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CUT-OFF FOR LARGE SUMS OF GRAPHS

by Bernard YCART (*)

Abstract. — If L is the combinatorial Laplacian of a graph, exp(−L t) con-
verges to a matrix with identical coefficients. The speed of convergence is measured
by the maximal entropy distance. When the graph is the sum of a large number of
components, a cut-off phenomenon may occur: before some instant the distance to
equilibrium tends to infinity; after that instant it tends to 0. A sufficient condition
for cut-off is given, and the cut-off instant is expressed as a function of the gap and
eigenvectors of components. Examples include sums of cliques, stars and lines.

Résumé. — Si L est le laplacien combinatoire d’un graphe, exp(−L t) converge
vers une matrice dont tous les coefficients sont égaux. La vitesse de convergence
est mesurée par la distance d’entropie maximale. Quand le graphe est la somme
d’un grand nombre de composantes, un phénomène de convergence abrupte peut
survenir : avant un certain instant la distance à l’équilibre tend vers l’infini ; après
cet instant elle tend vers 0. Une condition suffisante de convergence abrupte est
donnée, et l’instant de convergence est exprimé en fonction du trou spectral et des
vecteurs propres des composantes. Les sommes de cliques, d’étoiles et de lignes
sont traitées en exemple.

1. Introduction

Many binary operations on graphs result in a graph whose set of vertices
is the Cartesian product of the sets of vertices of the graphs to which the
operation is applied (see section 2.5 p. 65 of Cvetković et al. [11]). One of
the simplest is the sum: if G1 and G2 are two graphs, then two couples
(x1, y1), (x2, y2) are adjacent in G1 + G2 if and only if either x1 = x2 and
y1, y2 are adjacent in G2 or y1 = y2 and x1, x2 are adjacent in G1. Let
(Gn)n>1 be a sequence of graphs. All are finite, undirected, with no loop
or multiple edge, and connected. For n > 1, let

Sn = G1 + · · ·+ Gn .

Keywords: Laplacian, sum of graphs, spectrum, Kullback distance, cut-off.
Math. classification: 05C50, 60J27.
(*) I am indebted to Y. Colin de Verdière for many pleasant discussions on Schrödinger
operators and Markov chains.



2198 Bernard YCART

We are interested here in asymptotic properties of Sn. Sums of identical
copies of a given graph sometimes appear in the literature as “Cartesian
powers” ([2, 5]). The denomination “sum” that we use following [10, 11],
is coherent with spectral properties.

We shall only deal here with the combinatorial Laplacian (see Colin de
Verdière [8]): if G = (V,E) is a graph, it is defined as L = D − A, where
D is the diagonal matrix of degrees and A the adjacency matrix. The
matrix −L is the infinitesimal generator of the continuous time random
walk on the graph (see for instance Çinlar [7]). If x ∈ V is a vertex, the
distribution at time t of the random walk, starting at x at time 0 is the
x-th row of the matrix exp(−L t). As t tends to infinity, it converges to the
uniform distribution on V . The maximal entropy distance between rows of
exp(−L t) and the uniform distribution (Definition 2.1), measures the speed
of convergence. Many other distances could have been chosen, leading to
similar results (see [3]). As t tends to infinity, the distance to equilibrium
decays as ae−2ρt, where ρ is the gap (smallest positive eigenvalue of L),
and a depends on the eigenvectors associated to the gap-eigenvalues of L

(Lemma 2.2).
It is a well-known fact that the Laplacian of G1 + G2 is the Kronecker

sum of the Laplacians of G1 and G2 (chap. 12 of Bellman [4]); its spectrum
contains all possible sums of eigenvalues of G1 and G2. The continous time
random walk on G1 + G2 can be written as a couple whose coordinates
are independent copies of the random walks on G1 and G2 respectively.
The maximal entropy distance to equilibrium for G1 + G2 is the sum of
distances for G1 and G2 (Lemma 2.3). As n tends to infinity, the distance
to equilibrium for Sn = G1 + · · ·+Gn may decay quite steeply, exhibiting a
so called cut-off phenomenon (Definition 2.4): before some instant tn, the
distance is very high, and it abruptly drops down after tn. In the random
walk interpretation, tn is “the” instant at which the walk reaches its equi-
librium. The cut-off phenomenon of steep convergence, first identified by
Aldous and Diaconis [1], has been observed on many stochastic processes
(see [3, 14] and references therein). Our main result, Theorem 3.1, gives
an explicit expression for tn, and sufficient conditions for cut-off at time tn
for Sn. This result is related to Theorem 3 of [3], obtained in a somewhat
different setting. It could be extended to other kinds of symmetric opera-
tors, such as weighted Laplacians [6, 9, 12].

The probability transition matrix of the discrete time random walk on
a graph G is P = I − 1

dL, where I is the identity matrix, d the maximal
degree and L the Laplacian. If P1 and P2 are the transition matrices of

ANNALES DE L’INSTITUT FOURIER
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the discrete time random walks on two graphs G1 and G2, then the Kro-
necker product P1⊗P2 is the transition matrix of the discrete time random
walk on the Cartesian product of G1 and G2. Thus a similar study could
be carried out by replacing continuous time by discrete time, Kronecker
sums of matrices by Kronecker products and Cartesian sums of graphs by
Cartesian products: see [15] for the correspondence between discrete and
continuous time.

In Section 2, notations and preliminary results are exposed. Section 3
contains the statement and proof of Theorem 3.1. The particular cases of
sums of cliques, stars and lines are discussed.

2. Entropy distance to equilibrium

Let G = (V,E) be a graph with k vertices. Denote by L its combinatorial
Laplacian. Let x, y ∈ V be two vertices. The coefficient of the matrix
exp(−L t) indexed by x, y is the probability for the continuous time random
walk on the graph, starting on vertex x at time 0, to be found on vertex y

at time t. It will be denoted by px,y(t). As t tends to infinity, the random
walk converges in distribution to the uniform law on V . In other words, the
matrix exp(−L t) converges to the matrix whose coefficients are all equal
to 1/k. We choose to measure the distance from exp(−L t) to its limit by
the maximal entropy (or Kullback) distance between rows of exp(−L t) and
the uniform distribution on vertices.

Definition 2.1. — We call maximal entropy distance of the graph G

the function d defined for t > 0 by:

d(t) = max
x∈V

−1
k

∑
y∈V

log(kpx,y(t)).

The maximal entropy distance decays as e−2ρt, where ρ is the gap (small-
est positive eigenvalue). The equivalent can be expressed in terms of the
eigenvectors associated to eigenvalues equal to the gap. Let

λ1 = 0 < λ2 6 · · · 6 λk

be the eigenvalues of L. Denote by v1, . . . , vk eigenvectors such that Lvi =
λi vi and (v1, . . . , vk) is an orthonormal basis for the Euclidean norm. As
usual, v1 is the constant vector whose coordinates are all equal to k−1/2.

Lemma 2.2. —
lim

t→+∞

d(t)
ae−2ρt

= 1,

TOME 57 (2007), FASCICULE 7
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with

a =
k

2
max
x∈V

∑
i: λi=ρ

vi(x)2.

Note that a is bounded above by k/2 and below by 1/2.

Proof. — Using the eigenvectors,

px,y(t) =
k∑

i=1

vi(x)vi(y) e−λit,

=
1
k

+
k∑

i=2

vi(x)vi(y) e−λit.

Thus

log(kpx,y(t)) = log

(
1 + k

k∑
i=2

vi(x)vi(y) e−λit

)
,

= k

(
k∑

i=2

vi(x)vi(y) e−λit

)

− k2

2

(
k∑

i=2

vi(x)vi(y) e−λit

)2

+ o(e−2ρt) .

So,

− 1
k

∑
y∈V

log(kpx,y(t)) = −
∑
y∈V

k∑
i=2

vi(x)vi(y) e−λit

+
k

2

∑
y∈V

(
k∑

i=2

vi(x)vi(y) e−λit

)2

+ o(e−2ρt) .

The fact that v1, . . . , vn are orthonormal simplifies the sums appearing in
the last expression. Since for i = 2, . . . , n, vi is orthogonal to v1, the sum

ANNALES DE L’INSTITUT FOURIER
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∑
y∈V vi(y) of its coordinates is null, so the first term vanishes. Further-

more,

∑
y∈V

(
k∑

i=2

vi(x)vi(y)e−tλi

)2

=
∑
y∈V

 k∑
i=2

v2
i (x)v2

i (y) e−2λit + 2
n∑

i<j=2

vi(x)vj(x)vi(y)vj(y) e−(λi+λj)t



=
k∑

i=2

v2
i (x)e−2λit,

where the last simplification is due to the identities∑
y∈V

v2
i (y) = 1 and

∑
y∈V

vi(y)vj(y) = 0.

Hence,

−1
k

∑
y∈V

log(kpx,y(t)) =
k e−2ρt

2

∑
i: λi=ρ

v2
i (x) + o(e−2ρt).

Since the eigenvector vi is non-null, vi(x) cannot vanish for every x ∈ V .
(For a given x ∈ V , it may however happen that vi(x) = 0 for all i such
that λi = ρ.) This implies that the order of d(t) is exactly e−2ρt and not
smaller. �

We will consider three examples of graphs with k vertices: the clique,
the star and the line, respectively denoted by Kk, Tk and Lk. The spectral
decomposition of their Laplacian is easy to compute. Colin de Verdière [8]
mentions that the spectrum of the line graph is the first ever published, by
Lagrange in 1867. We summarize below the values of ρ and a for Kk, Tk

and Lk.

Graph ρ a

Clique Kk k (k − 1)/2

Star Tk 1 k(k − 2)/(2(k − 1))

Line Lk 2(1− cos(π/k)) cos2(π/(2k))

The entropy distance is particularly well adapted to sums of graphs.

TOME 57 (2007), FASCICULE 7
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Lemma 2.3. — Let G1, G2 be two graphs. Let d1 and d2 be the maximal
entropy distances of G1 and G2 respectively. The maximal entropy distance
of G1 + G2 is d1 + d2.

Proof. — That the Kullback distance between tensor products is the
sum of Kullback distances between components is a well-known fact (see
for instance Lemma 3.3.10 p. 100 in [13]). It can be easily checked using
Definition 2.1. Let x = (x1, x2) and y = (y1, y2) be two vertices of G1 +G2.
One has

px,y(t) = px1,y1(t) px2,y2(t),

Thus,

− 1
k1k2

∑
y=(y1,y2)

log(k1k2px,y(t)) =
2∑

i=1

− 1
ki

∑
yi∈Vi

log(kipxi,yi
(t)).

Hence the result, by taking the maximum over all vertices (x1, x2). �

Here is the definition of cut-off for a sequence of graphs.

Definition 2.4. — For n = 1, 2, . . . , let Hn be a graph and dn be
the maximal entropy distance of Hn. Let (tn) be a sequence of positive
reals, tending to +∞. The sequence of graphs (Hn) has a cut-off at (tn) if
for c > 0:

c < 1 =⇒ lim
n→∞

dn(ctn) = +∞

c > 1 =⇒ lim
n→∞

dn(ctn) = 0.

This definition matches the usual definition for cut-off of stochastic pro-
cesses (see [3] and references therein).

Our first example is the sum of copies of a given graph. Let G be a
graph, and d be its maximal entropy distance. For n = 1, 2, . . . , let Gn be
isomorphic to G. The maximal entropy distance of the sum Sn = G1 +
· · · + Gn is nd. It follows from Lemma 2.2 that the sequence (Sn) has a
cut-off at log(n)/(2ρ), where ρ is the gap of G. Actually in this example,
the convergence takes place in a window of time of order 1, since for all
u ∈ R:

lim
n→∞

n d

(
log(n)

2ρ
+ u

)
= a e−2ρu.

In the next section we will discuss the cut-off phenomenon for sums of
possibly distinct graphs.

ANNALES DE L’INSTITUT FOURIER
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3. Cut-off for a sum of graphs

Let (Gn)n>1 be a sequence of graphs. For n > 1, let kn be the number
of vertices of Gn, let dn be the maximal entropy distance of Gn, and let ρn

and an be, as in Lemma 2.2, such that

(3.1) lim
t→∞

dn(t)
ane−2ρnt

= 1.

Let Sn be the sum G1 + · · · + Gn. By Lemma 2.3, the maximal entropy
distance of Sn is

Dn = d1 + · · ·+ dn.

The cut-off instant tn will be defined as a function of the ρi’s and ai’s.
Let (ρ(1,n), a(1,n)), . . . , (ρ(n,n), a(n,n)) be the values of (ρ1, a1), . . . , (ρn, an)

once the ρi’s have been ranked in non-decreasing order:

0 < ρ(1,n) 6 · · · 6 ρ(n,n).

For n > 1 and i = 1, . . . , n, let A(i,n) be the cumulated sum

A(i,n) = a(1,n) + · · ·+ a(i,n).

The cut-off instant is

(3.2) tn = max
{

log A(i,n)

2ρ(i,n)
; i = 1, . . . , n

}
.

Our main result gives conditions under which a cut-off occurs at (tn).

Theorem 3.1. — Assume that:
(1) the convergence in (3.1) is uniform in n,
(2)

(3.3) lim
n→∞

ρ(1,n)tn = +∞,

(3) there exists a constant α such that 0 < α < 1 and for n large
enough,

(3.4) ∀i = 2, . . . , n , a(i,n) 6 αA(i−1,n).

Then (Sn) has a cut-off at (tn), defined by (3.2).

Proof. — By the first hypothesis, there exists t0 such that for t > t0 and
for all n,

1
2
ane−2ρnt 6 dn(t) 6 2ane−2ρnt .

Let σn denote the sum of equivalents:

(3.5) σn =
n∑

i=1

aie
−2ρictn =

n∑
i=1

a(i,n)e
−2ρ(i,n)ctn .

TOME 57 (2007), FASCICULE 7
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It suffices to prove that σn tends to +∞ for c < 1, to 0 for c > 1. We first
check the former. Let i∗n be the smallest integer such that

tn =
log A(i∗n,n)

2ρ(i∗n,n)
.

One has:

σn >
i∗n∑

i=1

a(i,n)e
−2ρ(i,n)ctn

> A(i∗n,n)e
−2ρ(i∗n,n)ctn

= e2(1−c)ρ(i∗n,n)tn

> e2(1−c)ρ(1,n)tn

For 0 < c < 1, the result follows by (3.3).

Let now c be larger than 1. For all ` = 1, . . . , n−1, one has:

σn 6 A(`,n)e
−2ρ(1,n)ctn +

n∑
i=`+1

a(i,n)e
−2ρ(i,n)ctn

6 A(`,n)e
−2ρ(1,n)ctn +

n∑
i=`+1

a(i,n)A
−c
(i,n).

In the last inequality, the sum is a Riemann sum for the (decreasing) func-
tion x 7→ x−c. Hence:

σn 6 A(`,n)e
−2ρ(1,n)ctn +

∫ A(n,n)

A(`,n)

x−c dx

6 A(`,n)e
−2ρ(1,n)ctn +

1
c− 1

A1−c
(`,n).(3.6)

If i∗n = 1, then applying (3.6) for ` = 1 yields:

(3.7) σn 6 e−2ρ(1,n)(1−c)tn

(
1 +

1
c− 1

)
.

Otherwise,
A(1,n) < e2ρ(1,n)tn 6 e2ρ(i∗n,n)tn = A(i∗n,n).

Let `n > 1 be such that:

A(`n−1,n) < e2ρ(1,n)tn 6 A(`n,n) = A(`n−1,n) + a(`n,n).

ANNALES DE L’INSTITUT FOURIER
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Applying (3.6) to ` = `n − 1 yields:

σn 6 e2ρ(1,n)(1−c)tn +
1

c− 1
(
e2ρ(1,n)tn − a(`n,n)

)1−c

= e2(1−c)ρ(1,n)tn

(
1 +

1
c− 1

(
1− a(`n,n)e

−2ρ(1,n)tn
)1−c

)
6 e2(1−c)ρ(1,n)tn

(
1 +

1
c− 1

(1− α)1−c

)
,(3.8)

using the definition of ln and condition (3.4) for the last inequality. Since
ρ(1,n)tn tends to infinity, the result follows from (3.7) and (3.8). �

Observe that ρ(1,n) is the gap of the graph Sn. The cut-off time tn can
be seen as a mixing time for the continuous time random walk on Sn. In
the proof above, the hypothesis (3.3) is crucial. This condition has recently
appeared in a number of different contexts as a sufficient condition for
cut-off (see [3] and references therein).

As a first example, assume that the number of vertices of Gn remains
bounded. Since the sequence (kn) only takes a finite number of different
values, so do the sequences (ρn) and (an), and also the sequence of differ-
ences between the third smallest eigenvalue of the Laplacian of Gn and ρn:
they all remain bounded, and bounded away from 0. As a consequence, the
three hypotheses of Theorem 3.1 are satisfied.

We will give more examples in the three particular cases where the com-
ponents are cliques, stars or lines. In what follows, (kn)n>1 is a sequence of
integers, each no lesser than 2. For k > 2, we denote by Nk(n) the number
of values equal to k among k1, . . . , kn.

Sums of cliques

The maximal entropy distance d of the clique Kk is:

(3.9) d(t) = −k − 1
k

log(1− e−kt)− 1
k

log
(

1 +
k − 1

k
e−kt

)
.

Using elementary calculus, one can show that the ratio

d(t)
((k − 1)/2)e−kt

tends to 1 as t tends to infinity, uniformly in k. So the first hypothesis of
Theorem 3.1 is satisfied.

TOME 57 (2007), FASCICULE 7
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Observe that for all k,

tn >
log(Nk(n)(k − 1)/2)

2k
,

Assume that Nk(n) is unbounded for some integer k (the value k is repeated
an infinity of times in the sequence (kn)). Then tn tends to infinity as well
as ρ(1,n)tn, and the second hypothesis also holds. There remains to check
the third hypothesis, which imposes to control the jumps of the A(i,n)’s.

Assume now that each integer k occurs only a finite number of times bk

in the sequence kn.

bk =
+∞∑
n=1

Ikn=k .

Then tn tends to infinity iff

lim
k→∞

log(2b2 + · · ·+ kbk)
k

= +∞ ,

which imposes that bk should grow faster than exponentially in k.
We will check that if bk grows at most exponentially in k, then there

is no cut-off. The radius of convergence of the series
∑

bkzk is no larger
than 1. Suppose it is equal to e−2t0 for some positive t0. Consider the series

∞∑
k=2

bk
k − 1

2
e−2kt

It diverges for t < t0 and it converges for t > t0. Therefore
∞∑

k=2

Nk(n)
k − 1

2
e−2kt

tends to +∞ for t < t0, to a finite value for t > t0. So does Dn(t), and
there is no cut-off. If the radius of convergence is 1, then Dn(t) remains
bounded for all positive t.

Sums of stars

The maximal entropy distance of the star Tk is:

(3.10) d(t) = −k−2
k

log
(

1− k

k−1
e−t +

1
k−1

e−kt

)
− 1

k
log
(

1 +
k(k−2)
k−1

e−t +
1

k−1
e−kt

)
.

ANNALES DE L’INSTITUT FOURIER
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This time the convergence is not uniform in k and the first hypothesis of
Theorem 3.1 holds only if (kn) is bounded. If it is unbounded, there may
still be a cut-off for (Sn). It may be at the instant tn defined by (3.2),
or elsewhere. For instance, if kn = n + 1, there is a cutoff at (log n), as
expected. But if kn = 2n, there is a cutoff at n/(log 2), and not n/(2 log 2)
as (3.2) would lead to think.

Sums of lines

Let Gn = Lkn . Recall that ρn = 2(1−cos(π/kn)) and an = cos2(π/(2kn)).
If (kn) is unbounded, then the gap ρ(1,n) tends to zero and the convergence
in (3.1) is not uniform. However, in this particular case, there exists a
positive constant b such that for all n,

ane−2ρnt(1− be−ρnt) 6 dn(t) 6 ane−2ρnt(1 + be−ρnt).

Using the definition (3.5) of σn, one has:

(1− be−ρ(1,n)ctn) σn 6 Dn(ctn) 6 (1 + be−ρ(1,n)ctn) σn.

So Dn(ctn) can be replaced by σn provided ρ(1,n)tn tends to infinity. Since
1/2 < an < 1, the third hypothesis of Theorem 3.1 is satisfied. Therefore
(3.3) alone is a sufficient condition of cut-off for a sum of lines. If (kn) grows
at most polynomially in n, then (3.3) holds. But if (kn) grows exponentially
in n, then ρ(1,n)tn remains bounded.

BIBLIOGRAPHY

[1] D. Aldous & P. Diaconis, “Shuffling cards and stopping times”, Amer. Math.
Monthly 93 (1986), no. 5, p. 333-348.

[2] D. Austin, H. Gavlas & D. Witte, “Hamiltonian paths in Cartesian powers of
directed cycles”, Graphs and Combinatorics 19 (2003), no. 4, p. 459-466.

[3] J. Barrera, B. Lachaud & B. Ycart, “Cutoff for n-tuples of exponentially con-
verging processes”, Stoch. Proc. Appl. 116 (2006), no. 10, p. 1433-1446.

[4] R. Bellman, Introduction to matrix analysis, McGraw-Hill, London, 1960.
[5] S. Bezrukov & R. Elsässer, “Edge-isoperimetric problems for Cartesian powers

of regular graphs”, Theor. Comput. Sci. 307 (2003), no. 3, p. 473-492.
[6] F. Chung & K. Oden, “Weighted graph Laplacians and isoperimetric inequalities”,

Pacific J. of Math. 192 (2000), p. 257-274.
[7] E. Çinlar, Introduction to stochastic processes, Prentice Hall, New York, 1975.
[8] Y. Colin de Verdière, Spectres de graphes, Cours spécialisés, no. 4, SMF, 1998.
[9] Y. Colin de Verdière, Y. Pan & B. Ycart, “Singular limits of Schrödinger op-

erators and Markov processes”, J. Operator Theory 41 (1999), p. 151-173.
[10] D. Cvetković, M. Doob, I. Gutman & A. Torgašev, Recent results in the theory

of graph spectra, Ann. Discrete Math., no. 36, North-Holland, Amsterdam, 1988.

TOME 57 (2007), FASCICULE 7



2208 Bernard YCART

[11] D. Cvetković, M. Doob & H. Sachs, Spectra of graphs – Theory and application,
Academic Press, New York, 1980.

[12] B. Mohar, “Laplace eigenvalues of graphs – a survey”, Discrete Math. 109 (1992),
p. 171-183.

[13] D. Pollard, User’s guide to measure theoretic probability, Cambridge University
Press, 2001.

[14] L. Saloff-Coste, “Random walks on finite groups”, in Probability on discrete
structures (H. Kesten, ed.), Encyclopaedia Math. Sci., no. 110, Springer, Berlin,
2004, p. 263-346.

[15] B. Ycart, “Cutoff for samples of Markov chains”, ESAIM Probab. Stat. 3 (1999),
p. 89-107.

Manuscrit reçu le 6 juillet 2006,
accepté le 7 mars 2007.

Bernard YCART
Université Joseph Fourier
LJK, CNRS UMR 5224
38041 Grenoble cedex 9 (France)
Bernard.Ycart@ujf-grenoble.fr

ANNALES DE L’INSTITUT FOURIER

mailto:Bernard.Ycart@ujf-grenoble.fr

	 1.Introduction
	 2.Entropy distance to equilibrium
	 3.Cut-off for a sum of graphs
	 .Sums of cliques
	 .Sums of stars
	 .Sums of lines

	Bibliography

