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ACTIONS OF FINITELY GENERATED GROUPS ON
R-TREES

by Vincent GUIRARDEL

Abstract. — We study actions of finitely generated groups on R-trees un-
der some stability hypotheses. We prove that either the group splits over some
controlled subgroup (fixing an arc in particular), or the action can be obtained
by gluing together actions of simple types: actions on simplicial trees, actions on
lines, and actions coming from measured foliations on 2-orbifolds. This extends
results by Sela and Rips-Sela. However, their results are misstated, and we give a
counterexample to their statements.

The proof relies on an extended version of Scott’s Lemma of independent in-
terest. This statement claims that if a group G is a direct limit of groups having
suitably compatible splittings, then G splits.

Résumé. — On étudie les actions de groupes de type fini sur des arbres réels
sous certaines hypothèses de stabilité. On démontre que soit le groupe se scinde au
dessus de sous-groupes contrôlés (fixant un arc en particulier), soit que l’action peut
être obtenue par recollement d’actions simples: actions sur des arbres simpliciaux,
actions sur des droites, et actions venant de feuilletages mesurés sur des 2-orbifolds.
Ceci étend des résultats de Sela et de Rips-Sela. Cependant, leurs résultats sont
mal énoncés, et on donne un contrexemple à leurs énoncés.

La preuve repose sur une version étendue du Lemme de Scott qui est intéressante
en soi. Cet énoncé affirme que si un groupe G est une limite directe de groupes
ayant des scindements compatibles en un sens convenable, alors G se scinde.

Actions of groups on R-trees are an important tool in geometric group
theory. For instance, actions on R-trees are used to compactify sets of
hyperbolic structures ([28, 29]) or Culler-Vogtmann’s Outer space ([10,
3, 8]). Actions on R-trees are also a main ingredient in Sela’ approach to
acylindrical accessibility [32] (see [11] or [23] for alternative approaches) and
in some studies of morphisms of a given group to a (relatively) hyperbolic
group [33, 2, 12]. Limit groups and limits of (relatively) hyperbolic groups
[34, 35, 19, 1, 16], and Sela’s approach to Tarski’s problem ([36]) are also
studied using R-trees as a basic tool.

Keywords: R-tree, splitting of group, Rips theory.
Math. classification: 20E08, 20F65, 20E06.



160 Vincent GUIRARDEL

To use R-trees as a tool, one needs to understand the structure of a group
acting on an R-tree. The main breakthrough in this analysis is due to Rips.
He proved that any finitely generated group acting freely on an R-tree is a
free product of surface groups and of free abelian groups (see [14, 6]).

More general results involve stability hypotheses. Roughly speaking,
these hypotheses prohibit infinite sequences of nested arc stabilizers. A sim-
ple version of these stability hypotheses is the ascending chain condition:
for any decreasing sequence of arcs I1 ⊃ I2 ⊃ ... whose lengths converge to
0, the sequence of their pointwise arc stabilizers G(I1) ⊂ G(I2) ⊂ . . . sta-
bilizes. The ascending chain condition implies BF-stability used below. See
Definition 1.1 for other versions of stability and relations between them.

Another theorem by Rips claims that if G is finitely presented and has a
BF-stable action on an R-tree T , then either T has an invariant line or G
splits over an extension of a subgroup fixing an arc by a cyclic group (see
[6, 18]). Using methods in the spirit of [14], the author proved under the
same hypotheses that one can approximate the action G

�

T by a sequence
of actions on simplicial trees G

�

Tk converging to T ([18]). Edge stabilizers
of Tk are extensions by finitely generated free abelian groups of subgroups
fixing an arc in T . The convergence is in the length functions topology.

Next results give a very precise structure of the action on the R-tree.
This is the basis for Sela’s shortening argument (see for instance [30, 32]).
These results say that the action on the R-tree can be obtained by gluing
together simple building blocks. The building blocks are actions on simpli-
cial trees, actions on a line, and actions coming from a measured foliation
on a 2-orbifold. Two building blocks are glued together along one point,
and globally, the combinatorics of the gluing is described by a simplicial
tree (see section 1.3 for more details). When G

�

T arises in this fashion,
we say that T splits as a graph of actions on R-trees.

In [30] and [32], Rips-Sela and Sela give a structure theorem for actions
of finitely presented groups and of finitely generated groups on R-trees. The
proof uses the following super-stability hypothesis: an arc I ⊂ T is unstable
if there exists J ⊂ I with G(I)  G(J); an action G

�

T is super-stable
if the stabilizer of any unstable arc is trivial. In particular, super-stability
implies that chains of arc stabilizers have length at most 2. Sela’s result is as
follows: consider a minimal action G

�

T of a finitely generated group on an
R-tree, and assume that this action is super-stable, and has trivial tripod
stabilizers. Then either G splits as a free product, or T can be obtained
from simple building blocks as above ([32, Theorem 3.1]).
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ACTIONS ON R-TREES 161

Actually, Sela’s result is stated under the ascending chain condition in-
stead of super-stability. However, the proof really uses the stronger hypoth-
esis of super-stability. In section 6, we give a counterexample to the more
general statement. This does not affect the rest of Sela’s papers since super-
stability is satisfied in the cases considered. Since the counterexample is an
action of a finitely presented group, this also shows that one should include
super-stability in the hypotheses of Rips-Sela’s statement [30, Theorem
10.8] (see also [32, Theorem 2.3]).

Our main result generalizes Sela’s result in two ways. First, we don’t as-
sume that tripod stabilizers are trivial. Moreover, we replace super-stability
by the ascending chain condition together with weaker assumptions on sta-
bilizers of unstable arcs.

Theorem (Main Theorem). — Consider a non-trivial minimal action
of a finitely generated group G on an R-tree T by isometries. Assume that

1. T satisfies the ascending chain condition;
2. for any unstable arc J ,

(a) G(J) is finitely generated;
(b) G(J) is not a proper subgroup of any conjugate of itself i. e.

∀g ∈ G, G(J)g ⊂ G(J) ⇒ G(J)g = G(J).

Then either G splits over the stabilizer of an unstable arc or over the
stabilizer of an infinite tripod, or T has a decomposition into a graph of
actions where each vertex action is either

1. simplicial: Gv

�

Yv is a simplicial action on a simplicial tree;
2. of Seifert type: the vertex action Gv

�

Yv has kernel Nv, and the
faithful action Gv/Nv

�

Yv is dual to an arational measured foliation
on a closed 2-orbifold with boundary;

3. axial: Yv is a line, and the image of Gv in Isom(Yv) is a finitely
generated group acting with dense orbits on Yv.

An infinite tripod is the union of three semi-lines having a common origin
O, and whose pairwise intersection is reduced to {O}.

If one assumes triviality of stabilizers of tripods and of unstable arcs
(super-stability) in Main Theorem, one gets Sela’s result.

The non-simplicial building blocks are canonical. Indeed, non-simplicial
building blocks are indecomposable which implies that they cannot be split
further into a graph of actions (see Definition 1.17 and Lemma 1.18). If T
is not a line, simplicial building blocks can also be made canonical by
imposing that each simplicial building block is an arc which intersects the
set of branch points of T exactly at its endpoints.

TOME 58 (2008), FASCICULE 1



162 Vincent GUIRARDEL

For simplicity, we did not state the optimal statement of Main Theorem,
see Theorem 5.1 for more details. In particular, one can say a little more
about the tripod stabilizer on which G splits. This statement also includes
a relative version: G is only assumed to be finitely generated relative to a
finite set of elliptic subgroups H = {H1, . . . ,Hp}, and each Hi is conjugate
into a vertex group in the splittings of G produced.

When T has a decomposition into a graph of actions as in the conclusion
of Main Theorem, then G splits over an extension of an arc stabilizer by a
cyclic group except maybe if T is a line. Thus we get:

Corollary 5.2. — Under the hypotheses of Main Theorem, either T
is a line, or G splits over a subgroup H which is an extension of a cyclic
group by an arc stabilizer.

Remark. — In the conclusion of the corollary, H is an extension by a
full arc stabilizer, and not of a subgroup fixing an arc. This contrasts with
[6, Theorem 9.5].

Here is a simple setting where the main theorem applies. A group H is
small (resp. slender) if it contains no non-abelian free group (resp. if all
its subgroups are finitely generated). The following corollary applies to the
case where G is hyperbolic relative to slender groups.

Corollary 5.3. — Let G be a finitely generated group for which any
small subgroup is finitely generated. Assume that G acts on an R-tree T
with small arc stabilizers.

Then either G splits over the stabilizer of an unstable arc or over a
tripod stabilizer, or T has a decomposition into a graph of actions as in
Main Theorem. In particular, G splits over a small subgroup.

In some situations, one can control arc stabilizers in terms of tripod
stabilizers. For instance, we get:

Corollary 5.4. — Consider a finitely generated group G acting by
isometries on an R-tree T . Assume that

1. arc stabilizers have a nilpotent subgroup of bounded index (maybe
not finitely generated);

2. tripod stabilizers are finitely generated (and virtually nilpotent);
3. no group fixing a tripod is a proper subgroup of any conjugate of

itself;
4. any chain H1 ⊂ H2 . . . of subgroups fixing tripods stabilizes.

Then either G splits over a subgroup having a finite index subgroup fixing
a tripod, or T has a decomposition as in the conclusion of Main Theorem.

ANNALES DE L’INSTITUT FOURIER
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Our proof relies on a particular case of Sela’s Theorem, assuming trivi-
ality of arc stabilizers. For completeness, we give a proof of this result in
appendix A. To reduce to this theorem, we prove that under the hypotheses
of Main Theorem, the action is piecewise stable, meaning that any segment
of T is covered by finitely many stable arcs (see Definition 1.1). Piecewise
stability implies that T splits into a graph of actions where each vertex
action Gv

�

Tv has trivial arc stabilizers up to some kernel (Theorem 4.1).
Because Gv itself need not be finitely generated, we need to extend Sela’s
result to finitely generated pairs (Proposition 4.4).

So the main step in the proof consists in proving piecewise stability
(Theorem 3.1). All studies of actions on R-trees use resolutions by foliated
2-complexes. Such foliated 2-complexes have a dynamical decomposition
into two kinds of pieces: simplicial pieces where each leaf is finite, and min-
imal components where every leaf is dense. These resolutions give sequence
of actions Gk

�

Tk converging strongly to T , where G is the inductive limit
of Gk.

Maybe surprisingly, the main difficulty in the proof arises from the simpli-
cial pieces. This is because minimal components give large stable subtrees
(Lemma 1.20). In particular, a crucial argument is a result saying that if
all the groups Gk split in some nice compatible way, then so does G. In
the case of free splittings, this is Scott’s Lemma. In our setting, we need
an extended version of Scott’s Lemma, which is of independent interest.

Theorem 2.1 (Extended Scott’s Lemma). — Let Gk

�

Sk be a sequence
of non-trivial actions of finitely generated groups on simplicial trees, and
(ϕk, fk) : Gk

�

Sk → Gk+1

�

Sk+1 be epimorphisms. Assume that (ϕk, fk)
does not increase edge stabilizers in the following sense:

∀e ∈ E(Sk),∀e′ ∈ E(Sk+1), e′ ⊂ fk(e) ⇒ Gk+1(e′) = ϕk(Gk(e))

Then the inductive limit G = lim
→
Gk has a non-trivial splitting over the

image of an edge stabilizer of some Sk.

The paper is organized as follows. Section 1 is devoted to preliminaries,
more or less well known, except for the notion of indecomposability which
seems to be new. Section 2 deals with Extended Scott’s Lemma. Section 3
proves piecewise stability. Section 4 shows how piecewise stability and Sela’s
Theorem for actions with trivial arc stabilizers allow to conclude. Section
5 gives the proof of the corollaries. Section 6 contains our counterexample
to Sela’s misstated result. Appendix A gives a proof of the version of Sela’s
result we need.

TOME 58 (2008), FASCICULE 1



164 Vincent GUIRARDEL

1. Preliminaries

1.1. Basic vocabulary

An R-tree is a 0-hyperbolic geodesic metric space. In all this section, we
fix an isometric action of a group G on an R-tree T . A subgroup H ⊂ G is
elliptic if it fixes a point in T . The action G

�

T is trivial if G is elliptic.
The action G

�

T is minimal if T has no proper G-invariant subtree. We
consider the trivial action of G on a point as minimal. When G contains a
hyperbolic element, then T contains a unique minimal G-invariant subtree
Tmin, and Tmin is the union of axes of all hyperbolic elements.

An arc is a set homeomorphic to [0, 1]. A subtree is non-degenerate if it
contains an arc.

Say that an action on an R-tree G

�

T is simplicial it can be obtained
from an action on a combinatorial tree by assigning equivariantly a positive
length for each edge. If S is a simplicial tree, we denote by V (S) its set of
vertices, and E(S) its set of oriented edges.

A morphism of R-trees f : T → T ′ is a 1-Lipschitz map such that any
arc of T can be subdivided into a finite number of sub-arcs on which f is
isometric.

For basic facts about R-trees, see [38, 7].

1.2. Stabilities

Stability hypotheses say how arc stabilizers are nested. By stabilizer,
we always mean pointwise stabilizer. When we will talk about the global
stabilizer, we will mention it explicitly. If G acts on T , and X ⊂ T , we will
denote by G(X) the (pointwise) stabilizer of X.

Definition 1.1 (Stabilities). — Consider an action of a group G on an
R-tree T .

• A non-degenerate subtree Y ⊂ T is called stable if for every arc
I ⊂ Y , G(I) = G(Y ).

• T is BF-stable (in the sense of Bestvina-Feighn [6]) if every arc of
T contains a stable arc.

• T satisfies the ascending chain condition if for any sequence of arcs
I1 ⊃ I2 ⊃ . . . whose lengths converge to 0, the sequence of stabiliz-
ers G(I1) ⊂ G(I2) ⊂ . . . is eventually constant.

• T is piecewise stable if any arc of T can covered by finitely many
stable arcs. Equivalently, the action is piecewise stable if for all

ANNALES DE L’INSTITUT FOURIER



ACTIONS ON R-TREES 165

a 6= b, the arc [a, b] contains a stable arc of the form [a, c] (one
common endpoint).

• T is super-stable if any arc with non-trivial stabilizer is stable.

Remark. — The first definition of piecewise stability clearly implies the
second one. Conversely, assume that any arc [a, b] contains a stable arc of
the form [a, c]. Let I be any arc of T . Thus any point of I has a neighbour-
hood in I which is the union of at most two stable arcs. By compactness,
I is covered by finitely many stable arcs.

Remark. — Clearly, super-stability or piecewise stability imply the as-
cending chain condition which implies BF-stability. If T is a stable subtree
of itself, then any arc stabilizer fixes T ; in other words, if N is the kernel
of the action G

�

T (i. e. N is the set of elements acting as the identity),
G/N acts with trivial arc stabilizers on T .

1.3. Graphs of actions on R-trees and transverse coverings

Graphs of actions on R-trees are a way of gluing equivariantly R-trees
(see [39] or [25]). Here, we rather follow [19, section 4].

Definition 1.2. — A graph of actions on R-trees

G = (S, (Yv)v∈V (S), (pe)e∈E(S))

consists of the following data:
• a simplicial tree S called the skeleton with a simplicial action with-

out inversion of a group G;
• for each vertex v ∈ S, an R-tree Yv (called vertex tree or vertex

action);
• for each oriented edge e of S with terminal vertex v, an attaching

point pe ∈ Yv.
All this data should be invariant under G: G acts on the disjoint union of
the vertex trees so that the projection Yv 7→ v is equivariant; and for every
g ∈ G, pg.e = g.pe.

Remark. — Some vertex trees may be reduced to a point (but they are
not allowed to be empty). The definition implies that Yv is G(v)-invariant
and that pe is G(e)-invariant.

To a graph of actions G corresponds an R-tree TG with a natural action
of G. Informally, TG is obtained from the disjoint union of the vertex trees

TOME 58 (2008), FASCICULE 1



166 Vincent GUIRARDEL

by identifying the two attaching points of each edge of S (see [19] for a
formal definition).

Alternatively, one can define a graph of actions as a graph of groups Γ
with an isomorphism G ' π1(Γ) together with an action of each vertex
group Gv on an R-tree Yv and for each oriented edge e with terminus
vertex v, a point of Yv fixed by the image of Ge in Gv. This is where the
terminology comes from.

Definition 1.3. — Say that T splits as a graph of actions G if there is
an equivariant isometry between T and TG .

Transverse coverings are very convenient when working with graphs of
actions.

Definition 1.4. — A transverse covering of an R-tree T is a covering
of T by a family of subtrees Y = (Yv)v∈V such that

• every Yv is a closed subtree of T
• every arc of T is covered by finitely many subtrees of Y
• for v1 6= v2 ∈ V , Yv1 ∩ Yv2 contains at most one point

When T has an action of a group G, we always require the family Y to
be G-invariant.

Remark. — In the definition above, if some subtrees Yv are reduced to
a point, we may as well forget them in Y. Moreover, given a covering by
subtrees Yv which are not closed, but which satisfy the two other conditions
for a transverse covering, then the family (Yv)v∈V of their closure is a
transverse covering.

The relation between graphs of actions and transverse coverings is con-
tained in the following result.

Lemma 1.5 ([19, Lemma 4.7]). — Assume that T splits as a graph of
actions with vertex trees (Yv)v∈V (S). Then the family Y = (Yv)v∈V (S) is a
transverse covering of T .

Conversely, if T has a transverse covering by a family Y = (Yv)v∈V

of non-degenerate trees, then T splits as a graph of actions whose non-
degenerate vertex trees are the Yv.

We recall for future use the definition of the graph of actions induced by
a transverse covering Y. We first define its skeleton S. Its vertex set V (S)
is V0(S)∪V1(S) where V1(S) is the set of subtrees Y ∈ Y, and V0(S) is the
set of points x ∈ T lying in the intersection of two distinct subtrees in Y.
There is an edge e = (x, Y ) between x ∈ V0(S) and Y ∈ V1(S) if x ∈ Y .

ANNALES DE L’INSTITUT FOURIER



ACTIONS ON R-TREES 167

The vertex tree of v ∈ V (S) is the corresponding subtree of T (reduced to
a point if and only if v ∈ V0(S)). The two attaching points the edge (x, Y )
are the copies of x in {x} and Y respectively.

Example. — Let G

�

T be a simplicial action. Then the family of its
edges is a transverse covering of T . If T has no terminal vertex, then the
skeleton of this transverse covering is the barycentric subdivision of T .

Here is another general example which will be useful.

Lemma 1.6. — Assume that G

�

T contains a hyperbolic element and
denote by Tmin be the minimal subtree of T . Let Y0 be the set of closures
of connected components of T \ Tmin.

Then {Tmin} ∪ Y0 is a transverse covering of T .

Remark. — If Yv ∈ Y0, then its global stabilizer Gv fixes the point
Yv ∩ Tmin. In particular, this lemma says that a finitely supported action
(in the sense of Definition 1.13) can be decomposed into a graph of actions
where each vertex action is either trivial or has a dense minimal subtree.

Proof. — Any arc I ⊂ T is covered by Tmin and at most two elements of
Y0, containing the endpoints of I. The other properties of the transverse
covering are clear. �

Consider a graph of actions G = (S, (Yv)v∈V (S), (pe)e∈E(S)), and TG the
corresponding R-tree. Given a G-invariant subset V ′ ⊂ V (S), we want to
define an R-tree by collapsing all the trees (Yv)v∈V ′ . For each v ∈ V ′,
replace Yv by a point, and for each edge e incident on v ∈ V ′, change pe

accordingly. Let G′ = (S, (Y ′v)v∈V (S), (p′e)e∈E(S)) the corresponding graph
of actions, and T ′G the corresponding R-tree.

Definition 1.7. — We say that the tree TG′ is obtained from TG by
collapsing the trees (Yv)v∈V ′ .

Let pv : Yv → Y ′v the natural map (either the identity or the constant
map), and p : TG → T ′G the induced map.

Definition 1.8. — We say that a map f : T → T ′ preserves alignment
if the three following equivalent conditions hold:

• for all x ∈ [y, z], f(x) ∈ [f(y), f(z)].
• the preimage of a convex set is convex,
• the preimage of a point is convex.

See for instance [20, Lemma 1.1] for the equivalence.

TOME 58 (2008), FASCICULE 1



168 Vincent GUIRARDEL

Lemma 1.9. — The map p : TG → T ′G preserves alignment. In particu-
lar, if TG is minimal, so is T ′G .

Proof. — Consider a point x ∈ TG′ . Let E′v = {x} ∩ Y ′v . If u, v are such
that E′u, E′v 6= ∅ for i = 1, 2, there is a path u = v0, . . . , vn = v such that
the attaching points of the edge vivi+1 coincide with the point in E′vi

and
E′vi+1

(in particular E′vi
6= ∅).

Consider Ev = p−1
v (E′v). For each v, either Ev = Yv or Ev consists of at

most one point. The existence of the path above shows that the image of
Ev in TG is connected. This proves that p−1({x}) is convex so p preserves
alignment.

Let Y ′ ⊂ T ′G be a non-empty G-invariant subtree. Then p−1(Y ′) is a non-
empty G-invariant subtree, so p−1(Y ′) = TG . Since p is onto, Y ′ = TG′ , and
minimality follows. �

1.4. Actions of pairs, finitely generated pairs

By a pair of groups (G,H), we mean a group G together with a finite
family of subgroups H = {H1, . . . ,Hp}. We also say that the groups Hi

are peripheral subgroups of G. In fact, each peripheral subgroup is usually
only defined up to conjugacy so it would be more correct to define H as a
finite set of conjugacy classes of subgroups.

An action of a pair (G,H) on a tree is an action of G in which each
subgroup Hi is elliptic. When the tree is simplicial, we also say that this is
a splitting of (G,H) or a splitting of G relative to H.

Definition 1.10. — A pair (G,H) is finitely generated if there exists
a finite set F ⊂ G such that F ∪H1 ∪ · · · ∪Hp generates G. We also say in
this case that G is finitely generated relative to H.

We say that F is a generating set of the pair (G,H).

Remark. — If (G, {H1, . . . ,Hp}) is finitely generated, then for any gi ∈
G, so is (G, {Hg1

1 , . . . ,H
gp
p }): just add gi to F . Of course, if G is finitely

generated, then (G,H) is finitely generated for any H.

By Serre’s Lemma, if (G,H)

�

T is a non-trivial action of a finitely gen-
erated pair, then G contains a hyperbolic element ([37, Proposition 6.5.2]).

If Gv is a vertex group in a finite graph of groups Γ, then it has a natu-
ral structure of pair (Gv,Hv) consisting of (representatives of) conjugacy
classes of the images in Gv of the incident edge groups. We call this pair
the peripheral structure of Gv in Γ.
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ACTIONS ON R-TREES 169

Lemma 1.11. — Consider a graph of groups Γ and G = π1(Γ).
If Γ is finite and G is finitely generated, then the peripheral structure

(Gv,Hv) of each vertex group Gv is finitely generated.

Proof. — We use the notations of [37]. Choose a maximal subtree τ of Γ.
For each vertex v, the vertex group Gv is now identified with a subgroup
of π1(Γ, τ). Let F be a finite generating set of π1(Γ, τ). Since we can write
each g ∈ F as a product of edges of Γ and of elements of the vertex groups,
there is a generating set of π1(Γ, τ) consisting of the edges of Γ and of a
finite set F ′ of elements of the vertex groups of Γ.

For each vertex v ∈ Γ, let Hv ⊂ Gv be the subgroup generated by the
elements of F ′ which lie in Gv, and by the image in Gv of incident edge
groups. Of course, π1(Γ, τ) is generated by the groups Hv and the edges
of Γ.

Fix v ∈ Γ. We shall prove that Gv = Hv. Take g ∈ Gv, and write g as g =
g0e1g1e2...ekgk where v0e1v1 . . . ekvk is a loop based at v, and each gi is in
Hvi

. If the word has length 0, there is nothing to prove. If not, we shall find
a shorter word of this form representing g, and the lemma will be proved by
induction. If this word has not length 0, it is not reduced as a word in the
graph of groups. Therefore, there are two consecutive edges ei, ei+1 such
that ei+1 = ēi, and gi ∈ jei

(Gei
) (where je denotes the edge morphisms

of Γ). Thus, we can write h = g0e1 . . . ei−1gi−1g
′
igi+1ei+2 . . . ekgk where

g′i ∈ jei+1(Gei+1). Note that gi−1g
′
igi+1 ∈ Hvi−1 = Hvi+1 hence we found a

shorter word of the required form representing g. �

Lemma 1.12. — Let (G,H) be a finitely generated pair, and consider a
(relative) splitting of (G,H). Let v be a vertex of the corresponding graph
of groups.

Then Gv is finitely generated relative to a family Hv consisting of the im-
ages in Gv of the incident edge groups together with at most one conjugate
of each Hi.

Proof. — Let G ' π1(Γ) be a splitting of G as a graph of groups. We can
assume that Hi ⊂ Gvi

for some vertex vi of Γ. For each index i, consider
a finitely generated group Ĥi containing Hi. Consider the graph of groups
Γ̂ obtained from Γ by adding for each i a new edge ei edge carrying Hi

incident on a new vertex v̂i carrying Ĥi, and by gluing the other side of ei

on vi. Thus, ei carries the amalgam Gvi
∗Hi

Ĥi. The fundamental group of
Γ̂ is finitely generated. By Lemma 1.11, the peripheral structure of Gv in
Ĝv is a finitely generated pair. The lemma follows. �
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1.5. Finitely supported actions

A finite tree in an R-tree is the convex hull of a finite set.

Definition 1.13. — A set K ⊂ T spans T if any arc I ⊂ T is covered
by finitely many translates of K. The tree T is finitely supported if it is
spanned by a finite tree K.

If T is a simplicial tree, then T is finitely supported if and only if T/G is
a finite graph. Any minimal action of a finitely generated group is finitely
supported. More generally we have:

Lemma 1.14. — A minimal action of a finitely generated pair on an
R-tree is finitely supported.

Proof. — Consider (G, {H1, . . . ,Hp}) a finitely generated pair acting
minimally on T . Consider a finite generating set {f1 . . . , fq} of the pair
(G, {H1, . . . ,Hp}). Let xi ∈ T be a point fixed by Hi and x ∈ T be any
point. Let K be the convex hull of {x, f1.x, . . . , fq.x, x1, . . . , xp}. Then G.K
is connected because for each generator g ∈ {f1, . . . , fq} ∪ H1 ∪ · · · ∪ Hp,
g.K ∩K 6= ∅. By minimality, G.K = T and T is finitely supported. �

Lemma 1.15. — Consider an action of a finitely generated pair
(G,H)

�
T , Y a transverse covering of T , and S the skeleton of Y.

Then any H ∈ H is elliptic in S. Moreover, if G

�

T is minimal (resp.
finitely supported) then so is G

�

S.

Proof. — The statement about minimality is proved in [19, Lemma 4.9].
We use the description of the skeleton given after Lemma 1.5. We can

assume that every subtree Y ∈ Y is non-degenerate. Let K be a finite
tree spanning T . It is covered by finitely many trees of Y. It follows that
Y/G = V1(S)/G is finite. Choose a lift of each element of V1(S)/G in V1(S),
and consider the convex hull L ⊂ S of those vertices. Let xi ∈ T be a point
fixed by Hi. Each Hi ∈ H fixes a vertex vi ∈ S, lying in V0(Y) or V1(Y)
according to whether xi lies in two distinct elements of Y or not.

Let {f1, . . . , fq} be a finite generating set of (G,H). Let L0 be the convex
hull of L∪f1.L∪· · ·∪fq.L∪{v1, . . . , vp}. The set S0 = G.L0 is a subtree of S
containing V1(S). It is finitely supported. If S0 6= S, consider x ∈ V0(S)\S0.
Recall that the vertex x ∈ V0(S) corresponds to a point x ∈ T . Any edge
of S incident on x corresponds to a subtree Y ∈ V1(S) such that x ∈ Y .
Since S0 is a subtree and contains V1(S), there is exactly one such edge. If
follows that x belongs to exactly one Y ∈ Y, contradicting the definition
of V0(S). Therefore, S = S0 is finitely supported. �
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If T splits as a graph of actions, vertex actions may fail to be minimal,
even if T is minimal. However, the property of being finitely supported is
inherited by vertex actions:

Lemma 1.16. — Assume that T splits as a graph of actions and that T
is finitely supported. Then each vertex action is finitely supported.

Proof. — Let K be a finite tree spanning of T . Let Y be a transverse
covering of T , and Y0 ∈ Y be a vertex tree. Consider a finite subset F
of Y which covers K, and let {g1.Y0, . . . , gp.Y0} be the set of elements of
F lying in the orbit of Y0. Consider the convex hull K0 of the finite trees
Y0 ∩ g−1

i K for i ∈ {1, . . . , p}. It is easy to check that the finite tree K0

spans Y0. �

1.6. Indecomposability

Indecomposability is a slight modification of the mixing property intro-
duced by Morgan in [27].

Definition 1.17 (Indecomposability). — A non-degenerate subtree
Y ⊂ T is called indecomposable if for every pair of arcs I, J ⊂ Y , there is
a finite sequence g1.I, . . . , gn.I which covers J and such that gi.I ∩ gi+1.I

is non-degenerate (see figure 1.1).

g1 .I

g2.I

gn−1.I

gn.I
g3.I

· · ·

Figure 1.1. Indecomposability.

Remark. — In the definition of indecomposability, one cannot assume
in general that gi.I ∩ J is non-degenerate for all i. This is indeed the case
if Y = T is dual to a measured foliation on a surface having a 4-pronged
singularity, J is an arc in T represented by a small transverse segment con-
taining this singularity and joining two opposite sectors of the singularity,
and I is represented by a transverse segment disjoint from the singulari-
ties.

The following property explains the choice of the terminology.
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Lemma 1.18. — If Y ⊂ T is indecomposable, and if T splits as a graph
of actions, then Y is contained in a vertex tree.

Proof. — Consider an arc I contained in Y ∩ Yv for some vertex tree
Yv of the decomposition. Consider an arc J ⊂ Y , and a finite sequence
g1.I, . . . , gn.I which covers J and such that gi.I ∩ gi+1.I is non-degenerate.
We have g1.I ⊂ g1.Yv, but g1.Yv∩g2.Yv is non-degenerate so g1.Yv = g2.Yv.
By induction, we get that all the translates gi.I lie in the same vertex tree
g1.Yv, so that J lies in a vertex tree. Since this is true for every arc J ⊂ Y ,
the lemma follows. �

Lemma 1.19. —
1. If f : T → T ′ is a morphism of R-trees, and if Y ⊂ T is indecom-

posable, then so is f(Y ).
2. If Y ⊂ T is indecomposable, then the orbit of any point x ∈ Y

meets every arc I ⊂ Y in a dense subset.
3. If T itself is indecomposable, then it is minimal (it has no non-trivial

invariant subtree).
4. Assume that (Yv)v∈V is a transverse covering of T . Let Yv0 be a

vertex tree and H its global stabilizer. If Yv0 is an indecomposable
subtree of T , then Yv0 is indecomposable for the action of H.

Proof. — Let I = [f(a), f(b)] and J = [f(x), f(y)] in f(Y ). Choose
I ′ ⊂ [a, b] so that f(I ′) ⊂ I, and let J ′ = [x, y], so f(J ′) contains J .
Indecomposability of Y now clearly implies indecomposability of f(Y ).

Statement 2 follows from the fact that for any arc I ′ ⊂ I, there exists g1
such that x ∈ g1.I ′, so g−1

1 .x ∈ I ′.
Let’s prove statement 3. It follows from statement 2 that G contains

a hyperbolic element. Consider Tmin the minimal G-invariant subtree. By
statement 2, every orbit meets Tmin; if follows that T = Tmin.

For statement 4, consider I, J ⊂ Yv0 , and g1, . . . , gn ∈ G such that
J ⊂ g1.I ∪ · · · ∪ gn.I with gi.I ∩ gi+1.I non-degenerate. In particular,
gi.Yv0 ∩ gi+1.Yv0 is non-degenerate, so gi.Yv0 = gi+1.Yv0 , and gi+1g

−1
i ∈ H.

Consider an index i such that gi.I ∩ J is non-degenerate. Since J ⊂ Yv0 ,
gi.Yv0 ∩ Yv0 is non-degenerate, so gi ∈ H. Therefore, g1, . . . , gn ∈ H. �

The conjunction of indecomposability and stability has a nice conse-
quence:

Lemma 1.20. — If T is BF-stable, and if Y ⊂ T is indecomposable,
then Y is a stable subtree.

Proof. — First, one easily checks that if K1,K2 are two stable subtrees
of T such that K1∩K2 is non-degenerate, then K1∪K2 is a stable subtree.
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Consider a stable arc I ⊂ Y , and any other arc J ⊂ Y . Since J is contained
in a union g1.I ∪ · · · ∪ gn.I with gi.I ∩ gi+1.I non-degenerate, J is stable.
Since this holds for any arc J , Y is a stable subtree of T . �

1.7. Geometric actions and strong convergence

We review some material from [26] where more details can be found.

Strong convergence

Given two actions G

�

T , G′

�

T ′, we write (ϕ, f) : G

�

T → G′

�

T ′ when
ϕ : G→ G′ is a morphism, and f : T → T ′ is a ϕ-equivariant map. We say
that (ϕ, f) is onto if both f and ϕ are. We say that (ϕ, f) is morphism of
R-trees if f is.

A direct system of actions on R-trees is a sequence of actions of finitely
generated groups Gk

�
Tk and an action G

�

T , with surjective morphisms
of R-trees (ϕk, fk) : Gk

�

Tk � Gk+1

�

Tk+1 and (Φk, Fk) : Gk

�

Tk �
G

�

T such that the following diagram commutes:

Tk
fk

//

Fk

##
YY Tk+1

Fk+1

%%
YY · · · T ZZ

Gk
ϕk //

Φk

88Gk+1

Φk+1

77· · · G

For convenience, we will use the notation fkk′ = fk′−1◦· · ·◦fk : Tk → Tk′

and ϕkk′ = ϕk′−1 ◦ · · · ◦ ϕk : Gk → Gk′ .

Definition 1.21 (Strong convergence). — A direct system of finitely
supported actions of groups on R-trees Gk

�

Tk converges strongly to G

�

T

if
• G is the direct limit of the groups Gk

• for every finite tree K ⊂ Tk, there exists k′ > k such that Fk′

restricts to an isometry on fkk′(K),
The action G

�

T is the strong limit of this direct system.

In practice, strong convergence allows to lift the action of a finite number
of elements on a finite subtree of T to Tk for k large enough.

As an application of the definition, we prove the following useful lemma.
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Lemma 1.22. — Assume that Gk

�

Tk converges strongly to G
�

T . As-
sume that G

�

T is minimal.
Then for k large enough, Gk

�

Tk is minimal.

Proof. — By definition of strong convergence, T0 is finitely supported.
Let K0 ⊂ T0 be a finite tree spanning T0. Let K (resp. Kk) be the image
of K0 in T (resp. in Tk). Choose some hyperbolic elements g1, . . . , gp ∈ G

whose axes cover K. Let K ′ be the convex hull of K ∪ g1.K ∪ · · · ∪ gp.K.
Choose g0

1 , . . . g
0
p ∈ G0 some preimages of g1, . . . gp and let gk

i be the image
of g0

i in Gk. Let K ′
0 ⊂ T0 be the convex hull of K0∪g0

1 .K0∪· · ·∪g0
p.K0. Let

K ′
k be the image of K ′

0 in Tk. Take k large enough so that Fk induces an
isometry between K ′

k and K ′. Then the axes of gk
1 , . . . , g

k
p cover Kk. Since

Kk spans Tk, Tk is a union of axes, so Tk is minimal. �

Geometric actions

A measured foliation F on a 2-complex X consists of the choice, for each
closed simplex σ of X of a non-constant affine map fσ : σ → R defined
up to post-composition by an isometry of R, in a way which is consistent
under restriction to a face: if τ is a face of σ, then fτ = ϕ ◦ (fσ)|τ for some
isometry of ϕ of R. Level sets of fσ define a foliation on each closed simplex.
Leaves of the foliations on X are defined as the equivalence classes of the
equivalence relation generated by the relation x, y belong to a same closed
simplex σ and fσ(x) = fσ(y).

This also defines a transverse measure as follows: the transverse measure
µ(γ) of a path γ : [0, 1] → σ to the foliation is the length of the path fσ ◦γ.
The transverse measure of a path which is a finite concatenation of paths
contained in simplices is simply the sum of the transverse measures of the
pieces. The transverse measure is invariant under the holonomy along the
leaves. We also view this transverse measure as a metric on each transverse
edge.

For simplicity, we will say foliated 2-complex to mean a 2-complex en-
dowed with a measured foliation.

The pseudo-metric

δ(x, y) = inf{µ(γ) for γ joining x to y}

is zero on each leaf of X. By definition, the leaf space made Hausdorff X/F
of X is the metric space obtained from X by making δ Hausdorff, i. e. by
identifying points at pseudo-distance 0. In nice situations, δ(x, y) = 0 if and
only if x and y are on the same leaf. In this case, X/F coincides with the
space of leaves of the foliation, and we say that the leaf space is Hausdorff.
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Theorem 1.23 ([26, Proposition 1.7]). — Let (X,F) be a foliated 2-
complex. Assume that π1(X) is generated by free homotopy classes of
curves contained in leaves.

Then X/F is an R-tree. �

Definition 1.24 (Geometric action). — An action of a finitely gener-
ated group G on an R-tree T is geometric if there exists a foliated 2-complex
X endowed with a free, properly discontinuous, cocompact action ofG, such
that

• each transverse edge of X isometrically embeds into X/F
• T and X/F are equivariantly isometric.

In this case, we say that T is dual to X.

Remark. — The definition in [26] is in terms of a compact foliated 2-
complex Σ (here Σ = X/G) and of a Galois covering Σ with deck group G
(here Σ = X). The two points of view are clearly equivalent.

This definition requires G to be finitely generated. For finitely generated
pairs, one should weaken the assumption of cocompactness, but we won’t
enter into this kind of consideration.

Decomposition of geometric actions

Proposition 1.25. — Let G

�

T be a geometric action dual to a 2-
complex X whose fundamental group is generated by free homotopy classes
of curves contained in leaves.

Then T has a decomposition into a graph of actions where each non-
degenerate vertex action is either indecomposable, or is an arc containing
no branch point of T except possibly at its endpoints.

The arcs in the lemma above are called edges, and the indecomposable
vertex actions are called indecomposable components.

The basis of the proof of this proposition is a version of a theorem by
Imanishi giving a dynamical decomposition of a compact foliated 2-complex
Σ ([22]). A leaf of Σ is regular if it contains no vertex of Σ. More generally,
a leaf segment (i. e. a path contained in a leaf) is regular if it contains no
vertex of Σ. A leaf or leaf segment which is not regular is singular.

Let Σ∗ = Σ\V (Σ) be the complement of the vertex set of Σ. It is endowed
with the restriction of the foliation of Σ. Let C∗ ⊂ Σ∗ be the union of leaves
of Σ∗ which are closed but not compact.

Definition 1.26. — We call the set C = C∗ ∪V (Σ) the cut locus of Σ.
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The cut locus is a finite union of leaf segments joining two vertices of Σ.
In particular, C is compact, and Σ \C consists of finitely many connected
components. Each component of Σ \ C is a union of leaves of Σ∗.

The dynamical decomposition of Σ is as follows:

Proposition 1.27 ([26, Proposition 1.5]). — Let U be a component of
Σ \ C. Then either every leaf of U is compact, or every leaf of U is dense
in U . �

Proof of Proposition 1.25. — Let X be a foliated 2-complex such that
T is dual to X. Denote by q : X → T the natural map (recall that T is
the leaf space made Hausdorff of X). The quotient Σ = X/G is a compact
foliated 2-complex and the quotient map π : X → Σ is a covering map. Let
C be the cut locus of Σ and C̃ its preimage in X.

Let (Uv)v∈V be the family of connected components of X \ C̃. Let Uv

be the closure of Uv in X, and Yv = q(Uv) ⊂ T . Note that Uv \ Uv ⊂ C̃

is contained in a union of singular leaves and that any leaf segment in Uv

is regular. We shall first prove that the family Y = (Yv)v∈V is a transverse
covering of T . We will need the following result.

Proposition 1.28 ([26, Lemma 3.4]). — Assume that π1(X) is gener-
ated by free homotopy classes of curves contained in leaves.

Then there exists a countable union of leaves S such that for all x, y ∈
X \ S, q(x) = q(y) if and only if x, y are in the same leaf. �

Since there are finitely many orbits of singular leaves in X, we can choose
such a set S containing every singular leaf.

Assume that Yv∩Yw is non-degenerate. There is an uncountable number
of regular leaves of X meeting both Uv∩Uw. Since Uv\Uv ⊂ C̃ is contained
in a union of singular leaves, there is a regular leaf meeting both Uv and
Uw, so Uv = Uw, and v = w.

We denote by X(t) the subset of the 1-skeleton of X consisting of the
union of all closed transverse edges. All the paths we consider are chosen
as a concatenation of leaf segments and of arcs in X(t). Let I be an arc in
T . Let a, b ∈ Σ be two preimages of the endpoints of I in X(t). Choose a
path γ in X joining a to b. We view such a path both as a subset of X and
as a map [0, 1] → X. Since T is an R-tree, q(γ) ⊃ I. Since the cut locus C
is a finite union of leaf segments, γ∩ C̃ consists of a finite number of points
and of a finite number of leaf segments. In particular, γ is a concatenation
of a finite number of paths which are contained in C̃ or in some Uv. Since
a path contained in C̃ is mapped to a point in T , we get that I is covered
by finitely many elements of Y.
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To prove that the subtree Yv is closed in T , it is sufficient to check that
given a semi-open interval [a0, b0) contained in Yv, b0 is contained in Yv.
Consider a, b ∈ X(t) some preimages of a0, b0, and a path γ : [0, 1] → X

joining a to b. By restricting γ to a smaller interval, we can assume that
for all t < 1, q ◦ γ(t) 6= b0. Since the image of each transverse edge of X
is an arc in T , K = q(γ) is a finite tree, and b0 is a terminal vertex of K.
In particular, there exists ε > 0 such that for q([1− ε, 1)) ⊂ [a0, b0) ⊂ Yv.
We can also assume that γ([1 − ε, 1]) is contained in a transverse edge of
X. For all but countably many t’s, γ(t) /∈ S and lies in a regular leaf. Since
q ◦ γ(t) ∈ Yv, the leaf l through γ(t) meets Uv. Since C̃ consists of singular
leaves, l ⊂ Uv. In particular, γ(t) ∈ Uv, so γ(1) ∈ Uv and b0 ∈ Yv. We have
proved that Y is a transverse covering of T .

Assume that v is such that any leaf of π(Uv) is compact. By definition of
the cut locus, this means that every leaf of Uv is regular. In particular, Uv

is a union of leaves of X and q(Uv) is open in T . Since every transverse edge
of X is embedded into T , the holonomy along any regular leaf is trivial. It
follows that Uv is a foliated product: is homeomorphic to Uv ' J×l foliated
by {∗}×l, where J is an open interval in a transverse edge. Therefore, q(Uv)
is an open interval isometric to J . Since q(Uv) is open in T , Yv is an arc
containing no branch point of T , except possibly at its endpoints.

Assume that leaves of π(Uv) are dense. We shall prove that Yv is inde-
composable. First, we claim that any point in Yv has a preimage in Uv.
This will follow from the fact that for any x ∈ Uv \ Uv, the leaf through
x intersects Uv. Assume on the contrary that there is a leaf l of X which
meets Uv but does not intersect Uv. Consider l0 a connected component of
l∩Uv. This is a leaf of the foliated 2-complex Uv. Let Gv be the global sta-
bilizer of Uv, and consider the foliated 2-complex Uv/Gv. The natural map
Uv/Gv → Σ restricts to an isomorphism between Uv/Gv and a connected
component Σ \ C (namely π(Uv)). Since Uv/Gv consists of finitely many
open cells, Uv/Gv is compact. Moreover Uv/Gv \Uv/Gv consists of finitely
many vertices and finitely many edges contained in leaves. The image λ0 of
l0 in Uv/Gv is a leaf which does not intersect Uv/Gv. Therefore, this leaf
is compact and so is any leaf of Uv/Gv close to λ0. This contradicts the
fact that every leaf of π(Uv) is dense.

Let’s prove indecomposability. Let I0, J0 be two arcs in Yv. By taking
I0 smaller, one can assume that I0 = q(I) for some arc I ⊂ Uv contained
in a transverse edge. Consider a, b some preimages of the endpoints of
J0 in Uv ∩ X(t). Consider a path γ ⊂ Uv joining a to b, and write γ as
a concatenation l0.τ1.l1.τ2 . . . τp.lp where τi is contained in a transverse
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edge and li is a leaf segment. Since every leaf is dense in π(Uv), for all
x ∈ τ1 ∪ · · · ∪ τp, there exists gx ∈ G and a leaf segment lx in Uv join-

ing x to gx.
◦

I. Since any leaf segment in Uv is regular, this is still valid
with the same gx on a neighbourhood of x. By compactness, one can
choose each gx in a finite set F = {g1, . . . , gn}. Clearly, J0 is contained
in g1.q(I) ∪ · · · ∪ gn.q(I). Denote by x and y the endpoints of li. There is

a (regular) leaf segment in Uv joining gx.
◦

I to gy.
◦

I, so q(gx.I) ∩ q(gy.I) is
non-degenerate. Indecomposability follows, which completes the proof of
Proposition 1.25. �

Remark 1.29. — Each indecomposable vertex action Yv is geometric,
and dual to the 2-complex Uv. Moreover, if π1(X) is generated by free
homotopy classes of curves contained in leaves, then so is π1(Uv) (this will
be useful in Appendix A). Indeed, consider a curve γ ⊂ Uv, and a map
f from a planar surface S to X such that one boundary component is
mapped to γ, and every other boundary component is mapped to a leaf.
Let S0 ⊂ S be the connected component of f−1(Uv) containing Uv. Since
every connected component of ∂Uv is contained in a leaf, each component
of ∂S0 is mapped into a leaf, which proves that π1(Uv) is generated by free
homotopy classes of curves contained in leaves.

Strong approximation by geometric actions

We now quote a result from [26].

Theorem 1.30 ([26, Theorem 3.7]). — Consider a minimal action of a
finitely generated group G on an R-tree T .

Then G

�

T is a strong limit of a direct system of geometric actions
{(Φk, Fk) : Gk

�

Tk → G

�

T} such that

• Φk is one-to-one in restriction to each arc stabilizer of Tk,
• Tk is dual to a 2-complex X whose fundamental group is generated

by free homotopy classes of curves contained in leaves.

�

Remark. — The second statement follows from the construction in [26,
Theorem 2.2].

Since Tk is geometric, it has a decomposition into a graph of actions as
described above. We show how to adapt this result to actions of finitely
generated pairs.
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Proposition 1.31. — Consider a minimal action (G,H)

�

T of a finitely
generated pair on an R-tree. Then there exists a direct system of minimal
actions (Gk,Hk)

�

Tk converging strongly to G

�

T and such that
• ϕk and Φk are one-to-one in restriction to arc stabilizers of Tk

• ϕk (resp. Φk) restricts to an isomorphism between Hk and Hk+1

(resp. H).
• Tk splits as a graph of actions where each non-degenerate vertex

action is indecomposable, or is an arc containing no branch point
of Tk except at its endpoints.

Proof. — We follow Theorem 2.2 and 3.5 from [26]. Let S ⊂ G be a
finite set such that S∞ = S ∪ H1 · · · ∪ Hp generates G. Let Sk be an
exhaustion of S∞ by finite subsets. Let Kk be an exhaustion of T by finite
trees. We assume that for each i ∈ {1, . . . , p}, Kk contains a point ai fixed
by Hi.

For each s ∈ Sk, consider

As = Kk ∩ s−1Kkand Bs = s.As = Kk ∩ s.Kk.

We obtain a foliated 2-complex Σk as follows. For each s ∈ Sk, consider
a band As × [0, 1] foliated by {∗} × [0, 1], glue As × {0} on K using the
identity map on As, and glue As×{1} using the restriction of s : As → Kk.
For each s ∈ Hi \ Sk, add an edge and glue its endpoints on ai; this edge
is contained in a leaf.

The fundamental group of ΣK is isomorphic to the free group F (S∞).
Let ϕ : F (S∞) → G be the natural morphism. Let Nk be the subgroup of
kerϕ generated by free homotopy classes of curves contained in leaves (in
particular, any relation among the elements of some Hi lies in Nk). This
is a normal subgroup of F (S∞), and let Gk = F (S∞)/Nk. We denote by
ϕk : Gk → Gk+1 and Φk : Gk → G the natural morphisms. Clearly, G
is the direct limit of Gk. Let H(k)

i be the image in Gk of the subgroup of
F (S∞) generated by the elements of Hi. Let Hk = {H(k)

1 , . . . ,H
(k)
p }. The

pair (Gk,Hk) is finitely generated, and ϕk and Φk restrict to isomorphisms
between H

(k)
i , H(k+1)

i , and Hi.
Let Σ̃k be the Galois covering of Σk corresponding to Nk. By definition

of Nk, π1(Σ̃k) is generated by free homotopy classes of curves contained in
leaves. Let Tk be the leaf space made Hausdorff of Σ̃k. This is an R-tree by
Theorem 1.23. Each H(k)

i fixes a point in Tk. By Proposition 1.28, each arc
stabilizer of Tk embeds into G. Finally, the argument of [26, Th. 2.2] applies
to prove that Gk

�

Tk converges strongly to G

�

T . Minimality follows from
Lemma 1.22.
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The 2-complex Σk is a finite foliated complex, with a finite set of infinite
roses attached. In particular, Σk has the same dynamical decomposition
as a finite foliated 2-complex so one can repeat the argument of Proposi-
tion 1.25. �

2. Extended Scott’s Lemma

Scott’s Lemma claims that if G is a direct limit of groups Gk having com-
patible decompositions into free products, thenG itself has such a decompo-
sition (this follows from [31, Th 1.7]). Scott’s Lemma is usually proved using
Scott’s complexity ([31, Th 1.7]). Delzant has defined a refinement of this
complexity for morphisms which has many important applications ([41]).

The main result of this section is an extension of Scott’s Lemma for more
general splittings. This will be an essential tool to prove piecewise stability
of T .

In the following statement, an epimorphism (ϕk, fk) consists of an onto
morphism ϕk : Gk � Gk+1, and of a continuous map fk sending an edge
to a (maybe degenerate) edge path.

Theorem 2.1 (Extended Scott’s Lemma). — Let Gk

�

Sk be a sequence
of non-trivial actions of finitely generated groups on simplicial trees, and
(ϕk, fk) : Gk

�

Sk → Gk+1

�

Sk+1 be epimorphisms. Assume that (ϕk, fk)
does not increase edge stabilizers in the following sense:

∀e ∈ E(Sk),∀e′ ∈ E(Sk+1), e′ ⊂ fk(e) ⇒ Gk+1(e′) = ϕk(Gk(e)) (∗)

Then lim
→
Gk has a non-trivial splitting over the image of an edge stabi-

lizer of some Sk.

Remark. — When edge stabilizers of Sk are trivial, we obtain Scott’s
Lemma.

2.1. Decomposition into folds.

Collapses, folds, and group-folds. We recall and adapt definitions of
[13, 4]. Consider a finitely generated group G acting on a simplicial tree
S, without inversion (no element of G flips an edge). Given an edge e of
S, collapsing all the edges in the orbit of e defines a new tree S′ with an
action of G. We say that S′ is a collapse of S and we call the natural map
S → S′ a collapse.
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Consider two distinct oriented edges e1 = uv1, e2 = uv2 of S having
the same origin u; assume that uv1 and v2u are not in the same orbit (as
oriented edges). Identifying g.e1 with g.e2 for every g ∈ G defines a new
tree S′ on which G acts (without inversion). We say that S′ is obtained by
folding e1 on e2 and we call the natural map S → S′ a fold.

Consider a vertex v ∈ S, andNv a normal subgroup ofG(v). Let N be the
normal subgroup of G generated by Nv and let G′ = G/N . The graph S′ =
S/N is a tree (see fact 2.3 below) on which G′ acts. We say that S′ is ob-
tained from S by a group-fold and we call the natural map S → S′ a group-
fold. This map is ϕ-equivariant where ϕ : G→ G′ is the quotient map.

Decomposition into folds. The following result is a slight variation
on a result by Dunwoody ([13, Theorem 2.1]) . For previous results of this
nature, see [4, 40].

Proposition 2.2. — Let (Φ, F ) : G

�

T → G′

�

T ′ be an epimorphism
between finitely supported simplicial actions. Assume that

∀e ∈ E(T ), ∀e′ ∈ E(T ′), e′ ⊂ F (e) ⇒ G′(e′) = Φ(G(e)) (∗)

Then we may subdivide T and T ′ so that there exists a finite sequence
of simplicial actions G

�

T = G0

�

T0, . . . , Gn

�

Tn = G′

�

T ′, some epimor-
phisms (ϕi, fi) : Gi

�

Ti → Gi+1

�

Ti+1 such that Φ = ϕn−1 ◦ · · · ◦ϕ0, each
(ϕi, fi) satisfies (∗), and is either

1. a collapse
2. a group-fold
3. or a fold between two edges uv, uv′ of Ti such that Gi(u) injects

into G′ under Φi.

Remark. — We don’t claim that F = fn−1 ◦ · · · ◦ f1.

Proof. — We may change F so that it is linear in restriction to each edge
of T . Then we can subdivide T and T ′ so that F maps each vertex to a
vertex and each edge to an edge or a vertex. The new map satisfies (∗). Set
T0 = T , G0 = G.

We describe an iterative procedure. We assume that the construction has
begun, and that we are given (Φi, Fi) : Gi

�

Ti → G′

�

T ′ satisfying (∗).
Step 1. Assume that Fi maps an edge e of Ti to a point. Let Ti+1 be the

tree obtained by collapsing e and let Gi+1 = Gi, ϕi = id and Φi+1 = Φi.
Define fi : Ti → Ti+1 as the collapse map, and Fi+1 : Ti+1 → T ′ as the
map induced by Fi. Then return to step 1.

Clearly, (id, fi) and (Φi+1, Fi+1) satisfy (∗). Since Ti+1 has fewer orbits of
edges than Ti, we can repeat step 1 until Fi does not collapse any edge of Ti.
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Step 2. Assume that there is a vertex v ∈ Ti such that the kernel Nv

of Φi|Gi(v) : Gi(v) → G′ is non-trivial. Let N the normal closure of Nv in
Gi, and consider Gi+1 = Gi/N

�

Ti+1 = Ti/N the action obtained by the
corresponding group-fold. Define fi : Ti → Ti+1 and ϕi : Gi → Gi+1 as the
quotient maps. Define Fi+1 : Ti+1 → T ′ and Φi+1 : Gi+1 → G′ as the maps
induced by Fi and Φi. Then return to step 2.

The group fold (ϕi, fi) automatically satisfies (*). Moreover, (Φi+1, Fi+1)
inherits property (*) from (Φi, Fi). This step will repeated only a finite
number of times since step 2 decreases the number of orbits of vertices
with Nv 6= {1}.

Step 3. Assume that there exists two edges e1 = uv1, e2 = uv2 of Ti such
that Fi(e1) = Fi(e2). Define Ti+1 as the tree obtained by folding e1 on e2,
fi : Ti → Ti+1 as the folding map, and Fi+1 : Ti+1 → T ′ as the induced
map. Define Gi+1 = Gi, ϕi = id and Φi+1 = Φi. Then return to step 2.

Denote by ε the common image of e1 and e2 in Ti+1. Since at the be-
ginning of step 3, no group fold can be done, Φi|Gi(u) is one-to-one. We
claim that e1 and e2 cannot be in the same orbit. Indeed, if e1 = g.e2 for
some g ∈ G, then g ∈ Gi(u) (because T ′ has no inversion) so Φi(Gi(e1))  
Φi(〈Gi(e1), g〉) = Φi+1(Gi+1(ε)) ⊂ G′(Fi(e1)), contradicting (∗). It follows
that step 3 will be repeated only finitely many times because it decreases
the number of orbits of edges, and step 2 does not change it. Since Fi

satisfies (*) and Φi|Gi(u) is one-to-one, we get Φi(Gi(e1)) = Φi(Gi(e2)) so
Gi(ε) = Gi(e1) and fi satisfies (∗). The fact that Fi+1 inherits (∗) is clear.

When step 3 cannot be repeated any more, Fi is an isometry. If follows
that any g ∈ ker Φi fixes Ti pointwise. Since Φi|Gi(u) is one-to-one for every
vertex, Φi is an isomorphism. �

2.2. Proof of Extended Scott’s Lemma

Proof. — One can assume that each Sk is minimal. By Proposition 2.2,
we may assume that each map fk is a collapse, a group-fold or a fold. Let
Ell(Sk) be the subset of Gk consisting of elements fixing a point in Sk. The
first Betti number of the graph Sk/Gk coincides with the rank of the free
group Gk/〈Ell(Sk)〉. In particular, this Betti number is non-increasing and
we can assume that it is constant.

We work at the level of quotient graph of groups Sk = Sk/Gk and we
denote by x 7→ x the quotient map. Consider an oriented edge e of Sk

with terminal vertex v = t(e). Say that e carries the symbol = if the edge
morphism ie : Ge → Gv is onto. Otherwise, we say that e carries 6=. Define
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Wk as the set of vertices v ∈ Sk such that there is an oriented edge e

with t(e) = v carrying 6=. At the level of the tree, Wk is the set of orbits
of vertices v ∈ Sk for which there exists an edge e incident on v with
Gk(e)  Gk(v). Note that #Wk is invariant under subdivision.

We claim that #Wk is non-increasing, and that folds and collapses which
don’t decrease #Wk don’t change Ell(Sk).

Assume that fk : Sk → Sk+1 is induced by the collapse of an edge
e = uv. Let f̄k : Sk → Sk+1 be the induced map. The endpoints of e are
distinct since otherwise, the first Betti number would decrease. If both u

and v are outside Wk, then the stabilizer of u coincides with that of fk(u);
in particular, f̄k(u) /∈ Wk and #Wk is non-increasing. If Ell(Sk) increases
under the collapse, then both orientations of e carry 6=, in which case both
u and v belong to Wk, so #Wk+1 < #Wk.

Now assume that fk : Sk → Sk+1 is the fold of e1 = uv1 with e2 = uv2
(in particular Gk = Gk+1). Denote by v′ (resp e′) the common image of
v1, v2 (resp. e1, e2) in Sk+1, and u′ the image of u. Since fk satisfies (∗),
e1 and e2 are in distinct orbits and Gk(e′) = Gk(e1) = Gk(e2). Since the
first Betti number of Sk is constant, v1 6= v2. It may happen that u = vi

for some i ∈ {1, 2}. By subdividing e1 and e2 and replacing the original
fold by two consecutive folds, we can ignore this case. Thus we assume
that u, v1, v2 are distinct. One has Gk(v′) = 〈Gk(v1), Gk(v2)〉. It follows
that if both v1 and v2 lie outside Wk, then v /∈ Wk+1. Since Gk(u) =
Gk(u′), u ∈ Wk if and only if u′ ∈ Wk+1. It follows that #Wk is non-
increasing. If Ell(Sk) increases, then Gk(v) = 〈Gk(v1), Gk(v2)〉 is distinct
from both Gk(v1) and Gk(v2). Therefore, e1 can’t carry = at v1, since this
would imply Gk(v1) = Gk(e1) = Gk(e2) ⊂ Gk(v2). Similarly, e2 carries
6= at v2. Therefore, v1, v2 ∈ Wk, and #Wk+1 < #Wk. This proves the
claim.

Without loss of generality, we assume that #Wk is constant. For each k,
either fk is a group-fold, or Ell(Sk) = Ell(Sk+1). Let Nk = kerϕk−1 ◦ · · · ◦
ϕ1. We prove by induction on k that S0/Nk is a tree and Ell(S0/Nk) =
Ell(Sk) ⊂ Gk. We will use the following standard fact:

Fact 2.3. — Let T be a simplicial tree and N a group of isometries.
Then T/N is a tree if and only if N is generated by elliptic elements.

Proof. — If the graph of groups T/N is a tree, then its fundamental
group is generated by its vertex groups. If T/N is not a tree, killing its
vertex groups gives a non-trivial free group. �
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Assume that S0/Nk is a tree. If fk is not a group-fold, then Gk = Gk+1,
Nk = Nk+1 and Ell(Sk) = Ell(Sk+1) so we are done. If fk is a group fold,
then Gk+1 is the quotient of Gk by a normal subgroup K generated by sub-
set of Ell(Sk) and Sk+1 = Sk/K. It follows that S0/Nk+1 = (S0/Nk)/K
is a tree. For g ∈ Gk, denote by g its image in Gk+1 = Gk/K. We get:
g ∈ Ell(Sk/K) ⇔ ∃k ∈ K, gk ∈ Ell(SK) ⇔ ∃k ∈ K, gk ∈ Ell(S0/Nk)
⇔ g ∈ Ell(S0/Nk+1). The induction follows.

Since S0/Nk is a tree for all k, Nk is generated by elliptic elements, and
so is N = ∪kNk. This way, we get an action of G = lim

→
Gk = G0/N

on the tree S0/N . Assume that this action has a global fix point and ar-
gue towards a contradiction. Let {g1, . . . , gp} be a generating set of G0.
There exists x ∈ S0 and n1, . . . , np ∈ N such that gini.x = x. Choose k
large enough so that n1, . . . , np ∈ Nk. Then Gk has a global fix point in
S0/Nk. Since Ell(S0/Nk) = Ell(Sk), Gk fixes a point in Sk, a contradic-
tion.

Finally, an edge stabilizer in G

�

S0/N is the image of an edge sta-
bilizer in G0

�

S0, which concludes the proof of Extended Scott’s
Lemma. �

2.3. Relative version of Extended Scott’s Lemma

Theorem 2.4 (Extended Scott’s Lemma, relative version.). — Consider
(Gk, {Hk

1 , . . . H
k
p })

�

Sk a sequence of non-trivial actions of finitely gener-
ated pairs on simplicial trees. Let (ϕk, fk) : Gk

�

Sk → Gk+1

�

Sk+1 be
epimorphisms mapping Hk

i onto Hk+1
i . Consider G = lim

→
Gk the inductive

limit and Φk : Gk → G the natural map.
Assume that

1. ∀e ∈ E(Sk),∀e′ ∈ E(Sk+1), e′⊂fk(e) ⇒ Gk+1(e′)=ϕk(Gk(e)) (∗)
2. ∀e ∈ E(Sk),∀i, Φk(Hk

i ) 6⊂ Φk(e)
Then the pair (G,H) has a non-trivial splitting over the image of an

edge stabilizer of some Sk. Moreover, any subgroup H ⊂ G fixing a point
in some Sk fixes a point in the obtained splitting of G.

Remark 2.5. — The additional assumption is necessary as shows the
following example. Let A be an unsplittable finitely generated group con-
taining a finitely generated free group F . Let {a1, a2, . . .} ⊂ F be an infinite
basis of a free subgroup of F , and F ′ = F (a′1, a

′
2, . . . ) another free group

with infinite basis. Consider

Gk = 〈F ∗ F ′ | a1 = a′1, . . . , ak = a′k〉 ∗F A.
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The group Gk is finitely generated relative to F ′. This sequence of splittings
(over F ) satisfies condition (∗) but not the additional assumption. The
inductive limit of Gk is the unsplittable A.

Proof. — Since an action of a finitely generated pair is finitely supported,
we can use the decomposition into folds of Proposition 2.2. The proof of
Extended Scott’s Lemma does not use finite generation until the proof
of the non-triviality of the obtained splitting. Recall the notations of the
end of the proof of Theorem 2.1: Φk : Gk → G is the natural morphism,
N = kerΦ0 : G0 → G, Nk = kerϕ0k : G0 → Gk so that N =

⋃
k Nk.

At this point, we know that we can forget finitely many terms in our
sequence of actions so that S0/N is a tree, and that for all k, the action
Gk

�

S0/Nk is non-trivial. We assume that G

�

G0/N has a global fix point
and argue towards a contradiction. Let S0 ⊂ G0 be a finite set such that
S0∪H0

1∪· · ·∪H0
p generates G. Consider {g1, . . . , gq} such that {g1, . . . , gq}∪

H0
1 ∪ · · · ∪H0

p generates G0. There exists a ∈ S0 and n1, . . . , nq ∈ N such
that gjnj .a = a for all j ∈ {1, . . . , q}. Let bi ∈ S0 be a fix point of H0

i . By
the second hypothesis, H0

i fixes no edge in S0/N so it fixes a unique point
in S0/N . In particular, the images of bi and a in S0/N coincide. Therefore,
bi = n′i.a for some n′i ∈ N . Choose k large enough so that Nk contains
all those elements nj , n

′
i. Then Gk fixes the image of a in S0/Nk. This

contradicts the non-triviality of Gk

�

S0/Nk. �

3. Getting piecewise stability

Theorem 3.1. — Consider a minimal action of a finitely generated pair
(G,H) on an R-tree T . Assume that

1. T satisfies the ascending chain condition;
2. there exists a finite family of arcs I1, . . . , Ip such that I1 ∪ · · · ∪ Ip

spans T and such that for any unstable arc J contained in some Ii,
(a) G(J) is finitely generated;
(b) G(J) is not a proper subgroup of any conjugate of itself i. e.

∀g ∈ G, G(J)g ⊂ G(J) ⇒ G(J)g = G(J).
Then either (G,H) splits over the stabilizer of an unstable arc contained

in some Ii, or T is piecewise-stable.

Proof. — By enlarging some peripheral subgroups, we may assume that
each H ∈ H is either finitely generated, or is not contained in a finitely
generated elliptic subgroup of G.
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By Proposition 1.31, consider (Gk,Hk)

�

Tk a sequence of actions on
R-trees converging strongly to T , and such that Tk splits as a graph of
actions where each vertex action is either an indecomposable component,
or an edge. Denote by ϕk : Gk → Gk+1, Φk : Gk → G, fk : Tk → Tk+1,
and Fk : Tk → T the morphisms of the corresponding direct system.

Without loss of generality, we can assume that there exists Ĩ1, . . . , Ĩp ⊂ T0

which map isometrically to I1, . . . , Ip. By subdividing the arcs Ĩi and the
edges occurring in the decomposition of Tk, we may assume that each Ĩi is
either an edge or an indecomposable arc of T0. All the arcs of Tk we are
going to consider embed isometrically into T . Say that an arc I ⊂ Tk is
pre-stable if its image in T (under Fk) is a stable arc. Otherwise, we say
that I is pre-unstable. If I is contained in an indecomposable component,
then it is pre-stable by Lemma 1.20 and Assertion 1 of Lemma 1.19.

To do some bookkeeping among pre-unstable edges, we shall construct
inductively a combinatorial graph T = T (Ĩ1) t · · · t T (Ĩp) as a disjoint
union of rooted trees. We use standard terminology for rooted trees: the
father of v is the neighbour of v closer to the root than v, a child of v
is a neighbour of v which is not the father of v, an ancestor of v if a
vertex on the segment joining v to the root. The level of a vertex is its
distance to the root. We denote by Tk(Ĩi) (resp. T>k(Ĩi)) the set of vertices
of T (Ĩi) of level k (resp. at least k), and Tk = Tk(Ĩ1) ∪ · · · ∪ Tk(Ĩp). (resp.
T>k = T>k(Ĩ1) ∪ · · · ∪ T>k(Ĩp)).

Each vertex v of level k of T (Ĩi) will be labeled by a pre-unstable edge Jv

contained in f0k(Ĩi) ⊂ Tk. We label the root of T (Ĩi) by Ĩi. Assume that
T has been constructed up to the level k. Subdivide the edge structure
of Tk+1 so that, for each v ∈ Tk, fk(Jv) is a finite union of edges and of
indecomposable arcs. We may also assume that the length of each edge
is at most 1/2k. The indecomposable pieces of fk(Jv) are pre-stable, and
we discard them. We also discard pre-stable edges of fk(Jv). For each pre-
unstable edge J ′ contained in fk(Jv), we add new child of v labeled by J ′.

If T is finite, then each Ĩi is contained in a finite union of stable arcs.
Since Ĩ1 ∪ . . . Ĩp spans T , T is piecewise stable. So we assume that T is
infinite.

To each vertex v ∈ Tk, we attach two subgroups of G: Av = Φk(Gk(Jv)),
and Bv = G(Fk(Jv)). Clearly, Av ⊂ Bv. Given u, v ∈ T , write Bu < Bv

if Bu is properly contained in some conjugate of Bv. Say that v ∈ Tk is
minimal if there is no u ∈ Tk with Bu < Bv. Let M ⊂ T be the set of
minimal vertices, and Mk = M∩Tk. Since no Bv is a proper conjugate of
itself, for each v, either v ∈Mk or there exists u ∈Mk with Bu < Bv.
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Lemma 3.2. — There exists k0 such that for all k > k0, the following
hold:

1. if v ∈ Tk \Mk, then no child of v is minimal;
2. if v ∈Mk then for any child v′ ∈Mk+1 of v, Av = Av′ ;

Proof. — Say that v is a clone of v′ if Bv = Bv′ and Av = Av′ . A
genealogical line is a sequence v0, v1, . . . of vertices of T where vi+1 is a
child of vi. Say that v ∈ T is immortal if there is a genealogical line starting
at v and consisting of clones of v.

We claim that any genealogical line v0, v1, . . . eventually consists of
clones. By the ascending chain condition in T , there are at most finitely
many indices i such that Bvi  Bvi+1 . So we can assume that Bvi = Bv0

for all i. Since Jv0 is pre-unstable, Bv0 is finitely generated. The strong
convergence implies that for k large enough, every generator of Bv0 has a
preimage in Gk(fk0k(Jv0)) (where k0 is the level of v0). Since for each vi of
level at least k, Jvi

⊂ fk0k(Jv0), we get Bv0 ⊂ Avi
⊂ Bvi

= Bv0 . Therefore,
all the vertices vi of sufficiently large level are clones of each other. This
proves the claim. In particular, this also proves that if v is immortal, then
Av = Bv.

Say that v is post-immortal if it is immortal or if it has an immortal an-
cestor. We claim that all but finitely many vertices of T are post-immortal.
Indeed, for each i ∈ {1, . . . , p}, the set of vertices of T (Ĩi) which are not
post immortal is a rooted subtree of T (Ĩi). If it is infinite, it contains a
genealogical line. Since this line contains many immortal vertices, this is a
contradiction.

Let k0 be such that T>k0 consists of post-immortal vertices. We shall use
several times the following fact: any v ∈M>k0 is the clone of an immortal
vertex. Indeed, let u′ be an immortal ancestor of v, and let u be a clone
of u′ of same level as v; then Au′ = Bu′ ⊂ Av ⊂ Bv, and since v is
minimal, inclusions are equalities, and u′ is a clone of v. It follows that for
all v ∈M>k0 , Av = Bv.

If v ∈ Tk \Mk, there exists u ∈Mk with Bu < Bv. Since u is the clone
of an immortal vertex, there exists u′ of level k + 1 with Bu = Bu′ and no
child of v can be minimal. This proves assertion 1.

If v ∈Mk, and v′ ∈Mk+1 is a child of v, then v has an immortal clone,
so has an immortal clone u′ of level k + 1. We have Bu′ = Au′ = Av ⊂
Av′ ⊂ Bv′ and since v′ is minimal, v′ is a clone of v. Assertion 2 follows. �

We always consider k > k0. Let Ek be the set of edges of our decom-
position of Tk which are in the orbit of some Jv for some v ∈ Mk. In
our decomposition of Tk as a graph of actions, collapse all the vertex trees
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which are not in Ek (see Definition 1.7). The resulting tree Sk is a graph of
actions where each vertex action is an edge, so it is a simplicial tree. The
action Gk

�

Sk is minimal by Lemma 1.9 and is therefore non-trivial. By
assertion 1 of Lemma 3.2, fk induces a natural map Sk → Sk+1. Since any
H ∈ Hk fixes a point in Tk, it also does in Sk, so the action on Sk is an
action of the pair (Gk,Hk).

Let’s check that the actions Gk

�

Sk satisfy the hypotheses of Extended
Scott’s lemma. Consider an edge e ∈ Ek. We may translate e so that e
corresponds to an arc Jv, with v ∈ Mk. Let e′ ∈ Ek+1 with e′ ⊂ fk(e).
Since e′ ∈ Ek+1, it is pre-unstable, so e′ = Jv′ for some child v′ ∈ T of v.
Moreover, since e′ ∈ Ek+1, e′ is in the orbit of some Jw′ with w′ minimal,
so v′ ∈ Mk+1. By assertion 2 of Lemma 3.2, Φk+1(Gk+1(e′)) = Av′ =
Av = Φk(Gk(e)). Since Φk and Φk+1 are one-to-one in restriction to arc
stabilizers, we get ϕk(Gk(e)) = Gk+1(e′).

If H = ∅, this is enough to apply Extended Scott’s Lemma, so G splits
over some group Av. Since Av = Bv is the stabilizer of an unstable arc in
T , the theorem is proved in the non-relative case.

If H 6= ∅, we need to modify slightly the argument to ensure that the
second hypothesis of the relative version of Extended Scott’s Lemma holds.
Let H′ ⊂ H be the subset consisting of subgroups which are not finitely
generated and H′

k ⊂ Hk the subset corresponding to H′. The pairs (G,H′)
and (Gk,H′

k) are finitely generated. Recall that no H ∈ H′ is contained
in a finitely generated elliptic subgroup. In particular, for all H ∈ H′

k,
Φk(H) fixes no unstable arc of T . For each e ∈ E(Sk), Φk(Gk(e)) fixes
an unstable arc in T so Theorem 2.4 applies. We thus get a non-trivial
splitting (G,H′)

�

S.
In view of the moreover part of Theorem 2.4, since any H ∈ H0 fixes a

point in S0, any H ∈ H fixes a point in S. Thus, S defines a non-trivial
splitting of (G,H). �

4. Piecewise stable actions

The goal of this section is the following result:

Theorem 4.1. — Let (G,H) be a finitely generated pair having a piece-
wise stable action on an R-tree T .

Then, either (G,H) splits over the stabilizer H of an infinite tripod (and
the normalizer of H contains a non-abelian free group generated by two
hyperbolic elements whose axes don’t intersect), or T has a decomposition
into a graph of actions where each vertex action is either
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1. simplicial: Gv

�

Yv is a simplicial action on a simplicial tree;
2. of Seifert type: the vertex action Gv

�

Yv has kernel Nv, and the
faithful action Gv/Nv

�

Yv is dual to an arational measured foliation
on a closed 2-orbifold with boundary;

3. axial: Yv is a line, and the image of Gv in Isom(Yv) is a finitely
generated group acting with dense orbits on Yv.

The proof relies on the following particular case of a result by Sela:

Theorem A.1 ([32]). — Consider a minimal action of a finitely gener-
ated group G on an R-tree T with trivial arc stabilizers.

Then, either G is freely decomposable, or T has a decomposition into a
graph of actions where each vertex action is either

1. of surface type: the vertex action Gv

�

Yv is dual to an arational
measured foliation on a closed 2-orbifold with boundary;

2. axial: Yv is a line, and the image of Gv in Isom(Yv) is a finitely
generated group acting with dense orbits on Yv.

We shall give a proof of this result in Appendix A.

4.1. From piecewise stability to trivial arc stabilizers

Lemma 4.3. — Let G be a group having a piecewise stable action on
an R-tree T .

Then T has a decomposition into a graph of actions such that, denoting
by Nv the kernel of the vertex action Gv

�

Yv, then Gv/Nv

�

Yv has trivial
arc stabilizers.

Remark. — The lemma doesn’t assume any finite generation of G.

Proof. — Remember that a subtree Y ⊂ T is stable if the stabilizer of
any arc J ⊂ Y fixes Y . Given a stable arc I ⊂ T , consider YI the maximal
stable subtree containing I. This is a well defined subtree because if two
stable subtrees contain I, their union is still stable, and an increasing union
of stable subtrees is stable. Moreover, YI is closed in T because the closure
of a stable subtree is stable.

Let (Yv)v∈V be the family of all maximal stable subtrees of T . By piece-
wise stability, any arc of T is contained in a finite union of them. By
maximality, if Yu ∩ Yv is non-degenerate, then Yu = Yv. Therefore, the
family (Yv)v∈V is a transverse covering of T . Denote by Gv the global sta-
bilizer of Yv, and by Nv its pointwise stabilizer. Since Yv is a stable subtree,
Gv/Nv

�

Yv has trivial arc stabilizers. �
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4.2. Relative version of Sela’s Theorem

Consider a decomposition of T as a graph of actions as in Lemma 4.3.
Consider a vertex group Gv of the corresponding graph of groups Γ. Even
if G is finitely generated, Gv may fail to be finitely generated. However, in
this case, the peripheral structure (Gv,Hv) of Gv in Γ is finitely generated
(Lemma 1.15 and Lemma 1.11), and the action on Tv is an action of the pair
(Gv,Hv). If we started with a finitely generated pair (G,H), Gv is finitely
generated with respect to a set Hv consisting of the peripheral structure
of Gv in Γ together with some conjugates of elements of H (Lemma 1.12).
We will need a version of Sela’s result applying in this context.

Proposition 4.4 (Relative version of Sela’s result). — Consider a min-
imal action of a finitely generated pair (G,H) on an R-tree T with trivial
arc stabilizers.

Then, either (G,H) is freely decomposable, or T has a decomposition
into a graph of actions where each non-degenerate vertex action is either

1. of surface type: the vertex action Gv

�

Yv is dual to an arational
measured foliation on a closed 2-orbifold with boundary;

2. axial: Yv is a line, and the image of Gv in Isom(Yv) is a finitely
generated group acting with dense orbits on Yv.

Proof. — We shall embed G into a finitely generated group Ĝ and apply
Sela’s non-relative result. Let H = {H1, . . . ,Hp}. We may assume that
each Hi is non-trivial. For i = 1, . . . , p, choose some finitely generated
group Ĥi containing Hi. We may assume that Ĥi is freely indecomposable
by changing Ĥi to Ĥi × Z/2Z. Consider the graph of groups Γ below.

G

ĤpĤ2Ĥ1

H1 H2 Hp
. . .

We denote by u (resp. ui) the vertex labeled by G (resp. Ĥi). Clearly,
the group Ĝ = π1(Γ) is finitely generated.

We shall add a structure of a graph of actions on R-trees on Γ. Let Yu

be a copy of T endowed with its natural action of G, and let Yui be a point
endowed with the trivial action of Ĥi. For each edge uui of Γ, we define its
attaching point in Yu as the (unique) point of T fixed by Hi. Let Ĝ

�

T̂ be
the R-tree dual to this graph of actions.
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Since T is a union of axes of elements of G, and since T̂ is covered by
translates of T , T̂ is a union of axes of elements of Ĝ so T̂ is minimal.

This action has trivial arc stabilizers because G

�

T does. Therefore, we
can apply Sela’s Theorem A.1 to Ĝ

�

T̂ .
Assume first that Ĝ is freely decomposable, i. e. that Ĝ acts non-trivially

on a simplicial tree R with trivial edge stabilizers. Then Ĥi is elliptic in R
because it is freely indecomposable. If G fixes a point x ∈ R, then each Hi

fixes x and cannot fix any other point because edge stabilizers are trivial.
It follows that each Ĥi fixes x and that Ĝ fixes x, a contradiction. Thus,
the action of G on R defines a non-trivial free decomposition of G relative
to Hi.

Assume now that T̂ has a decomposition into a graph of actions where
each vertex action is axial or of surface type. In particular, each vertex ac-
tion is indecomposable. Let (Zi) be the transverse covering of T̂ induced by
this decomposition. Since Zi is indecomposable, if Zi∩T is non-degenerate,
then Zi ⊂ T (Lemma 1.18). The family of subtrees Zi contained in T is
therefore a transverse covering of T . This gives a decomposition of G

�

T as
a graph of actions where each vertex action is axial or of surface type. �

4.3. Proof of Theorem 4.1

Proof of Theorem 4.1. — Consider a transverse covering Y = (Yv)v∈V

of T as in Lemma 4.3. Denote by Gv the global stabilizer of Yv, and by
Nv C Gv the kernel of the vertex actionGv

�

Yv. We denote byGv = Gv/Nv

the group acting with trivial arc stabilizers on Yv.
We shall prove that either (G,H) splits over a tripod stabilizer with the

desired properties, or that each vertex action Gv

�

Yv has a decomposition
into a graph of actions of the right kind. The theorem will follow.

If Yv is a line, then Gv

�

Yv is either simplicial or of axial type, so we can
assume that Yv is not a line.

By Lemma 1.6, we can first decompose Yv into a graph of actions where
each vertex action has a global fixed point or a dense minimal subtree.
Therefore, we can assume without loss of generality that for each v, Gv has
either a global fixed point or a dense minimal subtree in Yv.

Lemma 4.5. — If Gv fixes a point in Yv, then Yv is a simplicial tree.

Proof. — Using Lemma 1.16, consider a finite tree K spanning Yv. Let
x0 ∈ K be a Gv-invariant point. Denote by K1, . . . ,Kn the closure of the
connected components of K \ {x0}. If Ki,Kj are such that there exists
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g ∈ Gv with g.Ki ∩Kj non-degenerate, replace Ki and Kj by g.Ki ∪Kj .
This way, one can assume that for all i 6= j and all g ∈ Gv, g.Ki∩Kj = {x0}.
Since arc stabilizers are trivial, for all g ∈ Gv \{1}, g.Ki∩Ki = {x0}. Thus,
Yv is the union of translates of K1, . . . ,Kn, all glued along {x0}. Since each
Ki is a finite tree, Yv is a simplicial tree. �

Now we consider the case where Gv

�

Yv has a dense minimal subtree.
Since Yv is not a line, Yv contains an infinite tripod. This tripod is fixed by
Nv. Moreover, consider g, h ∈ Gv two hyperbolic elements having distinct
axes. In particular [g, h] 6= 1. Since arc stabilizers are trivial, the axes of g
and h have compact intersection. Therefore, g and g′ = gh

k

have disjoint
axes for k large enough. Let g, g′ be some preimages of g, g′ in G. Then
〈g, g′〉 is a free group generated by two elements having disjoint axes in T ,
and which normalizes Nv.

Lemma 4.6. — If Yv is not minimal, then G splits over Nv.

Proof. — Let G

�

S be the skeleton S of the transverse covering Y. Since
G

�

T is minimal, G
�

S is minimal (Lemma 1.15). Therefore, we need only
to prove that there is an edge of S whose stabilizer is Nv.

Let x ∈ Yv \min(Yv). Since min(Yv) is dense in Yv and does not contain
x, Yv \x is connected. If x does not lie in any other tree Y ∈ Y, then T \{x}
is convex, so T \G.x is a G-invariant subtree, contradicting the minimality
of T .

Therefore, x is a vertex of S and (x, Yv) is an edge of S (see section
1.3). Denote by G(x, Yv) = {g ∈ Gv|g.x = x} its stabilizer. Clearly, Nv ⊂
G(x, Yv). Conversely, consider g ∈ G(x, Yv) and y ∈ Yv \ {x}. Since y and
g.y both lie in the convex set Yv \ {x}, [x, y] ∩ [x, g.y] is a non-degenerate
arc fixed by g. Therefore, g ∈ Nv. �

There remains to analyse the case where Yv is a not a line and Gv

�

Yv is
minimal without global fix point. Consider the graph of groups Γ = S/G.
We identify v with a vertex of Γ. By Lemma 1.12 (or 1.11 if G is finitely
generated), Gv is finitely generated relative to the incident edge groups
together with at most one conjugate of each H ∈ H. When H 6= ∅, we
make sure that for any H ∈ H having a conjugate in Gv, Hv contains
a conjugate of H. Let Hv be the image of Hv in Gv = Gv/Nv. Then
we can apply the relative version of Sela’s Theorem (Proposition 4.4) to
(Gv,Hv)

�

Yv.
Assume first that (Gv,Hv) is freely decomposable. Therefore, Gv splits

over Nv relative to Hv. Thus, we can refine Γ at v using this splitting, so
G splits over Nv. This is really a splitting of (G,H) because we made sure
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that for each H ∈ H, either H has a conjugate in Hv, or H is conjugate in
some other vertex group of Γ.

Assume now that Gv

�

Yv has a decomposition into a graph of actions
where each vertex action is either axial or of surface type. Then clearly,
the action Gv

�

Yv as a decomposition into a graph of actions where each
vertex action is either axial or of Seifert type. This completes the proof of
Theorem 4.1. �

5. Proof of Main Theorem and corollaries

Recall that an action of the pair (G,H) on a tree is an action of G where
each H ∈ H fixes a point. In terms of graphs of groups, a splitting of the
pair (G,H) is an isomorphism of G with a graph of groups such that each
Hi is contained in a conjugate of a vertex group (see section 1.4).

Theorem 5.1 (Main Theorem). — Consider a minimal action of finitely
generated pair (G,H) on an R-tree T by isometries. Assume that

1. T satisfies the ascending chain condition;
2. there exists a finite family of arcs I1, . . . , Ip such that I1 ∪ · · · ∪ Ip

spans T (see Definition 1.13) and such that for any unstable arc J
contained in some Ii,
(a) G(J) is finitely generated;
(b) G(J) is not a proper subgroup of any conjugate of itself i. e.

∀g ∈ G, G(J)g ⊂ G(J) ⇒ G(J)g = G(J).

Then either (G,H) splits over the stabilizer of an unstable arc, or over
the stabilizer of an infinite tripod (whose normalizer contains a non-abelian
free group generated by two elements having disjoint axes), or T has a
decomposition into a graph of actions where each vertex action is either

1. simplicial: Gv

�

Yv is a simplicial action;
2. of Seifert type: the vertex action Gv

�

Yv has kernel Nv, and the
faithful action Gv/Nv

�

Yv is dual to an arational measured foliation
on a closed 2-orbifold with boundary;

3. axial: Yv is a line, and the image of Gv in Isom(Yv) is a finitely
generated group acting with dense orbits on Yv.

Remark. — The group over which G splits (i. e. the stabilizer of an un-
stable arc or of a tripod) is really its full pointwise stabilizer. This contrasts
with [6, Theorem 9.5].
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Proof of Main Theorem. — Let (G,H)

�

T be as in Main Theorem. By
Theorem 3.1, if (G,H) does not split over the stabilizer of an unstable
arc, T is piecewise stable. By Theorem 4.1, either (G,H) splits over the
stabilizer of an infinite tripod with the required properties, or T has a
decomposition into a graph of actions of the desired type. �

Corollary 5.2. — Under the hypotheses of Main Theorem, either T
is a line or (G,H) splits over a subgroup H which is an extension of a cyclic
group (maybe finite or trivial) by an arc stabilizer.

Proof. — We can assume that T splits as a graph of actions G where
each vertex action Gv

�

Yv is either simplicial, of Seifert type, or axial. Let
(Yv)v∈V be the family of non-degenerate vertex trees. Let S be the skeleton
of this transverse covering (see Lemma 1.5).

First, consider the case where S is reduced to a point v. This means that
T = Yv, and G = Gv, and that T is itself simplicial or of Seifert type (T
is not a line so cannot be of axial type). If T is simplicial, the result is
clear, so assume that T is of Seifert type. Let Nv C Gv be the kernel of
this action and let Σ be a 2-orbifold with boundary, with cone singularities,
such that Gv/Nv = π1(Σ) and holding an arational measured foliation to
which Gv/Nv

�
Yv is dual. Consider a splitting of Gv/Nv corresponding to

an essential simple closed curve (i. e. a curve which cannot be homotoped
to a point, a cone point, or to the boundary). Such a curve exists because Σ
holds an arational measured foliation. This defines a splitting of π1(Σ) over
a cyclic group, and a splitting of G = Gv over an extension of a cyclic group
by Nv. Any subgroup H ⊂ G elliptic in T corresponds to the fundamental
group of a cone point or of a boundary component of Σ. Thus H is elliptic
in this splitting and we get a splitting of the pair (G,H).

Now assume that S is not reduced to a point. By Lemma 1.15, G

�

S is
minimal and any H ∈ H is elliptic in S. In particular, given any edge e of
S, the corresponding splitting of G over G(e) is non-trivial. We shall prove
that for some edge e of S, G(e) is an extension of an arc stabilizer by a
cyclic group, and the corollary will follow.

Assume that some action Gv

�

Yv ' R is axial. Consider an edge e =
(x, Yv) of S incident on v (see Lemma 1.5). Its stabilizer G(e) is the stabi-
lizer of x in Gv. Since the stabilizer of x in Gv/Nv is either trivial or Z/2Z,
G(e) is a extension of a cyclic group by Nv.

Assume that some action Gv

�

Yv is of Seifert type. Consider an edge
e = (x, Yv) incident on v in S. Since G(e) is the stabilizer of x in Gv, G(e)
is an extension by NV of the stabilizer of a point in π1(Σ)

�

Yv which is
cyclic.
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The only remaining case is when each Gv

�

Yv is simplicial. In this case
G

�

T is simplicial, and the result is clear. �

Corollary 5.3. — Let G be a finitely generated group for which any
small subgroup is finitely generated. Assume that G acts on an R-tree T
with small arc stabilizers.

Then G splits over the stabilizer of an unstable arc, or over a tripod
stabilizer, or T has a decomposition into a graph of actions as in Main
Theorem. In particular, G splits over a small subgroup.

Proof. — We prove that all hypotheses of the Main Theorem are satis-
fied. The set of small subgroups is closed under increasing union. Since small
subgroups are finitely generated, any ascending chain of small subgroups is
finite. The ascending chain condition follows. Similarly, if H  Hg for some
small subgroup H ⊂ G, then the set of small subgroup Hgn

is an infinite
increasing chain, a contradiction. Then Main Theorem and corollary 5.2
apply. �

In the following situation, stabilizers of unstable arcs can be controlled
by tripod stabilizers.

Corollary 5.4. — Consider a finitely generated group G acting by
isometries on an R-tree T . Assume that

1. arc stabilizers have a nilpotent subgroup of bounded index (maybe
not finitely generated);

2. tripod stabilizers are finitely generated (and virtually nilpotent);
3. no group fixing a tripod is a proper subgroup of any conjugate of

itself;
4. any chain H1 ⊂ H2 . . . of tripods stabilizers stabilizes.

Then either G splits over a subgroup having a finite index subgroup fixing
a tripod, or T has a decomposition as in the conclusion of Main Theorem.

Proof. — Let k be a bound on the index of a nilpotent subgroup in an
arc stabilizer. We first claim that the stabilizer of an unstable arc has a
subgroup of bounded index fixing a tripod. Indeed, let A be the stabilizer
of an unstable arc I, and let B ) A be the stabilizer of a sub-arc J . If A
has index at most k in B, then A contains a normal subgroup A′ of index
at most k!. Since for g ∈ B \A, g.I is an arc distinct from I and containing
J , B.I contains a tripod. This tripod is fixed by A′. Suppose that the index
of A in B is larger than k. Let NB be a nilpotent subgroup of index at most
k in B and NA = A ∩ NB . Because of indices, NA  NB . Let N be the
normalizer of NA in NB . It is an easy exercise to check that in a nilpotent
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group, no proper subgroup is its own normalizer so NA  N . Therefore,
N.I contains a tripod, and this tripod is fixed by NA.

It follows that the stabilizer of an unstable arc is finitely generated. Since
each tripod stabilizer is slender, any ascending chain of subgroups fixing
tripods stabilizes. It follows that the stabilizer of an unstable arc cannot
be properly conjugated into itself. Consider A1  · · ·  An  an ascending
chain of arc stabilizers. Let Nn be a subgroup of bounded index of An

fixing a tripod, and let Ni,n be its intersection with Ai for i 6 n. Since
Ni,n has bounded index in Ai, it takes finitely many values for each i.
By a diagonal argument, we get an ascending chain of subgroups fixing
tripods, a contradiction. Thus, Main Theorem applies, and the corollary is
proved. �

6. An example

The goal of this section is to give an example of an action with trivial
tripod stabilizers providing a counter-example to [30, Theorem 10.8] and
[32, Theorem 2.3 and 3.1]. Note however that the proof of Theorem 3.1 in
[32] is valid under the stronger assumption that T is super-stable, which is
a natural hypothesis since it is satisfied in applications in [30, 32, 34].

Theorem 6.1. — There exists a non-trivial minimal action of a group
G on an R-tree T such that

• G is finitely presented (and even word hyperbolic) and freely inde-
composable

• tripod stabilizers are trivial
• T satisfies the ascending chain condition
• T has no decomposition into a graph of actions as in Main Theorem.

Proof. — Let A be a freely indecomposable hyperbolic group containing
a free malnormal subgroup M1 = 〈a, b1〉. For instance, one can take for A
a surface group, and for M1, the fundamental group of a punctured torus
contained in this surface. Let A′ be another copy of the group A, C = 〈a〉,
and let G = A ∗C A′. By Bestvina-Feighn’s Combination Theorem, G is
hyperbolic [5].

For i > 1, define inductively Mi ⊂ Mi−1 by Mi = 〈a, bi〉 where bi =
bi−1ab

2
i−1. One can easily check that Mi is malnormal in Mi−1 (one can

also use the software Magnus to do so [9]). Moreover, one also easily checks
that ∩i>1Mi = C since any reduced word w on {a, bi} defines a reduced
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word on {a, bi−1} by the obvious substitution, and its length is strictly
larger if w is not a power of a.

Let Γk be the graph of groups and G

�

Tk be the corresponding Bass-
Serre tree as shown in Figure 6.1.

A

ak

M1
A M2

Mk−1 Mk Aak

ek
1 ek

2 ek
k εk

A M1 M2 Mk−1 Mk

M1 M3M2 Mk C
Γk :

Tk :

Figure 6.1. The graph of groups Γk and the tree Tk

Let ak, a
′
k be the vertices of Tk fixed by A and A′ respectively. Denote by

ek
i ⊂ [ak, a

′
k] the edge of Tk such that G(ek

i ) = Mi, and by εk ⊂ [ak, a
′
k] the

edge such that G(εk) = C. Figure 6.1 shows a neighbourhood of [ak, a
′
k] in

Tk, and the action of the vertex stabilizers. The main feature is that from
each vertex v with stabilizer Mi, the neighbourhood of v consists of one
orbit of edges Mi.e

k
i+1, and one single edge ek

i .
Assign length 1/2i to the edge ek

i , and length 1/2k to εk. This way,
d(ak, a

′
k) = 1 for all k. There is a natural morphism of R-trees fk : Tk →

Tk+1 sending ek
i to ek+1

i and εk to ek+1
k+1 ∪ εk+1.

The length function of Tk+1 is not larger than the length function of Tk,
so Tk converges in the length function topology to an action on an R-tree
T . This action is non-trivial since for any g ∈ A \ C and g′ ∈ A′ \ C, the
translation length of gg′ in every Tk is 2.

We shall prove that Tk converges strongly to T . Consider α, β two distinct
edges of T0 sharing a vertex v (T0 is the tree dual to the amalgam G =
A ∗C A′). If v is in the orbit of a′0, then the image of α and β in Tk share
only one point. Now assume without loss of generality that v = a, and
α = ε0. Let g ∈ A \ C be such that g.α = β. Consider k0 the smallest
integer such that, g /∈ Mk0 . Then for k > k0, the image of α and β in Tk

share exactly an initial segment of length 1 − 1/2k0 . In particular, fk is
one-to-one in restriction to the union of the images of α and β. Now if K
is a finite subtree of T0, it follows that for k large enough, fk is one-to-one
in restriction to the image of K in Tk. This proves the strong convergence
of Tk.
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Say that an arc I ⊂ Tk is immersed in Γk if the restriction to I of the
quotient map Tk → Γk is an immersion. We claim that for any arc I ⊂ Tk

which is not immersed in Γk, G(I) is trivial. It is sufficient to prove it for I
of the form I = α∪β where α, β ∈ E(Tk) are incident on a common vertex
and are in the same orbit. The triviality of G(I) = G(α) ∩ G(β) follows
easily from the malnormality of M1 in A, of Mi+1 in Mi, and of C in Mk

and A′. Since a tripod cannot be immersed, it follows that tripod stabilizers
of Tk are trivial. Going to the limit, tripod stabilizers of T are trivial.

Now we study arc stabilizers of T . Denote by Fk : Tk → T the natural
map, and by a = Fk(ak) and a′ = Fk(a′k). Let I = [u, v] ⊂ T be a non-
degenerate arc with non-trivial stabilizer. By strong convergence, if g ∈
G(I) then there exists a lift Ik ⊂ Tk in restriction to which Fk is isometric,
and which is fixed by g. The argument above shows that the image of Ik in
Γk is immersed. In particular, we can assume that Ik ⊂ [ak, a

′
k]. If I contains

a′, then since F−1
k (a′) = {a′k}, Ik intersects εk in a non-degenerate segment,

so G(Ik) = C and G(I) = C. If I does not contain a′, for k large enough, Ik
does not intersect εk so G(Ik) = Mi for some i independent of k. If follows
that G(I) = Mi. The ascending chain condition for T follows immediately.

Since the restriction of Fk to the ball of radius 1 − 1/2k around ak is
an isometry, the segment [a, a′] ⊂ T contains an infinite number of branch
points. In particular, T is not a simplicial tree.

We claim that no subtree Y of T is indecomposable. Since [a, a′] spans
T , we may assume that Y ∩ [a, a′] contains a non-degenerate arc I. By
indecomposability, the orbit of any point of I is dense in I, a contradiction.

Finally, assume that T has a decomposition as in Main Theorem. Since
there are no indecomposable subtrees in T , T is simplicial, a contradic-
tion. �

Appendix A. Sela’s Theorem

Theorem A.1 ([32]). — Consider a minimal action of a finitely gener-
ated group G on an R-tree T with trivial arc stabilizers.

Then, either G is freely decomposable, or T has a decomposition into a
graph of actions where each non-degenerate vertex action is either

1. of surface type: the vertex action Gv

�

Yv is dual to an arational
measured foliation on a closed 2-orbifold with boundary;

2. axial: Yv is a line, and the image of Gv in Isom(Yv) is a finitely
generated group acting with dense orbits on Yv.
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A.1. Preliminaries

The following lemma is essentially contained in [26].

Lemma A.2. — Let G

�

T be a minimal action with trivial arc stabiliz-
ers.

There exists a sequence of R-trees Gk

�

Tk converging strongly to G

�

T

such that Tk is geometric, dual to a foliated 2-complex Gk

�

Xk whose leaf
space is Hausdorff, and such that Φk : Gk → G is one-to-one in restriction
to each point stabilizer.

Proof. — Consider a sequence of actions Gk

�

Tk dual to foliated 2-
complexes Xk as in Theorem 1.30. Let Nk be the kernel of Φk : Gk → G.
Let Lk be the subgroup of Nk generated by elements which preserve a leaf
of Xk. This is a normal subgroup of Gk. Let X ′

k = Xk/Lk be the quotient
foliated 2-complex, endowed with the natural action of G′k = Gk/Lk. By
construction, for each leaf l of X ′

k, the global stabilizer of l embeds into G
under the induced morphism Φ′k : G′k → G.

The natural map Xk → X ′
k is a covering. Since π1(Xk) is generated by

free homotopy classes of curves contained in leaves, and since Lk is gen-
erated by elements preserving a leaf, π1(X ′

k) generated by free homotopy
classes of curves contained in leaves. Let T ′k be the leaf space made Haus-
dorff of X ′

k. It is an R-tree by Theorem 1.23. Since Lk ⊂ Nk, the map
fk : Tk → T factors through the natural map Tk → T ′k. It follows that T ′k
is geometric, dual to X ′

k, and that G′k

�

T ′k converge strongly to G

�

T .
By Proposition 1.28, there exists a countable union of leaves S on the

complement of which two points of X ′
k are identified in T ′k if and only if

they lie on the same leaf. It follows that any element g ∈ G′k fixing an arc
in T ′k preserves a leaf of X ′

k. Since arc stabilizers of T are trivial, the image
of g in G is trivial, so g = 1. Thus, arc stabilizers of G′k

�

T ′k are trivial.
By proposition A.4 below, the leaf space of X ′

k is Hausdorff. In particular,
a point stabilizer of T ′k coincides with a leaf stabilizer of X ′

k, which embeds
into G. The lemma follows. �

Definition A.3. — We will say that G

�

T is nice if

1. T is geometric, dual to a foliated 2-complex G

�

X such that π1(X)
is generated by free homotopy classes of curves contained in leaves;

2. arc stabilizers of T are trivial.

The following result follows from the concatenation of Lemma 3.5 and
3.4 in [26]:
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Proposition A.4 ([26]). — Assume that T is nice.
Then the leaf space of X is Hausdorff: any two points of X identified in

T are in the same leaf.

Lemma A.5. — Assume that G

�

T is nice. Let Y be an indecomposable
component of T (as in Proposition 1.25), and H its global stabilizer.

Then H

�

Y is nice.

Proof. — Let G

�

X be a foliated 2-complex such that Tk is dual to X.
Let C ⊂ X/G be its cut locus (see Definition 1.26), and C̃ its preimage
in X. The tree Y is dual to the closure U of a connected component U of
X \ C̃. By Remark 1.29, π1(U) is generated by free homotopy classes of
curves contained in leaves. This means that Y is nice. �

Proposition A.6. — Assume that G

�

T is nice and let H

�

Y be an
indecomposable component. Then one of the following holds:

1. Axial type: Y is a line, and the image of H in Isom(Y ) is a finitely
generated group acting with dense orbits on Y ;

2. Surface type: H is the fundamental group of a 2-orbifold with
boundary Σ holding an arational measured foliation and Y is dual
to Σ̃;

3. Exotic type: H has a non-trivial free decomposition H

�

S in which
any subgroup of H fixing a point in Y fixes a point in S.

Proof. — This proposition is essentially well known: it is a way of de-
scribing the output of the Rips machine. This would follow from [6] if we
knew that H is finitely presented (because of the finiteness hypothesis in
[6, Definition 5.1]). But we can apply some arguments of [18] where finite
presentation is not assumed.

We recall some vocabulary from [14] or [18]. A closed multi-interval D is
a finite union of compact intervals. A partial isometry of D is an isometry
between closed sub-intervals of D. A system of isometries S on D is a
finite set of partial isometries of D. Its suspension is the foliated 2-complex
obtained from D by gluing for each partial isometry ϕ : I → J ∈ S by a
foliated band I× [0, 1] on D joining I to J whose holonomy is given by ϕ. A
singleton is a partial isometry ϕ : I → J where I is reduced to a point. We
also call singleton the band corresponding to a singleton in the suspension
of a system of isometries. The

◦

S-orbits are the equivalence classes for the
equivalence relation generated by x ∼ y if y = ϕ(x) for some non-singleton

ϕ : I → J such that x ∈
◦

I. A system of isometries S is minimal if S has no
singleton and every

◦

S-orbit of any point in D \ ∂D is dense. The system S
is simplicial if every S-orbit is finite.
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The proposition holds if H

�

Y is dual to a minimal system of isometries:
this follows from [18] section 5 (axial case), proposition 7.2 (exotic case),
and section 8 (surface case).

Now H

�

Y is dual to some foliated 2-complex H

�

X, occurring as a
Galois covering of the suspension of some system of isometries S. Following
[14], [6] or [18, Prop 3.1], one can perform a sequence of Rips moves on S so
that S becomes a disjoint union finitely many systems of isometries which
are either minimal or simplicial, together with a finite set of singletons
joining them. This decomposition of induces a decomposition of Y as a
graph of actions as in Proposition 1.25. Since Y is indecomposable, this
decomposition is trivial, and Y is dual to the suspension of a minimal
component of S. �

A.2. Proof of the theorem

Proof of Sela’s Theorem. — Let Gk

�

Tk be a sequence of geometric
actions converging strongly to G

�

T as in lemma A.2. Arc stabilizers of
Gk

�

Tk are trivial. By Proposition 1.25, Tk splits as a graph of actions G,
where each non-degenerate vertex action is either simplicial or indecom-
posable.

Assume that for all k, the simplicial part of Tk is non-empty. We shall
prove that G is freely decomposable. Collapse the indecomposable compo-
nents of Tk as in Definition 1.7. Let Sk be the obtained tree. Clearly, Sk

is a simplicial tree, and edge stabilizers are trivial because arc stabilizer of
Tk are trivial. The action Gk

�

Sk is minimal by Lemma 1.9 and therefore
non-trivial. The map fk : Tk → Tk+1 maps an indecomposable compo-
nent of Tk into an indecomposable component of Tk+1 so fk induces a map
Sk → Sk+1. By Scott’s Lemma, G is freely decomposable.

Now, we assume that for all k, Tk splits as a graph of indecomposable
actions. Let Sk be the skeleton of the corresponding transverse covering of
Tk. Recall that its vertex set V (S) is V0(S) ∪ V1(S) where V1(S) = Y, and
V0(S) is the set of points x ∈ T lying in the intersection of two distinct
trees of Y. Since fk maps an indecomposable tree into an indecomposable
tree, fk induces a map V1(Sk) → V1(Sk+1). Moreover, fk induces a map
V0(Sk) → V0(Sk+1) ∪ V1(Sk+1): for x ∈ V0(Sk), if fk(x) belongs to two
distinct indecomposable components, we map x to fk(x) ∈ V0(Sk+1), oth-
erwise, we map x to the only indecomposable component containing fk(x).
This map extends to a map gk : Sk → Sk+1 sending an edge to an edge
or a vertex. The number of orbits of edges of Sk is non-increasing so for k
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large enough, no edge of Sk is collapsed by gk, and any pair of edges e1, e2
identified by gk(e1) are in the same orbit. Moreover, using Scott’s Lemma,
we can assume that for k large enough, no edge of Sk has trivial stabilizer.

The following lemma will be proved in next sections.

Lemma A.7 (Stabilisation of indecomposable components). — For k

large enough, the following holds. Consider an indecomposable component
H

�

Y of Tk, and let H ′ � Y ′ be the indecomposable component of Tk+1

containing fk(Y ).
Then fk|Y is an isometry from Y onto Y ′. Moreover, if Y is not a line,

then ϕk(H) = H ′.

Using this lemma, we shall prove that for k large enough, fk : Tk → Tk+1

is an isometry. If this is not the case, then there exists two arcs J1, J2 ⊂ Tk

with J1 ∩ J2 = {x} and fk(J1) = fk(J2). By shortening them, we may
assume that J1 and J2 lie in some indecomposable components Y1, Y2. By
Lemma A.7, Y1 6= Y2. Therefore, the edges (x, Y1) and (x, Y2) of Sk are
identified under gk. By the assumption above, they lie in the same orbit.
Consider g ∈ Gk(x) such that g.Y1 = Y2. Let Y ′ = gk(Y1) = gk(Y2).

First, assume that Y1 is not a line. Since ϕk(g) preserves Y ′, there exists
g̃ ∈ Gk(Y1) with ϕk(g̃) = ϕk(g) by Lemma A.7. Since fk is isometric in
restriction to Y1 and since ϕk(g̃) = ϕk(g) fixes fk(x), g̃ fixes x. In particular,
g−1g̃ fixes x and lies in the kernel of ϕk. By Lemma A.2, ϕk is one-to-one
in restriction to point stabilizers, so g = g̃. This is a contradiction because
g /∈ Gk(Y1).

Therefore, Y1 is a line. Since ϕk is one-to-one in restriction to Gk(x),
ϕk(g) 6= 1. Since ϕk(g) preserves the line Y ′, and since arc stabilizers are
trivial, ϕk(g) acts on Y ′ as the reflection fixing fk(x). By the assumption
above, edge stabilizers of Sk are non-trivial so consider h 6= 1 in the stabi-
lizer of the edge (x, Y1). Since h fixes a point in Tk (namely, x), ϕk(h) 6= 1.
So ϕk(h) acts as the same reflection as ϕk(g) on Y ′. Since arc stabilizers
are trivial, ϕk(g) = ϕk(h). Since g, h are contained in a point stabilizer, we
get g = h. This is a contradiction since g /∈ Gk(Y1).

This proves that for k large enough, fk is an isometry. It follows that ϕk

is an isomorphism because any element of kerϕk must fix Tk pointwise.
Thus, Proposition A.6 gives us a decomposition of T . If there is an exotic

type vertex action H

�

Y , the free splitting of H given in Proposition A.6
can be used to refine the decomposition of G induced by the skeleton Sk,
thus giving a decomposition of G as a free product.

Finally, there remains prove the finite generation claimed in the axial
case. Let H

�

Y be an indecomposable component such that Y is a line.
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In particular, H occurs as a vertex group in the graph of groups given by
the decomposition of T . By Lemma 1.11, H is finitely generated relative to
the stabilizers of incident edges H1, . . . ,Hp. Denote by ψ : H → Isom(Y )
the map induced by the action. Since each Hi fixes a point in Y , ψ(Hi)
is cyclic of order at most 2. Since ψ(H) is finitely generated relative to
ψ(H1), . . . , ψ(Hp), ψ(H) is finitely generated. �

A.3. Standard form for indecomposable components

We set up the material needed for the proof of Lemma A.7. Consider
H

�

Y a nice and indecomposable action. Given an arc I ⊂ Y and a finite
generating set S ⊂ H, we construct a foliated 2-complex X(I, S) as a
kind of thickened Cayley graph. Alternatively, one can view X(I, S) as
the covering space with deck group H of the suspension of a system of
isometries on I. The point here is to start with an arbitrary arc I and to
allow S to be large in order to ensure that Y is dual to X(I, S).

We first define X(I, S) for any arc I ⊂ Y , and any finite subset S ⊂ H.
Start with H×I, endowed with the action of H given by g.(h, x) = (gh, x).
For each s ∈ S, consider Ks = (I ∩ s−1I), and for each g ∈ H, add a
foliated band Ks× [0, 1] joining {g}×Ks to {gs}×s.Ks whose holonomy is
given by the restriction of s to Ks. The map sending (g, x) to g.x extends
uniquely to a map p : X(I, S) → Y which is constant on each leaf.

Lemma A.8. — Consider H

�

Y a nice indecomposable action. For ev-
ery arc I ⊂ Y , there exists a finite generating set S of H such that

(i) the leaf space of X(I, S) is Hausdorff;
(ii) Y is dual to X(I, S).

Before proving the lemma, we introduce some tools. A holonomy band
in a foliated 2-complex Σ is a continuous map b : I × [0, 1] → Σ such that
b|I×{0} (resp. b|I×{1}) is an isometric map to a subset of a transverse edge of
Σ, and for each x ∈ I, b({x}× [0, 1]) is contained in a leaf segment, and this
leaf segment is regular if x /∈ ∂I. The following property is a restatement
of Theorem 2.3 in [15].

Proposition A.9 (Segment-closed property, [15]). — Let Σ be a com-
pact foliated 2-complex. Consider two arcs I, J ⊂ Σ(1) and an isometry
ϕ : I → J such that for all but countably many x ∈ I, x and ϕ(x) are in
the same leaf.
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Then there exist a subdivision I = I1∪· · ·∪Ip, and for each i ∈ {1, . . . , p}
a holonomy band bi joining Ii to ϕ(Ii) whose holonomy is the restriction
of ϕ. �

Corollary A.10. — Assume that G

�

T is nice, dual to a foliated 2-
complex G

�

X.
Consider two arcs I, J contained in transverse edges of X and having

the same image in T . Then there exist subdivisions I = I1 ∪ · · · ∪ Ip,
J = J1 ∪ · · · ∪ Jp, such that for each i ∈ {1, . . . , p} there exists a holonomy
band joining Ii to Ji.

Proof. — Let ϕ : I → J be an isometry such that for all x ∈ I, x and
ϕ(x) map to the same point in T . By Proposition 1.28, for all but countably
many x ∈ I, x lies in the same leaf as ϕ(x). Apply segment closed property
to the images of I, J in the compact foliated 2-complex X/G. By lifting the
obtained holonomy bands to X, we obtain a subdivision I = I1 ∪ · · · ∪ Ip
and for each i ∈ {1, . . . , p} a holonomy band bi joining Ii to gi.ϕ(Ii) ⊂ gi.J

for some gi ∈ G. Since x and ϕ(x) map to the same point in T , gi fixes the
arc Ii, so gi = 1. �

Proof of Lemma A.8. — Consider a foliated 2-complex H

�

X such that
Y is dual to X. Let π : X → X/H be the covering map. Consider the
cut locus C ⊂ X/H, C̃ its preimage in X. The set U = X \ C̃ is con-
nected: otherwise, Y would split as a graph of actions with at least two
non-degenerate vertex trees by Proposition 1.25; this is impossible because
Y is indecomposable (Lemma 1.18). Let q : X → Y the quotient map (Y
is the leaf space of X).

Recall that X(t) ⊂ X(1) denotes the union of all closed transverse edges
of X. We aim to construct a collection of partial isometries Φ from X(t) to
H × I, and use Φ to transport the holonomy of the triangles of X to bands
on H × I.

Consider a finite set of arcs J1, . . . , Jp contained in edges of X(t) such
that H.(J1 ∪ · · · ∪ Jp) = X(t) and q(J1) ∪ · · · ∪ q(Jp) ⊃ I. By subdividing
each Ji, one may assume that either q(Ji) ⊂ I, or q(Ji) ∩ I is degenerate.
Since Y is indecomposable, I spans Y , so up to further subdivision of each
Ji, one may assume that for each i ∈ {1, . . . , p} there exists gi ∈ H such
that q(gi.Ji) ⊂ I. By replacing Ji by gi.Ji for all i such that q(Ji) ∩ I is
degenerate, we get q(J1) ∪ · · · ∪ q(Jp) = I.

Let ϕi : Ji → q(Ji) be the partial isometry defined as the restriction of
q to Ji. We view ϕi as a partial isometry whose domain of definition is
domϕi = Ji and whose range is Imϕi = {1}× q(Ji) ⊂ X(I, S). For g ∈ H,
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we consider the g-conjugate of ϕi defined by

ϕg
i = g ◦ ϕi ◦ g−1 : g.Ji → {g} × I.

Let Φ = {ϕg
i |g ∈ H, i = 1, . . . , p}. By construction,

⋃
ϕ∈Φ dom Φ = X(t),

and
⋃

ϕ∈Φ Im Φ = H × I.
There is a kind of commutative diagram

X(t) Φ //

q $$IIIIII H × I

pyysssssss

Y

meaning that for each x ∈ X(t), and any ϕ ∈ Φ defined on x, q(x) =
p(ϕ(x)).

We now build a foliated complexX ′ by gluing foliated bands onH×I. For
each pair of arcs g1.Ji1 , g2.Ji2 ⊂ X(t) whose intersection K is non-empty, we
add a foliated band joining ϕg1

i1
(K) to ϕg2

i2
(K) with holonomy ϕg2

i2
◦(ϕg1

i1
)−1.

For each triangle τ of X, and for each pair of arcs g1.Ji1 , g2.Ji2 ⊂ ∂τ

such that the holonomy along the leaves of τ defines a partial isometry
ψ : K1 ⊂ g1.I1 → K2 ⊂ g2.I2, we add a foliated band joining ϕg1

i1
(K1) to

ϕg2
i2

(K2), with holonomy ϕg2
i2
◦ ψ ◦ (ϕg1

i1
)−1.

The important property is that Φ maps leaves to leaves in the following
sense: if x, y ∈ X(t) are in the same leaf, and if ϕ,ψ ∈ Φ are defined on x

and y respectively, then ϕ(x) and ψ(y) are in the same leaf of X ′.
Since X is locally finite, so is X ′. Therefore, the natural free, properly

discontinuous action of H on X ′ is cocompact. Let S ⊂ H be the finite
set of elements s ∈ H such that there is a band connecting (1, I) to (s, I).
Then X ′ is naturally contained in X(I, S). And Φ, viewed as a collection
of maps X(t) → X(I, S), still maps leaves to leaves.

Let T (I, S) be the leaf space made Hausdorff of X(I, S) and

p̃ : X(I, S) → T (I, S)

be the quotient map. The map p : H × I → Y being constant on any
leaf of X(I, S) (or rather on its intersection with H × I), and isometric
in restriction to any connected component of H × I, it induces a natural
distance decreasing map f : T (I, S) → Y .

X(t) Φ //

q

��

H × I
p

zzuuu
uuu

uuu
u

p̃

��
Y

g
55T (I, S)

foo
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Since Φ maps leaves to leaves, and since Y is the set of leaves of X(t) (it is
Hausdorff by Proposition A.4), Φ induces a map g : Y → T (I, S). This map
is distance decreasing because any path in X written as a concatenation of
leaf segments and of transverse arcs in X(t) defines a path having the same
transverse measure in X(I, S) as follows: subdivide its transverse pieces so
that they can be mapped to X(I, S) using Φ, and join the obtained paths
by leaf segments of X(I, S). Since f and g are distance decreasing, both
are isometries. In particular Y is dual to X(I, S).

We prove that the leaf space of X(I, S) is Hausdorff. Assume that x, y ∈
H × I have the same image under p. Consider x̃, ỹ ∈ X and ϕ,ψ ∈ Φ such
that ϕ(x̃) = x and ψ(ỹ) = y. Then q(x̃) = q(ỹ), so x̃ and ỹ are in the same
leaf because the leaf space of X is Hausdorff. Therefore, x and y are in the
same leaf of X(I, S). �

Remark. — If the lemma holds for some S ⊂ H, it also holds for any
S′ containing S.

A.4. Pseudo-groups

Up to now we considered partial isometries between closed intervals. We
now need to consider partial isometries between open intervals. We use
notations like

◦

D,
◦
ϕ to emphasize this point. An open multi-interval

◦

D is a
finite union of copies of bounded open intervals of R. The pseudo-group of
isometries generated by some partial isometries

◦
ϕ1, . . . ,

◦
ϕn between open

intervals of D, is the set of partial isometries
◦
ϕ :

◦

I →
◦

J such that for any
x ∈

◦

I, there exists a composition
◦
ϕ
±1

i1 ◦ · · · ◦ ◦
ϕ
±1

ik
which is defined on a

neighbourhood of x, and which coincides with
◦
ϕ on this neighbourhood.

Two points x, y ∈
◦

D are in the same orbit if there exists
◦
ϕ ∈ Λ such that

y =
◦
ϕ(x). A pseudo-group is minimal if its orbits are dense in

◦

D.
Consider an arc I ⊂ Y , where H

�

Y is an indecomposable nice action.
Let

◦

I = I \ ∂I and
◦
ϕs be the restriction of s to the interior of s−1.

◦

I ∩
◦

I.

Let Λ0 be the pseudo-group of isometries on
◦

I generated { ◦
ϕs|s ∈ S}. Let

◦

D ⊂
◦

I be the set of points whose orbit under Λ0 is infinite.
Let Λ(I, S) be the restriction of Λ0 to

◦

D. We claim that
◦

I \
◦

D is finite (in

particular,
◦

D is an open multi-interval) and that Λ(I, S) is minimal. Let
C be the cut locus of Σ = X(I, S)/H. Since Y is indecomposable, Σ \ C
consists of only one minimal component, so every leaf l of Σ \C is dense in
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Σ \ C. Since for any such leaf l, l ∩
◦

I is contained in a Λ0-orbit, the claim
follows.

A pseudo-group of isometries Λ is homogeneous if for each
◦
ϕ ∈ Λ, any

partial isometry
◦

ψ extending
◦
ϕ lies in Λ. When Λ(I, S) is homogeneous, Y

is a line (see for instance [18, section 5]).

Theorem A.11 ([24, 17]). — Let Λ be a minimal finitely generated

pseudo-group of isometries of an open multi-interval
◦

D. Then the set of
non-homogeneous pseudo-groups of isometries containing Λ is finite.

Remark. — In [24], the result is proved for orientable pseudogroups of
isometries of the circle. Theorem A.11 is an easy generalisation, proved in
[17], but is not published. The proof follows step by step the proof in [24],
using Gusmão’s extension of Levitt’s results ([21]). If Λ is non-orientable,
one can deduce Theorem A.11 from the orientable case by a straightforward
2-fold covering argument. The only remaining unpublished case is when Λ
is orientable, and we allow larger pseudo-groups to be non-orientable, but
this case is not needed in our argument.

A.5. Stabilisation of indecomposable components

We are now ready to prove the stabilisation of indecomposable compo-
nents.

Proof of Lemma A.7. — Let Gk

�

Tk be a sequence of geometric ac-
tions converging strongly to G

�

T as in lemma A.2. Recall that (ϕk, fk) :
Gk

�

Tk → Gk+1

�

Tk+1 and (Φk, Fk) : Gk

�

Tk → G

�

T denote the maps
of the corresponding direct system.

Let Hk0

�

Yk0 be an indecomposable component of Tk0 . Consider k > k0.
Since fk0k(Yk0) is indecomposable, it is contained in an indecomposable
component Yk of Tk (see Lemma 1.18 and 1.19). Let Ik0 ⊂ Yk0 be an arc
which embeds into T under Fk0 , and let Ik = fk0k(Ik0).

By Lemma A.8, Yk is dual to X(Ik, Sk) for some finite set Sk ⊂ Hk.
By enlarging each Sk, we can assume that for all k, ϕk(Sk) ⊂ Sk+1.
Let Λ(Ik, Sk) be the corresponding minimal pseudo-group of isometries

on
◦

Dk ⊂
◦

Ik. Under the natural identification between Ik and Ik+1, we get
◦

Dk ⊂
◦

Dk+1, and Λ(Ik, Sk) ⊂ Λ(Ik+1, Sk+1). Since Ik \
◦

Dk is finite, for k

large enough,
◦

Dk+1 =
◦

Dk.
By Theorem A.11 above, for k large enough, either Λ(Ik, Sk) is homo-

geneous, or Λ(Ik, Sk) = Λ(Ik+1, Sk+1). It is an exercise to show that if Λ
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is a minimal homogeneous pseudo-group of isometries, then any pseudo-
group of isometries containing Λ is homogeneous. Thus, in the first case,
Λ(Ik+1, Sk+1) is homogeneous. It follows that Yk and Yk+1 are lines. Since
Hk acts with dense orbits on Yk, the morphism of R-trees fk|Yk

: Yk → Yk+1

is necessarily one-to-one: there exists an arc of Yk which is embedded under
fk and using the action of Hk, we see that fk is locally isometric. It follows
that fk(Yk) = Yk+1.

In the second case, the following result concludes the proof. �

Lemma A.12 (The pseudo-group determines the action). — Assume
that (ϕ, f) : H

�

Y → H ′ � Y ′ is a morphism between nice indecompos-
able actions. Consider I ⊂ Y such that f is isometric in restriction to I

and let I ′ = f(I). Consider finite subsets S ⊂ H and S′ ⊂ H ′ such that
ϕ(S) ⊂ S′.

Assume that Y is dual to X(I, S), that Y ′ is dual to X(I ′, S′), and that
Λ(I, S) = Λ(I ′, S′).

Then f : Y → Y ′ is a surjective isometry and ϕ : H → H ′ is an
isomorphism.

I

hI h I

I

x
a2

a1

a

x

{h }× I

{1}× I

{ϕ(h̃)}× I

x

x̃

x̃

x̃

x̃

x

{h }× I

{1} × I

˜{h} × I

ã

a

ã

a1

Y
Y

X(I , S) X(I , S )

c̃

c c

c̃

b

b̃

Figure A.1. The pseudo-group determines the action

Proof. — Assume that f is not one-to-one. There exists two arcs [x, a1],
[x, a2] ⊂ Y such that [x, a1] ∩ [x, a2] = {x} and f([x, a1]) = f([x, a2]).
Since I spans Y , one may shorten these arcs and assume without loss of
generality that [x, a1] ⊂ I and [x, a2] ⊂ h.I for some h ∈ H.

Consider a′ = f(a1) = f(a2), x′ = f(x) and h′ = ϕ(h) (see Figure A.1).
The two points ã′ = h′−1a′ and x̃′ = h′−1x′ lie in I ′. The subsets {1} ×
[x′, a′] and {h′}×[̃x̃′, ã′] ofX(I ′, S′) map to the same arc in Y ′. By Corollary
A.10, there exist arcs [x′, b′] ⊂ [x′, a′], [x̃′, b̃′] ⊂ [x̃′, ã′], and a holonomy
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band in X(I ′, S′) joining {1}× [x′, b′] to {h′}× [x̃′, b̃′]. This holonomy band

defines a partial isometry
◦

ψ′ ∈ Λ(I ′, S′) such that
◦

ψ′((x′, b′)) = (x̃′, b̃′). By

hypothesis,
◦

ψ′ corresponds to an element of
◦

ψ ∈ Λ(I, S), sending (x, b) to
(x̃, b̃) where b, x̃, b̃ are the points of I corresponding to b′, x̃′, b̃′ under the
natural identification.

We now apply segment closed property to the partial isometry induced by
◦

ψ in X(I, S)/H. We get the existence of arcs [x, c] ⊂ [x, b] and [x̃, c̃] ⊂ [x̃, b̃]
and of a holonomy band in X(I, S)/H whose holonomy coincides with
◦

ψ|(x,c). Lifting this holonomy band to X(I, S), we get a holonomy band
joining {1} × [x, c] to {h̃} × [x̃, c̃] for some h̃ ∈ H. Since S′ ⊃ ϕ(S), this
holonomy band defines a holonomy band in X(I ′, S′) joining {1}×[x′, c′] to
{ϕ(h̃)}× [x̃′, c̃′] where c̃′ = f(c̃). In particular, ϕ(h̃h−1) fixes the arc [x̃′, c̃′],
so ϕ(h̃h−1) = 1. But since {h̃} × {x̃} is in the same leaf as {h} × {x̃},
h̃h−1 fixes the point x in Y . Since ϕ is one-to-one in restriction to point
stabilizers of Y , h = h̃. Since {h}× [x̃, c̃] maps into [x, a2] in Y , we get that
[x, a2] ∩ [x, a1] contains [x, c], a contradiction.

This proves that f is one-to-one. It follows that ϕ is one-to one since an
element of its kernel must fix Y pointwise.

Let’s prove that ϕ(H) ⊃ H ′, the other inclusion being trivial. The fact
that f(Y ) = Y ′ will follow because H ′ � Y ′ is minimal.

Since H ′ � Y is indecomposable, H ′ is generated by the set of elements
g ∈ H ′ such that g.I ′ ∩ I ′ is non-degenerate. Let h′ ∈ H ′ be such that
[x′, a′] = h′.I ′ ∩ I ′ is non-degenerate. Repeating the argument above, there

exists an arc [x′, b′] ⊂ [x′, a′] and
◦

ψ′ ∈ Λ(I ′, S′),
◦

ψ′ : (x′, b′) → (x̃′, b̃′)

where x̃′ = h−1x′, b̃′ = h−1b′. Let
◦

ψ ∈ Λ(I, S) be the corresponding par-
tial isometry. By segment closed property, there exist arcs [x, c] ⊂ [x, b]
and [x̃, c̃] ⊂ [x̃, b̃] and a holonomy band in X(I, S)/H joining them in

X(I, S)/H, whose holonomy coincides with
◦

ψ. This band lifts in X(I, S),
to a band joining {1} × [x, c] to {h̃} × [x̃, c̃] for some h̃ ∈ H. In X(I ′, S′),
this bands joins the corresponding arcs {1}× [x, c] to {h̃}× [x̃, c̃]. It follows
that in Y , the actions of ϕ(h̃) and h coincide on [x′, c′]. Since arc stabilizers
are trivial, h = ϕ(h̃). We conclude that ϕ(H) = H ′. �
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