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HALF-DELOCALIZATION OF EIGENFUNCTIONS FOR
THE LAPLACIAN ON AN ANOSOV MANIFOLD

by Nalini ANANTHARAMAN & Stéphane
NONNENMACHER

Abstract. — We study the high-energy eigenfunctions of the Laplacian on a
compact Riemannian manifold with Anosov geodesic flow. The localization of a
semiclassical measure associated with a sequence of eigenfunctions is character-
ized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy
is necessarily bounded from below by a constant which, in the case of constant
negative curvature, equals half the maximal entropy. In this sense, high-energy
eigenfunctions are at least half-delocalized.

Résumé. — Nous étudions la limite de haute énergie pour les fonctions propres
du laplacien, sur une variété riemannienne compacte dont le flot géodésique est
d’Anosov. La localisation d’une mesure semiclassique associée à une suite de fonc-
tions propres peut être mesurée par son entropie de Kolmogorov-Sinai. Nous obte-
nons pour cette entropie une borne inférieure qui, dans le cas des variétés à courbure
négative constante, vaut la moitié de l’entropie maximale. En ce sens, on peut dire
que les fonctions propres de haute énergie sont au moins à demi délocalisées.

The theory of quantum chaos tries to understand how the chaotic be-
haviour of a classical Hamiltonian system is reflected in its quantum ver-
sion. For instance, let M be a compact Riemannian C∞ manifold, such that
the geodesic flow has the Anosov property — the ideal chaotic behaviour.
The corresponding quantum dynamics is the unitary flow generated by the
Laplace-Beltrami operator on L2(M). One expects that the chaotic prop-
erties of the geodesic flow influence the spectral theory of the Laplacian.
The Random Matrix conjecture [6] asserts that the high-lying eigenvalues
should, after proper renormalization, statistically resemble those of a large
random matrix, at least for a generic Anosov metric. The Quantum Unique
Ergodicity conjecture [27] (see also [5, 30]) deals with the corresponding
eigenfunctions ψ: it claims that the probability density |ψ(x)|2dx should
approach (in a weak sense) the Riemannian volume, when the eigenvalue

Keywords: Quantum chaos, semiclassical measure, ergodic theory, entropy, Anosov flows.
Math. classification: 81Q50, 35Q40, 35P20, 37D40, 58J40, 28D20.



2466 Nalini ANANTHARAMAN & Stéphane NONNENMACHER

corresponding to ψ tends to infinity. In fact a stronger property should
hold for the Wigner transform Wψ, a distribution on the cotangent bundle
T ∗M which describes the distribution of the wave function ψ on the phase
space T ∗M . We will adopt a semiclassical point of view, that is consider the
eigenstates of eigenvalue unity of the semiclassical Laplacian −~24, in the
semiclassical limit ~ → 0. Weak limits of the distributions Wψ are called
semiclassical measures: they are invariant measures of the geodesic flow on
the unit energy layer E . The Quantum Unique Ergodicity conjecture asserts
that on an Anosov manifold there exists a unique semiclassical measure,
namely the Liouville measure on E ; in other words, in the semiclassical
régime all eigenfunctions become uniformly distributed over E .

For manifolds with an ergodic geodesic flow (with respect to the Liou-
ville measure), it has been shown by Schnirelman, Zelditch and Colin de
Verdière that almost all eigenfunctions become uniformly distributed over
E , in the semiclassical limit: this property is dubbed as Quantum Ergodic-
ity [29, 32, 8]. The possibility of exceptional sequences of eigenstates with
different semiclassical limits remains open in general. The Quantum Unique
Ergodicity conjecture states that such sequences do not exist for an Anosov
manifold [27].

So far the most precise results on this question were obtained for
Anosov manifolds M with arithmetic properties: see Rudnick-Sarnak [27],
Wolpert [31]. Recently, Lindenstrauss [24] proved the asymptotic equidis-
tribution of all “arithmetic” eigenstates (these are believed to exhaust the
full family of eigenstates). The proof, unfortunately, cannot be extended to
general Anosov manifolds.

To motivate the conjecture, one may instead invoke the following dynam-
ical explanation. By the Heisenberg uncertainty principle, an eigenfunction
cannot be strictly localized on a submanifold in phase space. Its microlo-
cal support must contain a symplectic cube of volume ~d, where d is the
dimension of M . Since ψ is invariant under the quantum dynamics, which
is semiclassically approximated by the geodesic flow, the fast mixing prop-
erty of the latter will spread this cube throughout the energy layer, showing
that the support of the eigenfunction must also spread throughout E .

This argument is however too simplistic. First, Colin de Verdière and
Parisse showed that, on a surface of revolution of negative curvature, eigen-
functions can concentrate on a single periodic orbit in the semiclassical
limit, despite the exponential unstability of that orbit [9]. Their construc-
tion shows that one cannot use purely local features, such as instability,
to rule out localization of eigenfunctions on closed geodesics. Second, the
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HALF-DELOCALIZATION OF EIGENFUNCTIONS 2467

argument above is based on the classical dynamics, and does not take into
account the interferences of the wavefunction with itself, after a long time.
Faure, Nonnenmacher and De Bièvre exhibited in [15] a simple example
of a symplectic Anosov dynamical system, namely the action of a linear
hyperbolic automorphism on the 2-torus (also called “Arnold’s cat map”),
the quantization of which does not satisfy the Quantum Unique Ergodic-
ity conjecture. Precisely, they construct a family of eigenstates for which
the semiclassical measure consists in two ergodic components: half of it
is the Liouville measure, while the other half is a Dirac peak on a sin-
gle unstable periodic orbit. It was also shown that — in the case of the
“cat map” — this half-localization on a periodic orbit is maximal [14].
Another type of semiclassical measures was recently exhibited by Kelmer
for quantized automorphisms on higher-dimensional tori and some of their
perturbations [19, 20]: it consists in the Lebesgue measure on some in-
variant co-isotropic subspace of the torus. In those cases, the existence of
exceptional eigenstates is due to some nongeneric algebraic properties of
the classical and quantized systems.

In a previous paper [3], we discovered how to use an information-theoretic
variant of the uncertainty principle [22, 25], called the Entropic Uncertainty
Principle, to constrain the localization properties of eigenfunctions in the
case of another toy model, the Walsh-quantized baker’s map. For any dy-
namical system, the complexity of an invariant measure can be described
through its Kolmogorov–Sinai entropy. In the case of the Walsh-baker’s
map, we showed that the entropy of semiclassical measures must be at
least half the entropy of the Lebesgue measure. Thus, our result can be in-
terpreted as a “half-delocalization” of eigenstates. The Walsh-baker model
being very special, it was not clear whether the strategy could be general-
ized to more realistic systems, like geodesic flows or more general symplectic
systems quantized à la Weyl.

In this paper we show that it is the case: the strategy used in [3] is rather
general, and its implementation to the case of Anosov geodesic flows only
requires more technical suffering.

1. Main result

Let M be a compact Riemannian manifold. We will denote by |·|x the
norm on T ∗xM given by the metric. The geodesic flow (gt)t∈R is the Hamil-
tonian flow on T ∗M generated by the Hamiltonian

H(x, ξ) =
|ξ|2x
2
.
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2468 Nalini ANANTHARAMAN & Stéphane NONNENMACHER

In the semiclassical setting, the corresponding quantum operator is −~24
2 ,

which generates the unitary flow (U t) = (exp(it~42 )) acting on L2(M).
We denote by (ψk)k∈N an orthonormal basis of L2(M) made of eigen-

functions of the Laplacian, and by ( 1
~2

k

)k∈N the corresponding eigenvalues:

−~2
k4ψk = ψk, with ~k+1 6 ~k.

We are interested in the high-energy eigenfunctions of −4, in other words
the semiclassical limit ~k → 0.

The Wigner distribution associated to an eigenfunction ψk is defined by

Wk(a) = 〈Op~k
(a)ψk, ψk〉L2(M), a ∈ C∞c (T ∗M).

Here Op~k
is a quantization procedure, set at the scale ~k, which associates

a bounded operator on L2(M) to any smooth phase space function a with
nice behaviour at infinity (see for instance [10]). If a is a function on the
manifold M , we have Wk(a) =

∫
M
a(x)|ψk(x)|2dx: the distribution Wk is

a microlocal lift of the probability measure |ψk(x)|2dx into a phase space
distribution. Although the definition of Wk depends on a certain number
of choices, like the choice of local coordinates, or of the quantization pro-
cedure (Weyl, anti-Wick, “right” or “left” quantization. . . ), its asymptotic
behaviour when ~k −→ 0 does not. Accordingly, we call semiclassical mea-
sures the limit points of the sequence (Wk)k∈N, in the distribution topology.

Using standard semiclassical arguments, one easily shows the follow-
ing [8]:

Proposition 1.1. — Any semiclassical measure is a probability mea-
sure carried on the energy layer E = H−1( 1

2 ) (which coincides with the unit
cotangent bundle E = S∗M). This measure is invariant under the geodesic
flow.

If the geodesic flow has the Anosov property — for instance if M has
negative sectional curvature — then there exist many invariant probability
measures on E , in addition to the Liouville measure. The geodesic flow has
countably many periodic orbits, each of them carrying an invariant proba-
bility measure. There are still many others, like the equilibrium states ob-
tained by variational principles [18]. The Kolmogorov–Sinai entropy, also
called metric entropy, of a (gt)-invariant probability measure µ is a non-
negative number hKS(µ) that describes, in some sense, the complexity of
a µ-typical orbit of the flow. For instance, a measure carried on a closed
geodesic has zero entropy. An upper bound on the entropy is given by the
Ruelle inequality: since the geodesic flow has the Anosov property, the en-
ergy layer E is foliated into unstable manifolds of the flow, and for any
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HALF-DELOCALIZATION OF EIGENFUNCTIONS 2469

invariant probability measure µ one has

(1.1) hKS(µ) 6

∣∣∣∣∫
E

log Ju(ρ)dµ(ρ)
∣∣∣∣ .

In this inequality, Ju(ρ) is the unstable Jacobian of the flow at the point
ρ ∈ E , defined as the Jacobian of the map g−1 restricted to the unsta-
ble manifold at the point g1ρ. Although log Ju(ρ) depends on the metric
structure on E , its average over any invariant measure does not, and this
average is always negative. If M has dimension d and has constant sec-
tional curvature −1, one has log Ju ≡ −(d − 1), so this inequality just
reads hKS(µ) 6 d − 1. The equality holds in (1.1) if and only if µ is the
Liouville measure on E [23]. Our central result is the following

Theorem 1.2. — Let M be a compact smooth Riemannian manifold
with Anosov geodesic flow. Let µ be a semiclassical measure associated to
the eigenfunctions of the Laplacian on M . Then the metric entropy of µ
with respect to the geodesic flow satisfies

(1.2) hKS(µ) >
3
2

∣∣∣∣∫
E

log Ju(ρ)dµ(ρ)
∣∣∣∣− (d− 1)λmax,

where d = dimM and λmax = limt→±∞
1
t log supρ∈E |dgtρ| is the maximal

expansion rate of the geodesic flow on E .
In particular, if M has constant sectional curvature −1 (and thus

λmax = 1), this means that

(1.3) hKS(µ) >
d− 1

2
.

The first author proved in [2] that the entropy of such a semiclassical
measure is bounded from below by a positive (hardly explicit) constant. The
bound (1.3) in the above theorem is much sharper in the case of constant
curvature. On the other hand, if the curvature varies a lot (still being
negative everywhere), the right hand side of (1.2) may actually be negative,
in which case the above bound is trivial. In fact, if the sectional curvatures
vary in the interval [−K2

2 ,−K2
1 ] then λmax can be as large as K2, whereas∣∣∫

E log Ju(ρ)dµ(ρ)
∣∣may vary between (d−1)K1 and (d−1)K2, depending on

the measure µ. This “problem” is not very surprising, since the above bound
is generally not optimal. Indeed, in a subsequent work in collaboration with
Herbert Koch [1], we have managed to slightly improve the above bound to

(1.4) hKS(µ) >

∣∣∣∣∫
E

log Ju(ρ)dµ(ρ)
∣∣∣∣− (d− 1)λmax

2
.
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2470 Nalini ANANTHARAMAN & Stéphane NONNENMACHER

The numbers 3/2 and (d − 1) appearing in (1.2), which follow from the
estimate in Theorem 2.7, are thus not fundamental, but result from some
choices we have made. Indeed, the improved bound in (1.4) results from a
modified, more symmetrical version of that estimate. This lower bound can
still be negative in case of a strongly varying curvature. We believe that, by
further improving the method presented below, the following bound could
be obtained:

(1.5) hKS(µ) >
1
2

∣∣∣∣∫
E

log Ju(ρ)dµ(ρ)
∣∣∣∣ .

This conjectured lower bound is now strictly positive for any invariant
measure, and improves the bounds (1.2, 1.4) proved so far.

Remark 1.3. — Proposition 1.1 and Theorem 1.2 still apply if µ is not
associated to a subsequence of eigenstates, but rather a sequence (u~)~→0

of quasimodes of the Laplacian, of the following order:

‖(−~2 4−1)u~‖ = o(~| log ~|−1)‖u~‖, ~ → 0.

This extension of the theorem requires little modifications, which we leave
to the reader. It is also possible to prove lower bounds on the entropy in
the case of quasimodes of the type

‖(−~2 4−1)u~‖ 6 c~| log ~|−1‖u~‖, ~ → 0,

as long as c > 0 is sufficiently small. However, this extension is not as
straightforward as in [2], so we defer it to a future work.

Remark 1.4. — In this article we only treat the case of Anosov ge-
odesic flows. The same method could hopefully be extended to the case
of manifolds with nonpositive sectional curvature, or even assuming only
that there are no conjugate points (and maybe some growth condition on
the volume of spheres). Such manifolds include the surfaces considered by
H. Donnelly [11], which contain a flat cylinder supporting “bouncing ball
quasimodes”. One future objective is to prove (1.5) in this more general
context (with an adequate definition of log Ju). Notice that any semiclas-
sical measure associated with bouncing ball quasimodes has vanishing en-
tropy, and is supported on a set of geodesics which are not unstable, so
that log Ju vanishes on this support. The bound (1.5) therefore still makes
sense in that case, but is trivial. On the other hand, proving (1.5) for
such manifolds would have the nontrivial consequence to forbid semiclas-
sical measures from being supported on an unstable closed orbit, like for
Anosov manifolds.
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In a more straightforward way, the present results can easily be adapted
to the case of a general Hamiltonian flow, assumed to be Anosov on some
compact energy layer. The quantum operator can then be any self-adjoint ~-
quantization of the Hamilton function. The tools needed to prove estimates
of the type (2.18) in a more general setting have been used in [26].

Although this paper is overall in the same spirit as [2], certain aspects of
the proof are quite different. We recall that the proof given in [2] required to
study the quantum dynamics far beyond the Ehrenfest time — i.e. the time
needed by the classical flow to transform wavelengths ∼ 1 into wavelengths
∼ ~. In this paper we will study the dynamics until twice the Ehrenfest
time, but not beyond. In variable curvature, the fact that the Ehrenfest time
depends on the initial position seems to be the reason why the bounds (1.2,
1.4) are not optimal.

Quantum Unique Ergodicity would mean that

hKS(µ) =
∣∣∣∣∫
E

log Ju(ρ)dµ(ρ)
∣∣∣∣ .

We believe however that (1.5) is the optimal result that can be obtained
without using more precise information, like for instance upper bounds on
the multiplicities of eigenvalues. Indeed, in the above mentioned examples
of Anosov systems where Quantum Unique Ergodicity fails, the bound (1.5)
is actually sharp [15, 19, 3]. In those examples, the spectrum has high de-
generacies in the semiclassical limit, which allows for a lot of freedom to
select the eigenstates. Such high degeneracies are not expected to happen in
the case of the Laplacian on a negatively curved manifold. Yet, for the mo-
ment we have no clear understanding of the relationship between spectral
degeneracies and failure of Quantum Unique Ergodicity.

Acknowledgements. — Both authors were partially supported by the
Agence Nationale de la Recherche, under the grant ANR-05-JCJC-0107-
01. They are grateful to Yves Colin de Verdière and Steve Zelditch for
their comments and encouragement. They thank Jens Marklof for orga-
nizing their stay at Bristol University in June 2006, during which part of
this article was written. S. Nonnenmacher also thanks Maciej Zworski and
Didier Robert for interesting discussions, and Herbert Koch for his enlight-
ening remarks on the Riesz-Thorin theorem.
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2. Outline of the proof

2.1. Weighted entropic uncertainty principle

Our main tool is an adaptation of the entropic uncertainty principle
conjectured by Kraus in [22] and proven by Maassen and Uffink [25]. This
principle states that if a unitary matrix has “small” entries, then any of
its eigenvectors must have a “large” Shannon entropy. For our purposes,
we need an elaborate version of this uncertainty principle, which we shall
prove in Section 6.

Let (H, 〈· , · 〉) be a complex Hilbert space, and denote ‖ψ‖ =
√
〈ψ,ψ〉 the

associated norm. Let π = (πk)k=1,...,N be an quantum partition of unity,
that is, a family of operators on H such that

(2.1)
N∑
k=1

πkπ
∗
k = Id .

In other words, for all ψ ∈ H we have

‖ψ‖2 =
N∑
k=1

‖ψk‖2, where we denoteψk = π∗kψ for all k = 1, . . . ,N .

If ‖ψ‖ = 1, we define the entropy of ψ with respect to the partition π as

hπ(ψ) = −
N∑
k=1

‖ψk‖2 log‖ψk‖2.

We extend this definition by introducing the notion of pressure, associated
to a family (αk)k=1,...,N of positive real numbers: it is defined by

pπ,α(ψ) = −
N∑
k=1

‖ψk‖2 log‖ψk‖2 −
N∑
k=1

‖ψk‖2 logα2
k.

In Theorem 2.1 below, we use two families of weights (αk)k=1,...,N ,
(βj)j=1,...,N , and consider the corresponding pressures pπ,α, pπ,β .

Besides the appearance of the weights α, β, we also modify the statement
in [25] by introducing an auxiliary operator O — for reasons that should
become clear later.

Theorem 2.1. — Let O be a bounded operator and U an isometry
on H. Define A = maxk αk, B = maxj βj and

c
(α,β)
O (U) def= sup

j,k
αkβj‖π∗jUπkO‖L(H).

ANNALES DE L’INSTITUT FOURIER



HALF-DELOCALIZATION OF EIGENFUNCTIONS 2473

Then, for any ϑ > 0, for any normalized ψ ∈ H satisfying

∀k = 1, . . . ,N , ‖(Id−O)π∗kψ‖ 6 ϑ,

the pressures pπ,β
(
Uψ
)
, pπ,α

(
ψ
)

satisfy

pπ,β
(
Uψ
)

+ pπ,α
(
ψ
)

> −2 log
(
c
(α,β)
O (U) +NABϑ

)
.

Remark 2.2. — The result of [25] corresponds to the case where H is
an N -dimensional Hilbert space, O = Id, ϑ = 0, αk = βj = 1, and the
operators πk are orthogonal projectors on an orthonormal basis of H. In
this case, the theorem reads

hπ(Uψ) + hπ(ψ) > −2 log c(U),

where c(U) is the supremum of all matrix elements of U in the orthonormal
basis defined by π.

2.2. Applying the entropic uncertainty principle to the
Laplacian eigenstates

In the whole article, we consider a certain subsequence of eigenstates
(ψkj

)j∈N of the Laplacian, such that the corresponding sequence of Wigner
functions (Wkj

) converges to a certain semiclassical measure µ (see the
discussion preceding Proposition 1.1). The subsequence (ψkj ) will simply
be denoted by (ψ~)~→0, using the slightly abusive notation ψ~ = ψ~kj

for
the eigenstate ψkj . Each state ψ~ satisfies

(2.2) (−~2 4−1)ψ~ = 0,

and we assume that

(2.3) the Wigner measures Wψ~
~→0−−−→ µ in the weak-∗ topology.

In this section we define the data to input in Theorem 2.1, in order to obtain
informations on the eigenstates ψ~ and the measure µ. Only the Hilbert
space is fixed, H def= L2(M). All other data depend on the semiclassical
parameter ~: the quantum partition π, the operator O, the positive real
number ϑ, the weights (αj), (βk) and the unitary operator U .

TOME 57 (2007), FASCICULE 7



2474 Nalini ANANTHARAMAN & Stéphane NONNENMACHER

2.2.1. Smooth partition of unity

As usual when computing the Kolmogorov–Sinai entropy, we start by
decomposing the manifold M into small cells of diameter ε > 0. More
precisely, let (Ωk)k=1,...,K be an open cover of M such that all Ωk have
diameters 6 ε, and let (Pk)k=1,...,K be a family of smooth real functions
on M , with suppPk b Ωk, such that

(2.4) ∀x ∈M,

K∑
k=1

P 2
k (x) = 1.

Most of the time, the notation Pk will actually denote the operator of
multiplication by Pk(x) on the Hilbert space L2(M): the above equation
shows that they form a quantum partition of unity (2.1), which we will
call P(0).

2.2.2. Refinement of the partition under the Schrödinger flow

We denote the quantum propagator by U t = exp(it~ 4 /2). With no
loss of generality, we will assume that the injectivity radius of M is greater
than 2, and work with the propagator at time unity, U = U1. This prop-
agator quantizes the flow at time one, g1. The ~-dependence of U will be
implicit in our notations.

As one does to compute the Kolmogorov–Sinai entropy of an invariant
measure, we define a new quantum partition of unity by evolving and refin-
ing the initial partition P(0) under the quantum evolution. For each time
n ∈ N and any sequence of symbols ε = (ε0 · · · εn), εi ∈ [1,K] (we say that
the sequence ε is of length |ε| = n), we define the operators

Pε = PεnUPεn−1 · · ·UPε0
P̃ε = U−nPε = Pεn(n)Pεn−1(n− 1) · · ·Pε0 .

(2.5)

Throughout the paper we will use the notation A(t) = U−tAU t for the
quantum evolution of an operator A. From (2.4) and the unitarity of U , the
family of operators {Pε}|ε|=n obviously satisfies the resolution of identity∑

|ε|=n PεP
∗
ε = IdL2 , and therefore forms a quantum partition which we

call P(n). The operators P̃ε also have this property, they will be used in
the proof of the subadditivity, see sections 2.2.7 and 4.

ANNALES DE L’INSTITUT FOURIER
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2.2.3. Energy localization

In the semiclassical setting, the eigenstate ψ~ of (2.2) is associated with
the energy layer E = E(1/2) = {ρ ∈ T ∗M,H(ρ) = 1/2}. Starting from the
cotangent bundle T ∗M , we restrict ourselves to a compact phase space by
introducing an energy cutoff (actually, several cutoffs) near E . To optimize
our estimates, we will need this cutoff to depend on ~ in a sharp way. For
some fixed δ ∈ (0, 1), we consider a smooth function χδ ∈ C∞(R; [0, 1]),
with χδ(t) = 1 for |t| 6 e−δ/2 and χδ(t) = 0 for |t| > 1. Then, we rescale
that function to obtain a family of ~-dependent cutoffs near E :

(2.6) ∀~ ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗M,

χ(n)(ρ; ~) def= χδ
(
e−nδ~−1+δ(H(ρ)− 1/2)

)
.

The cutoff χ(0) is localized in an energy interval of length 2~1−δ. Choosing
0 < Cδ < δ−1 − 1, we will only consider indices n 6 Cδ| log ~|, such that
the “widest” cutoff will be supported in an interval of microscopic length
2~1−(1+Cδ)δ << 1. In our applications, we will always take δ small enough,
so that we can take Cδ of the form

(2.7) 4/λmax < Cδ < δ−1 − 1.

These cutoffs can be quantized into pseudodifferential operators Op(χ(n)) =
OpE,~(χ(n)) described in Section 5.1 (the quantization uses a nonstandard
pseudodifferential calculus drawn from [28]). It is shown there (see Propo-
sition 5.4) that the eigenstate ψ~ satisfies

(2.8) ‖
(
Op(χ(0))− 1

)
ψ~‖ = O(~∞)‖ψ~‖.

Here and below, the norm ‖·‖ will either denote the Hilbert norm on H =
L2(M), or the corresponding operator norm.

Remark 2.3. — Although the use of these sharp cutoffs is quite tedious
(due to the nonstandard pseudodifferential calculus they require), their use
seems necessary to obtain the lower bound (1.2) (and similarly for (1.4)).
Using cutoffs localizing in an energy strip of width ~1/2−δ would allow us
to use more standard symbol classes (of the type (5.4)), but it would lead
to the lower bound 3/2|

∫
E log Judµ|−dλmax for the entropy, which is worse

than (1.2) (see the remark following Theorem 2.7). In constant curvature,
in particular, we would get the lower bound d−3

2 which is trivial for d 6 3.

Remark 2.4. — We will constantly use the fact that sharp energy local-
ization is almost preserved by the operators Pε. Indeed, using results of sec-
tion 5.4, namely the first statement of Corollary 5.6 and the norm estimate
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(5.12), we obtain that for ~ small enough and any m, m′ 6 Cδ| log ~|/2,

(2.9) ∀|ε| = m, ‖Op(χ(m′+m))P ∗ε Op(χ(m′))− P ∗ε Op(χ(m′))‖ = O(~∞).

Here the implied constants are uniform with respect to m, m′ — and of
course the same estimates hold if we replace P ∗ε by Pε. Similarly, from §5
one can easily show that

∀|ε| = m, ‖Pε Op(χ(m′))− P fε Op(χ(m′))‖ = O(~∞),

where P fεj
def= Op~(Pεjf), f is a smooth, compactly supported function

in T ∗M which takes the value 1 in a neighbourhood of E — and P fε =
P fεmUP

f
εm−1

· · ·UP fε0 .

In the whole paper, we will fix a small δ′ > 0, and call “Ehrenfest time”
the ~-dependent integer

(2.10) nE(~) def=
⌊ (1− δ′)| log ~|

λmax

⌋
.

Unless indicated otherwise, the integer n will always be taken equal to
nE . For us, the significance of the Ehrenfest time is that it is the largest
time interval on which the (non–commutative) dynamical system formed
by (U t) acting on pseudodifferential operators can be treated as being,
approximately, commutative (see (4.2)).

Using the estimates (2.9) with m = n, m′ = 0 together with (2.8), one
easily checks the following

Proposition 2.5. — Fix δ > 0, Cδ > 0 satisfying (2.7). For any fixed
L > 0, there exists ~δ,L > 0 such that, for any ~ 6 ~δ,L, any n 6 Cδ| log ~|,
the Laplacian eigenstate ψ~ satisfies

(2.11) ∀ε, |ε| = n, ‖
(
Op(χ(n))− Id

)
P ∗ε ψ~‖ 6 ~L‖ψ~‖.

Notice that this estimate includes the sequences ε of length n = nE(~).

2.2.4. Applying the entropic uncertainty principle

We now precise some of the data we will use in the entropic uncertainty
principle, Theorem 2.1:

• the quantum partition π is given by the family of operators {Pε ,
|ε| = n = nE}. In the semiclassical limit, this partition has cardi-
nality N = Kn � ~−K0 for some fixed K0 > 0.

• the operator O is O = Op(χ(n)), and by Proposition 2.5, we can
take ϑ = ~L, where L will be chosen very large (see §2.2.6).
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• the isometry will be U = Un = UnE .
• the weights αε, βε will be selected in §2.2.6. They will be semiclas-

sically tempered, meaning that there exists K1 > 0 such that, for
~ small enough, all αε, βε are contained in the interval [1, ~−K1 ].

As in Theorem 2.1, the entropy and pressures associated with a normalized
state φ ∈ H are given by

hn(φ) = hP(n)(φ) = −
∑
|ε|=n

‖P ∗ε φ‖2 log
(
‖P ∗ε φ‖2

)
,(2.12)

pn,α(φ) = hn(φ)− 2
∑
|ε|=n

‖P ∗ε φ‖2 logαε.(2.13)

We may apply Theorem 2.1 to any sequence of states satisfying (2.11), in
particular the eigenstates ψ~.

Corollary 2.6. — Consider the assumptions of Prop. 2.5. Define

(2.14) cα,β
Op(χ(n))

(Un) def= max
|ε|=|ε′|=n

(
αεβε′‖P ∗ε′UnPε Op(χ(n))‖

)
.

Then for any ~ 6 ~δ,L, and for any normalized state φ satisfying the prop-
erty (2.11) with n = nE(~), we have

pn,β(Unφ) + pn,α(φ) > −2 log
(
cα,β
Op(χ(n))

(Un) + ~L−K0−2K1

)
.

Most of Section 3 will be devoted to obtaining a good upper bound for
the norms ‖P ∗ε′UnPε Op(χ(n))‖ involved in the above quantity. The bound
is given in Theorem 2.7 below. Our choice for the weights αε, βε will then
be guided by these upper bounds.

2.2.5. Unstable Jacobian for the geodesic flow

We need to recall a few definitions pertaining to Anosov flows. For any
λ > 0, the geodesic flow gt is Anosov on the energy layer E(λ) = H−1(λ) ⊂
T ∗M . This implies that for each ρ ∈ E(λ), the tangent space TρE(λ) splits
into

TρE(λ) = Eu(ρ)⊕ Es(ρ)⊕ RXH(ρ)

where Eu is the unstable subspace and Es the stable subspace. The un-
stable Jacobian Ju(ρ) at the point ρ is defined as the Jacobian of the
map g−1, restricted to the unstable subspace at the point g1ρ: Ju(ρ) =
det
(
dg−1
|Eu(g1ρ)

)
(the unstable spaces at ρ and g1ρ are equipped with the

induced Riemannian metric). This Jacobian can be “coarse-grained” as
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follows in a neighbourhood Eε def= E([1/2 − ε, 1/2 + ε]) of E . For any pair
(ε0, ε1) ∈ [1,K]2, we define

(2.15) Ju1 (ε0, ε1)
def= sup

{
Ju(ρ) : ρ ∈ T ∗Ωε0 ∩ Eε, g1ρ ∈ T ∗Ωε1

}
if the set on the right hand side is not empty, and Ju1 (ε0, ε1) = e−Λ other-
wise, where Λ > 0 is a fixed large number. For any sequence of symbols ε

of length n, we define the coarse-grained Jacobian

(2.16) Jun (ε) def= Ju1 (ε0, ε1) · · ·Ju1 (εn−1, εn).

Although Ju and Ju1 (ε0, ε1) are not necessarily everywhere smaller than
unity, there exists C, λ+, λ− > 0 such that, for any n > 0, all the coarse-
grained Jacobians of length n satisfy

(2.17) C−1e−n(d−1)λ+ 6 Jun (ε) 6 Ce−n(d−1)λ− .

One can take λ+ = λmax(1 + ε). We can now give our central estimate,
proven in Section 3.

Theorem 2.7. — Given δ′ ∈ (0, 1), δ > 0, small enough to satisfy
(2.7), define the Ehrenfest time nE(~) by (2.10), and the family of cut-off
functions χ(n) as in (2.6).

Given a partition P(0), there exists ~P(0),δ,δ′ such that, for any ~ 6
~P(0),δ,δ′ , for any positive integer n 6 nE(~), and any pair of sequences ε,
ε′ of length n,

(2.18) ‖P ∗ε′UnPε Op(χ(n))‖ 6 C~−(d−1+cδ)Jun (ε)1/2Jun (ε′).

Here d = dimM , and the constants c, C only depend on the Riemannian
manifold (M, g).

We notice that the numbers appearing in the lower bound (1.2) already
appear in the above right hand side: the power of ~ leads to the factor
−(d − 1), while adding the powers of the two Jacobians gives the factor
3/2. The use of the sharp cutoffs χ(n) is crucial to get (2.18): with cutoffs
of width > ~1/2, the first factor on the right hand side would have been
C~−(d+cδ).

2.2.6. Choice of the weights

There remains to choose the weights (αε, βε) to use in Theorem 2.1. Our
choice is guided by the following idea: in the quantity (2.14), the weights
should balance the variations (with respect to ε, ε′) in the norms, such as to
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make all terms in (2.14) of the same order. Using the upper bounds (2.18),
we end up with the following choice for all ε of length n:

(2.19) αε
def= Jun (ε)−1/2 and βε

def= Jun (ε)−1.

All these quantities are defined using the Ehrenfest time n = nE(~). From
(2.17), there exists K1 > 0 such that, for ~ small enough, all the weights
are bounded by

(2.20) 1 6 |αε| 6 ~−K1 , 1 6 |βε| 6 ~−K1 ,

as announced in §2.2.4. The estimate (2.18) can then be rewritten as

cα,β
Op(χ(n))

(Un) 6 C~−(d−1+cδ).

We now apply Corollary 2.6 to the particular case of the eigenstates ψ~. We
choose L large enough such that ~L−K0−2K1 is negligible in comparison with
~−(d−1+cδ), and consider the parameter ~0 = min(~δ,L, ~P(0),δ,δ′), where
~δ,L, ~P(0),δ,δ′ appear respectively in Proposition 2.5 and Theorem 2.7.

Proposition 2.8. — Let (ψ~)~→0 be our sequence of eigenstates (2.2).
Then, for ~ < ~0, the pressures of ψ~ at the Ehrenfest time n = nE(~) (see
(2.10)) relative to the weights (2.19) satisfy

pn,α(ψ~) + pn,β(ψ~) > 2(d− 1 + cδ) log ~− C̃

> −2
(d− 1 + cδ)λmax

(1− δ′)
n− C̃.

(2.21)

Here C̃ only depends on the constant C appearing in (2.18).

2.2.7. Subadditivity until the Ehrenfest time

Before taking the limit ~ → 0, we prove that a similar lower bound holds
if we replace n � | log ~| by some fixed no, and P(n) by the corresponding
partition P(no). This is due to the following subadditivity property, which
is the semiclassical analogue of the classical subadditivity of pressures for
invariant measures.

Proposition 2.9 (Subadditivity). — Let δ′ > 0 and define the Ehren-
fest time nE(~) as in (2.10). There exists a real number R > 0 independent
of δ′ and a function R(•, •) on N× (0, 1] such that

∀no ∈ N, lim sup
~→0

|R(no, ~)| 6 R,
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and with the following properties. For any ~ ∈ (0, 1], any no,m ∈ N with
no + m 6 nE(~), for ψ~ any normalized eigenstate satisfying (2.2), the
pressures associated with the weights αε of (2.19) satisfy

pno+m,α(ψ~) 6 pno,α(ψ~) + pm−1,α(ψ~) +R(no, ~).

The same inequality holds for the pressures pno+m,β(ψ~) associated with
the weights βε.

The proof is given in §4. The time no + m needs to be smaller than
the Ehrenfest time because, in order to show the subadditivity, the various
operators Pεi(i) composing P̃ε have to approximately commute with each
other. Indeed, for m > nE(~) the commutator [Pεm(m), Pε0 ] may have a
norm of order unity.

Equipped with this subadditivity, we may finish the proof of Theorem 1.2.
Let no ∈ N be fixed and n = nE(~). Using the Euclidean division n =
q(no+1)+ r, with r 6 no, Proposition 2.9 implies that for ~ small enough,

pn,α(ψ~)
n

6
pno,α(ψ~)

no
+
pr,α(ψ~)

n
+
R(no, ~)
no

.

Using (2.21) and the fact that pr,α(ψ~)+pr,β(ψ~) stays uniformly bounded
(by a quantity depending on no) when ~ → 0, we find

(2.22)
pno,α(ψ~)

no
+
pno,β(ψ~)

no
> −2

(d−1+cδ)λmax

(1−δ′)
−2

R(no, ~)
no

+Ono(1/n).

We are now dealing with the partition P(no), n0 being independent of ~.

2.2.8. End of the proof

Because ψ~ are eigenstates of U , the norms appearing in the definition
of hno

(ψ~) can be alternatively written as

(2.23) ‖P ∗ε ψ~‖ = ‖P̃ ∗ε ψ~‖ = ‖Pε0Pε1(1) · · ·Pεno
(no)ψ~‖.

We may take the limit ~ → 0 (so that n → ∞) in (2.22). The assumption
(2.3) implies that, for any sequence ε of length no, ‖P̃ ∗ε ψ~‖2 converges to
µ({ε}), where {ε} is the function P 2

ε0(P
2
ε1 ◦ g

1) · · · (P 2
εno

◦ gno) on T ∗M .
Thus hno

(ψ~) semiclassically converges to the classical entropy

hno
(µ) = hno

(µ, (P 2
k )) = −

∑
|ε|=no

µ({ε}) logµ({ε}).

As a result, the left hand side of (2.22) converges to

(2.24)
2
n o
hno(µ) +

3
no

∑
|ε|=no

µ({ε}) log Juno
(ε).
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Since the semiclassical measure µ is gt-invariant and Juno
has the multi-

plicative structure (2.16), the second term in (2.24) can be simplified:

∑
|ε|=no

µ({ε}) log Juno
(ε) = no

∑
ε0,ε1

µ({ε0ε1}) log Ju1 (ε0, ε1).

We have thus obtained the lower bound

(2.25)
hno(µ)
no

> −3
2

∑
ε0,ε1

µ({ε0ε1}) log Ju1 (ε0, ε1)−
(d−1 + cδ)λmax

(1−δ′)
− 2

R

no
.

δ and δ′ could be taken arbitrarily small, and at this stage they can be let
vanish.

The Kolmogorov–Sinai entropy of µ is by definition the limit of the first
term hno (µ)

no
when no goes to infinity, with the notable difference that the

smooth functions Pk should be replaced by characteristic functions associ-
ated with some partition of M , M =

⊔
k Ok. Thus, let us consider such a

partition of diameter 6 ε/2, such that µ does not charge the boundaries of
the Ok. This last requirement can be easily enforced, if necessary by slightly
shifting the Ok. One may for instance construct a “hypercubic partition”
defined locally by a finite family of hypersurfaces (Si)i=1,...,I . If some of the
Si charge µ, one can (using local coordinates) translate them by arbitrarily
small amounts ~vi such that µ(Si + ~vi) = 0. The boundary of the partition
defined by those translated hypersurfaces does not charge µ (see e.g. [2,
Appendix A2] for a similar construction).

By convolution we can smooth the characteristic functions (1lOk
) into a

smooth partition of unity (Pk) satisfying the conditions of section 2.2.1 (in
particular, each Pk is supported on a set Ωk of diameter 6 ε). The lower
bound (2.25) holds with respect to the smooth partition (P 2

k ), and does not
depend on the derivatives of the Pk: as a result, the same bound carries
over to the characteristic functions (1lOk

).
We can finally let no tend to +∞, then let the diameter ε/2 of the par-

tition tend to 0. From the definition (2.15) of the coarse-grained Jacobian,
the first term in the right hand side of (2.25) converges to the integral
− 3

2

∫
E log Ju(ρ)dµ(ρ) as ε→ 0. Since the integral of log Ju is negative, this

proves (1.2). �

The next sections are devoted to proving, successively, Theorem 2.7,
Proposition 2.9 and Theorem 2.1.
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3. The main estimate: proof of Theorem 2.7

3.1. Strategy of the proof

We want to bound from above the norm of the operator P ∗ε′U
nPεOp(χ(n)).

This norm can be obtained as follows:

‖P ∗ε′UnPε Op(χ(n))‖ = sup
{
|〈Pε′Φ, UnPε Op(χ(n))Ψ〉| :

Ψ,Φ ∈ H, ‖Ψ‖ = ‖Φ‖ = 1
}
.

Using Remark 2.4, we may insert Op(χ(4n)) on the right of Pε′ , up to an
error OL2(~∞). In this section we will prove the following

Proposition 3.1. — For ~ small enough, for any time n 6 nE(~), for
any sequences ε, ε′ of length n and any normalized states Ψ, Φ ∈ L2(M),
one has

(3.1) |〈Pε′ Op(χ(4n))Φ, UnPε Op(χ(n))Ψ〉| 6 C~−(d−1)−cδJun (ε)1/2Jun (ε′).

Here we have taken δ small enough such that Cδ > 4/λmax, and nE(~)
is the Ehrenfest time (2.10). The constants C and c = 2 + 5/λmax only
depend on the Riemannian manifold M .

For such times n, the right hand side in the above bound is larger than
C~ 1

2 (d−1), in comparison to which the errors O(~∞) are negligible. Theo-
rem 2.7 therefore follows from the above proposition.

The idea in Proposition 3.1 is rather simple, although the technical imple-
mentation becomes cumbersome. We first show that any state of the form
Op(χ(∗))Ψ, as those appearing on both sides of the scalar product (3.1),
can be decomposed as a superposition of essentially ~−

(d−1)
2 “elementary”

Lagrangian states, supported on Lagrangian manifolds transverse to the
stable leaves of the flow: see §3.2. In fact, our elementary Lagrangian states,
defined in (3.2), are truncated δ–functions, microlocally supported on La-
grangians of the form ∪tgtS∗zM , where S∗zM is the unit sphere at the point
z. Any function of the form Op(χ(∗))Ψ is a superposition, in the z vari-
able, of such states. The action of the Schrödinger flow U t on a Lagrangian
state is analyzed by the WKB method, described in §3.3.1. For each time
t, U t is a Fourier integral operator associated with gt, the geodesic flow at
time t. Then, the action of the operator Pε = PεnUPεn−1U · · ·UPε0 on a
Lagrangian state is intuitively simple to understand: each application of U
amounts to applying g1 to the underlying Lagrangian manifold, which it
stretches in the unstable direction (the rate of elongation being described
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by the unstable Jacobian), while each multiplication by Pε cuts out a small
piece of the stretched Lagrangian. This iteration of stretching and cutting
accounts for the exponential decay, see §3.4.2.

3.2. Decomposition of Op(χ)Ψ into elementary Lagrangian states

In Proposition 3.1, we apply the cutoff Op(χ(n)) on Ψ, respectively
Op(χ(4n)) on Φ. To avoid too cumbersome notations, we treat both cases
at the same time, denoting both cutoffs by χ = χ(∗), and their associated
quantization by Op(χ). The original notations will be restored only when
needed. The energy cutoff χ is supported on a microscopic energy interval,
where it varies between 0 and 1. In spite of those fast variations in the
direction transverse to E , it can be quantized such as to satisfy some sort
of pseudodifferential calculus. As explained in Section 5.3, the quantization
Op def= OpE,~ (see (5.10)) uses a finite family of Fourier Integral Operators
(Uκj

) associated with local canonical maps (κj). Each κj sends an open
bounded set Vj ⊂ T ∗M intersecting E to Wj ⊂ R2d, endowed with coor-
dinated (y, η) = (y1, . . . , yd, η1, . . . , ηd), such that H ◦ κ−1

j = η1 + 1/2. In
other words, each κj defines a set of local flow-box coordinates (y, η), such
that y1 is the time variable and η1 +1/2 the energy, while (y′, η′) ∈ R2(d−1)

are symplectic coordinates in a Poincaré section transverse to the flow.

3.2.1. Integral representation of Uκj

Since κj is defined only on Vj , one may assume that Uκju = 0 for func-
tions u ∈ L2(MrπVj) (here and below π will represent either the projection
from T ∗M to M along fibers, or from R2d

y,η to Rdy). If Vj is small enough,
the action of Uκj

on a function Ψ ∈ L2(M) can be represented as follows:

[Uκj Ψ](y) = (2π~)−
D+d

2

∫
πVj

e
i
~S(z,y,θ)a~(z, y, θ)Ψ(z) dz dθ,

where
• θ takes values in an open set Θj ⊂ RD for some integer D > 0,
• the Lagrangian manifold generated by S is the graph of κj ,
• a~(z, y, θ) has an asymptotic expansion a~ ∼

∑
l>0 ~lal, and it is

supported on πVj × πWj ×Θj .
When applying the definition (5.10) to the cutoff χ, we notice that the
product χ(1 − φ) ≡ 0, so that Op(χ) is given by the sum of operators
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Op(χ)j = U∗κj
Opw~ (χj)Uκj , each of them effectively acting from L2(πVj)

to itself. We denote by δj(x; z) the kernel of the operator Op(χ)j : it is given
by the integral

(3.2) δj(x; z) = (2π~)−(D+2d)

∫
e−

i
~S(x,y,θ)e

i
~ 〈y−ỹ,η〉e

i
~S(z,ỹ,θ̃)

× ā~(x, y, θ)a~(z, ỹ, θ̃)ϕj(y, η)χ(η1) dy dθ dỹ dθ̃ dη.

For any wavefunction Ψ ∈ L2(M), we have therefore

(3.3) [Op(χ)Ψ](x) =
∑
j

∫
πVj

Ψ(z)δj(x; z) dz.

We temporarily restore the dependence of δj(x; z) on the cutoffs, calling
δ
(n)
j (x; z) the kernel of the operator Op(χ(n))j . In order to prove Propo-

sition 3.1, we will for each set (j, j′, z, z′), obtain approximate expressions
for the wavefunctions U tPεδ

(n)
j (z), respectively Pε′δ

(4n)
j′ (z′), and use these

expressions to bound from above their overlaps:

Lemma 3.2. — Under the assumptions and notations of Proposition 3.1,
the upper bound∣∣∣〈U−n/2Pε′δ

(4n)
j′ (z′), Un/2Pεδ

(n)
j (z)〉

∣∣∣ 6 C~−(d−1)−cδJun (ε)1/2Jun (ε′).

holds uniformly for any j, j′, any points z ∈ πVj , z′ ∈ πVj′ and any n-
sequences ε, ε′.

Using (3.3) and the Cauchy-Schwarz inequality ‖Ψ‖L1 6
√

Vol(M)‖Ψ‖L2 ,
this Lemma yields Proposition 3.1.

In the following sections we study the action of the operator Pε on the
state δ(z) = δ

(∗)
j (z) of the form (3.2). By induction on n, we propose an

Ansatz for that state, valid for times n = |ε| of the order of | log ~|. Apart
from the sharp energy cutoff, this Ansatz is similar to the one described
in [2].

3.3. WKB Ansatz for the first step

The first step of the evolution consists in applying the operator UPε0 to
δ(z). For this aim, we will use the decomposition (3.2) into WKB states
of the form a(x)eiS(x)/~, and evolve such states individually through the
above operator. We briefly review how the propagator U t = eit~4/2 evolves
such states.
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Remark 3.3. — The ~-dependent presentation we use here is called the
WKB method, from the work of Wentzell, Kramers and Brillouin on the
Schrödinger equation. An alternative approach would have been to use
the wave equation, and the Hadamard parametrix for the kernel of its
propagator : see [16] and Bérard’s paper [4] for a modern presentation. An
advantage of the wave equation lies in its finite speed of propagation. On
the other hand, the fact that the Hamiltonian |ξ|2x

2 (vs. |ξ|x) is smooth and
strictly convex makes the parametrix of the Schrödinger equation somewhat
simpler to write, and avoids certain technical difficulties.

In absence of conjugate points, if we consider a fixed energy cutoff χ

compactly supported inside {|H(x, ξ) − 1/2| 6 δ}, the parametrix of the
Schrödinger equation reads :

(3.4)
[
U t Op~(χ)

]
(x, z) ∼ ei

d2(x,z)
2~t

(2iπ~t)d/2
∑
k>0

~kak(t, x, z),

this expansion being valid if x is such that there is at most one trajectory
starting in the support of χ, and joining z to x in time t. In case there
are several such trajectories (belonging to different homotopy classes), one
needs to sum over their individual contributions. The coefficients ak can
be explicitly expressed in terms of χ, the geodesic flow and its derivatives,
in particular a0 is related to the Jacobian of the exponential map.

Paragraphs 3.3.1 and 3.3.2 recall the construction of this parametrix.
Because our cutoff χ is not fixed, but its support shrinks rapidly as ~ → 0,
we cannot apply the stationary phase method with respect to the energy
parameter in the expression (3.13), which thus has to replace the simpler
(3.4). We take the opportunity to introduce a certain number of notations
and recall how the remainder terms behave in L2-norm.

3.3.1. Evolution of a WKB state

Consider an initial state u(0) of the form u(0, x) = a~(0, x)e
i
~S(0,x), where

S(0, •), a~(0, •) are smooth functions defined on a subset Ω ⊂ M , and a~
expands as a~ ∼

∑
k ~kak. This represents a WKB (or Lagrangian) state,

supported on the Lagrangian manifold L(0) =
{
(x, dxS(0, x)), x ∈ Ω

}
.

Then, for any integer N , the state ũ(t) def= U tu(0) can be approximated,
to order ~N , by a WKB state u(t) of the following form:

(3.5) u(t, x) = e
iS(t,x)

~ a~(t, x) = e
iS(t,x)

~

N−1∑
k=0

~kak(t, x).
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Since we want u(t) to solve ∂u
∂t = i~4xu

2 up to a remainder of order ~N , the
functions S and ak must satisfy the following partial differential equations:

(3.6)


∂S
∂t +H(x, dxS) = 0 (Hamilton-Jacobi equation)

∂a0
∂t = −〈dxa0, dxS(t, x)〉 − a0

4xS(t,x)
2 (0-th transport equation),

∂ak

∂t = i4ak−1
2 − 〈dxak, dxS〉 − ak

4S
2 (k-th transport equation).

Assume that, on a certain time interval — say s ∈ [0, 1] — the above
equations have a well defined smooth solution S(s, x), meaning that the
transported Lagrangian manifold L(s) = gsL(0) is of the form L(s) =
{(x, dxS(s, x))}, where S(s) is a smooth function on the open set πL(s).

Definition 3.4. — We shall say that a Lagrangian manifold L is “pro-
jectible” if the projection π : L −→M is a diffeomorphism onto its image.
If π(L) is simply connected, this implies that L is the graph of dS for some
function S : we say that L is generated by S.

We thus assume that L(s) is projectible for s ∈ [0, 1], and is generated by
S(s). Under these conditions, we denote as follows the induced flow on M :

(3.7) gtS(s) : x ∈ πL(s) 7→ πgt
(
x, dxS(s, x)

)
∈ πL(s+ t).

This flow satisfies the property gtS(s+τ) ◦ g
τ
S(s) = gt+τS(s). We then introduce

the following (unitary) operator T tS(s), which transports functions on πL(s)
into functions on πL(s+ t):

(3.8) T tS(s)(a)(x) = a ◦ g−tS(s+t)(x)
(
J−tS(s+t)(x)

)1/2
.

Here J tS(s)(x) is the Jacobian of the map gtS(s) at the point x (measured
with respect to the Riemannian volume on M). It is given by

(3.9) J tS(s)(x) = exp
{∫ t

0

4S
(
s+ τ, gτS(s)(x))

)
dτ
}
.

The 0-th transport equation in (3.6) is explicitly solved by

(3.10) a0(t) = T tS(0)a0, t ∈ [0, 1],

and the higher-order terms k > 1 are given by

(3.11) ak(t) = T tS(0)ak +
∫ t

0

T t−sS(s)

(
i4 ak−1

2
(s)
)
ds.

The function u(t, x) defined by (3.5) satisfies the approximate equation

∂u

∂t
= i~

4u
2
− i~Ne

i
~S(t,x)4aN−1

2
(t, x).
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From Duhamel’s principle and the unitarity of U t, the difference between
u(t) and the exact solution ũ(t) is bounded, for t ∈ [0, 1], by

‖u(t)− ũ(t)‖L2 6
~N

2

∫ t

0

‖4aN−1(s)‖L2 ds

6 Ct~N
(N−1∑
k=0

‖ak(0)‖C2(N−k)

)
.

(3.12)

The constant C is controlled by the volumes of the sets πL(s) (0 6 s 6 1),
and by a certain number of derivatives of the flow g−tS(s+t) (0 6 s+ t 6 1).

3.3.2. The Ansatz for time n = 1

We now apply the above analysis to study the evolution of the state δ(z)
given by the integral (3.2). Until section 3.5.2, we will consider a single
point z. Selecting in (3.2) a pair (y, θ) in the support of a~, we consider the
state

u(0, x) = e−
i
~S(x,y,θ)āε0~ (x, y, θ), where aε0~ (x, y, θ) def= Pε0(x)a~(x, y, θ).

Notice that this state is compactly supported in Ωε0 . We will choose a
(large) integer N > 0 (see the condition at the very end of §3.6), trun-
cate the ~-expansion of āε0~ to the order Ñ = N + D + 2d, and apply
to that state the WKB evolution described in the previous section, up to
order Ñ and for times 0 6 t 6 1. We then obtain an approximate state
āε0~ (t, x; y, θ)e−

i
~S(t,x;y,θ). By the superposition principle, we get the follow-

ing representation for the state U tPε0δ(z):

(3.13) [U tPε0δ(z)](x) = (2π~)−
d+1
2

∫
v(t, x; z, η1)χ(η1)dη1 +OL2(~N ),

where for each energy parameter η1 we took

(3.14) v(t, x; z, η1) = (2π~)−D−
3d−1

2

∫
e−

i
~S(t,x;y,θ)e

i
~ 〈y−ỹ,η〉e

i
~S(z,ỹ,θ̃)

× āε0~ (t, x; y, θ)a~(z; ỹ, θ̃)ϕj(y, η) dy dθ dỹ dθ̃ dη′

(here η′ = (η2, . . . , ηd)). The reason why we integrate over all variables but
η1 lies in the sharp cutoff χ: due to this cutoff one cannot apply a stationary
phase analysis in the variable η1.

At time t = 0, the state v(0, •; z, η1) is a WKB state, supported on the
Lagrangian manifold

L0
η1(0) =

{
ρ ∈ E(1/2 + η1), π(ρ) ⊂ Ωε0 , ∃τ ∈ [−1, 1], g−τρ ∈ T ∗zM

}
.
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This Lagrangian is obtained by propagating the sphere

S∗z,η1M =
{
ρ = (z, ξ), |ξ|z =

√
1 + 2η1

}
on the interval τ ∈ [−1, 1], and keeping only the points situated above Ωε0 .
The projection of L0

η1(0) on M is not one-to-one: the point z has infinitely
many preimages, while other points x ∈ Ωε0 have in general two preimages
(x, ξx) and (x,−ξx).

0

ΩZ
Ωε

ε1

T*z

0
L(0)

0
L(1)

L(0)
1

Figure 3.1. Sketch of the Lagrangian manifold L0
η1(0) situated above

Ωε0 and centered at z (center ellipse, dark grey), its image L0
η1(1)

through the flow (external annulus, light grey) and the intersection
L1
η1(0) of the latter with T ∗Ωε1 . The thick arrows show the possible

momenta at points x ∈M (black dots).

Let us assume that the diameter of the partition ε is less than 1/6. For
0 < t 6 1, v(t; z, η1) is a WKB state supported on L0

η1(t) = gtL0
η1(0). If

the time is small, L0
η1(t) still intersects T ∗zM . On the other hand, all points

in E(1/2 + η1) move at a speed
√

1 + 2η1 ∈ [1 − 2ε, 1 + ε], so for times
t ∈ [3ε, 1] any point x ∈ πL0

η1(t) is at distance greater than ε from Ωε0 .
Since the injectivity radius of M is > 2, such a point x is connected to z
by a single short geodesic arc. Furthermore, since x is outside Ωε0 , there is
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no ambiguity about the sign of the momentum at x: in conclusion, there is
a unique ρ ∈ L0

η1(t) sitting above x (Fig. 3.1).
For times 3ε 6 t 6 1, the Lagrangian L0

η1(t) is therefore projectible,
and it is generated by a function S0(t, •; z, η1). Equivalently, for any x in
the support of v(t, •; z, η1), the integral (3.14) is stationary at a unique
set of parameters •c = (yc, θc, ỹc, θ̃c, η′c), and leads to an expansion (up to
order ~N ):

(3.15) v(t; z, η1) = v0(t; z, η1) +O(~N ),

where v0(t, x; z, η1) = e
i
~S

0(t,x;z,η1)b0~(t, x; z, η1).

The above discussion shows that L0
η1

def= ∪3ε6t61L0
η1(t) is a projectible La-

grangian manifold which can be generated by a single function S0(•; z, η1)
defined on πL0

η1 . The phase functions S0(t, •; z, η1) obtained through the
stationary phase analysis depend very simply on time:

S0(t, x; z, η1) = S0(x; z, η1)− (1/2 + η1)t.

The symbol b0~ is given by a truncated expansion b0~ =
∑N−1
k=0 ~kb0k. The

principal symbol reads

b00(t, x; z, η1) = āε00 (t, x; yc, θc)a0(z; ỹc, θ̃c),

while higher order terms b0k are given by linear combination of derivatives
of āε0~ (t, x; •)a~(z; •) at the critical point • = •c. Since āε0~ (0, •; yc, θc) is
supported inside Ωε0 , the transport equation (3.11) shows that b0~(t, •; z, η1)
is supported inside πL0

η1(t).
If we take in particular t = 1, the state

(3.16) v0(1; z) = (2π~)−
d+1
2

∫
v0(1; z, η1)χ(η1)dη1

provides an approximate expression for UPε0δ(z), up to a remainder
OL2(| suppχ|~N− d+1

2 ).

3.4. Iteration of the WKB Ansätze

In this section we will obtain an approximate Ansatz for Pεn · · ·UPε1U
Pε0δ(z). Above we have already performed the first step, obtaining an ap-
proximation v0(1; z) of UPε0δ(z), which was decomposed into fixed-energy
WKB states v0(1; z, η1). The next steps will be performed by evolving each
component v0(1; z, η1) individually, and integrating over η1 only at the
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end. Until Lemma 3.5 we will fix the variables (z, η1), and omit them in
our notations when no confusion may arise.

Applying the multiplication operator Pε1 to the state v0(1) = v0(1; z, η1),
we obtain another WKB state which we denote as follows:

v1(0, x) = b1~(0, x)e
i
~S

1(0,x), with

{
S1(0, x) = S0(1, x; z, η1),

b1~(0, x) = Pε1(x)b
0
~(1, x; z, η1).

This state is associated with the manifold

L1(0) = L0
η1(1) ∩ T ∗Ωε1 .

If this intersection is empty, then v1(0) = 0, which means that
Pε1Uv(0; z, η1) = O(~N ). In the opposite case, we can evolve v1(0) fol-
lowing the procedure described in §3.3.1. For t ∈ [0, 1], and up to an error
OL2(~N ), the evolved state U tv1(0) is given by the WKB Ansatz

v1(t, x) = b1~(t, x)e
i
~S

1(t,x), b1~(t) =
N−1∑
k=0

~kb1k(t).

The state v1(t) is associated with the Lagrangian L1(t) = gtL1(0), and
the function b1~(t) is supported inside πL1(t). The Lagrangian
L1 def= ∪06t61L1(t) is generated by the function S1(0, x), and for any
t ∈ [0, 1] we have S1(t, x) = S1(0, x)− (1/2 + η1) t.

3.4.1. Evolved Lagrangians

We can iterate this procedure, obtaining a sequence of approximations

(3.17) vj(t) = U tPεjv
j−1(1) +O(~N ), where vj(t, x) = bj~(t, x)e

i
~S

j(t,x).

To show that this procedure is consistent, we must check that the La-
grangian manifold Lj(t) supporting vj(t) is always projectible : that it
does not develop caustics through the evolution (t ∈ [0, 1]), and that the
projection π : Lj(t) −→M is injective. This will ensure that Lj(t) is gen-
erated by a function Sj(t). We now show that these properties hold, due
to the assumptions on the classical flow.

The manifolds Lj(t) are obtained by the following procedure. Knowing
Lj−1(1), which is generated by the phase function Sj−1(1), we take for
Lj(0) the intersection

Lj(0) = Lj−1(1) ∩ T ∗Ωεj .

If this set is empty, we then stop the construction. Otherwise, this La-
grangian is evolved into Lj(t) = gtLj(0) for t ∈ [0, 1]. Notice that the
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Lagrangian Lj(t) corresponds to the evolution at time j + t of a piece of
L0(0); the latter is contained in the union ∪|τ |61g

τS∗z,η1M , where S∗z,η1M
is the sphere of energy 1/2 + η1 above z. If the geodesic flow is Anosov,
it has no conjugate points [21]. This implies that gtL0(0) will not develop
caustics: in other words, the phase functions Sj(t) will never become sin-
gular.

On the other hand, when j →∞ the Lagrangian gj+tL0(0) is no longer
projectible, it covers any x ∈M many times, so that several local generating
functions are needed to describe the different sheets (see §3.5.3). However,
the small piece Lj(t) ⊂ gj+tL0(0) is generated by only one of them. Indeed,
because the injectivity radius is > 2, any point x ∈ Ωεj can be connected to
another point x′ ∈M by at most one geodesic of length

√
1 + 2η1 6 1 + ε.

Also, if ε is small enough, it is impossible for two geodesics, issued from the
same point z and going successively through the same Ωεj at integer times,
to intersect again at a later time : otherwise they would be homotopic,
and thus give rise to two geodesics with same endpoints in the universal
cover. This ensures that, for any j > 1, the manifold Lj = ∪t∈[0,1]Lj(t)
is projectible, and thus generated by a function Sj(0) defined on πLj , or
equivalently by Sj(t) = Sj(0)− (1/2 + η1) t.

Finally, since the flow on E(1/2 + η1) is Anosov, the sphere bundle{
S∗z,η1M, z ∈M

}
is uniformly transverse to the strong stable foliation [21].

As a result, under the flow a piece of sphere becomes exponentially close
to an unstable leaf when t→ +∞. The Lagrangians Lj thus become expo-
nentially close to the weak unstable foliation as j →∞. This transversality
argument is crucial in our choice to decompose the state Ψ into compo-
nents δj(z).

3.4.2. Exponential decay of the symbols

We now analyze the behaviour of the symbols bj~(t, x) appearing in (3.17),
when j →∞. These symbols are constructed iteratively: starting from the
function bj−1

~ (1) =
∑N−1
k=0 bj−1

k (1) supported inside πLj−1(1), we define

(3.18) bj~(0, x) = Pεj (x)b
j−1
~ (1, x), x ∈ πLj(0).

The WKB procedure of §3.3.1 shows that for any t ∈ [0, 1],

(3.19) U tvj(0) = vj(t) +RjN (t),
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where the transported symbol bj−1
~ (t) =

∑N−1
k=0 ~kbj−1

k (t) is supported in-
side πLj(t). The remainder satisfies

(3.20) ‖RjN (t)‖L2 6 Ct~N
(
N−1∑
k=0

‖bjk(0)‖C2(N−k)

)
.

To control this remainder when j → ∞, we need to bound from above
the derivatives of bj~. Lemma 3.5 below shows that all terms bjk(t) and
their derivatives decay exponentially when j → ∞, due to the Jacobian
appearing in (3.8).

To understand the reasons of the decay, we first consider the principal
symbols bj0(1, x). They satisfy the following recurrence:

bj0(1, x) = T 1
Sj (Pεj × bj−1

0 (1))(x)

= Pεj (g
−1
Sj (x))bj−1

0 (1, g−1
Sj (x))

√
J−1
Sj (x).

(3.21)

Iterating this expression, and using the fact that 0 6 Pεj 6 1, we get at
time n and for any x ∈ πLn(0):

(3.22) |bn0 (0, x)| 6 |b00(1, g−n+1
Sn (x))|

×
(
J−1
Sn−1(x)J−1

Sn−2(g−1
Sn (x)) · · ·J−1

S1 (g−n+2
Sn (x))

)1/2

.

Since the Lagrangians Lj converge exponentially fast to the weak unstable
foliation, the associated Jacobians satisfy for some C > 0:

∀j > 2, ∀ρ = (x, ξ) ∈ Lj(0),
∣∣∣ J−1

Sj (x)
J−1
Su(ρ)(x)

− 1
∣∣∣ 6 Ce−j/C .

Here Su(ρ) generates the local weak unstable manifold at the point ρ (which
is a Lagrangian submanifold in E(1/2 + η1)). The product of Jacobians in
(3.22) therefore satisfies, uniformly with respect to n and ρ ∈ Ln(0):

n−1∏
j=1

J−1
Sn−j (g

−j+1
Sn (x)) = eO(1)

n−1∏
j=1

J−1
Su(g−j+1ρ)(g

−j+1
Sn (x))

= eO(1)J1−n
Su(ρ)(x), n→∞.

The Jacobian J−1
Su(ρ) measures the contraction of g−1 along Eu(ρ): so does

the Jacobian Ju(ρ) defined in §2.2.5, but with respect to different coordi-
nates. When iterating the contraction n times, the ratio of these Jacobians
remains bounded:

J1−n
Su(ρ)(x) = eO(1)

n−1∏
j=1

Ju(g−j+1ρ), n→∞.
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We finally express the upper bound in terms of the “coarse-grained” Jaco-
bians (2.15, 2.16). Since ρ ∈ Ln(0) ⊂ T ∗Ωεn and g−jρ ∈ T ∗Ωεn−j for all
j = 1, . . . , n− 1, we obtain the following estimate on the principal symbol
bn0 (0):

(3.23) ∀n > 1, ‖bn0 (0)‖L∞ 6 C‖b00(1; z, η1)‖L∞Jun−1(ε1 · · · εn)1/2.

The constant C only depends on the Riemannian manifold M . By cons-
truction the symbol b00(1; z, η1) is bounded uniformly with respect to the
variables (z, η1) (assuming |η1| < ε).

The following lemma shows that the above bound extends to the full
symbol bn~(0, x) and its derivatives (which are supported on πLn(0)).

Lemma 3.5. — Take any index 0 6 k 6 N and m 6 2(N − k). Then
there exists a constant C(k,m) such that

∀n > 1, ∀x ∈ πLn(0), |dmbnk (0, x)| 6 C(k,m)nm+3kJun (ε0 · · · εn)1/2.

This bound is uniform with respect to the parameters (z, η1). For (k,m) 6=
(0, 0), the constant C(k,m) depends on the partition P(0), while C(0, 0)
does not.

Before giving the proof of this lemma, we draw some consequences. Tak-
ing into account the fact that the remainders RjN (1) are dominated by the
derivatives of the bjk (see (3.20)), the above statement translates into

∀j > 1, ‖RjN (1)‖L2 6 C(N)j3NJuj (ε0 · · · εj)1/2~N .

A crucial fact for us is that the above bound also holds for the propagated
remainder PεnU · · ·UPεj+1R

j
N (1), due to the fact that the operators PεjU

are contracting. As a result, the total error at time n is bounded from above
by the sum of the errors ‖RjN (1)‖L2 . We obtain the following estimate for
any n > 0:

(3.24) ‖PεnUPεn−1 · · ·Pε1Uv(0; z, η1)− vn(0; z, η1)‖L2

6 C(N)~N
n∑
j=0

j3NJuj (ε0 · · · εj)1/2.

From the fact that the Jacobians Juj decay exponentially with j, the last
term is bounded by C(N)~N . This bound is uniform with respect to the
data (z, η1).

By the superposition principle, we obtain the following
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Corollary 3.6. — For small enough ~ > 0, any point z ∈ πVj , and
any sequence ε of arbitrary length n > 0, we have

Pεδj(z) = (2π~)−
d+1
2

∫
vn(0; z, η1)χ(η1) dη1 +OL2(| suppχ|~N−

d+1
2 ).

Here we may take χ = χ(n′) with an arbitrary 0 6 n′ 6 Cδ| log ~| (see (2.6)
and the following discussion).

Proof of Lemma 3.5

The transport equation (3.10, 3.11) linking bj to bj−1,

bjk(t) = T tSj b
j
k(0) + (1−δk,0)

∫ t

0

T t−sSj

( i4 bjk−1(s)
2

)
ds,

k = 0, . . . , N−1,(3.25)

bjk(0) = Pεj × bj−1
k (1),

can be m times differentiated. We can write the recurrence equations for
the m-differential forms dmbjk(t) as follows:

(3.26) dmbjk(t, x) =
∑
`6m

T tSjd`b
j−1
k (1, x) · θjm`(t, x)

+
∑
`6m

∫ t

0

T t−sSj d`+2bjk−1(s, x) · α
j
m`(t, s, x) ds.

Above we have extended the transport operator T tS defined in (3.8) to
multi-differential forms on M . Namely,

(T tSj d`b)(x)
def=
√
J−tSj (x) d`b(g−tSj (x))

is an `-form on (Tg−t
S

(x)M)`. The linear form θjm`(t, x) sends (TxM)m to

(Tg−t

Sj
(x)M)` (resp. αjm`(t, s, x) sends (TxM)m to (Tgs−t

Sj
(x)M)`+2). These

forms can be expressed in terms of derivatives of the maps g−tSj , gs−tSj at the
point x, and θjm` also depends on m − ` derivatives of the function Pεj .
These forms are uniformly bounded with respect to j, x and t ∈ [0, 1]. We
only need to know the explicit expression for θjmm:

(3.27) θjmm(t, x) = Pεj
(
g−tSj (x)

)
×
(
dg−tSj (x)

)⊗m
.

Since the above expressions involve several sets of parameters, to facilitate
the bookkeeping we arrange the functions bjk(t, x) and the m-differential
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forms dmbjk(t, x), m 6 2(N − k), inside a vector bj . We will denote the
entries by bj(k,m) = dmbjk, and with 0 6 k 6 N − 1, m 6 2(N − k):

bj = bj(t, x) def=
(
bj0, db

j
0, . . . , d

2Nbj0,

bj1, db
j
1, . . . , d

2(N−1)bj1,

. . . ,

bjN−1, db
j
N−1, d

2bjN−1

)
.

(3.28)

The set of recurrence equations (3.26) may then be cast in a compact
form, using three operator-valued matrices Mj

∗ (here the subscript j is not
a power, but refers to the Lagrangian Lj on which the transformation is
based):

(3.29) (I−Mj
1)b

j = (Mj
0,0 + Mj

0,1)b
j−1.

The first matrix acts as follows on the indices (k,m):(
Mj

1b
j
)
(k,m)

(t) =
∑
`6m

∫ t

0

ds T t−sSj bj(k−1,`+2)(s) · α
j
m`(t, s).

Since Mj
1 relates bk to bk−1, it is obviously a nilpotent matrix of order N .

The matrix Mj
0,1:(
Mj

0,1b
j−1
)
(k,m)

(t) =
∑
`<m

T tSj bj−1
(k,`)(1) · θjm`(t),

which relates m-derivatives to `-derivatives, ` < m, is also nilpotent. Fi-
nally, the last matrix Mj

0,0 acts diagonally on the indices (k,m):

(3.30)
(
Mj

0,0b
j−1
)
(k,m)

(t) = T tSjbj−1
(k,m)(1) · θjmm(t).

From the nilpotence of Mj
1, we can invert (3.29) into

bj =
(N−1∑
k=0

[Mj
1]
k
)(

Mj
0,0 + Mj

0,1

)
bj−1,

where [M]k denotes the k-th power of the matrix M. The above expression
can be iterated:

(3.31) bn =
N−1∑

k1,...,kn=0

1∑
α1,...,αn=0

[Mn
1 ]knMn

0,αn
[Mn−1

1 ]kn−1Mn−1
0,αn−1

· · · [M1
1]
k1M1

0,α1
b0.

Notice that the first step M1
0,α1

b0 only uses the vector b0 at time t = 1,
where it is well-defined.
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From the nilpotence properties of Mj
1 and Mj

0,1, the terms contributing
to bn(k,m) must satisfy

∑
kj 6 k and

∑
αj 6 m + 2(

∑
kj). In particular,∑

kj 6 N ,
∑
αj 6 2N , so for n large, all terms in (3.31) are made of

few (long) strings of successive matrices Mj
0,0, separated by a few matrices

Mj
0,1 or Mj

1 (the total number of matrices Mj
0,1 or Mj

1 in each term is at
most 3N). As a result, the total number of terms in the expression (3.31)
of bn(k,m) grows at most like O(nm+3k) when n→∞.

Using the fact that θjm` and αjm` are uniformly bounded, the actions
of the nilpotent matrices Mj

1, Mj
0,1 induce the following bounds on the

sup-norm of bjk,m(t):

sup
06t61

‖Mj
1b

j
(k,m)(t)‖L∞ 6 C max

m′6m+2
sup

06t61
‖bj(k−1,m′)(t)‖L∞ ,

sup
06t61

‖(Mj
0,1b

j−1)(k,m)(t)‖L∞ 6 C(m) max
m′6m−1

‖bj−1
(k,m′)(1)‖L∞ .

(3.32)

The constant C(m) depends on the partition P(0): for a partition of diam-
eter ε, it is of order ε−m.

On the other hand, for any pair (k,m), the “diagonal” action (3.30)
on bj(k,m) is very similar with its action on bj(0,0), which is the recurrence
relation (3.21). The only difference comes from the appearance of the m-
forms θjmm instead of the functions θj00. From the explicit expression (3.27)
and the fact that 0 6 Pεj 6 1, one easily gets

|(Mj
0,0b

j−1)(k,m)(t, x)| 6
√
J−tSj (x) |dg−tSj (x)|m|bj−1

(k,m)(1, g
−t
Sj (x))|.

By contrast with (3.32), in the above bound there is no potentially large
constant prefactor in front of the right hand side. This allows us to iterate
this inequality, and obtain a bound similar with (3.22). Indeed, using the
composition of the maps g−1

Sj and their derivatives, we get for any j, j′ ∈ N
and t ∈ [0, 1]:

(3.33) |(Mj+j′

0,0 · · ·Mj
0,0b

j−1)(k,m)(t, x)|

6
√
J−t−j

′

Sj′+j (x) |dg−t−j
′

Sj+j′ (x)|m|bj−1
(k,m)(1, g

−t−j′

Sj′+j (x))|.

As we explained above, the flow gt acting on Lj is asymptotically expanding
except in the flow direction, because gtLj converges to the weak unstable
manifold. As a result, the inverse flow g−j

′
acting on Lj+j′ ⊂ gj

′Lj , and
its projection g−j

′

Sj+j′ , have a tangent map dg−j
′

Sj+j′ uniformly bounded with

respect to j, j′. In each “string” of operators M∗
0,0, the factor dg−j

′

S can
be replaced by a uniform constant. For each term in (3.31), we can then
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iteratively combine the bounds (3.32, 3.33), to get

|(MnMn−1 · · ·M1b0)(k,m)(t, x)| 6 C
√
J−t−n+1
Sn (x) ‖b0(1)‖

Summing over those terms, we obtain

(3.34) |bn(k,m)(t, x)| 6 C̃(k,m)nm+3k
√
J−t−n+1
Sn (x) ‖b0(1)‖.

The Jacobian on the right hand side is the same as in the bound (3.22).
We can thus follow the same reasoning and replace J−t−n+1

Sn by Jun (ε) to
obtain the lemma. �

This ends the proof of Lemma 3.5 and Corollary 3.6. We proceed with the
proof of our main Lemma 3.2, and now describe the states U−n/2Pε′δ

(4n)
j′ (z′)

and Un/2Pεδ
(n)
j (z).

3.5. Evolution under U−n/2 and Un/2

Applying Corollary 3.6 with n′ = 4n, resp. n′ = n, we have approximate
expressions for the states appearing in Lemma 3.2:

Pεδ
(n)
j (z) = (2π~)−

d+1
2

∫
vn(0; z, η1, ε)χ(n)(η1) dη1(3.35)

+OL2(enδ~N−
d−1
2 ),

Pε′δ
(4n)
j′ (z′) = (2π~)−

d+1
2

∫
vn(0; z′, η′1, ε

′)χ(4n)(η′1) dη
′
1(3.36)

+OL2(e4nδ~N−
d−1
2 ),

we notice that for n 6 nE(~) the remainders are of the form O(~N−N1) for
some fixed N1.

To prove the bound of Lemma 3.2, we assume n is an even integer, and
consider the individual overlaps

(3.37)
〈
U−n/2vn(0; z′, η′1, ε

′), Un/2vn(0; z, η1, ε)
〉
,

Until the end of the section, we will fix z, η1, z
′, η′1 and omit them in the

notations. On the other hand, we will sometimes make explicit the de-
pendence on the sequences ε′, ε. We then need to understand the states
U−n/2vn(0; ε′) and Un/2vn(0; ε).
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3.5.1. Evolution under U−n/2

We use WKB approximations to describe the backwards-evolved state
U−tvn(0; ε′). Before entering into the details, let us sketch the backwards
evolution of the Lagrangian Ln = Ln(0; ε′) supporting vn(0) = vn(0; ε′)
(for a moment we omit to indicate the dependence in ε′). Since Ln had been
obtained by evolving L0 and truncating it at each step, for any 0 6 t 6 n−1,
the Lagrangian Ln(−t) def= g−tLn will be contained in Ln−btc−1(1 − {t}),
where we decomposed the time t into its integral and fractional part. This
Lagrangian projects well onto the base manifold, and is generated by the
function Sn(−t) = Sn−btc−1(1− {t}) (which satisfies the Hamilton-Jacobi
equation for negative times). This shows that the WKB method of §3.3.1,
applied to the backwards flow U−t acting on vn(0), can be formally used
for all times 0 6 t 6 n− 1. The evolved state can be written as

(3.38) U−tvn(0) = vn(−t) + R̂N (−t),

and vn(−t) has the WKB form

(3.39) vn(−t) = bn~(−t)eiS
n(−t)/~, bn~(−t) =

N−1∑
k=0

~kbnk (−t).

The symbols bnk (−t) are obtained from bnk (0) using the backwards transport
equations (see Eqs. (3.10, 3.11)):

bn0 (−t) = T−tSn(0)b
n
0 (0) =

(
J tSn(−t)

)1/2
bn(0) ◦ gtSn(−t),(3.40)

bnk (−t) = T−tSn(0)b
n
k (0)−

∫ t

0

T−t+sSn(−t)

( i4 bnk−1

2
(−s)

)
ds.(3.41)

These symbols are supported on πLn(−t). We need to estimate their Cm

norms uniformly in t. The inverse of the Jacobian J tSn(−t) approximately
measures the volume of the Lagrangian Ln(−t). Since the latter remains
close to the weak unstable manifold as long as n − t � 1, the backwards
flow has the effect to shrink it along the unstable directions. Thus, for
n− 1 > t� 1, Ln(−t) consist in a thin, elongated subset of Ln−btc−1 (see
figure 3.2), with a volume of order

Vol(Ln(−t)) 6 C
(
inf
x
J tSn(−t)(x)

)−1(3.42)

6 CJubtc(ε
′
n−btc · · · ε

′
n), 0 6 t 6 n− 1.

When differentiating bn0 (−t), the derivatives of the flow gtSn(−t) also appear.
Since Ln(−t) is close to the weak unstable manifold, the derivatives become
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large as t� 1:

|∂αx gtSn(−t)(x)| 6 C(α) etλ+ ,

where λ+
def= λmax(1 + δ′/2), 0 6 t 6 n− 1, x ∈ πLn(−t).

Hence, for any t 6 n − 1 and index 0 6 m 6 2N the m-derivatives of the
principal symbol can be bounded as follows:

∀t 6 n− 1, |dmbn0 (−t, x)| 6 C
(
J tSn(−t)(x)

)1/2 |dgtSn(−t)(x)|
m‖bn0 (0)‖Cm

6 CJubtc(ε
′
n−btc · · · ε

′
n)
−1/2 etmλ+‖bn0 (0)‖Cm

6 CJun−btc(ε
′
0 · · · ε′n−btc)

1/2 etmλ+ .

(3.43)

In the last line we used the estimates of Lemma 3.5 for ‖bn(0)‖Cm . From
now on we will abbreviate Jun−btc(ε

′
0 · · · ε′n−btc) by Jun−btc(ε

′). By iteration,
we similarly estimate the derivatives of the higher-order symbols (k < N ,
m 6 2(N − k)):

(3.44) ∀t 6 n− 1, |dmbnk (−t, x)| 6 CJun−btc(ε
′)1/2 et(m+2k)λ+ .

We see that the higher-order symbols may grow faster (with t) than the
principal one. As a result, when t becomes too large, the expansion (3.39)
does not make sense any more, since the remainder in (3.38) may become
larger than the main term. From (3.12), this remainder is bounded by

‖R̂N (−t)‖ 6
~N

2

∫ t

0

‖4bnN−1(−s)‖ ds 6 C~N et2Nλ+Jun−btc(ε
′)1/2.

This remainder remains smaller than the previous terms if t 6 nE(~)/2.
Since we assume n 6 nE(~), the WKB expansion still makes sense if we take
t = n/2. To ease the notations in the following sections, we call wn/2 def=
vn(−n/2) the WKB state approximating U−n/2vn(0), its phase function
Sn/2 = Sn(−n/2) and its symbol cn/2~ (x) def= bn~(−n/2, x), all these data
depending on ε′. The above discussion shows that

(3.45) ‖U−n/2vn(0; ε′)−wn/2(ε′)‖ = ‖R̂N (−n/2)‖ 6 C~Nδ
′/2Jun/2(ε

′)1/2.

We will select an integer N large enough (Nδ′ � 1), so that the above
remainder is smaller than the estimate Jun (ε′)1/2 we have on ‖vn(ε′)‖.

3.5.2. Evolution under Un/2

We now study the forward evolution Un/2vn(0; ε). From now on we omit
to indicate the dependence in the parameter t = 0. Using the smooth
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partition (2.4), we decompose Un/2 as:

Un/2 =
∑

αi,16i6n/2

P 2
αn/2

UP 2
αn/2−1

U · · ·P 2
α1
U

def=
∑
α

Qα.

The operators (Qα) are very similar with the (Pα) of Eq. (2.5): the cutoffs
Pk are replaced by their squares P 2

k . As a result, the iterative WKB method
presented in the previous sections can be adapted to obtain approximate
expressions for each state Qαv

n(ε), similarly as in (3.24):

Qαv
n(ε) = v

3
2n(εα) +OL2(

√
Jun (ε)~N ),

v
3
2n(x; εα) = b

3
2n

~ (x; εα)e
i
~S

3
2 n(x;εα).

Here εα is the sequence of length 3n/2 with elements ε0 · · · εnα1 · · ·αn/2.
That state is localized on the Lagrangian manifold L 3

2n(εα). The symbols
b

3
2n

k (εα) and their derivatives satisfy the bounds of Lemma 3.5. The state
Un/2vn(ε) is therefore given by a sum of contributions

(3.46) Un/2vn(ε) =
∑
α

v
3
2n(εα) +OL2

(
~N−NK

)
.

Here NK is a constant depending on the cardinal K of the partition P(0),
and we assumed n 6 nE(~). The integer N will be taken large enough,
such that ~N−NK is smaller than the remainder appearing in (3.45).

3.5.3. Grouping terms into connected Lagrangian leaves

To compute the overlap (3.37), we do not need the full sum (3.46), but
only the components α such that the support of v

3
2n(εα) intersects the

support of wn/2(ε′), which is inside Ωε′
n/2

. Thus, we can restrict ourselves
to the set of sequences

A
def=
{

α : πL 3
2n(εα) ∩ Ωε′

n/2
6= ∅
}
⊂ {1, . . . ,K}n/2 .

For n � 1, the Lagrangian
⋃

α∈A L
3
2n(εα), which is a strict subset of

gn/2Ln(ε), is the disjoint union of a large number of connected leaves,
which we denote by L 3

2n(ε, `), ` ∈ [1, L] (see Figure 3.2). Each leaf L 3
2n(ε, `)

corresponds to geodesics of length n/2 from Ωεn to Ωε′
n/2

in a definite
homotopy class. As a consequence, if ρ, ρ′ belong to two different leaves ` 6=
`′, there must be a time 0 < t < n

2 such that the backwards images g−tρ,
g−tρ′ are at a distance larger than D > 0 (D is related to the injectivity
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L(   )ε; l
3n/2

εαL (   )
3n/2

εγL (   )
3n/2

Ω ε’n/2

3n/2
L (   )εβ

g  L( ’)
−n/2 n

ε

ε;
3n/2

l0L(    )

Figure 3.2. Decomposition of
(
gn/2Ln(ε)

)
∩ T ∗Ωε′

n/2
into connected

leaves (here we show two of them, in light grey). The leaf ` contains
the components L 3

2n(εα), L 3
2n(εβ) while the leaf `0 contains L 3

2n(εγ).
We also show the elongated leaf g−n/2Ln(ε′) supporting the state
wn/2(ε′) (black). This state might interfere with v

3
2n(ε, `0), but not

with v
3
2n(ε, `) or any other leaf above Ωε′

n/2
.

radius). The total number of leaves above Ωε′
n/2

can grow at most like the

full volume of gn/2L(ε), so that

L 6 Cen(d−1)λ+/2 6 C~−(d−1)/2.

Each leaf L 3
2n(ε, `) is the union of a certain number of components L 3

2n(εα),
and we group the corresponding sequences α into the subset A` ⊂ {1, . . . ,
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K}n/2:

L 3
2n(ε, `) =

⋃
α∈A`

L 3
2n(εα).

We obviously have A =
⊔
`A`. All components L 3

2n(εα) with α ∈ A` are
generated by the same phase function S

3
2n(εα) def= S

3
2n(ε, `), so that the

state

(3.47) v
3
2n(x; ε, `) def=

∑
α∈A`

v
3
2n(x; εα) = b

3
2n

~ (x; ε, `) e
i
~S

3
2 n(x;ε,`)

is a Lagrangian state supported on L 3
2n(ε, `), with symbol

b
3
2n

~ (x; ε, `) =
∑

α∈A`

b
3
2n

~ (x; εα).

By inspection one can check that, at each point ρ ∈ L 3
2n(ε, `), the above

sum over α ∈ A` has the effect to insert partitions of unity
∑
k P

2
k = 1 at

each preimage g−j(ρ), j = 0, . . . , n2 − 1. As a result, the principal symbol
will satisfy the same type of upper bound as in (3.22):

|b
3
2n
0 (x; ε, `)| 6 |bn(g−n/2S (x))| J−

1
2n

S (x)1/2

6 CJ
− 3

2n

S (x)1/2, with S = S
3
2n(ε, `).

The same argument holds for the higher-order terms and their derivatives.
Besides, because the action of g−3n/2 on L 3

2n(ε, `) is contracting, for any
x ∈ Ωε′

n/2
the Jacobian J

− 3
2n

S (x) is of the order of Ju3
2n

(εα), where α can
be any sequence in A` (all these Jacobians are of the same order). Defining

Ju3
2n

(ε, `) = max
α∈A`

Ju3
2n

(εα) >
1
C

min
α∈A`

Ju3
2n

(εα),

the full symbol b
3
2n

~ (x; ε, `) satisfies similar bounds as in Lemma 3.5:

(3.48) |dmb
3
2n

k (x; ε, `)| 6 Cnm+3kJu3
2n

(ε, `)1/2, k 6 N − 1, m 6 2(N − k).

Remark 3.7. — As pointed out by the referee, the WKB Ansatz for
Un/2 on M could be deduced from a similar (but simpler) Ansatz for the
flow on the universal cover M̃ : the former is obtained by summing the
contributions of geodesics in different homotopy classes [4, Section E]. Pro-
ceeding this way, one directly obtains, instead of (3.46), the sum over the
components v

3
2n(x; ε, `) of (3.47), each ` ∈ [1, L] labelling a certain homo-

topy class.
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3.6. Overlaps between the Lagrangian states

Putting together (3.45, 3.47, 3.46), the overlap (3.37) is approximated
by the following sum:

(3.49)
〈
U−n/2vn(ε′), Un/2vn(ε)

〉
=

L∑
`=1

〈
wn/2(ε′), v

3
2n(ε, `

)
〉+O(~Nδ

′/2),

where

〈wn/2(ε′), v 3
2n(ε, `)〉 =

∫
e

i
~

(
S

3
2 n(x;ε,`)−Sn/2(x;ε′)

)
c̄
n/2
~ (x; ε′)b

3
2n

~ (x; ε, `).

Each term is the overlap between the WKB state wn/2(ε′) supported on
g−n/2Ln(ε′), and the WKB state v

3
2n(ε, `) supported on L 3

2n(ε, `), both La-
grangians sitting above Ωε′

n/2
(see Figure 3.2). The sup-norms of these two

states, governed by the principal symbols cn/20 (ε′), b
3
2n
0 (ε, `), are bounded

by

(3.50) ‖wn/2(ε′)‖L∞ 6 CJun/2(ε
′)1/2, ‖v 3

2n(ε, `)‖L∞ 6 CJu3
2n

(ε, `)1/2.

The integral (3.49) takes place on the support of cn/2~ (x; ε′), that is (see
(3.42)), on a set of volume O(Jun/2(ε

′
n/2 · · · ε

′
n)). It follows that each overlap

(3.6) is bounded by

(3.51)
∣∣〈wn/2(ε′), v 3

2n(ε, `)〉
∣∣ 6 CJun/2(ε

′)1/2Ju3
2n

(ε, `)1/2Jun/2(ε
′
n/2 · · · ε

′
n).

We show below that the above estimate can be improved for almost all
leaves `, when one takes into account the phases in the integrals (3.6).
Actually, for times n 6 nE(~), there is at most a single term `0 in the
sum (3.49) for which the above bound is sharp; for all other terms `, the
phase oscillates fast enough to make the integral negligible. Geometrically,
this phase oscillation means that the Lagrangians L 3

2n(ε, `), g−n/2Ln(ε′) ⊂
Ln/2(ε′) are “far enough” from each other (see Fig. 3.2). The “distance”
between two Lagrangians above Ωε′

n/2
is actually measured by the height

Ht
(
L 3

2n(ε, `),Ln/2(ε′)
) def= inf

x∈Ωε′
n/2

∣∣dS 3
2n(x; ε, `)− dSn/2(x; ε′)

∣∣.
The overlap between “distant” leaves can be estimated through a nonsta-
tionary phase argument:

Lemma 3.8. — Assume that, for some δ′′ < δ′/2, for some ~ > 0 and
some time n 6 nE(~), the height

Ht
(
L 3

2n(ε, `),Ln/2(ε′)
)

> ~
1−δ′′

2 .
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Then, provided ~ is small enough, the overlap

(3.52) |〈wn/2(ε′), v 3
2n(ε, `)〉| 6 C~Nδ

′′√
Jun/2(ε

′)Ju3
2n

(ε, `).

The constant C > 0 is uniform with respect to ε′, ε and the implicit
parameters z, z′, η1, η′1.

Proof. — Let us call s(x) = S
3
2n(x; ε, `)−Sn/2(x; ε′) the phase function

appearing in the integral (3.6). Notice that the assumption on the height
means that |ds(x)| > ~

1−δ′′
2 for all x. We then expand the product c̄n/2~ b

3
2n

~
and keep only the first N terms:

c̄
n/2
~ (x; ε′)b

3
2n

~ (x; ε, `) = a~(x) + RemN (x), a~(x) =
N−1∑
k=0

~kak(x).

From the estimates (3.44, 3.48), we control the sup-norm of the remainder:

‖RemN‖L∞ 6 C~Nδ
′/2
√
Jun/2(ε

′)Ju3
2n

(ε, `).

Through the Leibniz rule we control the derivatives of ak:

‖ak‖Cm 6 Cnm+3k
√
Jun/2(ε

′)Ju3
2n

(ε, `) e
n
2 (m+2k)λ+ ,

k 6 N − 1, m 6 2(N − k).

For each k < N and m 6 2(N − k), we have at our disposal the following
nonstationary phase estimate [17, Section 7.7]:∣∣∣ ∫ ak(x) exp

( i
~
s(x)

)
dx
∣∣∣ 6 C~m

∑
m′6m

sup
x

( |dm′ak(x)|
|ds(x)|2m−m′

)
6 C~mδ

′′−k(1−δ′/2)
√
Jun/2(ε

′)Ju3
2n

(ε, `).

Here we used the assumption on |ds(x)| and the fact that δ′′ < δ′/2. By
taking m = N − k for each k and summing the estimate over k, we get:∣∣∣ ∫ a~(x) exp

( i
~
s(x)

)
dx
∣∣∣ 6 C~Nδ

′′√
Jun/2(ε

′)Ju3
2n

(ε, `).

Since δ′/2 > δ′′, the remainder RemN yields a smaller contribution, which
ends the proof. �

We now show that there is at most one Lagrangian leaf L 3
2n(ε, `o) which

can be very close to Ln/2(ε′):

Lemma 3.9. — Take as above δ′′ < δ′/2, assume the diameter ε is
much smaller than the injectivity radius, and for ~ small enough take n 6
(1−δ′)| log ~|

λmax
.
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If there is some `o ∈ {1, . . . , L} such that the height Ht
(
L 3

2n(ε, `o),

Ln/2(ε′)
)

6 ~
1−δ′′

2 , then for any ` 6= `o we must have Ht
(
L 3

2n(ε, `),

Ln/2(ε′)
)
> ~

1−δ′′
2 .

Proof. — Assume ab absurdo the existence of ρo ∈ L 3
2n(ε, `o), ρ ∈

L 3
2n(ε, `) and ρ′1, ρ

′
2 ∈ Ln/2(ε′), such that the Riemannian distances

d(ρo, ρ′1) 6 ~
1−δ′′

2 and d(ρ, ρ′2) 6 ~
1−δ′′

2 . When applying the backwards
flow for times 0 6 t 6 n

2 , these points depart at most like

d(g−tρo, d−tρ′1) 6 Cetλ+~
1−δ′′

2 6 C~δ
′/4−δ′′/2,

d(g−tρ, d−tρ′2) 6 Cetλ+~
1−δ′′

2 6 C~δ
′/4−δ′′/2.

Besides, on this time interval the points g−tρ′1, g−tρ′2 remain in the small
Lagrangian piece g−tLn/2(ε′) of diameter 6 ε, so that d(g−tρo, g−tρ) 6 ε.
Since ε has been chosen small, this contradicts the property that the points
g−tρo, g−tρ must depart at a distance > D (see the discussion at the
beginning of §3.5.3). �

If there exists a leaf `o such that Ht(L 3
2n(ε, `o),Ln/2(ε′)) 6 ~

1−δ′′
2 , there

is a point ρo ∈ L 3
2n(ε, `o) such that g−jρo stays at small distance from

Ln/2−j(ε′) for all j= 0, . . . , n/2−1, and therefore satisfies πg−jρo ∈ Ωε′
n/2−j

.

This shows that the set A`o contains the sequence (ε′1 · · · ε′n/2)
def= ε̃′. The

overlap corresponding to this leaf is bounded as in (3.51), and after replac-
ing Ju3

2n
(ε, `o) by Ju3

2n
(εε̃′) we obtain

(3.53) |〈wn/2(ε′), v 3
2n(ε; `o)〉| 6 CJun (ε′)Jun (ε)1/2.

According to the above two Lemmas, all the remaining leaves are “far from”
Ln/2(ε′), and their contributions to (3.49) sum up to∑

` 6=`o

〈wn/2(ε′), v 3
2n(ε; `)〉 = O(~Nδ

′′−(d−1)/2).

We take N large enough (say, Nδ′′ � 1), such that this is negligible com-
pared with (3.53). We finally get, whether such an `o exists or not:

|〈U−n/2vn(z′, η′1, ε′), Un/2vn(z, η1, ε)〉| 6 CJun (ε′) Jun (ε)1/2.

To finish the proof of Lemma 3.2, there remains to integrate over the pa-
rameters η1, η′1 in (3.35). Since χ(n) (resp. χ(4n)) is supported on an interval
of length ~1−δenδ (resp. ~1−δe4nδ), the overlap of Lemma 3.2 finally satisfies
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the following bound:

|〈U−n/2Pε′δ
(4n)
j′ (z′), Un/2Pε δ

(n)
j (z)〉|

6 C~−(d+1)e5δn ~2−2δJun (ε′)Jun (ε)1/2.

This is the estimate of Lemma 3.2, with c = 2 + 5/λmax. Proposition 3.1
and Theorem 2.7 follow. �

4. Subadditivity

The aim of this section is to prove Proposition 2.9. It is convenient here to
use some notions of symbolic dynamics. Starting from our partition of unity
(Pk)k=1,...,K , we introduce a symbolic space Σ = {1, . . . ,K}N. The shift σ
acts on Σ by shifting a sequence ε = ε0ε1 · · · to the left and deleting the
first symbol. For ε = (ε0 · · · εn), we denote [ε] ⊂ Σ the subset (n-cylinder)
formed of sequences starting with the symbols ε0 · · · εn (throughout this
section the integer n will generally differ from nE(~)).

To any normalized eigenfunction ψ~ we can associate a probability mea-
sure µΣ

~ on Σ by letting, for any n-cylinder [ε],

µΣ
~ ([ε]) def= ‖PεnPεn−1(1) · · ·Pε0(n)ψ~‖2

= ‖Pεn(−n)Pεn−1(−(n− 1)) · · ·Pε0ψ~‖2.

If we denote ε = (εnεn−1 · · · ε0), this quantity is equal to ‖P̃ ∗ε ψ~‖2 =
‖P ∗ε ψ~‖2 (see (2.23)). To ensure that this defines a probability measure
on Σ, one needs to check the following compatibility condition

(4.1) µΣ
~ ([ε0 · · · εn]) =

K∑
εn+1=1

µΣ
~ ([ε0 · · · εnεn+1])

for all n and all ε0 · · · εn. This identity is obvious from (2.4).

4.1. Invariance until the Ehrenfest time

By the Egorov theorem, if µ is the weak-∗ limit of the Wigner mea-
sures Wψ~ on T ∗M , then for every n and any fixed n-cylinder [ε] ⊂ Σ we
have µΣ

~ ([ε]) ~→0−−−→ µ({ε}), where {ε} was defined in §2.2.7 as the function
P 2
εn(P 2

εn−1
◦ g1) · · · (P 2

ε0 ◦ g
n) on T ∗M . This means that the measures µΣ

~

converge to a measure µΣ
0 defined by µΣ

0 ([ε]) def= µ({ε}).

ANNALES DE L’INSTITUT FOURIER



HALF-DELOCALIZATION OF EIGENFUNCTIONS 2507

Since the ψ~ are eigenfunctions, µ is localized on E and is (gt)-invariant
(Prop. 1.1), so that µΣ

0 is σ-invariant. For ~ > 0 the measures µΣ
~ are not

exactly σ-invariant; yet, we show below that µΣ
~ is almost invariant under

the shift, until the Ehrenfest time.
For small γ, ν > 0 we introduce the time Tν,γ,~

def= (1−γ)| log ~|
2(1+ν)λmax

.

Proposition 4.1. — For any given no ∈ N, for any small enough ~ and
any n ∈ N such that n + no 6 2Tν,γ,~, for any cylinder [ε] = [ε0ε1 · · · εno

]
of length no, one has∑

εi,−n6i6−1

µΣ
~ ([ε−n · · · ε−1ε0ε1 . . . εno ]) = µΣ

~ ([ε0ε1 · · · εno ]) +O(~γ/2).

The implied constant is uniform with respect to no and n in the allowed
interval. In other words, the measure µΣ

~ is almost σ-invariant:

σn] µ
Σ
~ ([ε]) def= µΣ

~ (σ−n[ε]) = µΣ
~ ([ε]) +O(~γ/2).

Proof. — For simplicity we prove the result for no = 0; the argument
can easily be adapted to any no > 0.

We use an estimate on the norm of commutators, proved in Lemma 5.2.
If A is an operator on L2(M), remember that we denote A(t) = U−tAU t.
According to Lemma 5.2, for any smooth observables a, b supported inside
Eν = E(1/2− ν, 1/2 + ν), one has

(4.2) ‖[Op~(a)(t),Op~(b)(−t)]‖L2(M) = O(~γ),

or equivalently

‖[Op~(a)(2t),Op~(b)]‖L2(M) = O(~γ),

for any time |t| 6 Tν,γ,~. This result will be applied to the observables
a = Pε0f , b = Pεjf , where f is compactly supported in Eν and identically
1 near E . According to Remark 2.4, inserting the cutoff f after each Pεj
only modifies µΣ

~ ([ε]) by an amount O(~∞). In the following, we will omit
to indicate these insertions and the O(~∞) errors.

To prove Proposition 4.1, we first write∑
εi,−n6i6−1

µΣ
~ ([ε−nε−(n−1) · · · ε0])

=
∑

εi,−n6i6−1

‖Pε0Pε−1(1) · · ·Pε−n(n)ψ~‖2

=
∑

〈Pε−1(1)P 2
ε0Pε−1(1)P̃ ∗[ε−2···ε−n](2)ψ~, P̃

∗
[ε−2···ε−n](2)ψ~〉
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=
∑

〈P 2
ε0Pε−1(1)2P̃ ∗[ε−2···ε−n](2)ψ~, P̃

∗
[ε−2···ε−n](2)ψ~〉

+O(~γ)
[ ∑
εi,−n6i6−2

‖P̃ ∗[ε−2···ε−n](2)ψ~‖2
]

=
∑

εi,−n6i6−2

〈P 2
ε0 P̃

∗
[ε−2···ε−n](2)ψ~, P̃

∗
[ε−2···ε−n](2)ψ~〉+O(~γ).

We have used the identities∑
ε−1

Pε−1(1)2 = I and
∑

ε−n,...,ε−2

‖P̃ ∗[ε−2···ε−n]ψ~‖2 = 1.

We repeat the procedure:∑
εi,−n6i6−2

〈P 2
ε0 P̃

∗
[ε−2···ε−n](2)ψ~, P̃

∗
[ε−2···ε−n](2)ψ~〉

=
∑

〈Pε−2(2)P 2
ε0Pε−2(2)P̃ ∗[ε−3···ε−n](3)ψ~, P̃

∗
[ε−3···ε−n](3)ψ~〉

=
∑

〈P 2
ε0Pε−2(2)2P̃ ∗[ε−3···ε−n](3)ψ~, P̃

∗
[ε−3···ε−n](3)ψ~〉

+O(~γ)
[ ∑
εi,−n6i6−3

‖P̃ ∗[ε−3···ε−n](3)ψ~‖2
]

=
∑

εi,−n6i6−3

〈P 2
ε0 P̃

∗
[ε−3···ε−n](3)ψ~, P̃

∗
[ε−3···ε−n](3)ψ~〉+O(~γ).

Iterating this procedure n times we obtain∑
εi,−n6i6−1

µΣ
~ ([ε−nε−(n−1) · · · ε0]) = 〈P 2

ε0ψ~, ψ~〉+ nO(~γ),

which proves the Proposition for n0 = 0, since n = O(| log ~|). The proof
for any fixed n0 > 0 is identical. �

4.2. Proof of Proposition 2.9

For ψ~ an eigenstate of the Laplacian, the entropy hn(ψ~) introduced in
(2.12) can be expressed in terms of the measure µΣ

~ :

hn(ψ~) = −
∑
|ε|=n

‖P̃ ∗ε ψ~‖2 log‖P̃ ∗ε ψ~‖2

= −
∑
|ε|=n

µΣ
~ ([ε]) logµΣ

~ ([ε])

= −
∑
|ε|=n

µΣ
~ ([ε]) logµΣ

~ ([ε]) def= hn(µΣ
~ ).

(4.3)
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In ergodic theory, the last term is called the entropy of the measure µΣ
~ with

respect to the partition of Σ into n-cylinders. Before using the results of the
previous section, we choose the parameters ν, γ appearing in Proposition 4.1
such that ν = γ = δ′/2, where δ′ is the small parameter in Proposition 2.9.
This ensures that the time 2Tν,γ,~ > nE(~) (see (2.10)).

We then have, for any no and n such that n+ no 6 Tν,γ,~,

hno+n(µΣ
~ ) 6 hn−1(µΣ

~ ) + hno(σ
n
] µ

Σ
~ )

= hn−1(µΣ
~ ) + hno(µ

Σ
~ ) +Ono(~δ

′/4).
(4.4)

The notation Ono means that the last term is bounded by Cno~δ′/4, with
a constant Cno

depending on no. The first inequality is a general property
of the entropy, due to the concavity of the logarithm. The second equality
comes from the almost invariance of µΣ

~ (Proposition 4.1) and the continuity
of the function x 7→ −x log x. The pressure for ψ~ (see (2.13)) also involves
sums of the type∑

ε=ε0···εno+n

µΣ
~ ([ε]) log Juno+n(ε)

def= µΣ
~ (log Juno+n).

Using the factorization (2.16) of the Jacobian, this sum can be split into

µΣ
~ (log Juno+n) = µΣ

~ (log Jun−1) + σn−1
] µΣ

~ (log Ju1 ) + σn] µ
Σ
~ (log Juno

)

= µΣ
~ (log Jun−1) + µΣ

~ (log Ju1 ) + µΣ
~ (log Juno

) +Ono
(~δ

′/4).

(4.5)

We used once more the quasi-invariance of µΣ
~ to get the second equality.

Combining the inequalities (4.4, 4.5) with (4.3), we obtain the Proposi-
tion 2.9 with the constant

R = 3max
ρ∈Eε

| log Ju1 (ρ)|. �

5. Some results of pseudodifferential calculus

5.1. Pseudodifferential calculus on a manifold

In this section we present the standard Weyl quantization of observables
defined on the cotangent of the compact d-dimensional manifold M (see for
instance [13]). The manifold can be equipped with an atlas {f`, V`}, such
that the V` form an open cover of M , and for each `, f` is a diffeomorphism
from V` to a bounded open set W` ⊂ Rd. Each f` induces a pullback
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f∗` : C∞(W`) → C∞(V`). We denote by f̃` the induced canonical map
between T ∗V` and T ∗W`:

(x, ξ) ∈ T ∗V` 7→ f̃`(x, ξ) = (f`(x), (Df`(x)−1)T ξ) ∈ T ∗W`,

(AT is the transposed of A) and by f̃∗` : C∞(T ∗W`) → C∞(T ∗V`) the
corresponding pull-back. One then chooses a smooth partition of unity on
M adapted to the charts {V`}, namely a set of functions φ` ∈ C∞c (V`) such
that

∑
` φ` = 1 on M .

Any observable a ∈ C∞(T ∗M) can now be split into a =
∑
j a`, with

a` = φ`a, each term being pushed to ã` = (f̃−1
` )∗a` ∈ C∞(T ∗W`). If a

belongs to a nice class of functions (possibly depending on ~), for instance
the space of symbols

a ∈ Sm,k = Sk(〈ξ〉m)(5.1)
def=
{
a = a~ ∈ C∞(T ∗M), |∂αx ∂

β
ξ a| 6 Cα,β~−k〈ξ〉m−|β|

}
,

then Weyl-quantization associates to each ã` a pseudodifferential operator
on S(Rd):
(5.2)

∀u∈S(Rd), Opw~ (ã`)u(x) =
1

(2π~)d

∫
e

i
~ 〈x−y,ξ〉ã`

(
x+y

2
, ξ; ~

)
u(y) dy dξ.

To pull this pseudodifferential operator back on C∞(V`), one takes a smooth
cutoff ψ` ∈ C∞c (V`) such that ψ`(x) = 1 close to suppφ`. The quantization
of a ∈ Sm,k is finally defined as follows:

(5.3) ∀u ∈ C∞(M), Op~(a)u =
∑
`

ψ` × f∗` ◦Opw~ (ã`) ◦ (f−1
` )∗(ψ` × u).

The space of pseudodifferential operators image of Sm,k through this quan-
tization is denoted by Ψm,k(M). The quantization obviously depends on
the cutoffs φ`, ψ`. However, this dependence only appears at second order
in ~, and the principal symbol map σ : Ψm,k(M) → Sm,k/Sm,k−1 is intrin-
sically defined. All microlocal properties of pseudodifferential operators on
Rd are carried over to Ψm,k(M). The Laplacian −~24 belongs to Ψ2,0(M),
with principal symbol σ(−~24) = |ξ|2x.

We actually need to consider symbols more general than (5.1). Follow-
ing [10], for any 0 6 ε < 1/2 we introduce the symbol class

(5.4) Sm,kε
def=
{
a ∈ C∞(T ∗M), |∂αx ∂

β
ξ a| 6 Cα,β~−k−ε|α+β|〈ξ〉m−|β|

}
.
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The induced functions ã` will then belong to the corresponding class on
T ∗W`, for which we can use the results of [10]. For instance, the quanti-
zation of any a ∈ S0,0

ε leads to a bounded operator on L2(M) (the norm
being bounded uniformly in ~).

5.2. Egorov theorem up to logarithmic times

We need analogous estimates to Bouzouina-Robert’s [7] concerning the
quantum-classical equivalence for long times. Our setting is more general,
since we are interested in observables on T ∗M for an arbitrary manifold M .
On the other hand, we will only be interested in the first order term in the
Egorov theorem, whereas [7] described the complete asymptotic expansion
in powers of ~.

The evolution is given by the propagator U t on L2(M), which quantizes
the flow gt on T ∗M . We will consider smooth observables a ∈ C∞c (T ∗M)
supported in a thin neighbourhood of the energy layer E , say inside the
energy strip Eν = E([1/2− ν, 1/2 + ν]) for some small ν > 0. This strip is
invariant through the flow, so the evolved observable at = a◦gt will remain
supported inside Eν . If λmax is the maximal expansion rate of the flow on
E (see the definition in Theorem 1.2), then by homogeneity the maximal
expansion rate inside Eν is

√
1 + 2νλmax. If we let λν

def= (1 + ν)λmax, the
successive derivatives of the flow on Eν are controlled as follows:

(5.5) ∀t ∈ R, ∀ρ ∈ Eν , ‖∂αρ gt(ρ)‖ 6 Cαeλν |αt|.

Obviously, the derivatives of the evolved observable also satisfy

(5.6) ∀t ∈ R, ∀ρ ∈ Eν , ‖∂αat(ρ)‖ 6 Ca,αeλν |αt|.

For times of the order of | log ~|, each derivative is bounded by some power
of ~−1. More precisely, for any γ ∈ (0, 1] and any ~ ∈ (0, 1/2), we call Tν,γ,~
the following time:

(5.7) Tν,γ,~ =
(1− γ)| log ~|

2λν
=

(1− γ)| log ~|
2(1 + ν)λmax

.

Starting from a smooth observable a = a0, the bounds (5.6) show that the
family of function {at = a ◦ gt : |t| 6 Tν,γ,~} remains in the symbol class
S−∞,0
ε , with ε = 1−γ

2 . Furthermore, any quasi-norm is uniformly bounded
within the family. To prove a Egorov estimate, we start as usual from the
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identity

(5.8) U−t Op~(a)U t −Op~(a ◦ gt) =
∫ t

0

dsU−s(Diff at−s)Us,

with Diff at
def=

i

~
[−~24,Op~(at)]−Op~({H, at}).

Since −~24 belongs to Ψ2,0 ⊂ Ψ2,0
ε and Op~(at) ∈ Ψ−∞,0

ε for times |t| 6
Tν,γ,~, the semiclassical calculus of [10, Prop. 7.7] (performed locally on
each chart Vj) shows that Diff at ∈ Ψ−∞,−α

ε , with α = 1− ε = 1+γ
2 . From

the Calderon-Vaillancourt theorem on Ψ−∞,−α
ε [10, Thm. 7.11], we extract

a constant Ca > 0 such that, for any small enough ~ > 0 and any time
|t| 6 Tν,γ,~,

‖Diff at‖ 6 Ca~α = Ca~
1+γ
2 .

We can finally combine the above estimate in (5.8) and use the unitarity
of U t (Duhamel’s principle) to obtain the following Egorov estimate.

Proposition 5.1. — Fix ν, γ ∈ (0, 1]. Let a be a smooth, ~-independent
observable supported in Eν . Then, there is a constant Ca such that, for any
time |t| 6 Tν,γ,~, one has

(5.9) ‖U−t Op~(a)U t −Op~(a ◦ gt)‖ 6 Ca|t|~
1+γ
2 .

Let us now consider two observables a, b ∈ C∞c (Eν), evolve one in the
future, the other in the past. The calculus in S−∞,0

ε (with again ε = 1−γ
2 )

shows that, for any time |t| 6 Tν,γ,~, one has

[Op~(a ◦ gt),Op~(b ◦ g−t)] ∈ S−∞,−γ
ε .

Together with the above Egorov estimate and the Calderon-Vaillancourt
theorem on Ψ−∞,−γ

ε , this shows the following

Lemma 5.2. — Fix ν, γ ∈ (0, 1]. Let a, b ∈ C∞c (Eν) be independent of
~. Then there is a constant C > 0 such that, for small ~ and any time
|t| 6 Tν,γ,~,

‖[U−t Op~(a)U t, U t Op~(b)U−t]‖ 6 C~γ .

5.3. Cutoff in a thin energy strip

As explained in §2.2.3, we need an energy cutoff χ(0) localizing in the en-
ergy strip of width ∼ ~ε around E , with ε ∈ [0, 1) arbitrary close to 1. As a
result, the m-th derivatives of χ transversally to E will grow like ~−mε. The
symbol classes (5.4) introduced in the previous sections do not include such
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functions if ε > 1/2. Yet, because the fluctuations occur close to E and only
transversally, it is possible to work with a “second-microlocal” pseudodif-
ferential calculus which includes such fast-varying, anisotropic symbols. We
summarize here the treatment of this problem performed in [28, Section 4].

5.3.1. Local behavior of the anisotropic symbols

For any ε ∈ [0, 1), we introduce a class of symbols Sm,kE,ε , made of functions
a = a~ satisfying the following properties:

• for any family of smooth vectors fields V1, . . . , Vl1 tangent to E , and
of smooth vector fields W1, . . . ,Wl2 , one has in each energy strip
Eν = E([1/2− ν, 1/2 + ν]):

sup
ρ∈Eν

|V1 · · ·Vl1W1 · · ·Wl2a(ρ)| = O(~−k−εl2).

• away from E , we have |∂αx ∂
β
ξ a(ρ)| = O(~−k〈ξ〉m−|β|).

Notice that Sm,k ⊂ Sm,kE,ε′ ⊂ Sm,kE,ε if 1 > ε > ε′ > 0.
To quantize this class of symbols, we cover a certain neighbourhood Eν of

E by a family of bounded open sets Vj , such that for each j, Vj is mapped
by a canonical diffeomorphism κj to a bounded open set Wj ⊂ T ∗Rd, with
(0, 0) ∈ Wj . We will denote by (x, ξ) the local coordinates on Vj ⊂ T ∗M ,
and (y, η) the image coordinates on Wj . The canonical map κj is chosen
such that H ◦ κ−1

j = η1 + 1/2. In particular, the image of E ∩ Vj is a piece
of the hyperplane {η1 = 0}.

We consider a smooth cutoff function φ supported inside Eν , with φ ≡ 1
in Eν/2, and a smooth partition of unity (ϕj) such that 1 =

∑
j ϕj on

∪jVj , and suppϕj b Vj . For any symbol a ∈ Sm,kE,ε , the function a(1−φ) is
supported outside Eν/2, and it belongs to the standard class Sm,k of (5.1).
On the other hand, for each index j the function

aj
def= (aφϕj) ◦ κ−1

j

is compactly supported inside Wj ⊂ T ∗Rd.
That function can be Weyl-quantized as in (5.2). Although aj(y, η) can

oscillate at a rate ~−ε along the coordinate η1 near {η1 = 0}, for a, b ∈ Sm,kE,ε
the product Opw~ (aj) Opw~ (bj) is still of the form Opw~ (cj), where the func-
tion cj(y, η) is given by the Moyal product aj]bj and satisfies an asymptotic
expansion in powers of ~1−ε and ~.

Mimicking the proof of the Calderon-Vaillancourt theorem in [10, Thm.
7.11], we use the isometry (in L2(Rd)) between Opw~ (A) and Opw1 (A ◦ T~),
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where the rescaling

T~(y, η) = (y1~
1−ε
2 , y′~1/2; η1~

1+ε
2 , η′~1/2)

ensures that the derivatives of aj ◦ T~ are uniformly bounded in ~. As a
consequence we get the following

Proposition 5.3. — There exist Nd and C > 0 such that the following
bound holds. For any symbol a ∈ Sm,kE,ε and any j, the operator Opw~ (aj)
acts continuously on L2(Rd), and its norm is bounded as follows:

‖Opw~ (aj)‖ 6 ‖aj‖L∞ + C
∑

16|α|+|β|6Nd

~
1
2 (|α′|+|β′|+(1−ε)α1+(1+ε)β1)

× ‖∂αy ∂βη aj‖L∞ .

5.3.2. Global quantization of the anisotropic symbols

We now glue together the various pieces of a ∈ Sm,kE,ε to define its global
quantization. First of all, since a(1−φ) belongs to the standard class Sm,k

of (5.1), we can quantize it as in §5.1.
Then, for each index j we select a Fourier integral operator Uκj

:
L2(π(Vj)) → L2(π(Wj)), elliptic near suppϕj×κj(suppϕj) ⊂ Vj×Wj , and
associated with the diffeomorphism κj (an explicit expression is given in
§3.2.1). Since aj describes the symbol a in the coordinates (y, η), it makes
sense to pull Opw~ (aj) back to the original coordinates (x, ξ) using Uκj

. The
quantization of the global symbol a ∈ Sm,kE,ε is then defined as follows:

(5.10) OpE,~(a) def= Op~(a(1− φ)) +
∑
j

U∗κj
Opw~ (aj)Uκj .

The Fourier integral operators (Uκj ) can and will be chosen such that
OpE,~(1) = Id+OL2→L2(~∞). The operators OpE,~(a) make up a space
Ψm,k
E,ε of pseudodifferential operators on M . The quantization OpE,~ de-

pends on the choice of the cutoffs φ, ϕj , the diffeomorphisms κj and the
associated FIOs (Uκj

). It is equal to the quantization Op~ for symbols a
supported outside the energy strip Eν ; otherwise, it differs from Op~ by
higher-order terms.

The space Ψ−∞,k
E,ε is invariant under conjugation by FIOs which preserve

the energy layer E . We will apply that property to the propagator U =
ei~4/2, which quantizes the flow g1. One actually has a Egorov property

U−1 OpE,~(a)U = OpE,~(b), with b− a ◦ g ∈ S−∞,k−1+ε
E,ε .

One is naturally lead to the definition of an ~-dependent essential sup-
port of a symbol a~ ∈ Sm,kE,ε (we will only consider the finite part of the
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essential support, the infinite part at |ξ| = ∞ being irrelevant for our pur-
poses). A family of sets (V~ ⊂ T ∗M)~→0 does not intersect ess− suppa~
iff there exists χ~ ∈ S−∞,0

E,ε , with χ~ > 1 on V~, such that χ~a~ ∈ S−∞,−∞
E,ε .

The essential support of a~ is also the wavefront set of its quantization,
WF~(OpE,~(a~)).

The above Egorov property can be iterated to all orders, showing that
the wavefront set of an operator A ∈ Ψ−∞,k

E,ε is transported classically:

(5.11) WF~
(
U−1AU

)
= g−1(WF~(A)).

5.4. Properties of the energy cutoffs

Take some small δ > 0 and Cδ > 0 as in §2.2.3, and define ε = 1 −
δ. One can easily check that the cutoffs χ(n) defined in (2.6), with n 6
Cδ| log ~|, all belong to the symbol class S−∞,0

E,ε . From the above results,
their quantizations Op(χ(n)) = OpE,ε(χ(n)) are continuous operators on
L2(M), of norms

(5.12) ‖Op(χ(n))‖ = 1 +O(~δ/2),

with an implied constant independent of n. We want to check that these
cutoffs have little influence on an eigenstate ψ~ satisfying (2.2). For this,
we invoke the ellipticity of (−~2 4−1) ∈ Ψ2,0 ⊂ Ψ2,0

E,ε away from E . Using
[28, Prop. 4.1], one can adapt the standard division lemma to show the
following

Proposition 5.4. — For ~ > 0 small enough and any n ∈ N, 0 6 n 6
C| log ~|, there exists A(n)

~ ∈ Ψ−2,ε
E,ε and R

(n)
~ ∈ Ψ−∞,−∞

E,ε such that

OpE,~(1− χ(n)) = A
(n)
~ (−~24− 1) +R

(n)
~ .

As a result, for any eigenstate ψ~ = −~2 4 ψ~, one has

‖ψ~ −OpE,~(χ(n))ψ~‖ = O(~∞)‖ψ~‖.

The implied constant is uniform with respect to n.

This result contains in particular the estimate (2.8).
We end this section by proving some properties of the cutoffs χ(n). The

general idea is that an eigenstate ψ~ is localized in an energy strip of width
~, so that inserting cutoffs χ(n) in expressions of the type Op(a)ψ~ has a
negligible effect.
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Lemma 5.5. — The following estimates are uniform for ~ > 0 small
enough and 0 6 n 6 Cδ| log ~|:

‖(1−Op(χ(n+1)))U Op(χ(n))‖ = O(~∞),

∀k = 1, . . . ,K, ‖(1−Op(χ(n+1)))UPk Op(χ(n))‖ = O(~∞).

Here Pk is any element of the partition of unity (2.4).

Proof. — For the symbols χ(n) the essential support (which has been
defined above in a rather indirect way) coincides with the support. The
first statement of the Lemma uses the classical transport of the wavefront
set (5.11), applied to Op(χ(n)). Since χ(n) is invariant through the geodesic
flow, U Op(χ(n))U−1 has the same wavefront set as Op(χ(n)). From the
definition (2.6), the support of (1 − χ(n+1)) is at a distance > C~ε from
the support of χ(n). The calculus on S0,0

E,ε then implies that the product
(1−Op(χ(n+1)))Op(χ(n)) is in Ψ−∞,−∞

E,ε .
The second statement is a consequence of the first: the calculus on

Ψ0,0
E,ε, which contains the cutoffs Op(χ(n)) and the multiplication opera-

tors Pk, shows that the wavefront set of Pk Op(χ(n)) is contained in that
of Op(χ(n)). �

We draw from this Lemma two properties which we use in the text (see
(2.5) for the definition of Pε).

Corollary 5.6. — For any sequence ε of length n 6 Cδ| log ~|, one has

‖(1−Op(χ(n)))Pε Op(χ(0))‖ = O(~∞).

For any two sequence ε, ε′ of length n 6 Cδ| log ~|/4, one has

‖(1−Op(χ(4n)))P ∗ε′U
nPε Op(χn))‖ = O(~∞).

6. The entropic uncertainty principle: an application of
complex interpolation

In this section we prove the weighted entropic uncertainty principle,
namely theorem 2.1, by adapting the original proof of [25].

We consider a complex Hilbert space (H, 〈· , · 〉), and denote the associ-
ated norm by ‖ψ‖ =

√
〈ψ,ψ〉. The same notation ‖·‖ will also be used for

the operator norm on L(H).
Let (αk)k=1,...,N be a family of positive numbers. We consider the

weighted lp–norms on HN 3 Ψ = (Ψ1, . . . ,ΨN ):

‖Ψ‖(α)
p

def=

( N∑
k=1

αp−2
j ‖Ψk‖p

)1/p

, 1 6 p <∞,(6.1)
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and
‖Ψ‖(α)

∞
def= max

k
(αk‖Ψk‖) .

For p = 2, this norm does not depend on (αk) and coincides with the
Hilbert norm deriving from the scalar product

〈Ψ,Φ〉HN =
∑
k

〈Ψk,Φk〉H.

If Ψ ∈ HN has Hilbert norm unity, we define its entropy as

h(Ψ) = −
N∑
k=1

‖Ψk‖2 log‖Ψk‖2,

and its pressure with respect to the weights (αk) is defined by

(6.2) pα(Ψ) = −
N∑
k=1

‖Ψk‖2 log‖Ψk‖2 −
N∑
k=1

‖Ψk‖2 logα2
k.

This is the derivative of ‖Ψ‖(α)
p with respect to p, evaluated at p = 2.

Similarly, let (βj)j=1,...,M be a family of weights. They induce the fol-
lowing l(β)

p –norms on HM 3 Φ = (Φ1, . . . ,ΦM):

‖Φ‖(β)
p

def=

M∑
j=1

βp−2
j ‖Φj‖p

1/p

, 1 6 p <∞,

and
‖Φ‖(β)

∞
def= max

j
(βj‖Φj‖).

We can define the entropy of a normalized vector Φ ∈ HM, and its pres-
sure pβ(Φ) with respect to the weights (βj)j=1,...,M. The standard lp − lq
duality [12, Thm.IV.8.1] reads as follows in the present context:

Proposition 6.1. — For any 1 < p, q <∞ such that 1
p + 1

q = 1, then

(6.3) sup
‖Ψ‖(α)

p =1

|〈Λ,Ψ〉| = ‖Λ‖(α)
q .

6.1. Complex interpolation

A bounded operator T : HN → HM can be represented by a M×N
matrix (Tjk) of bounded operators on H. For 1 6 p, q 6 ∞ we denote
by ‖T‖(α,β)

p,q the norm of T from l
(α)
p (HN ) to l

(β)
q (HM). We assume that

‖T‖2,2 = 1, which implies in particular that ‖Tjk‖ 6 1 for all k, j.
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Example 6.2. — Suppose we have two partitions of unity (πk)Nk=1 and
(τj)Mj=1 on H, that is, two families of operators such that

(6.4)
N∑
k=1

πkπ
∗
k = Id,

M∑
j=1

τjτ
∗
j = Id .

The main example we have in mind is the case where U is a unitary operator
on H and Tjk

def= τ∗j Uπk.

Let O be a bounded operator on H, and let ϑ > 0. We will be interested
in the action of T on the cone

C(O,ϑ) = {Ψ ∈ HN , ‖OΨk −Ψk‖ 6 ϑ‖Ψ‖2 for all k = 1, . . . ,N} ⊂ HN .

Notice that the cone C(O,ϑ) coincides with HN in the special case O = Id,
ϑ = 0, which is already an interesting case.

We introduce the positive number

cO(T ) = max
j,k

αkβj‖TjkO‖L(H),

and also A = maxk αk, B = maxj βj . The following theorem extends the
result of [25].

Theorem 6.3. — For all Ψ ∈ C(O,ϑ) such that ‖Ψ‖2 = 1 and ‖TΨ‖2 =
1, we have

pβ(TΨ) + pα(Ψ) > −2 log
(
cO(T ) +NABϑ

)
.

The proof of this theorem follows the standard proof of the Riesz-Thorin
theorem [12, sec.VI.10]. In particular, one uses the following convexity prop-
erty of complex analytic functions.

Lemma 6.4 (3-circle theorem). — Let f(z) be analytic and bounded
in the strip {0 < x < 1}, and continuous on the closed strip. Then, the
function logM(x) = log supy∈R |f(x+ iy)| is convex in the interval 0 6
x 6 1.

We will define an appropriate analytic function in the unit strip. Let
Ψ ∈ C(O,ϑ) with ‖Ψ‖2 = 1. Fix t ∈ [0, 1], close to 0, and let

Ψ̃ =
Ψ

‖Ψ‖(α)
2

1+t

.

From the definition of the norm and Hölder’s inequality, we have

‖Ψ‖(α)
2

1+t

> A−t.
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Consider any state Φ ∈ HM such that ‖Φ‖(β)
2

1+t

6 1. For each z = x+ iy in

the strip {0 6 x 6 1}, we define

a(z) =
1 + z

1 + t
,

and the states

Ψ̃(z) =
(
Ψ̃(z)k = Ψ̃k‖Ψ̃k‖a(z)−1α

a(z)−1
k

)
k=1,...,N

,

Φ(z) =
(
Φ(z)j = Φj‖Φj‖a(z)−1β

a(z)−1
j

)
j=1,...,M

.

By construction, we have

∀z = x+ iy, ‖Ψ̃(z)‖(α)
2

1+x

= 1 and ‖Φ(z)‖(β)
2

1+x

6 1.

In particular, for any y ∈ R we have

(6.5) ‖Ψ̃(iy)‖2 = 1 and ‖Φ(iy)‖2 6 1 =⇒
∣∣∣〈T Ψ̃(iy),Φ(iy)〉

∣∣∣ 6 ‖T‖2,2.

Similarly, for any y ∈ R,

‖Φ(1 + iy)‖(β)
1 6 1 =⇒

∣∣〈T Ψ̃(1 + iy),Φ(1 + iy)〉
∣∣ 6 ‖T Ψ̃(1 + iy)‖(β)

∞ .

We decompose the right hand side by inserting the operator O:

‖T Ψ̃(1 + iy)‖(β)
∞ = max

j
βj‖
∑
k

TjkΨ̃(1 + iy)k‖

6 max
j
βj‖
∑
k

TjkOΨ̃(1 + iy)k‖+ max
j
βj‖
∑
k

Tjk(Id−O)Ψ̃(1 + iy)k‖.

The first term on the right hand side is bounded above by cO(T )‖Ψ̃(1 +
iy)‖(α)

1 = cO(T ). For the second term, we remark that

‖Ψ̃(1 + iy)k‖ = |αk|
1−t
1+t ‖Ψ̃k‖

2
1+t =

|αk|
1−t
1+t ‖Ψk‖

2
1+t(

‖Ψ‖(α)
2

1+t

) 2
1+t

.

On the one hand, ‖Ψk‖ 6 ‖Ψ‖2 6 1 and |αk|
1−t
1+t 6 A

1−t
1+t . On the other

hand we have already stated that ‖Ψ‖(α)
2

1+t

> A−t. Putting these bounds

together and using the fact that Ψ ∈ C(O,ϑ), we get

∀k = 1, . . . ,N , ‖(Id−O)Ψ̃(1 + iy)k‖ 6 Aϑ.

Summing over k and using ‖Tjk‖ 6 1, we find

max
j
βj‖

N∑
k=1

Tjk(Id−O)Ψ̃(1 + iy)k‖ 6 NABϑ.
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We have proved that for all y ∈ R,

(6.6)
∣∣〈T Ψ̃(1 + iy),Φ(1 + iy)〉

∣∣ 6 cO(T ) +NABϑ.

The function z 7→ 〈T Ψ̃(z),Φ(z)〉 is bounded and analytic in the strip
{0 6 x 6 1}: this is the function to which we apply the 3-circle theo-
rem (Lemma 6.4). Taking into account (6.5, 6.6), we obtain for any x ∈
[0, 1], y ∈ R,

log
∣∣〈T Ψ̃(x+ iy),Φ(x+ iy)〉

∣∣ 6 (1− x) log‖T‖2,2 + x log(cO(T ) +NABϑ)

6 x log
(
cO(T ) +NABϑ

)
.

The last inequality is due to our assumption ‖T‖2,2 = 1. In particular,
taking x+ iy = t, and exponentiating, we get∣∣〈T Ψ̃,Φ〉

∣∣ 6 (cO(T ) +NABϑ
)t
.

Taking the supremum over
{

Φ ∈ HM, ‖Φ‖(β)
2

1+t

6 1
}

and using the l(β)
2

1+t

−

l
(β)

2
1−t

duality (Prop. 6.1), we obtain

‖T Ψ̃‖(β)
2

1−t

6
(
cO(T ) +NABϑ

)t
,

and by homogeneity

(6.7) ‖TΨ‖(β)
2

1−t

6
(
cO(T ) +NABϑ

)t‖Ψ‖(α)
2

1+t

.

We may now take the limit t→ 0 in this inequality. Using the assumption
‖Ψ‖2 = 1, we notice that

log‖Ψ‖(α)
2

1+t

∼ 1 + t

2
log

(∑
k

‖Ψk‖2 exp{−t log‖Ψk‖2 − t logα2
k}

)

∼ t

2
pα(Ψ).

Similarly, log‖TΨ‖(β)
2

1−t

∼ − t
2pβ(TΨ). Therefore, in the limit t → 0, (6.7)

implies Theorem 6.3. �

6.2. Specialization to particular operators T and states Ψ

We now come back to the case of Example 6.2.
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Lemma 6.5. — Let U : H → H be a bounded operator. Using the
two partitions of Example 6.2, we construct the operator T : HN → HM

through its components Tjk = τ∗j Uπk. Then the two following norms are
equal:

‖T‖2,2 = ‖U‖L(H) .

Proof. — The operator T may be described as follows. Consider a line
and column vectors of operators on H:

L
def= (π1, . . . , πN ) , respectively C =

 τ∗1
...
τ∗M

 .

We can write T = CUL. We insert this formula in the identity

‖T‖22,2 = ‖T ∗T‖L(HN ) = ‖L∗U∗C∗CUL‖L(HN )

Using the resolution of identity of the τj , we notice that C∗C = IdH, so
that the above norm reads

‖L∗U∗UL‖L(HN ) .

Then, using the resolution of identity of the πk, we get

‖(UL)∗(UL)‖L(HN ) = ‖(UL)(UL)∗‖L(H) = ‖(UL)L∗U∗‖L(H)

= ‖UU∗‖L(H) . �

Therefore, if U is contracting (resp. ‖U‖L(H) = 1) one has ‖T‖2,2 6 1
(resp. ‖T‖2,2 = 1).

We also specialize the vector Ψ ∈ HN by taking Ψk = π∗kψ for some
normalized ψ ∈ H. From the resolution of identity on the πk, we check
that ‖Ψ‖2 = ‖ψ‖, and also (TΨ)j = τ∗j Uψ. Thus, if ‖Uψ‖ = 1, the second
resolution of identity induces ‖TΨ‖2 = ‖Uψ‖ = 1. With this choice for T
and Ψ, Theorem 6.3 reads as follows:

Theorem 6.6. — We consider the setting of Example 6.2. Let U be an
isometry on H. Define c(α,β)

O (U) def= supj,k αkβj‖τ∗j UπkO‖L(H).
Then, for any normalized ψ ∈ H satisfying

∀k = 1, . . . ,N , ‖(Id−O)π∗kψ‖ 6 ϑ,

and defining the pressures as in (6.2), we have

pβ
(
(τ∗j Uψ)j=1,...,M

)
+ pα

(
(π∗kψ)k=1,...,N

)
> −2 log

(
c
(α,β)
O (U) +NABϑ

)
.
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This theorem implies Theorem 2.1, if we take the same partition π = τ (in
particular N = M), and if we remark that the pressures pα

(
(π∗kψ)k=1,...,N

)
and , pβ

(
(π∗jUψ)j=1,...,N

)
are the same as the quantities pπ,α(ψ), pπ,β(Uψ)

appearing in the theorem.
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