(1)

ρ (λ), h(2)ρ
})

.

Claim 3.3.3.
(1) Tor(C ′

∗(W ; g̃ρ), 1⊗ c′) = t− 1.
(2) α′ ≡ 0 (mod 2).
(3) ε′ + |C∗(W ; gρ)| ≡ 1 (mod 2).
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Proof of Claim 3.3.3.

(1) It follows by the definition.
(2) If we denote the number of 1-cells of W by k, the CW-complex W

has one 0-cell, k 1-cells and (k − 1) 2-cells. We have α′ = 0 · (3k +
2) + 1 · (6k − 2) + 2 · (6k − 2) ≡ 0 (mod 2).

(3) This follows from ε′ = (3k−4)·1 ≡ 3k−4 (mod 2) and |C∗(W ; gρ)| =
3 · 0 + (3k + 3) · 1 + (3k + 3 + 3k − 3) · 2 ≡ 3k + 3 (mod 2).

�

The equation (4) turns into

lim
t→1

Tor(C∗(W ; g̃ρ), 1⊗ c′ ∪ 1⊗ c̄′′)
t− 1

= −Tor
(
C∗(W ; gρ), c′ ∪ c̄′′,

{
h(1)

ρ (λ), h(2)ρ
})

.

Multiplying the both sides by the alternative products of the determinants
of the base-change matrices

2∏
i=0

[
c′i ∪ c̄′′i/cB

](−1)i+1

,

we obtain the following equation:

lim
t→1

Tor(C∗(W ; g̃ρ), cB)
t− 1

= −Tor
(
C∗(W ; gρ), cB,

{
h(1)

ρ (λ), h(2)ρ
})

.

Finally multiplying the both sides by the sign τ0 gives

lim
t→1

T (W, g̃ρ, o)
t− 1

= −TK
λ (ρ).

Summarizing the above calculation, we have shown that the rational
function T (MK , g̃ρ, o) has a simple zero at t = 1 and its differential co-
efficient at t = 1 agrees with minus the twisted Reidemeister torsion
−TK

λ (ρ). �

3.4. A description of TK
λ using a Wirtinger representation

Let K be a knot in S3 and EK its exterior. We assume that ρ ∈
R(π1(EK), G) is λ-regular. From Theorem 3.1.2 we can describe −TK

λ (ρ)
by using the differential coefficient of T (EK , g̃ρ, o). We will describe the
differential coefficient of T (EK , g̃ρ, o) more explicitly by using a Wirtinger
representation of π1(EK).
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For a Wirtinger representation:

π1(EK) = 〈x1, . . . , xk | r1, . . . , rk−1〉 ,

we obtain a 2-dimensional CW-complex W which consists of one 0-cell p, k

1-cells x1, . . . , xk and (k− 1) 2-cells D1, . . . , Dk−1 attached by the relation
r1, . . . , rk−1. This CW-complex W is simple homotopy equivalent to EK .
Let α : π1(EK) → Z = 〈t〉 such that α(µ) = t. Here µ is a meridian of K.
Note that for all i, α(xi) is equal to t in Z = 〈t〉.

The following calculation is due to the result of [9, 10]. This chain com-
plex C∗(W ; g̃ρ) is as follows:

0 → g(t)k−1 ∂2−→ g(t)k ∂1−→ g(t) → 0

where

∂2 =


Φ( ∂r1

∂x1
) . . . Φ(∂rk−1

∂x1
)

...
. . .

...
Φ( ∂r1

∂xk
) . . . Φ(∂rk−1

∂xk
)

 ,

∂1 = (Φ(x1 − 1), Φ(x2 − 1), . . . , Φ(xk − 1)) .

Here we briefly denote the l-times direct sum of g(t) by g(t)l.
We denote by A1

K,Ad ◦ρ 3(k − 1)× 3(k − 1) matrix:
Φ( ∂r1

∂x2
) . . . Φ(∂rk−1

∂x2
)

...
. . .

...
Φ( ∂r1

∂xk
) . . . Φ(∂rk−1

∂xk
)

 .

Under this situation, the twisted Alexander invariant T (W, g̃ρ, o) is given
by

τ0 ·
det A1

K,Ad ◦ρ

det(Φ(x1 − 1))
up to a factor tm (m ∈ Z).

If ρ(xi) is conjugate to the upper triangulate matrix(
a ∗
0 a−1

)
,

then Adρ(x−1
i

) is conjugate to the upper triangulate matrix1 ∗ ∗
a2 ∗

a−2

 .
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Calculating det(Φ(x1 − 1)), we have that

det(Φ(x1 − 1)) = (t− 1)
(
t2 − Tr(ρ(x2

1))t + 1
)
.

Since T (EK , g̃ρ, o) has zero at t = 1,

d

dt
T (EK , g̃ρ, o)

∣∣∣∣
t=1

= lim
t→1

T (EK , g̃ρ, o)
t− 1

= lim
t→1

τ0 · tm
det A1

K,Ad ◦ρ(t)
(t− 1)2(t2 − Tr(ρ(x2

1))t + 1)
.

Lemma 3.4.1. — If Tr ρ(∂EK) 6⊂ {±2}, then we have

lim
t→1

τ0 · tm
det A1

K,Ad ◦ρ(t)
(t− 1)2

=
τ0

2
d2

dt2
det A1

K,Ad ◦ρ(t)
∣∣∣∣
t=1

.

Proof. — The function T (EK , g̃ρ, o) has a simple zero at t = 1 and the
numerator det A1

K,Ad ◦ρ(t) is an element of F[t, t−1]. Hence (t− 1)2 divides
det A1

K,Ad ◦ρ(t). We write (t−1)2f(t) for det A1
K,Ad ◦ρ(t). Then the left hand

side turns into limt→1 τ0 · tmf(t), i.e., τ0f(1). On the other hand, the right
hand side becomes as follows.
τ0

2
d2

dt2
det A1

K,Ad ◦ρ(t)
∣∣∣∣
t=1

=
τ0

2
d2

dt2
(t− 1)2f(t)

∣∣∣∣
t=1

=
τ0

2
d

dt

{
2(t− 1)f(t) + (t− 1)2f ′(t)

}∣∣∣∣
t=1

=
τ0

2
[
2f(t) + 4(t− 1)f ′(t) + (t− 1)2f ′′(t)

]
t=1

= τ0f(1).

�

The numerator det A1
K,Ad ◦ρ(t) is called the first homology torsion of

C∗(EK ; g̃ρ) [9]. We denote the first homology torsion by ∆1(t). By the
above calculations, we obtain the following description of TK

λ (ρ).

Proposition 3.4.2. — If Tr(ρ(∂EK)) 6⊂ {±2}, then we have the fol-
lowing expression.

TK
λ (ρ) = − d

dt
T (EK , g̃ρ, o)

∣∣∣∣
t=1

=
τ0∆′′

1(1)
2

· 1
Tr(ρ(x2

1))− 2
.

Remark 3.4.3. — If G is SU(2) and ρ is λ-regular, then Tr(ρ(∂EK)) 6⊂
{±2}.

Remark 3.4.4. — We use a Wirtinger representation of π1(EK) to de-
scribe T (EK , g̃ρ, o) in the above calculation. The twisted Alexander invari-
ant T (EK , g̃ρ, o) does not depend on the representation of π1(EK) [21].
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Since T (EK , g̃ρ, o) is determined by the finite presentable group π1(EK)
and ρ ∈ R(EK , G), we do not necessarily need to use a Wirtinger represen-
tation on calculating T (EK , g̃ρ, o).

4. Applications.

In this section, we deal with a 2-bridge knot K in S3 and SU(2)-represen-
tations of its knot group. In this case ρ ∈ R(π1(EK),SU(2)) is irreducible
if and only if ρ(π1(EK)) is a non-abelian subgroup of SU(2). We will show
the explicit calculation of SU(2)-twisted Reidemeister torsion associated to
52 knot and study the critical points of the twisted Reidemeister torsion
TK

λ . If K is hyperbolic and G is SL(2, C), then some features of TK
µ (ρ),

given in this section, have appeared in [15, Section 4.3].

4.1. A review of a representation of a 2-bridge knot group

It is well known that π1(EK) has the representation:

〈x, y |wx = yw〉,

where w is a word in x and y. Here x and y represent the meridian of
the knot. The method we use to describe the space of SL(2, C) and SU(2)-
representations is due to R. Riley ([16]). He shows how to parametrize
conjugacy classes of irreducible SL(2, C) and SU(2)-representations of any
2-bridge knot group. We review his method ([8, 16]).

Given s, u ∈ C, we consider the assignment as follows:

x 7→
(

s 1
0 1

)
, y 7→

(
s 0

−su 1

)
.

Let W be the matrix obtained by replacing x and y by the above two
matrices in the word w. This assignment defines a GL(2, C)-representation
if and only if φ(s, u) = 0 where φ(s, u) = W11 + (1− s)W12.

One can obtain an SL(2, C)-representation from this GL(2, C)-represen-
tation by dividing the above two matrices by some square root of s. If we
give a path (s(a), u(a)) in C2 with φ(s(a), u(a)) = 0 and some continuous
branch of the square root along s(a), then we obtain a path of SL(2, C)-
representations. Furthermore, all conjugacy classes of non-abelian SL(2, C)-
representations arise in this way.

According to Proposition 4 of Riley’s paper [16], a pair (s, u) with
φ(s, u) = 0 corresponds to an SU(2)-representation if and only if |s| = 1,

ANNALES DE L’INSTITUT FOURIER



RELATION BETWEEN NON-ACYCLIC TORSION AND ACYCLIC ONE 357

and u is real number which lies in the interval [s+s−1−2, 0] = [2 cos θ−2, 0]
where s = eiθ. This correspondence means that the SL(2, C)-representation
resulting from such a pair (s, u) and some square root of s is conjugate to
an SU(2)-representation in SL(2, C).

We take the ordered basis E,H, F of sl(2, C) as follows.

E =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)
.

The Lie algebra su(2) is a subspace of sl(2, C). The vectors E,H, F also
form a basis of su(2). Since the Euler characteristic of EK is zero, the non-
abelian Reidemeister torsion TK

λ (ρ) does not depend on a choice of a basis of
su(2). We can use E,H, F as an ordered basis of su(2). We denote by ρ√s,u

the representation corresponding to the pair (
√

s, u). The representation
matrices of Ad(ρ√s,u(x)) and Ad(ρ√s,u(y)) for this ordered basis are given
as follows.

Lemma 4.1.1.

Ad(ρ√s,u(x)) =

s −2 − 1
s

0 1 1
s

0 0 1
s

 , Ad(ρ√s,u(y)) =

 s 0 0
su 1 0
−su2 −2u 1

s

 .

Note that even if we choose another square root of s, we obtain the same
representation matrices of the adjoint actions of ρ√s,u(x) and ρ√s,u(y).

4.2. SU(2)-twisted Reidemeister torsion associated to 52 knot

We consider 52 knot in the knot table of Rolfsen [17]. Note that this
knot is not fibered, since its Alexander polynomial is not monic. This is
the simplest example such as non-fibered in 2-bridge knots. Let K be 52

knot. A diagram of K is shown as in Figure 4.1.

=

y x

Figure 4.1. A diagram of 52 knot.
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This knot is also called 3-twist knot. It follows from Theorem 3 of [11]
that R̂irr(π1(EK),SU(2)) consists of one circle and one open arc.

The knot group π1(EK) has the following representation:

〈x, y |wx = yw〉

where w = x−1y−1xyx−1y−1. From this representation, the Riley’s poly-
nomial of 52 is given by

W11 + (1− s)W12

=
−u3+(2(s+1/s)−3)u2+(−(s2+1/s2)+3(s+1/s)−6)u+2(s+1/s)−3

s
.

We may take Riley’s polynomial φ(s, u) as

u3− (2(s + 1/s)− 3)u2 + ((s2 + 1/s2)− 3(s + 1/s) + 6)u− (2(s + 1/s)− 3).

We want to know pairs (s, u) such that s = eiθ, u is a real number in the
interval [2 cos θ − 2, 0] and φ(s, u) = 0. When we regard φ(s, u) = 0 as the
equation of u, the relation between the number of solutions of φ(s, u) = 0
and s is as follows.

(1) If −2 6 s + 1/s < (3−
√

13 + 16
√

2)/2, then φ(s, u) = 0 has three
different simple root in [s + 1/s− 2, 0].

(2) If s + 1/s = (3 −
√

13 + 16
√

2)/2, then φ(s, u) = 0 has a simple
root and a multiple root in [s + 1/s− 2, 0].

(3) If (3 −
√

13 + 16
√

2)/2 < s + 1/s < 3/2, then φ(s, u) = 0 has a
simple root in [s + 1/s− 2, 0].

The figure of R̂irr(π1(EK),SU(2)) is given as in Figure 4.2.

s + 1/s = −2

s + 1/s = (3 −

√

13 + 16
√

2)/2

Figure 4.2. R̂irr(π1(EK),SU(2)) where K is 52 knot.

We denote the SU(2)-representation corresponding to (s, u) by ρ√s,u.
Then we can express TK

λ (ρ√s,u) from Proposition 3.4.2 as follows.

TK
λ (ρ√s,u) =

τ0∆′′
1(1)
2

· 1
s + 1/s− 2
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Using a computer, we calculate a half of the differential coefficient of the
second order of the numerator and simplify with the equation φ(s, u) = 0.
Then we have

τ0∆′′
1(1)
2

= τ0(s + 1/s− 2)
(
−(5(s + 1/s) + 3)u2 + (5(s + 1/s)2

− 7(s + 1/s) + 1)u + 1− 10(s + 1/s)
)
.

Therefore we have

TK
γ (ρ√s,u) = τ0

(
−(5(s + 1/s) + 3)u2 + (5(s + 1/s)2

− 7(s + 1/s) + 1)u + 1− 10(s + 1/s)
)
,

where (u, s) satisfies φ(u, s) = 0.

4.3. On critical points of the SU(2)-twisted Reidemeister
torsion associated to 2-bridge knots

From the example in the previous subsection, one can guess that the
SU(2)-twisted Reidemeister torsion TK

λ associated to a 2-bridge knot K is
a function for the parameter s + 1/s. Indeed the following holds.

Proposition 4.3.1. — Let K be a 2-bridge knot and γ a simple closed
curve in the boundary torus of EK . Suppose that γ-regular SU(2)-represen-
tations are parametrized by (s, u) ∈ U(1)×R of Riley’s method. If the trace
of the meridian,

√
s+1/

√
s, gives a local parameter of the SU(2)-character

variety, then the twisted Reidemeister torsion TK
γ is a smooth function for

s + 1/s.

Proof. — If we denote by ρ√s,u a γ-regular representation corresponding
to
√

s + 1/
√

s, then there exists some homomorphism ε : π1(EK) → {±1}
such that ερ√s,u is a γ-regular representation corresponding to −

√
s−1/

√
s.

By the construction of TK
γ , TK

γ (ρ) is equal to TK
γ (ερ). Since

√
s + 1/

√
s is

a square root of s+1/s+2 and regular representations are irreducible, the
twisted Reidemeister torsion TK

γ is a smooth function for s + 1/s. �

Corollary 4.3.2. — If the trace of the meridian gives a local parame-
ter of the SU(2)-character variety and the twisted Reidemeister torsion TK

λ

is defined, then TK
λ is a smooth function for s + 1/s.

Remark 4.3.3. — All representations ρ of 2-bridge knot groups into
SU(2) such that Tr(ρ(µ)) = 0 are binary dihedral representations. It follows
from [7] that there exists a neighbourhood of the character of each binary
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dihedral representation for any 2-bridge knot, which is diffeomorphic to an
open interval. From [2], the trace of the meridian gives a local parameter
on a neighbourhood of the character of each dihedral representation for
2-bridge knots.

We can regard the twisted Reidemeister torsion TK
λ as a smooth function

on a neighbourhood of the character of each binary dihedral representation.
Moreover these characters can be critical points of TK

λ as follows.

Corollary 4.3.4. — Let K be a 2-bridge knot. If a λ-regular compo-
nent of the SU(2)-character variety of π1(EK) contains the characters of
dihedral representations, then the function TK

λ has a critical point at the
character of each dihedral representation.

Proof. — By Corollary 4.3.2 and Remark 4.3.3, the twisted Reidemeister
torsion TK

λ is a smooth function for s + 1/s. When we substitute eiθ for s,
we can describe TK

λ (ρ) as
f(2 cos θ)
2 cos θ − 2

where f(2 cos θ) is a smooth function for 2 cos θ. This is a description of
TK

λ with respect to the local coordinate θ of R̂irr(π1(EK),SU(2)). The
derivation of this function for θ becomes

{−2f ′(2 cos θ)(2 cos θ − 2) + 2f(2 cos θ)} sin θ

(2 cos θ − 2)2
.

We recall that Tr(ρ√s,u(µ)) = Tr(ρ√s,u(x)) = 2 cos(θ/2). If Tr(ρ√s,u(µ)) =
2 cos(θ/2) = 0, then sin θ = 0. Hence the derivation of TK

λ vanishes if ρ

satisfies Tr(ρ(µ)) = 0. �

Remark 4.3.5. — From [2], for 2-bridge knots, the character of a binary
dihedral representation is a branch point of the two-fold branched cover
from the SU(2)-character variety to the SO(3)-character variety. Moreover,
every algebraic component of the SU(2)-character variety contains the char-
acter of such a representation.

Remark 4.3.6. — By [11, Theorem 10], for a knot K, the number of
conjugacy class of binary dihedral representations is given by (|∆K(−1)| −
1)/2 where ∆K(t) is the Alexander polynomial of K. In particular, for a 2-
bridge knot b(α, β) (Schubert’s notation, see for example [3]), this number
is given by (α− 1)/2.
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