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COMPARISON OF THE REFINED ANALYTIC AND
THE BURGHELEA-HALLER TORSIONS

by Maxim BRAVERMAN & Thomas KAPPELER (*)

ABSTRACT. — The refined analytic torsion associated to a flat vector bundle
over a closed odd-dimensional manifold canonically defines a quadratic form 7 on
the determinant line of the cohomology. Both 7 and the Burghelea-Haller torsion
are refinements of the Ray-Singer torsion. We show that whenever the Burghelea-
Haller torsion is defined it is equal to 7. As an application we obtain new results
about the Burghelea-Haller torsion. In particular, we prove a weak version of the
Burghelea-Haller conjecture relating their torsion with the square of the Farber-
Turaev combinatorial torsion.

RESUME. — La torsion analytique raffinée, associée & un fibré vectoriel plat sur
une variété fermée et orientée de dimension impaire, définit d’une maniére cano-
nique une forme quadratique 7 sur le déterminant de la cohomologie. La torsion
introduite par Burghelea et Haller et la forme quadratique 7 sont des concepts
raffinés de la torsion analytique de Ray-Singer. On démontre que dans le cas ou
la torsion de Burghelea-Haller est définie, elle est identique & +7. Comme appli-
cation, on obtient des résultats nouveaux pour la torsion de Burghelea-Haller. En
particulier, on démontre une version faible de la conjecture de Burghelea-Haller
concernant leur torsion et le carré de la torsion combinatoire de Farber-Turaev.

1. Introduction
1.1. The refined analytic torsion

Let M be a closed oriented manifold of odd dimension d = 2r —1 and let
FE be a complex vector bundle over M endowed with a flat connection V.
In a series of papers [4, 6, 7], we defined and studied the non-zero element

Pan = pan(V) € Det (H*(M, E))
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2362 Maxim BRAVERMAN & Thomas KAPPELER

of the determinant line Det (H*(M, E)) of the cohomology H®(M, E) of
M with coefficients in E. This element, called the refined analytic tor-
sion, can be viewed as an analogue of the refinement of the Reidemeister
torsion due to Turaev [24, 25, 26] and, in a more general context, to Farber-
Turaev [15, 16]. The refined analytic torsion carries information about the
Ray-Singer metric and about the n-invariant of the odd signature operator
associated to V and a Riemannian metric on M. In particular, if V is a
hermitian connection, then the Ray-Singer norm of p.,(V) is equal to 1.
One of the main properties of the refined analytic torsion is that it depends
holomorphically on V. Using this property we computed the ratio between
the refined analytic torsion and the Farber-Turaev torsion up to a factor,
which is locally constant on the space of flat connections and is equal to
one on every connected component which contains a Hermitian connec-
tion, cf. Th. 14.5 of [4] and Th. 5.11 of [6]. This result extends the classical
Cheeger-Miiller theorem about the equality between the Ray-Singer and
the Reidemeister torsions [23, 13, 21, 22, 2].

1.2. Quadratic form associated with p,,

We define the quadratic form 7 = 7v on the determinant line
Det (H®*(M, E)) by setting

(11) T(pan) _ efZﬂi(n(V)frank E.nmvial),

where n(V) stands for the n-invariant of the restriction to the even forms of
the odd signature operator, associated to the flat vector bundle (E, V) and
a Riemannian metric on M (cf. Definition 2.2), and yivia) is the n-invariant
of the trivial line bundle over M.

Properties of pa,, such as its metric independence or its analyticity es-
tablished in [4, 7, 6] easily translate into corresponding properties of 7v
— see Subsection 1.5.

Remark 1.1. — The difference n(V) — rank E - nyivia in (1.1) is called
the p-invariant of (E, V) and its reduction modulo Z is independent of the
Riemannian metric.

In the subsequent work [3] we show that 7y can be defined directly,
without going through the construction of pay,.

ANNALES DE L’INSTITUT FOURIER
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1.3. The Burghelea-Haller complex Ray-Singer torsion

On a different line of thoughts, Burghelea and Haller [10, 12] have in-
troduced a refinement of the square of the Ray-Singer torsion for a closed
manifold of arbitrary dimension, provided that the complex vector bun-
dle E admits a non-degenerate complex valued symmetric bilinear form b.
They defined a complex valued quadratic form

(1.2) 7BH — Tb}?g

on the determinant line Det (H *(M, E))7 which depends holomorphically
on the flat connection V and is closely related to (the square of) the Ray-
Singer torsion. Burghelea and Haller then defined a complex valued qua-
dratic form, referred to as complex Ray-Singer torsion. In the case of a
closed manifold M of odd dimension it is given by

BH . —2 wv pA BH
(1.3) Tho v = € M “Thvs

where o € Q4=1(M) is an arbitrary closed (d — 1)-form and wy , € Q'(M)
is the Kamber-Tondeur form, cf. [12, §2] — see the discussion at the end
of Section 5 of [12] for the reasons to introduce this extra factor. Burghelea
and Haller conjectured that, for a suitable choice of «, the form T}fo}iv is
roughly speaking equal to the square of the Farber-Turaev torsion, cf. [12,
Conjecture 5.1] and Theorem 1.3 below.

Note that 7BH seems not to be related to the n-invariant, whereas the
refined analytic torsion is closely related to it. In fact, our study of pan
leads to new results about 7, cf. [4, Th. 14.10, 14.12] and [6, Prop. 6.2,
Cor. 6.4].

1.4. The comparison theorem

The main result of this paper is the following theorem establishing a
relationship between the refined analytic torsion and the Burghelea-Haller
quadratic form.

THEOREM 1.2. — Suppose M is a closed oriented manifold of odd di-
mension d = 2r — 1 and let ¥ be a complex vector bundle over M endowed
with a flat connection V. Assume that there exists a symmetric bilinear
form b on E so that the quadratic form (1.2) on Det (H®*(M, E)) is defined.
Then ng = +71v, le.,

(14) ng (pan (V)) — ief2ﬂi(77(v)*rank E'mrivial) .

TOME 57 (2007), FASCICULE 7



2364 Maxim BRAVERMAN & Thomas KAPPELER

The proof is given in Section 4.

Theorem 1.2 implies that for manifolds of odd dimension, the incon-
venient assumption of the existence of a non-degenerate complex valued
symmetric bilinear form b for the definition of the Burghelea-Haller tor-
sion can be avoided, by defining the quadratic form via the refined analytic
torsion as in (1.1).

The relation between p,, and 7 (and, hence, when there exists a quadratic
form b, with 7BH) takes an especially simple form, when the bundle (E, V)
is acyclic, i.e., when H*(M,E) = 0. Then the determinant line bundle
Det (H’ (M, E)) is canonically isomorphic to C and both, 7 and pa,, can
be viewed as non-zero complex numbers and (1.1) takes the form

. —2
(15) vV = (pan(v) . eﬂ'z(n(V)frank E'mrivial)) )

In general, 7v (and, hence, TVBH) does not admit a square root which
is holomorphic in V, c¢f. Remark 5.12 and the discussion after it in [12].
In particular, the product pa, - e™*(1(V)—rank Enuivial) is not a holomorphic
function of V, since e™(1(V)—rank Enuivial) i pot even continuous in V.
Thus the refined analytic torsion can be viewed as a modified version of

the inverse square root of 7, which is holomorphic.

1.5. Properties of the quadratic forms 7 and 7P

As an application of our previous papers [4, 7, 6] we obtain various results
about the quadratic form 7, some of them generalizing known properties
of the Burghelea-Haller torsion 7BH. In particular, we show that 7 is in-
dependent of the choice of the Riemannian metric. As an application of
Theorem 1.2 one sees that 7, ¢, is invariant under the deformation of the
non-degenerate bilinear form b (cf. Theorem 5.1) — a result, which was
first proven by Burghelea and Haller [12, Th. 4.2]. We also slightly improve
this result, cf. Theorem 5.2.

Next we discuss our main application of Theorem 1.2.

1.6. Comparison between the Farber-Turaev and the
Burghelea-Haller torsions

In [12], Burghelea and Haller made a conjecture relating the quadratic
form (1.3) with the refinement of the combinatorial torsion introduced by

ANNALES DE L’INSTITUT FOURIER
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Turaev [24, 25, 26] and, in a more general context, by Farber and Turaev
[15, 16], cf. [12, Conjecture 5.1]. Recall that the Turaev torsion depends
on the Euler structure ¢ and a choice of a cohomological orientation, i.e,
an orientation o of the determinant line of the cohomology H®(M,R) of
M. The set of Euler structures Eul(M), introduced by Turaev, is an affine
version of the integer homology Hi(M,Z) of M. It has several equivalent
descriptions [24, 25, 8, 11]. For our purposes, it is convenient to adopt the
definition from Section 6 of [25], where an Euler structure is defined as an
equivalence class of nowhere vanishing vector fields on M — see [25, §5]
for the description of the equivalence relation. The definition of the Turaev
torsion was reformulated by Farber and Turaev [15, 16]. The Farber-Turaev
torsion, depending on €, 0, and V, is an element of the determinant line
Det (H*(M, E)), which we denote by p. o(V).

Though Burghelea and Haller stated their conjecture for manifolds of ar-
bitrary dimensions, we restrict our formulation to the odd dimensional case.
Suppose M is a closed oriented odd dimensional manifold. Let ¢ € Eul(M)
be an Euler structure on M represented by a non-vanishing vector field X.
Fix a Riemannian metric ¢™ on M and let ¥(¢g) € Q=1(TM\{0}) de-
note the Mathai-Quillen form, [20, §7], [2, pp. 40-44]. Set

e = ac(gM) == X U (gM) € Q1 (M).

This is a closed differential form, whose cohomology class [a.] € H¥™1 (M, R)
is closely related to the integer cohomology class, introduced by Turaev [25,
§5.3] and called the characteristic class c(¢) € H1(M,Z) associated to an
Euler structure €. More precisely, let PD : Hy(M,Z) — H* (M, Z) de-
note the Poincaré isomorphism. For h € Hy(M,Z) we denote by PD’(h)
the image of PD(h) in H%~'(M,R). Then

(1.6) PD’ (¢([X])) = —2[ac] = —2[X"¥(g"™)],
and, hence,
(L.7) 2 /M wes A e = — (e, ele)),

where wy , € Q1(M) is the Kamber-Tondeur form, cf. (1.3).

Note that (1.6) implies that 2a. represents an integer class in
H¥Y(M,R).

The following result is the original Burghelea-Haller conjecture [12]. Tt
was proven independently by Burghelea-Haller and Su-Zhang after the first
version of our paper was posted to the archive — cf. Subsection 1.8.

TOME 57 (2007), FASCICULE 7
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THEOREM 1.3. — Assume that (E,V) is a flat vector bundle over M
which admits a non-degenerate symmetric bilinear form b. Then

(1.8) Tlii,v (pa,O(V)) =1,

or, equivalently,

(1.9) TP (peo(V)) = € Ja 900,

1.7. A generalization of the Burghelea-Haller conjecture

Following Farber [14], we denote by Argy the unique cohomology class
Argy € HY(M,C/Z) such that for every closed curve v in M we have

(1.10) det (Mony (7)) = exp (2mi(Argy, [4])),

where Mony () denotes the monodromy of the flat connection V along the
curve v and (,-) denotes the natural pairing H*(M,C/Z) x Hy(M,Z) —

C/7Z.
By Lemma 2.2 of [12] we get
(1.11) e~ {lwvslel€)) = 4 det Mony (ce)) = L e2mi(Argy c(e))

(Note that Mony (7) is equal to the inverse of what is denoted by holZ (v)
in [12]).
Combining (1.7), (1.10) and (1.11) we obtain

62 va,b/\as ::l:e27ri<Argv,c(a)>'

Thus, up to sign, the Burghelea-Haller conjecture (1.9) can be rewritten as
(1.12) B (p(V)) = e2THATER (6],

In view of Theorem 1.2 we make the following stronger conjecture involving
Ty instead of TEEE,V’ and, hence, meaningful also in the situation, when
the bundle E does not admit a non-degenerate symmetric bilinear form.

CONJECTURE 1.4. — Assume that (F,V) is a flat vector bundle over
M. Then
(1.13) v (pe,o (v)) _ eZ‘n’i(ArgV,c(s))’

or, equivalently,
(1.14) eﬂi(n(v)*rankE-mr;ml)  pan(V) = +e—Ti{Argy,c(e)) pe.o(V).

Clearly Conjecture 1.4 implies (1.8) up to sign.

ANNALES DE L’INSTITUT FOURIER
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Remark 1.5. — By construction, the left hand side of (1.14) is indepen-
dent of the Euler structure € and the cohomological orientation o, while
the right hand side of (1.14) is independent of the Riemannian metric g*.

Note that the fact that ™ (n(9)—rank B-arivio) - pan(V) is independent of g™
up to sign follows immediately from Lemma 9.2 of [7], while the fact that
e~ mi{Argy,c(e)) - pe.o(V) is independent of € and independent of o up to sign
is explained on page 212 of [16].

In Theorem 5.1 of [6] we computed the ratio of the refined analytic and
the Farber-Turaev torsions. Using this result and Theorem 1.2 we establish
the following weak version of Conjecture 1.4 (and, hence, of (1.8)).

THEOREM 1.6.

(i) Under the same assumptions as in Conjecture 1.4, for each connected
component C of the set Flat(E) of flat connections on E there exists a
constant Re with |Re| =1, such that

(1.15) v (pgyo(V)) = Re - e2mArwc€))  for all WV eC.

(ii) If the connected component C contains an acyclic Hermitian connec-
tion then Re =1, i.e.,

(1.16) 79 (pe,0(V)) = 2™ iAr8vcE) - for all V€ C.
The proof is given in Subsection 5.2.

Remark 1.7.

(i) The second part of Theorem 1.6 is due to Rung-Tzung Huang, who
also proved it in the case when C contains a Hermitian connection which
is not necessarily acyclic, [18].

(ii) It was brought to our attention by Stefan Haller that one can modify
the arguments of our proofs of Theorem 1.2 and of [6, Th. 5.1] so that
they can be applied directly to the Burghelea-Haller torsion. It might lead
to a proof of an analogue of Theorem 1.6 for TVB% on an even dimensional
manifold.

1.8. Added in proofs

When the first version of our paper was posted in the archive Theo-
rem 1.3 was still a conjecture. Since then a lot of progress has been made.
First, Huang [18] showed that if the connected component C C Flat(E)
contains a Hermitian connection, then the constant Re of Theorem 1.6

TOME 57 (2007), FASCICULE 7
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is equal to 1. Part of his result is now incorporated in item (ii) of our
Theorem 1.8. Later Burghelea and Haller (D. Burghelea and S. Haller,
Complex valued Ray-Singer torsion II, arXiv:math.DG/0610875) proved
the equality (1.8) up to sign. Independently and at the same time Su and
Zhang (G. Su and W. Zhang, A Cheeger-Mueller theorem for symmet-
ric bilinear torsions, arXiv:math.DG/0610577) proved Theorem 1.3 in full
generality. Both proofs used methods completely different from ours. In
fact, Burghelea-Haller, following [9], and Su-Zhang, following [2], study a
Witten-type deformation of the non-self adjoint Laplacian (3.3) and adopt
all arguments of these papers to the new situation. In contrast, our Theo-
rem 1.6 provides a “low-tech” approach to the Burghelea-Haller conjecture
and, more generally, to Conjecture 1.4. On the other side, it would be in-
teresting to see if the methods of Burghelea-Haller and Su-Zhang can be
used to prove Conjecture 1.4.

Acknowledgment. — We would like to thank Rung-Tzung Huang for
suggesting to us the second part of Theorem 1.6. We are also grateful
to Stefan Haller for valuable comments on a preliminary version of this
paper. The first author would like to thank the Max Planck Institute for
Mathematics in Bonn, where part of this work was completed.

2. The refined analytic torsion

In this section we recall the definition of the refined analytic torsion from
[7]. The refined analytic torsion is constructed in 3 steps: first, we define the
notion of refined torsion of a finite dimensional complex endowed with a
chirality operator, cf. Definition 2.1. Then we fix a Riemannian metric g
on M and consider the odd signature operator B = B(V, g™) associated to
a flat vector bundle (F, V), cf. Definition 2.2. Using the graded determinant
of B and the definition of the refined torsion of a finite dimensional complex
with a chirality operator we construct an element p = p(V,g") in the
determinant line of the cohomology, cf. (2.14). The element p is almost
the refined analytic torsion. However, it might depend on the Riemannian
metric g™ (though it does not if dim M = 1(mod 4) or if rank(E) is divisible
by 4). Finally we “correct” p by multiplying it by an explicit factor, the
metric anomaly of p, to obtain a diffeomorphism invariant p,,(V) of the
triple (M, E, V), cf. Definition 2.6.

ANNALES DE L’INSTITUT FOURIER
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2.1. The determinant line of a complex

Given a complex vector space V of dimension dimV = n, the determi-
nant line of V' is the line Det(V) := A™V, where A"V denotes the n-th
exterior power of V. By definition, we set Det(0) := C. Further, we denote
by Det(V)~! the dual line of Det(V). Let

21  (Cc*9): 0-c° —2 1 cd—0

be a complex of finite dimensional complex vector spaces. We call the inte-
ger d the length of the complex (C*, ) and denote by H*(J) = @?:0 H(9)
the cohomology of (C*,d). Set

(2.2)

%} 9

Det(C*) ®Det (€)=Y, Det(H*(d ®Det (H7(9)) =Y.

The lines Det(C”) and Det(H*®(0)) are referred to as the determinant line
of the complex C'* and the determinant line of its cohomology, respectively.
There is a canonical isomorphism

(2.3) bce = P(ce .9y : Det(C*) — Det(H*®(0)),
cf. for example, §2.4 of [7].

2.2. The refined torsion of a finite dimensional complex with a
chirality operator

Let d = 2r —1 be an odd integer and let (C*®,0) be a length d complex of
finite dimensional complex vector spaces. A chirality operator is an involu-
tion I' : C* — C* such that I'(CY) = C%7J, j =0,...,d. For ¢; € Det(C7)
(j = 0,...,d) we denote by T'c; € Det(C%77) the image of ¢; under the
isomorphism Det(C7) — Det(C?~7) induced by T. Fix non-zero elements
¢j € Det(C7), j = 0,...,r — 1 and denote by c}l the unique element of
Det(C7)~! such that c]l(cj) = 1. Consider the element

s

° r—1
(24) ¢ = (DR geqte--0dly)  © T 1)

1

& (FCT,Q)(_UT7 Q& (FCO)_l
of Det(C*), where

(2.5) R(C®) := %Z_:dim c . (dim I+ (- )T+J>

TOME 57 (2007), FASCICULE 7



2370 Maxim BRAVERMAN & Thomas KAPPELER

It follows from the definition of cj_1 that c.. is independent of the choice of
¢ (j=0,...,r=1).

DEFINITION 2.1. — Therefined torsion of the pair (C*,T") is the element

(2.6) Pr = Poe = dce(c;) € Det (H*(9)),

where ¢ce is the canonical map (2.3).

2.3. The odd signature operator

Let M be a smooth closed oriented manifold of odd dimension d = 2r—1
and let (E, V) be a flat vector bundle over M. We denote by QF(M, E) the
space of smooth differential forms on M of degree k with values in E and
by

V:Q*(M,E) — Q"M E)
the covariant differential induced by the flat connection on E. Fix a Rie-
mannian metric g™ on M and let % : Q*(M, E) — Q9=*(M, E) denote the
Hodge *-operator. Define the chirality operator I = T'(g™) : Q*(M,E) —
Q°*(M, E) by the formula

k(k+1)

(2.7) Tw:=4"(-1)" 2 *w, weqQfM,E),

with r given as above by 7 = %. The numerical factor in (2.7) has been

chosen so that I'> = 1, cf. Proposition 3.58 of [1].

DEFINITION 2.2. — The odd signature operator is the operator
(2.8) B=B(V,g™):=TV+VIl:Q*(M,E) — Q*(M,E).
We denote by By, the restriction of B to the space QF(M, E).

2.4. The graded determinant of the odd signature operator

Note that for each k = 0,...,d, the operator B> maps QF(M, E) into
itself. Suppose 7 is an interval of the form [0, A}, (X, u], or (A, 00) (u > A >
0). Denote by Ilg2 7 the spectral projection of B2 corresponding to the set
of eigenvalues, whose absolute values lie in Z. Set

Q3 (M, E) :=1lp 7(Q*(M,E)) C Q*(M,E).

If the interval 7 is bounded, then, cf. Section 6.10 of [7], the space Q% (M, E)
is finite dimensional.

ANNALES DE L’INSTITUT FOURIER
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For each k =0,...,d, set
Q% 7(M,E) = Ker(VD) N Q%4 (M, E) = (T'(Ker V)) N Q5 (M, E);

29 . .
QOF 7(M,E) := Ker(I'V) N Q5 (M, E) = Ker VN Q5 (M, E).

Then

(2.10) Q5(M,E) =0k ;(M,E)® QF (M,E) if 0¢T.

We consider the decomposition (2.10) as a grading (M of the space
Q% (M, E), and refer to Q’j_J(J\J7 E) and Q’il(M7 E) as the positive and
negative subspaces of Q% (M, E).

Set
r—1

Y (M, E) = P OF (M, E)
p=0
and let B% and BZ,, denote the restrictions of B to the subspaces Q% (M, E)
and Q5°"(M, E) respectively. Then BZ,, maps QY% (M, E) to itself. Let
BEZ denote the restriction of B, to the space QYT (M, E). Clearly, the

even even
operators BLZ are bijective whenever 0 ¢ Z.

DEFINITION 2.3. — Suppose 0 ¢ Z. The graded determinant of the
operator B, is defined by

even

Dety(B,
_ € 9( even) c (C\{O}
De‘Ee( Beven)
where Dety denotes the (-regularized determinant associated to the Agmon

angle 0 € (—,0), cf. for example, §6 of [7].

(2.11) Detg, o (B

even) °

It follows from formula (6.17) of [7] that (2.11) is independent of the
choice of 6 € (—m,0).

2.5. The canonical element of the determinant line

Since the covariant differentiation V commutes with B, the subspace
Q% (M, E) is a subcomplex of the twisted de Rham complex (Q*(M, E), V).
Clearly, for each A > 0, the complex QZ)\ c)o)(M , E) is acyclic. Since

(2.12) Q° (M, E) = Q (M, E) & Q¢ ., (M, E),

) Note, that our grading is opposite to the one considered in [9, §2].

TOME 57 (2007), FASCICULE 7



2372 Maxim BRAVERMAN & Thomas KAPPELER

the cohomology Hpy /\](M , E) of the complex Qo A (M, E) is naturally iso-
morphic to the cohomology H®(M, E). Let I'z denote the restriction of T
to Q%(M, E). For each A > 0, let

(2.13) e, = Pe, (V4™ € Det(Hf, (M, B))

[0,X] [0,X]

denote the refined torsion of the finite dimensional complex (Q[’Q N (M, E),V)

corresponding to the chirality operator I, |, cf. Definition 2.1. We view

Pry,, 3521 element of Det(H*®(M, E)) via the canonical isomorphism be-
0,

tween H g, /\](M, E) and H*(M, E).

It is shown in Proposition 7.8 of [7] that the nonzero element

(214)  p(V) = p(V,g™) = Detgr o (BU) - pr, € Det(H* (M, E))

even

is independent of the choice of A > 0. Further, p(V) is independent of the
choice of the Agmon angle 8 € (—m,0) of Beyen. However, in general, p(V)
might depend on the Riemannian metric g™ (it is independent of g™ if
dim M = 3(mod4)). The refined analytic torsion, cf. Definition 2.6, is a
slight modification of p(V), which is independent of g*.

2.6. The n-invariant

First, we recall the definition of the n-function of a non-self-adjoint el-
liptic operator D, cf. [17]. Let C*°(M, E) — C*>°(M, E) be an elliptic dif-
ferential operator of order m > 1 whose leading symbol is self-adjoint with
respect to some given Hermitian metric on E. Assume that 6 is an Agmon
angle for D (cf. for example, Definition 3.3 of [4]). Let II5 (resp. II<) be
the spectral projection whose image contains the span of all generalized
eigenvectors of D corresponding to eigenvalues A with Re A > 0 (resp. with
Re A < 0) and whose kernel contains the span of all generalized eigenvectors
of D corresponding to eigenvalues A with Re A < 0 (resp. with Re A > 0).
For all complex s with Re s < —d/m, we define the n-function of D by the
formula

(215) 7]0(37D):<0(37H>7D)_<0(37H<7—D)7

where (y(s,11s, D) := Tr(Ils D®) and, similarly, (s(s, I, D) := Tr(Il. D*).
Note that, by the above definition, the purely imaginary eigenvalues of D
do not contribute to ny(s, D).

It was shown by Gilkey, [17], that ns(s, D) has a meromorphic extension
to the whole complex plane C with isolated simple poles, and that it is
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regular at 0. Moreover, the number 74 (0, D) is independent of the Agmon
angle 6.

Since the leading symbol of D is self-adjoint, the angles +7/2 are prin-
cipal angles for D. Hence, there are at most finitely many eigenvalues of
D on the imaginary axis. Let m4 (D) (resp., m_(D)) denote the number
of eigenvalues of D, counted with their algebraic multiplicities, on the pos-
itive (resp., negative) part of the imaginary axis. Let mo(D) denote the
algebraic multiplicity of 0 as an eigenvalue of D.

DEFINITION 2.4. — The n-invariant n(D) of D is defined by the formula
0, D) + er(.D) —m_ (D) + mo(D)
5 .

As ny(0, D) is independent of the choice of the Agmon angle 8 for D, cf.
[17], so is n(D).

216 ) ="

Remark 2.5. — Note that our definition of (D) is slightly different
from the one proposed by Gilkey in [17]. In fact, in our notation, Gilkey’s
n-invariant is given by n(D) + m_(D). Hence, reduced modulo integers,
the two definitions coincide. However, the number ¢™(P) will be multi-
plied by (—1)"-(P) if we replace one definition by the other. In this sense,
Definition 2.4 can be viewed as a sign refinement of the definition given in
[17].

Let V be a flat connection on a complex vector bundle £ — M. Fix a
Riemannian metric g™ on M and denote by

(2.17) (V) = n(Beven(V, g™))

the n-invariant of the restriction Beven(V, g™ ) of the odd signature operator
B(V,gM) to Qver (M, E).

2.7. The refined analytic torsion

Let Mirivial = Norivial (™) denote the n-invariant of the operator Biyjyial =
Dd+dl' : Q*(M) — Q°(M). In other words, 7rivial is the n-invariant
corresponding to the trivial line bundle M x C — M over M.

DEFINITION 2.6. — Let (E, V) be a flat vector bundle on M. The refined
analytic torsion is the element

(2.18) pan = pan(V)
= p(V,gM) - exp (iﬂ- rankE~77trivia1(gM)) € Det(H* (M, E)),
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where gM is any Riemannian metric on M and p(V, g™) € Det(H*(M, E))
is defined by (2.14).

It is shown in Theorem 9.6 of [7] that p.,(V) is independent of g™

Remark 2.7. — In [4, 7, 6] we introduced an alternative version of the
refined analytic torsion. Consider an oriented manifold N whose oriented
boundary is the disjoint union of two copies of M. Instead of the exponential
factor in (2.18) we used the term

im-rank F/
exp (5 [ Ling™).
N

where L(p,gM) is the Hirzebruch L-polynomial in the Pontrjagin forms
of any Riemannian metric on N which near M is the product of g™ and
the standard metric on the half-line. The advantage of this definition is
that the latter factor is simpler to calculate than e™riviat In addition, if
dim M = 3(mod4), then [,, L(p,g™) = 0 and, hence, the refined analytic
torsion then coincides with p(V, g™). However, in general, this version of
the refined analytic torsion depends on the choice of N (though only up
to a multiplication by i***%(¥) (k ¢ 7Z)). For this paper, however, the
definition (2.18) of the refined analytic torsion is slightly more convenient.

8. Relationship with the n-invariant

To simplify the notation set
(2.19)

d (=17*
Ty = T\ (V, g™, 0) ]_:[ (De‘me [ V)? + (VL) )|Q’ )(M,E)D

where § € (—n/2,0) and both, 6 and 6 + 7, are Agmon angles for Beyen
(hence, 26 is an Agmon angle for B2, ). We shall use the following propo-
sition, cf. [7, Prop. 8.1]:

PROPOSITION 2.8. — Let V be a flat connection on a vector bundle E
over a closed Riemannian manifold (M, g™) of odd dimension d = 2r — 1.
Assume 0 € (—n/2,0) is such that both 6 and 6 + 7 are Agmon angles for
the odd signature operator B = B(V, g™). Then, for every A > 0,

M
)
even :

2 .
(2.20) (Detgr,Qo(B(W>)) _ Ty e 2min(Veg
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Note that Proposition 8.1 of [7] gives a similar formula for the logarithm
of Detgm(Béééi")), thus providing a sign refined version of (2.20). In the
present paper we won’t need this refinement.

Proof. — Set

(2.21) m =m(V,g") = nBLa).

From Proposition 8.1 and equality (10.20) of [7] we obtain

(2.22) Detgr 20(BOSD)2 = Ty - e 27 . o~ dim Qg5 (ME)

The operator BL%Q] acts on the finite dimensional vector space Qfa’eﬁ (M, E).

Hence, 27 (BL%QJ) € Z and

(2.23) 29(BYY) = dim QS (M, E)  mod2.

Since n) = n(Beven) — n(B.L%’gﬂ), we obtain from (2.23) that
e—m(QnﬁdimQ[‘w(M,E)) _ 6721'71'7](86\@").

The equality (2.20) follows now from (2.22). O

3. The Burghelea-Haller quadratic form

In this section we recall the construction of the quadratic form on the de-
terminant line Det (H *(M, E)) due to Burghelea and Haller, [12]. Through-
out the section we assume that the vector bundle £ — M admits a non-
degenerate symmetric bilinear form b. Such a form, required for the con-
struction of 7, might not exist on F, but there always exists an integer N
such that on the direct sum EY = E@ --- @ E of N copies of E such a
form exists, cf. Remark 4.6 of [12].

3.1. A quadratic form on the determinant line of the
cohomology of a finite dimensional complex

Consider the complex (2.1) and assume that each vector space C? (j =
0,...,d) is endowed with a non-degenerate symmetric bilinear form b; :
C7 x C7 — C. Set b = @b;. Then b; induces a bilinear form on the de-
terminant line Det(C7) and, hence, one obtains a bilinear form on the
determinant line Det(C*). Using the isomorphism (2.3) we thus obtain a
bilinear form on Det(H*®(9)). This bilinear form induces a quadratic form
on Det(H*(9)), which we denote by 7¢e p.
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The following lemma establishes a relationship between 7ce ; and the
construction of Subsection 2.2 and is an immediate consequence of the
definitions.

LEMMA 3.1. — Suppose that d is odd and that the complex (C*,d) is
endowed with a chirality operator ', cf. Subsection 2.2. Assume further that
I preserves the bilinear form b, i.e., b(T'z,T'y) = b(x,y), for all z,y € C°.
Then

(3.1) Teep(pr) =1
where pr is given by (2.6).

3.2. Determinant of the generalized Laplacian

Assume now that M is a compact oriented manifold and E is a flat vector
bundle over M endowed with a non-degenerate symmetric bilinear form b.
Then b together with the Riemannian metric ¢™ on M define a bilinear
form

(3.2) b:Q*(M,E) x Q*(M,E) —C
in a natural way.

Let V: Q*(M, E) — Q**1(M, E) denote the flat connection on E and let
V#:Q*(M,E) — Q*"Y(M, E) denote the formal transpose of V with re-
spect to b. Following Burghelea and Haller we define a (generalized) Lapla-
cian

(3.3) A=Ay = V#V + VV#,

Given a Hermitian metric on F, A is not self-adjoint, but has a self-adjoint
positive definite leading symbol, which is the same as the leading symbol
of the usual Laplacian. In particular, A has a discrete spectrum, cf. [12,
§4].

Suppose 7 is an interval of the form [0, A] or (A, 00) and let ITa, 7 be the
spectral projection of A corresponding to Z. Set

O%(M,E) :=Tla, z(Q"(M,E)) C Q"(M,E), k=0,...,d.

For each A > 0, the space f\l[‘& A (M, E) is a finite dimensional subcomplex
of the de Rham complex (2*(M, E), V), whose cohomology is isomorphic
to H*(M, E). Thus, according to Subsection 3.1, the bilinear form (3.2)
restricted to ﬁ'(M , E) defines a quadratic form on the determinant line
Det(H*(M, E)), which we denote by 7jo x] = 7,v,j0,7]-
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Let AZ denote the restriction of Ay to Q& (M, E). Since the leading
symbol of A is positive definite the (-regularized determinant Detp (A7)
does not depend on the choice of the Agmon angle 6. Set

d .
A00)\) (=1)7 3
(3.4) To,v, (o) = || (Deth(AN)) T e e\{o}.
j=0
Note that both, 7, v j0,n] and 73, v,(x,00), depend on the choice of the Rie-
mannian metric g™.

DEFINITION 3.2. — The Burghelea-Haller quadratic form Tlfg on

Det (H*(M, E)) is defined by the formula

(3.5) T =TT = 9 0] Th Y. (o)

It is easy to see, cf. [12, Prop. 4.7], that (3.5) is independent of the choice
of A > 0. Theorem 4.2 of [12] states that 7BH is independent of g™ and
locally constant in b. Since we are not going to use this result in the proof
of Theorem 1.4, the latter theorem provides a new proof of Theorem 4.2 of
[12] in the case when the dimension of M is odd, cf. Subsection 5.1.

4. Proof of the comparison theorem

In this section we prove Theorem 1.4 adopting the arguments which we
used in Section 11 of [7] to compute the Ray-Singer norm of the refined
analytic torsion.

4.1. The dual connection

Suppose M is a closed oriented manifold of odd dimension d = 2r—1. Let
FE — M be a complex vector bundle over M and let V be a flat connection
on E. Assume that there exists a non-degenerate bilinear form b on F.
The dual connection V' to V with respect to the form b is defined by the
formula

db(u,v) = b(Vu,v) + b(u, V'v), u,v e C®(M,FE).
We denote by E’ the flat vector bundle (E, V’).

4.2. Choices of the metric and the spectral cut

Till the end of this section we fix a Riemannian metric g™ on M and
set B=B(V,gM) and B’ = B(V', g™). We also fix § € (—m/2,0) such that
both # and 847 are Agmon angles for the odd signature operator . Recall
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that for an operator A we denote by A# its formal transpose with respect
to the bilinear form (3.2) defined by g™ and b. One easily checks that

(41) V# = ]_"v/]_-\7 (v/)# _ ]_—\v]_", and B# _ B/,

cf. the proof of similar statements when b is replaced by a Hermitian form
in Section 10.4 of [7]. As B and B have the same spectrum it then follows
that

(4.2) n(B') =n(B) and Detg g(B') = Detg, o(B).

4.3. The duality theorem for the refined analytic torsion

The pairing (3.2) induces a non-degenerate bilinear form
HI(M,E"Y® H*/(M,E) — C, j=0,...,d,

and, hence, identifies H7 (M, E') with the dual space of H4~7(M, E). Using
the construction of Subsection 3.4 of [7] (with 7 : C — C being the identity
map) we thus obtain a linear isomorphism
(4.3) o : Det (H®*(M, E)) — Det (H®*(M, E")).

We have the following analogue of Theorem 10.3 from [7]

THEOREM 4.1. — Let E — M be a complex vector bundle over a closed
oriented odd-dimensional manifold M endowed with a non-degenerate bi-

linear form b and let V be a flat connection on E. Let V' denote the
connection dual to V with respect to b. Then

(4.4) a(pan(v)) = pan(V).

The proof is the same as the proof of Theorem 10.3 from [7] (actually, it
is simple, since B and B’ have the same spectrum and, hence, there is no
complex conjugation involved) and will be omitted.

4.4. The Burghelea-Haller quadratic form and the dual
connection

Let
A = (VY#V +V/(V)#
denote the Laplacian of the connection V’. From (4.1) we conclude that

A =ToAoTl.
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Hence, a verbatim repetition of the arguments in Subsection 11.6 of [7]

implies that we have

(4.5) TV, (A,00) = Th,¥",(A,00)>
and, for each h € Det (H'(M, E)),
(4.6) o (h) = 79 (a(h))

with « being the duality isomorphism (4.3).
From (4.4) and (4.6) we get

(4.7) ng (pan(v)) = Tlfg’ (pan(vl))'

4.5. Direct sum of a connection and its dual

Let

(4.8) V= <Z VO,)

denote the flat connection on F @ E obtained as a direct sum of the con-
nections V and V’. The bilinear form b induces a bilinear form b ® b on
FE & E. To simplify the notations we shall denote this form by b. For each

A > 0, one easily checks, cf. Subsection 11.7 of [7], that

(4.9) Ty T (nee) = T6:V,(A00) * Th, 97, (A,00)

and

@10 (D)) = PR (D)) - 7 (7).
Combining the latter equality with (4.7), we get

(4.11) 8 (pan(V)) = 7% (pan (V)

Hence, (1.4) is equivalent to the equality

(4.12) ng (pan (6)) — 6_47"i (n(V)—rank E'mnvial) .

4.6. Deformation of the chirality operator

We will prove (4.12) by a deformation argument. For t € [—7/2,7/2]

introduce the rotation U; on

Q* .= Q*(M, E) & Q*(M, E),
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given by
t —sint
U, — <c9s sin ) .
sint cost
Note that U;' = U_,. Denote by I'(t) the deformation of the chirality
operator, defined by

< T 0 1 cos2t  sin2t
(4.13) I(t)="Uo (O —F) ol =lo (sin 2t —cos 2t> '
Then

~ T 0 ~ 0 T
(4.14) I(0) = (0 F) , T(n/4) = (F o) .

4.7. Deformation of the odd signature operator

Consider a one-parameter family of operators B(t) : Q° — Q° with ¢ €
[—7/2,7/2] defined by the formula

(4.15) B(t) :=T(t)V + VI (¢).

Then

(4.16) B(0) = (lg _%,)

and

(4.17) B(m/4) = (rv f or v N VF) .
Hence, using (4.1), we obtain

(4.18) B(r/4)? = (ﬁ AO) _ A

Set

Q% (t) :== Ker VI(t);
Q°* :=KerV = KerV & Ker V.
Note that Q° is independent of ¢. Since the operators V and f(t) commute

with B(t), the spaces Q% (t) and Q° are invariant for B(t).
Let Z be an interval of the form [0, A] or (), 00). Denote

Q%(t) = Hg(t)z’z (Q.(t)) - Q.(t)v
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where Hg( 2.1 is the spectral projection of B(t)? corresponding to Z. For

§=0,...,d, set QL(t) = Q3(t) N and
(4.19) Y (1) == Q4 (t) N Q% (1).

As HE(t)2 , and B(t) commute, one easily sees, cf. Subsection 11.9 of [7],
that

(4.20) Qro0) () = Q% (3 00) () B Q2 (y ) (8), T € [=7/2,m/2].

We define BY (1), By (), Bya(t), By (), BEL (1), Biga (1), ete. in the
same way as the corresponding maps were defined in Subsection 2.4.

4.8. Deformation of the canonical element of the determinant
line

Since the operators V and B(t)? commute, the space Q3(t) is invariant
under V, ie., it is a subcomplex of Q°. The complex QZ/\W)(L‘) is acyclic
and, hence, the cohomology of the finite dimensional complex Q[°07 N (t) is
naturally isomorphic to

H*(M,E® E')~H*(M,E)® H*(M,E").
Let f[o)\] (t) denote the restriction of T'(t) to QF z (). As ['(t) and B(t)?
commute, it follows that f[o A () maps 0.2 (t) onto itself and, therefore,
is a chirality operator for €f ,,(t). Let
(4.21) P~ (t) € Det (H*(M,E & E'))

T, 5 (B
denote the refined torsion of the finite dimensional complex (Q[‘O A (t), 6)
corresponding to the chirality operator f[& (1), cf. Definition 2.1.
_ For each t € (—m/2,7/2) fix an Agmon angle § = 0(t) € (—m/2,0) for
Beven(t) and define the element p(t) € Det (H®*(M, E® E')) by the formula
(422) p(t) = Detgrﬂ (Be\)/\en ( )) ' p'l‘: (t)a

0.3 ®

where A is any non-negative real number. It follows from Proposition 5.10
of [7] that p(t) is independent of the choice of A > 0.

For ¢t € [—m/2,7/2], A > 0, set

,1)j+1j

d
(
(4.23) H (Detze Be(zéen ’QJ )(t)])

=0 (X, 00
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Then, from (4.22) and (2.20) we conclude that

(4.24) P8 (p(t) = P2 (-

(1) - Ta(1) - e (Fvatt)
[ ](t)

In particular,

is independent of A > 0

4.9. Computation for ¢t =0

From (2.4) and definition (2.6) of the element p, we conclude that
/o MN 1 M
Pory,, (Vig) = 2o (Vg7

Thus,

% (Pry ) (V'.9") = 7.5 (o

Hence, from (4.8) and (4.14) we obtain

BH _ _BH M BH
(4.25) Tb’g(PF[ON<O)(O>)— Tb,V(pr[O,)\] (V,g™) - v (pr,

ron (V0 9™)-
(V'.9™).
Using (4.16) and the definitions (2.19) and (4.23) of T) we get

(426) T)\(O) :TA(ngMae) 'T)\(Vlngae)'

Combining the last two equalities with definitions (2.14), (4.22) of p and
with (2.20), (4.2), and (4.7), we obtain

0,21

(127) PR (pe(0)) T3(0) = TP (pun(9))° e (1D B )

\V Tio,a] (@)

Comparing this equality with (4.11) we see that in order to prove (4.12)
and, hence, (1.4) it is enough to show that

(4.28) Tng (p~ o (0)) - T2 (0) = 1.

4.10. Computation for ¢t = 7/4

From (4.18) and the definitions (3.4) and (4.23) of Ty % (roo and T)(t),

we conclude

(4.29) Ta(m/4) = 1/, 5 (xo0y'

ANNALES DE L’INSTITUT FOURIER



REFINED ANALYTIC AND BURGHELEA-HALLER TORSIONS 2383

y (4.18) we have
Qo (7/4) = Q5 (M, E) @ Qf (M, E).

From (4.14) we see that the restriction of I'(w/4) to Q% 5 (w/4) preserves the
bilinear form on QF (m/4) induced by b. Hence we obtam from Lemma 3.1

(m/4)) = 1.

P
Ty 1[0,A] ( Tig, A (7 /49)

Therefore, from (4.29) and the definitions (3.5) of 78" we get

(4.30) Tng (pF[OA] o (w/4)) - Th(r/4) = 1.

4.11. Proof of Theorem 1.2

Fix an Agmon angle 6 € (—7/2,0) and set

d
1 1 2
5/\9 5 §O J+ ]CG O Beven( ) |Q{x,m)(t))’
J:

where (;(0, A) denotes the derivative at zero of the (-function of the op-
erator operator A. Then Ty (t) = ¢**¢(®). Hence, from (4.30) we conclude
that in order to prove (4.28) (and, hence, (4.12) and (1.4)) it suffices to
show that

(4.31) BH(p (1)) - 20

is independent of t.

Fix to € [-7/2,7/2] and let A > 0 be such that the operator Beyen(to)?
has no eigenvalues with absolute value A. Choose an angle 6 € (—7/2,0)
such that both § and 6 + 7 are Agmon angles for g(to). Then there exists
§ > 0 such that for all t € (to—6, to+06)N[—/2, 7/2], the operator Beyen ()?
has no eigenvalues with absolute value A and both 6 and 6 + 7 are Agmon
angles for B(t).

A verbatim repetition of the proof of Lemma 9.2 of [7] shows that

d
4.32 —p t) - e =,
(4.32) TR0
Hence, (4.31) is independent of ¢. 0

TOME 57 (2007), FASCICULE 7



2384 Maxim BRAVERMAN & Thomas KAPPELER
5. Properties of the Burghelea-Haller quadratic form

Combining Theorem 1.2 with results of our papers [4, 7, 6] we derive new
properties and obtain new proofs of some known ones of the Burghelea-
Haller quadratic form 7. In particular, we prove a weak version of The-
orem 1.3 which relates the quadratic form (1.3) with the Farber-Turaev
torsion — see Subsection 1.8 for a discussion of Theorem 1.3.

5.1. Independence of 7% of the Riemannian metric and the
bilinear form

The following theorem was established by Burghelea and Haller [12,
Th. 4.2] without the assumption that M is oriented and odd-dimensional.

THEOREM 5.1. — [Burghelea-Haller]| Let M be an odd dimensional
orientable closed manifold and let (E,V) be a flat vector bundle over M.
Assume that there exists a non-degenerate symmetric bilinear form b on
E. Then the Burghelea-Haller quadratw form Tb I is independent of the
choice of the Riemannian metric g™ on M and is locally constant in b.

Our Theorem 1.2 provides a new proof of this theorem and at the same
time gives the following new result.

THEOREM 5.2. — Under the assumptions of Theorem 5.1 suppose that
b’ is another non-degenerate symmetric bilinear form on E not necessarily
homotopic to b in the space of non-degenerate symmetric bilinear forms.
Then Tb, v = :|:7'b S -

Proof of Theorems 5 1 and 5.2. — As the refined analytic torsion p,n (V)
does not depend on g™ and b, Theorem 1.2 implies that, modulo sign, Tb v
is independent of g™ and b. Smce ngg is continuous in g™ and b it follows
that it is locally constant in ¢™ and b. Since the space of Riemannian

metrics is connected, 728 is independent of ™. O

5.2. Comparison with the Farber-Turaev torsion: proof of
Theorem 1.6

Let L(p) = L (p) denote the Hirzebruch L-polynomial in the Pontrjagin
forms of a Riemannian metric on M. We write L(p) € Ho(M,Z) for the
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Poincaré dual of the cohomology class [L(p)] and let L, € Hy(M,Z) denote
the component of L(p) in Hy (M, Z).

Theorem 5.11 of [6] combined with formulae (5.4) and (5.6) of [6] implies
that for each connected component C C Flat(E), there exists a constant
F¢ such that for every flat connection V € C and every Euler structure ¢
we have

_ —27ri<Argv,fl>+27rin(V)
(5.1) |Fe| = |e k
and
2
Pe,0(V) 2mi(Argy,L1+c(c))
(52) (20 — g crmipmse s
pan(V)

Hence, from the definition (1.1) of the quadratic form 7, we get
(5.3)
79 (pe,0(V)) - e 2mi(Argy c(e)) = [, . o2mi(Argy, L) —2mi(n(V)—rank Enuivial)

Assume now that V; with ¢ € [0,1] is a smooth path of flat connections.
The derivative V; = %Vt is a smooth differential 1-form with values in
the bundle of isomorphisms of E. We denote by [TrV,] € H'(M,C) the
cohomology class of the closed 1-form Tr V.

By Lemma 12.6 of [4], we have

d .
(5.4) 2mis Argy, = —[Tr V] € H'(M,C).

Let 7(V¢, gM) € C/Z denote the reduction of n(V;, ¢™) modulo Z. Then
1(Vi,g™) depends smoothly on ¢, cf. [17, §1]. From Theorem 12.3 of [4]
we obtain(®

d_ . S~
(5.5) - 2m%n(vt,gM) = / L(p) NTrVy = ([Tr V], Ly ).
M
From (5.3)—(5.5) we then obtain
d .
(5.6) T {Tvt (ps,o(vt)) . 672m(Argv,c(s))} -0,

proving that the right hand side of (5.3) is independent of V € C. From
(5.1) and the fact that nivial € R we conclude that the absolute value of
the right hand side of (5.3) is equal to 1. Part (i) of Theorem 1.6 is proven.

Finally, consider the case when C contains an acyclic Hermitian con-
nection V. In this case both, 7v and p. ,(V), can be viewed as non-zero
complex numbers. To prove part (ii) of Theorem 1.6 it is now enough to
show that the numbers p.,(V)? and 7y - e—2mil{Argy.c(e)) have the same

(2) This result was originally proven by Gilkey [17, Th. 3.7].
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phase. Since V is a Hermitian connection, the number 1(V) is real. Hence,
it follows from Theorem 10.3 of [7] that

Ph (pan(V)) =7 (n(V) —rank E - ntrivial) mod 7i.

Thus, by (1.1),
(5.7)
Ph (1y .e—%i(Argvﬁ(E») = Ph (6_2”i<Argv>C(E)>) = —27 Re(Argy, c(e)).

By formula (2.4) of [15],

(5.8) Ph (p.,(V)?) = —27 Re(Argy, c(e)).
The proof of Theorem 1.6 is complete. g
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