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CONTRACTION OF EXCESS FIBRES BETWEEN THE
MCKAY CORRESPONDENCES IN DIMENSIONS TWO

AND THREE

by Samuel BOISSIÈRE & Alessandra SARTI (*)

Abstract. — The quotient singularities of dimensions two and three obtained
from polyhedral groups and the corresponding binary polyhedral groups admit
natural resolutions of singularities as Hilbert schemes of regular orbits whose ex-
ceptional fibres over the origin reveal similar properties. We construct a morphism
between these two resolutions, contracting exactly the excess part of the excep-
tional fibre. This construction is motivated by the study of some pencils of K3
surfaces appearing as minimal resolutions of quotients of nodal surfaces with high
symmetries.

Résumé. — Les singularités quotients de dimensions deux et trois obtenues
par des groupes polyédraux et les groupes polyédraux binaires correspondants
admettent des résolutions de singularités naturelles par les schémas de Hilbert
d’orbites régulières, dont les fibres exceptionnelles au-dessus de l’origine révèlent
des propriétés similaires. Nous construisons un morphisme entre ces deux réso-
lutions, contractant exactement la partie excédentaire de la fibre exceptionnelle.
Cette construction est motivée par l’étude de certains pinceaux de surfaces K3 ap-
paraissant comme résolutions minimales de quotients de surfaces nodales à grandes
symétries.

1. Introduction

Consider a binary polyhedral group G̃ ⊂ SU(2) corresponding to a poly-
hedral groupG ⊂ SO(3,R) through the double-covering SU(2) → SO(3,R).
The group G̃ acts freely on C2 \ {0} and the quotient surface C2/G̃ has
an isolated singular point at the origin. The exceptional divisor of its min-
imal resolution of singularities X → C2/G̃ is a tree of smooth rational

Keywords: Quotient singularities, McKay correspondence, Hilbert schemes, polyhedral
groups.
Math. classification: 14C05, 14E15, 20C15,51F15.
(*) The first author was partially supported by a DFG grant.



1840 Samuel BOISSIÈRE & Alessandra SARTI

curves of self-intersection −2, intersecting transversally, whose intersection
graph is an A-D-E Dynkin diagram. The classical McKay correspondence
([15]) relates this intersection graph to the representations of the group G̃,
associating bĳectively each exceptional curve to a non trivial irreducible
representation of the group: The correspondence in fact identifies the in-
tersection graph with the McKay quiver of the action of G̃ on C2. Among
these irreducible representations we find all irreducible representations of
the group G: we call them pure and the remaining ones binary. Since
G̃/{±1} ∼= G, one can produce a G-invariant cone C2/{±1} ∼−→ K ↪→ C3

whose quotient K/G is isomorphic to C2/G̃. In this note, we prove the
following result, conjectured by W. P. Barth:

Theorem 1.1. — There exists a crepant resolution of singularities of
C3/G containing a partial resolution Y → K/G with the property that the
intersection graph of its exceptional locus is precisely the McKay quiver of
the action of G on C3, together with a resolution map X → Y mapping iso-
morphically the exceptional curves corresponding to pure representations
and contracting those associated with binary representations to ordinary
nodes.

We make this construction in the framework of the Hilbert schemes of
regular orbits of Nakamura ([16]) providing, by the Bridgeland-King-Reid
theorem ([3]), the natural candidates for the resolutions of singularities in
dimensions two and three. We produce a morphism S between these two
resolutions of singularities, define our partial resolution Y as the image of
this map and study the effect of S on the exceptional fibres:

G̃-Hilb
(
C2

) S //

π̃

��

S
%% %%KKKKKKKKKKK

G-Hilb
(
C3

)

π

��

Y

��

+ �

99sssssssssss

C2/G̃
∼ // K/G � � // C3/G

Although the exceptional fibres can be described very explicitly in all cases
(see [12]), as a matter of principle our proof avoids any case-by-case analy-
sis: The key consists in a systematic modular interpretation of the objects
at issue.

In Sections 2 and 3 we introduce the notation and recall useful facts about
clusters and Hilbert schemes of points and clusters. Sections 4-6 give a brief
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CONTRACTION OF EXCESS FIBRES 1841

survey on polyhedral, binary polyhedral and bipolyhedral groups, their
representations and the classical McKay correspondences in dimensions
two and three. In Section 7 we define and study the map S (Lemma
7.1, Proposition 7.2). In Section 8 we show that the map S contracts the
curves corresponding to the binary representations and maps the curves
corresponding to the pure representations isomorphically to the exceptional
curves downstairs (Theorem 8.1) and get Theorem 1.1 as Corollary 8.5. In
Section 9, as an example we describe in details the case when G̃ is a cyclic
group. Finally, Section 10 is devoted to an application to resolutions of
pencils of K3 surfaces.

Acknowledgments. We thank Wolf Barth for suggesting the problem
and for many helpful comments, Manfred Lehn for his invaluable help dur-
ing the preparation of this paper, Hiraku Nakajima for interesting expla-
nations and Miles Reid for his careful reading.

2. Clusters

Let V be a n-dimensional complex vector space and G a finite subgroup of
SL(V ). We denote by O(V ) := S∗(V ∨) the algebra of polynomial functions
on V , with the induced left action g · f := f ◦ g−1 for f ∈ O(V ) and g ∈ G.

We choose a basis X1, . . . , Xn of linear forms on V , denote the ring
of polynomials in n indeterminates by S := C[X1, . . . , Xn] and identify
O(V ) ∼= S. The ring S is given a grading by the total degree of a polynomial,
where each indeterminate Xi has degree 1. In particular, the action of the
group G on S preserves the degree.

Let mS := 〈X1, . . . , Xn〉 be the maximal ideal of S at the origin. We
denote by SG the subring of G-invariant polynomials, by mSG its maximal
ideal at the origin and by nG := mSG · S the ideal of S generated by the
non constant G-invariant polynomials vanishing at the origin. The quotient
ring of coinvariants is by definition SG := S/ nG.

An ideal I ⊂ S is called a G-cluster if it is globally invariant under the
action of G and the quotient S/I is isomorphic as a G-module to the regular
representation of G: S/I ∼= C[G]. A closed subscheme Z ⊂ Cn is called a
G-cluster if its defining ideal I(Z) is a G-cluster. Such a subscheme is then
zero-dimensional, has length |G| and contains only one orbit. For instance,
a free G-orbit defines a G-cluster.

We are particularly interested in G-clusters supported at the origin. Then
I ⊂ mS and in fact this condition is enough to assert that the cluster is
supported at the origin. Furthermore, one has automatically nG ⊂ I, since

TOME 57 (2007), FASCICULE 6



1842 Samuel BOISSIÈRE & Alessandra SARTI

any non constant function f ∈ nG not contained in I would induce a new
copy of the trivial representation in the quotient S/I, different from that
given by the constant functions. Hence we wish to understand the structure
of the G-clusters I such that nG ⊂ I ⊂ mS , equivalent to the study of the
quotient ideals I/nG ⊂ mS/nG ⊂ S/nG = SG, with the exact sequence:

(2.1) 0 −→ I/nG −→ SG −→ S/I −→ 0.

From now on, we assume that there exists a complex reflection group
R ∈ GL(V ) containing G such that [R : G] = 2. Then mS/nG is a graded
finite-dimensional algebra which as a G-module consists exactly of each
non trivial representation ρ of G repeated 2 dim ρ times: we denote the
occurrences of each representation ρ by V (1)(ρ), . . . , V (2 dim ρ)(ρ) where each
V (i)(ρ) is given by homogeneous polynomials modulo nG ([6, 7]).

By the exact sequence (2.1), giving a G-cluster supported at the origin
consists in choosing dim ρ copies of ρ in mS/nG for each non trivial rep-
resentation ρ of G. This gives many choices since any linear combination
of some V (i)(ρ) and V (j)(ρ) provides such a copy. The underlying idea is
that one does not have to make all these choices to define I (see §9 for an
explicit example).

For such an ideal I with nG ⊂ I ⊂ mS , we consider the finite-dimensional
G-modules W ⊂ S generating I in the sense that I = W · S + nG. Such
modules exist by the preceding construction. Among these choices, we con-
sider the minimal ones, such that no strict G-submodule of them generate
I in the preceding sense.

If W is a generator in this sense, then:

I = W · S + nG = W + mS ·W + nG = W + mS · I + nG.

This means that the C-linear map W → I/(mS · I + nG) is surjective.
Also, since W is a G-module and since mS · I + nG is G-stable, this map
is G-linear. If W is a minimal set of generators, it satisfies in particular
W∩(mS ·I+nG) = {0} since this intersection would provide a G-submodule
whose complementary in W is a smaller G-submodule generating I. Hence,
for W minimal one gets an isomorphism of G-modules W ∼= I/(mS ·I+nG).
We set then V (I) := I/(mS · I + nG). The set of generators of V (I) may
not be uniquely determined, but its structure as a G-module is unique.
The important issue, that will be the core of the classification, will be to
determine whether V (I) is irreducible or not, although it is a minimal set
of generators.
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CONTRACTION OF EXCESS FIBRES 1843

Notation for the two- and three-dimensional cases. When ap-
plying the preceding constructions in dimensions two or three, we fix the
following notation:

• For n = 2, the polynomial ring is denoted by A := C[x, y], the
group by G̃ and any ideal by I.

• For n = 3, the polynomial ring is denoted by B := C[a, b, c], the
group by G and any ideal by J .

3. Moduli space of clusters

3.1. Hilbert scheme of points

Let X ⊂ PnC be a quasi-projective scheme and N a positive integer.
Consider the contravariant functor from the category of schemes to the
category of sets HilbNX : (Schemes) → (Sets) given by:

HilbNX(T ) :=

Z ⊂ T ×X

∣∣∣∣∣∣∣∣∣
(a) Z is a closed subscheme
(b) the morphism Z ↪→ T ×X

p−→ T is flat
(c) ∀t ∈ T,Zt ⊂ X is a closed subscheme

of dimension 0 and length N


This functor is represented by a quasi-projective scheme HilbN (X) coming
with a universal family ΞXN ⊂ HilbN (X) × X. In the sequel, we always
denote by p the projection to the moduli space (here HilbN (X)) and by
q the projection to the base (here X). When X is projective, the scheme
HilbN (X) is projective and comes with a very ample line bundle (for `� 0):

det
(
p∗

(
OΞX

N
⊗ q∗OX(`)

))
.

When X = Cn, one gets an open immersion HilbN (Cn) ↪→ HilbN (PnC)
corresponding to the restriction of the universal family. The restriction of
the determinant line bundle gives the very ample line bundle det

(
p∗OΞC

n

N

)
on HilbN (Cn).

There exists a natural projective morphism from HilbN (X) to the sym-
metric product SN (X) sending a closed subscheme to the corresponding
0-cycle describing its support, called the Hilbert-Chow morphism:

H : HilbN (X) −→ SN (X).

By a theorem of Fogarty ([5]), the scheme HilbN (X) is connected. For
dimX = 2, it is reduced, smooth and the morphism H is a resolution of
singularities.

TOME 57 (2007), FASCICULE 6
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3.2. Hilbert scheme of regular orbits

We consider the sub-functor G-HilbCn of Hilb|G|Cn given by

G-HilbCn(T ) :=
{
Z ∈ Hilb|G|Cn (T ) | ∀t ∈ T,Zt ⊂ Cn is a G-cluster

}
.

This functor is represented by a quasi-projective scheme G-Hilb(Cn) called
the Hilbert scheme of G-regular orbits, which is a union of some connected

components of the subscheme of G-fixed points
(
Hilb|G|(Cn)

)G

. Further-
more, the quotient Cn/G can be identified with a closed subscheme of
S|G|(Cn) and since the support of a G-cluster consists exactly in one or-
bit through G, the restriction of the Hilbert-Chow morphism factorizes
through a projective morphism (see [3, 11, 18]):

H : G-Hilb(Cn) −→ Cn/G.

There is a unique irreducible component of G-Hilb(Cn) containing the free
G-orbits and mapping birationally onto Cn/G. This component is taken
as the definition of the Hilbert scheme of G-regular orbits in [16]. By the
theorem of Bridgeland-King-Reid [3], if n 6 3, then G-Hilb(Cn) is already
irreducible, reduced, smooth and the morphism H is a crepant resolution
of singularities of the quotient Cn/G. Moreover, H is an isomorphism
over the open subset of free G-orbits. As a byproduct, the two definitions
coincide.

As before, the scheme G-Hilb(Cn) has a universal family ZG which is
the restriction of the universal family ΞC

n

|G| corresponding to the closed
immersion G-Hilb(Cn) ↪→ Hilb|G|(Cn). The restriction of the determinant
line bundle gives the very ample line bundle det (p∗OZG

) on G-Hilb(Cn)
(see [10, §8.1]).

4. Rotation groups

Let SO(3,R) be the group of rotations in R3. Up to conjugation, there
are five different types of finite subgroups of SO(3,R), called polyhedral
groups: The cyclic groups Cn, the dihedral groups Dn, the tetrahedral
group T , the octahedral group O and the icosahedral group I.

Consider the classical exact sequence:

0 −→ {±1} −→ SU(2)
φ−→ SO(3,R) −→ 0.

For any finite subgroup G ⊂ SO(3,R), the inverse image G̃ := φ−1G is
called a binary polyhedral group. It is a finite subgroup of SU(2) ⊂ SL(2,C).
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Consider the second exact sequence:

0 −→ {±1} −→ SU(2)× SU(2) σ−→ SO(4,R) −→ 0.

For any binary polyhedral group G̃, the direct image σ(G̃×G̃) ⊂ SO(4,R) is
called a bipolyhedral group. In §10, we make use of the following particular
groups:

• G6 = σ(T̃ × T̃ ) of order 288;
• G8 = σ(Õ × Õ) of order 1152;
• G12 = σ(Ĩ × Ĩ) of order 7200.

Consider a binary polyhedral group G̃, the associated polyhedral group
G and set τ := {±1}:

0 −→ τ −→ G̃
φ−→ G −→ 0.

This exact sequence induces an injection of the set of irreducible represen-
tations of G in the set of irreducible representations of G̃: If ρ : G→ GL(V )
is an irreducible representation of G, it induces by composition a represen-
tation of G̃ which is τ -invariant, i.e. such that ρ(−g) = ρ(g) for all g ∈ G̃.
If the representation ρ admits a non trivial G̃-submodule, it is also a non
trivial G-submodule after going to the quotient G̃/τ ∼= G. This shows that
the image of the injection:

Irr(G) ↪→ Irr(G̃)

consists precisely on the irreducible representations which are τ -invariant.
These representations are called pure and the remaining representations
are called binary. More precisely, if ρ : G̃→ GL(V ) is an irreducible repre-
sentation of G̃, the subspace

V τ := {v ∈ V | v = ρ(−1)v}

is a G̃-submodule of V . Hence either V τ = V and the representation ρ is
pure, or ρ is binary and V τ = {0}.

For each type of binary polyhedral group, the binary representations are
labelled by a “˜” and the trivial representation is denoted by χ0.

5. Graph-theoretic intuition

If G ⊂ SL(n,C) is a finite subgroup, it defines a natural faithful represen-
tation Q of G. Let {V0, . . . , Vk} be a complete set of irreducible representa-
tions of G, where V0 denotes the trivial one. For each such representation,
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one may decompose the tensor products

Q⊗ Vi ∼=
k⊕
j=0

V
⊕ai,j

j

for some non negative integers ai,j . When ai,j = aj,i for all i, j, one defines
the McKay quiver as the unoriented graph with vertices V0, V1, . . . , Vk and
ai,j edges between the vertices Vi and Vj . In particular, this quiver may
contain some loops. For our purpose, we only consider the reduced McKay
quiver with vertices V1, . . . , Vk and one edge between Vi and Vj if i 6= j and
ai,j 6= 0: This means that we remove from the McKay quiver the vertex V0,
all edges starting from it, all loops and all multiple edges. When there is an
edge joining Vi and Vj , the vertices are called adjacent. All finite subgroups
of SU(2) and SO(3,R) enter in this context.

For each binary polyhedral group G̃ ⊂ SU(2) and its corresponding poly-
hedral group G ⊂ SO(3,R), we draw the reduced McKay quiver with our
conventions. For the binary polyhedral groups, we denote by a white vertex
the pure representations and by a black vertex the binary ones. We get (see
for example [6, 7, 8]) the graphs of Figure 5.1 and 5.2.

In the sequel, we interpret these graphs as the intersection graphs of
a family of smooth rational curves meeting transversally. One may then
get the following intuition: Looking at the two-dimensional graphs, if one
contracts the curves associated to a binary representation (black nodes),
then one gets an intersection graph which is precisely the corresponding
graph in dimension three!

Another property of the two-dimensional quivers is that no two pure
representations and no two binary representations are adjacent. This means
that the contraction contracts a disjoint union of −2 curves.

6. Exceptional fibres in dimensions two and three

Considering the Hilbert-Chow morphism H : G-Hilb(Cn) −→ Cn/G,
our purpose is to describe the exceptional fibre H −1(O) over the origin
O ∈ Cn/G in the two- and three-dimensional cases. Note that all finite
subgroups of SL(2,C) or SO(3,R) enter in the context of §2 since they are
subgroups of index 2 of a reflection group (see [7, §2.7]). Hence we may
apply the general procedure for the study of the clusters supported at the
origin.
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C̃n •
χ̃1

◦
χ1

•
χ̃n−1

◦
χn−1

•
χ̃n

•χ̃1

D̃2`+1 ◦
χ1

•
σ̃1

◦
τ1

•
σ̃`

◦

sssssss

KKKKKKK
τ`

•χ̃2

◦χ2

D̃2` ◦
χ1

•
σ̃1

◦
τ1

•
σ̃2

◦
τ`−1

•

rrrrrrr

LLLLLLL
σ̃`

◦χ3

•χ̃1

T̃ ◦
χ1

•
χ̃2

◦
χ3

•
χ̃3

◦
χ2

◦χ2

Õ •
χ̃1

◦
χ3

•
χ̃3

◦
χ4

•
χ̃2

◦
χ1

◦χ2

Ĩ •
χ̃2

◦
χ3

•
χ̃4

◦
χ4

•
χ̃3

◦
χ1

•
χ̃1

Figure 5.1. Reduced McKay quivers in dimension 2

The understanding of the exceptional fibre in these cases was achieved by
Ito-Nakamura [12, 13] in dimension two and by Gomi-Nakamura-Shinoda
[6, 7] in dimension three, by a case-by-case analysis. For the two-dimensional
case, there is another proof by Crawley-Boevey [4] avoiding this case-by-
case analysis. For any finite group G, Irr∗(G) denotes the set of irreducible
representations but the trivial one.

Exceptional fibre in dimension two. Let G̃ ⊂ SL(2,C) be a binary
polyhedral group and denote by π̃ : G̃-Hilb

(
C2

)
−→ C2/G̃ the Hilbert-

Chow morphism. For each non trivial irreducible representation ρ of G̃,
set:

E(ρ) := {I ∈ π̃−1(O)red |V (I) ⊃ ρ}.

Theorem 6.1. — ([12, Theorem 3.1])

• Each E(ρ) is a smooth rational curve of self-intersection −2.
• π̃−1(O)red =

⋃
ρE(ρ) and π̃−1(O) =

∑
ρ dim ρ · E(ρ) as a Cartier

divisor (with ρ ∈ Irr∗(G̃)).
• If I ∈ E(ρ) and I /∈ E(ρ′) for all ρ′ 6= ρ, then V (I) ∼= ρ.
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Cn ◦
χ1

◦
χ2

◦
χn−2

◦
χn−1

D2`+1 ◦
χ1

◦
τ1

◦
τ`−1

◦
τ`

◦χ2

D2` ◦
χ1

◦
τ1

◦
τ`−2

◦

qqqqqqq

MMMMMMM
τ`−1

◦χ3

T ◦
χ1

◦
χ3

◦
χ2

◦
NNNNNNNχ2

O ◦
χ4

◦
χ1

◦
pppppppχ3

◦
NNNNNNNχ2

I ◦
χ4

◦
χ1

◦
pppppppχ3

Figure 5.2. Reduced McKay quivers in dimension 3

• If I ⊂ E(ρ) ∩ E(ρ′), then V (I) ∼= ρ ⊕ ρ′ and the curves E(ρ) and
E(ρ′) intersect transversally at I.

• The intersection graph of these curves is the reduced McKay quiver
of the group G̃.

In particular, a generator V (I) does not contain more than one copy
of any irreducible representation, and E(ρ) ∩ E(ρ′) 6= ∅ if and only if the
representations ρ and ρ′ are adjacent.

Exceptional fibre in dimension three. Let G ⊂ SO(3,R) be a poly-
hedral group. Denote by π : G-Hilb

(
C3

)
−→ C3/G the Hilbert-Chow mor-

phism. For each non trivial irreducible representation ρ of G, set:

C(ρ) := {J ∈ π−1(O)red |V (J) ⊃ ρ}.

Theorem 6.2. — ([7, Theorem 3.1])
• Each C(ρ) is a smooth rational curve.
• π−1(O)red =

⋃
ρ C(ρ) (with ρ ∈ Irr∗(G)).

• If J ∈ C(ρ) and J /∈ C(ρ′) for all ρ′ 6= ρ, then V (J) ∼= ρ.
• The intersection graph of these curves is the reduced McKay quiver

of the group G.

ANNALES DE L’INSTITUT FOURIER



CONTRACTION OF EXCESS FIBRES 1849

6.1. Explicit parameterizations

We explain briefly the explicit parameterizations of the exceptional curves.
This description holds both in dimensions two and three so we do it with
our general notation. The example of the cyclic group is treated in §9. As
we explained in §2,

mS/nG
∼=

⊕
ρ∈Irr(G)
ρ6=ρ0

2 dim ρ⊕
i=1

V (i)(ρ)

where ρ0 denotes the trivial representation. With the exact sequence:

0 −→ I/nG −→ mS/nG −→ mS/I −→ 0,

if one wants to parameterize a (flat) family of clusters over P1
C, one has to

choose, in the trivial sheaf:

OP1
C
⊗

⊕
ρ∈Irr(G)
ρ6=ρ0

2 dim ρ⊕
i=1

V (i)(ρ),

a locally free G-equivariant sheaf which is a copy of the regular representa-
tion on each fibre whose quotient is also locally free. The parameterizations
are produced as follows: One chooses one non trivial subbundle

OP1
C
(−1)⊗ ρ ↪→ OP1

C
⊗ (V (i)(ρ)⊕ V (j)(ρ))

for some appropriate choice of the indices, and shows that this gives the
required family whose points I are characterized by their generator:

V (I) ⊂ P(V (i)(ρ)⊕ V (j)(ρ)).

That is: Once one choice has been made, the other choices are automatic,
and they always correspond to a trivial subbundle (see §8.4).

7. Geometric construction

Let G̃ be a binary polyhedral group acting on A = C[x, y]. Set as before
τ := 〈±1〉 ⊂ G̃ and G := G̃/τ the associated polyhedral group. We aim to
define a morphism

S : G̃-Hilb
(
C2

)
−→ G-Hilb

(
C3

)
inducing a morphism between the exceptional fibres over the origin.

TOME 57 (2007), FASCICULE 6
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Since Aτ = C[x2, y2, xy], we consider the following composite of ring
morphisms, with B = C[a, b, c]:

(7.1) σ : B // //B
/
〈ab− c2〉 ∼ //Aτ //A

where the identification is defined by a = x2, b = y2, c = xy. The action
of G̃ on A induces an action of G on Aτ . Using the identification, we can
define an action of G on the coordinates a, b, c, inducing an action on B

with the property that the cone K = 〈ab− c2〉 is G-invariant.
Let I be an ideal of A and J := σ−1(I) the corresponding ideal of B.

Observe the following property of the map σ:

Lemma 7.1. — If I is a G̃-cluster in A, then J is a G-cluster in B.
Furthermore, if I is supported at the origin, then so is J .

Proof. — If I is a G̃-cluster, then A/I ∼= C[G̃]. Since the group τ is finite,
we have isomorphisms:

B/J ∼= Aτ/Iτ ∼= (A/I)τ ∼= C[G̃]τ ∼= C[G],

hence J is a G-cluster in B. Furthermore, note that σ−1mA = mB hence if
I is a G̃-cluster supported at the origin, one has I ⊂ mA and then J ⊂ mB ,
which implies that J is also supported at the origin (see §2). �

This construction defines set-theoretically a map between the two moduli
spaces of clusters S : G̃-Hilb

(
C2

)
−→ G-Hilb

(
C3

)
by S (I) =def J .

Proposition 7.2. — The map S is regular, projective, and induces a
morphism between the exceptional fibres.

Proof. —

Step 1. To get that the map S is regular, we show that it is induced
by a natural transformation between the two functors of points

G̃-HilbC2(·) =⇒ G-HilbC3(·).

Let T be a scheme and Z ∈ G̃-Hilb
C2(T ). Then Z ⊂ T ×C2 is a flat family

of G̃-clusters over T and the map Z ↪→ T ×C2 is τ -equivariant (for a trivial
action on T ). It induces a family

Z/τ ↪→ T × (C2/τ) ↪→ T × C3

where the quotient C2/τ is considered as the cone 〈ab − c2〉 in C3. If T is
a point, this is precisely our set-theoretic construction: if Z is given by an
ideal I, Z/τ is given by the ideal Iτ .

To show that Z/τ ∈ G-Hilb
C3(T ), we have to prove that this family is flat

over T . Since this problem is local in T , we may assume that T is an affine
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scheme, say T = SpecR. Then the family Z is given by a τ -equivariant
quotient R⊗ A � Q so that the composition R ↪→ R⊗C A � Q makes Q
a flat R-module. The family Z/τ is then given by the quotient

R ↪→ R⊗C B � R⊗C Aτ � Qτ ,

where the quotient R ⊗C B � R ⊗C Aτ is induced by tensorization of the
quotient B � Aτ . We have to show that this makes Qτ a flat R-module.
By hypothesis, the functor Q⊗R − in the category of R-modules is exact.
Since τ is finite, the functor (−)τ is also exact in this category, and we
note that the functor Qτ ⊗R− is the composition of this two functors since
Qτ ⊗R N = (Q⊗R N)τ for any R-module N . Hence the functor Qτ ⊗R −
is exact, which means that the family is flat.

Step 2. The composite of ring morphisms (7.1) gives an equivariant ring
morphism

C[a, b, c] σ //

G

WW
C[x, y]

G̃

WW

inducing a surjective map at the level of the invariants: C[a, b, c]G � C[x, y]G̃,
hence a closed immersion:

η : C2/G̃ = SpecC[x, y]G̃ −→ SpecC[a, b, c]G = C3/G.

Taking more care of the cone K = C2/τ , the equivariant morphism

C2 //

G̃

XX C2/τ //

G

VV C3

G

XX

induces the morphism η between the quotients:

η : C2/G̃
∼ //

(
C2/τ

)/
G //C3/G

sending the origin O ∈ C2/G̃ to the origin O ∈ C3/G and by definition of
S the following diagram is commutative:

G̃-Hilb
(
C2

) S //

π̃
��

G-Hilb
(
C3

)
π

��
C2/G̃

η // C3/G

This implies that S induces a morphism between the exceptional fibres:

S : π̃−1(O) → π−1(O).
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Step 3. We prove that the morphism S is proper by applying the val-
uative criterion of properness. Let K be any field over C and R ⊂ K any
valuation ring with quotient field K. Consider a commutative diagram:

SpecK
φ //

i

��

G̃-Hilb
(
C2

)
S

��
SpecR

ψ // G-Hilb
(
C3

)
We have to show that there exists a unique factorization

SpecK
φ //

i

��

G̃-Hilb
(
C2

)
S

��
SpecR

ψ //

φ̃
99rrrrrrrrrr

G-Hilb
(
C3

)
making the whole diagram commute.

By modular interpretation, the data of the morphism φ consists of an
ideal I ⊂ K[x, y] such that K[x, y]/I ∼= C[G̃]⊗CK and K[x, y]/I is K-flat
(it is here trivial since K is a field). Similarly, the data of the morphism ψ

consists in an ideal J ⊂ R[a, b, c] such that R[a, b, c]/J ∼= C[G] ⊗C R and
R[a, b, c]/J is R-flat. The commutativity S ◦φ = ψ ◦ i means the following.
Consider the diagram of ring morphisms induced by natural extension of
scalars and base-change from the map σ:

R[a, b, c]
σR //

� _

��

R[x, y]� _

��
K[a, b, c]

σK // K[x, y]

Then the commutativity condition means that σ−1
K (I) = J ·K[a, b, c].

We are looking for a morphism φ̃ such that φ̃ ◦ i = φ and S ◦ φ̃ = ψ,
i.e. for an ideal Ĩ ⊂ R[x, y] such that R[x, y]/Ĩ ∼= C[G̃]⊗C R and R[x, y]/Ĩ
is R-flat, satisfying the conditions Ĩ · K[x, y] = I and σ−1

R (Ĩ) = J . A
natural candidate is Ĩ =def I ∩ R[x, y]. We have to prove that it satisfies
all the conditions and that it is unique for these properties. Denote by
ν : K − {0} → H the valuation with values in a totally ordered group H,
satisfying the properties:

ν(x · y) = ν(x) + ν(y) and ν(x+ y) > min(ν(x), ν(y)) for x, y ∈ K \ {0}
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and such that R = {x ∈ K | ν(x) > 0} ∪ {0}. Recall that R is by definition
integral and that a R-module is flat if and only if it is torsion-free (see for
instance [1, 9]).

i. It is already clear that Ĩ · K[x, y] ⊂ I. Let P =
∑
i,j pi,jx

iyj ∈ I

and p ∈ {pi,j} an element of minimal valuation. If ν(p) > 0, then P ∈ Ĩ.
Otherwise all coefficients of p−1P have positive valuation and so p−1P ∈ Ĩ.
So P = p · (p−1P ) ∈ Ĩ ·K[x, y], hence the equality.

ii. By commutativity of the above diagram,

σ−1
R (Ĩ) = σ−1

R (I ∩R[x, y])

= σ−1
K (I) ∩R[a, b, c]

= (J ·K[a, b, c]) ∩R[a, b, c].

It is clear that J ⊂ (J ·K[a, b, c])∩R[a, b, c]. Let P ∈ (J ·K[a, b, c])∩R[a, b, c],
decomposed as P =

∑
` U` · V` with U` ∈ J and V` ∈ K[a, b, c]. As before,

there exists a coefficient q in all V` of minimal valuation, and we assume
ν(q) < 0 (otherwise there is no problem). Then q−1P ∈ J . By assumption,
the R-module R[a, b, c]/J is torsion-free, so the multiplication by q−1 ∈ R
is injective. This means that P ∈ J .

iii. By definition, we have an R-linear inclusion R[x, y]/Ĩ ↪→ K[x, y]/I,
which shows that R[x, y]/Ĩ is torsion-free, hence flat. It inherits an action of
G̃ and since K[x, y]/I ∼= C[G̃]⊗C K, there exists a subrepresentation V of
C[G̃] such that R[x, y]/Ĩ ∼= V ⊗C R (this uses the flatness, see [13, Lemma
9.4]). By the isomorphism of R-modules R[x, y]/Ĩ ⊗R K ∼= K[x, y]/I, the
representation V is such that V ⊗RK = C[G̃]⊗CK, which forces V ∼= C[G̃].

iv. The uniqueness follows from the condition Ĩ · K[x, y] = I since we
already noted that I ∩ R[x, y] = (Ĩ ·K[x, y]) ∩ R[x, y] = Ĩ, so our natural
candidate is the only possibility.

Step 4. To conclude, remark that any proper morphism between two
quasi-projective varieties is automatically projective. �

8. Contracted versus non contracted fibres

Theorem 8.1. — Consider the restriction of the morphism S to a re-
duced curve E(ρ). Then:
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(1) If the representation ρ is pure, then S maps isomorphically the
curve E(ρ) onto the curve C(ρ).

(2) If the representation ρ is binary, then S contracts the curve E(ρ)
to a point.

Proof. — Let E(ρ) be any exceptional curve. Since the morphism S

sends this curve to the tree of curves π−1(O), the image lies in some ir-
reducible component C and the restricted morphism S : E(ρ) → C is a
proper morphism. We prove that:

• If the representation ρ is binary, then the morphism S : E(ρ) → C

contracts the curve to a point;
• If the representation ρ is pure, then C = C(ρ) and the restricted

morphism S : E(ρ) → C(ρ) is an isomorphism.

The parameterizations of the two curves E(ρ) and C define a proper
morphism f whose properties reflect those of the restriction of S :

P1
C

∼
φ

//

f

��

E(ρ) ⊂ G̃-Hilb
(
C2

)
S

��
P1
C

∼
ψ

// C ⊂ G-Hilb
(
C3

)
We know (see [9, II.6.8,II.6.9]) that either the morphism f contracts the
curve to a point, or it is a finite surjective morphism. The basic idea to
determine which case occurs is to take an ample line bundle OP1

C
(a) on the

target (with a > 0): If the morphism f contracts the curve to a point, then
f∗OP1C(a) is trivial, otherwise f∗OP1

C
(a) ∼= OP1

C
(deg(f) · a) is ample.

The natural candidate for an ample line bundle over the curve C is the
determinant det(p∗OZ(C)) obtained by restriction of the universal family
Z(C) := ZG|C .

The parameterization P1
C

φ−→ G̃-Hilb
(
C2

)
of the curve E(ρ) corresponds

to a flat family Z
G̃

(ρ) ⊂ P1
C×C2 which is the restriction to E(ρ) of the uni-

versal family Z
G̃

over G̃-Hilb
(
C2

)
. The direct image p∗OZ

G̃
(ρ) is a vector

bundle of rank |G̃| over P1
C equipped with an action of G̃ inducing the regu-

lar representation on each fibre. It admits an isotypical decomposition over
the irreducible representations of G̃ and we recall the well-known explicit
decomposition:
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Lemma 8.2. —

p∗OZ
G̃

(ρ)
∼=

(
OP1

C
(1)⊕O⊕ dim ρ−1

P1
C

)
⊗ ρ⊕

⊕
ρ′∈Irr(G̃)
ρ′ 6=ρ

O⊕ dim ρ′

P1
C

⊗ ρ′

Proof of the lemma. — This is an equivalent form of [14, §2.1] or [11,
Proposition 6.2(3)]. We recall briefly the argument. Since this bundle is a
quotient of OP1

C
⊗A (see §6.1), it is generated by its global sections, hence

it is a sum of line bundles OP1
C
(a) for a > 0. Since deg(p∗OZ

G̃
(ρ)) = 1 (see

[8]), all line bundles are trivial but one, of degree one. �

In particular, note that det(p∗OZ
G̃

(ρ)) ∼= OP1
C
(dim ρ) is the ample deter-

minant line bundle in dimension two. By the functorial definition of the
morphism S , the composite P1

C

φ−→ G̃-Hilb
(
C2

) S−→ G-Hilb
(
C3

)
parame-

terizes the flat family Z
G̃

(ρ)/τ with structural sheafOZ
G̃

(ρ)/τ =
(
OZ

G̃
(ρ)

)τ
and one gets:

f∗(det(p∗OZ(C))) = det
(
(p∗OZ

G̃
(ρ))τ

)
.

Now, as we noticed in §4, taking the invariants under τ keeps invariant the
pure representations and kills the binary ones. Hence:

• If the representation ρ is binary, then:(
p∗OZ

G̃
(ρ)

)τ ∼= ⊕
ρ′∈Irr(G)

O⊕ dim ρ′

P1
C

⊗ ρ′

hence det(p∗OZ
G̃

(ρ))τ ∼= OP1
C

is trivial;
• If the representation ρ is pure, then:(
p∗OZ

G̃
(ρ)

)τ ∼= (
OP1

C
(1)⊕O⊕ dim ρ−1

P1
C

)
⊗ ρ⊕

⊕
ρ′∈Irr(G)
ρ′ 6=ρ

O⊕ dim ρ′

P1
C

⊗ ρ′

hence det(p∗OZ
G̃

(ρ))τ ∼= OP1
C
(dim ρ) is ample.

This achieves the first part of the proof. It remains to show that in the
case of a pure representation ρ, the target curve is C = C(ρ) and that the
finite surjective morphism f is an isomorphism. We do it by hand. A point
I ∈ E(ρ) is characterized by the choice of V (I) and generically V (I) ∼= ρ.
For a pure representation ρ, the polynomials defining V (I) are even so:

V (Iτ ) = V ((A · V (I) + nA)τ ) ⊃ V (I)

so generically V (Iτ ) = V (I) (only changed by a = x2,b = y2,c = xy).
This means that C = C(ρ) and if I 6= J ∈ E(ρ), then V (I) 6= V (J) hence

TOME 57 (2007), FASCICULE 6



1856 Samuel BOISSIÈRE & Alessandra SARTI

the images are also different, so the morphism is generically injective. This
concludes the proof. �

As a byproduct of our argument, we get the following equivalent in di-
mension three of Lemma 8.2 which, to our knowledge, does not appear
explicitly in the literature:

Corollary 8.3. — For any finite subgroup G ⊂ SO(3,R) and any non
trivial representation ρ of G, the restriction of the tautological bundle to
the exceptional curve C(ρ) decomposes as:

p∗OZG(ρ)
∼=

(
OP1

C
(1)⊕O⊕ dim ρ−1

P1
C

)
⊗ ρ⊕

⊕
ρ′∈Irr(G)
ρ′ 6=ρ

O⊕ dim ρ′

P1
C

⊗ ρ′.

Proof. — The same argument as in the proof of Lemma 8.2 shows that
this bundle in generated by its global sections. The bĳectivity of the mor-
phism f on the curves associated to pure representations (in the notation of
the proof of Theorem 8.1) implies that det(p∗OZG(ρ)) ∼= OP1

C
(dim ρ), hence

in the isotypical decomposition there is only one non trivial line bundle,
of degree one, and we already know by the explicit parameterizations that
the isotypical component corresponding to ρ is not trivial. �

Remark 8.4. — In the decomposition of Lemma 8.2, the presence of a
unique OP1

C
(1) corresponds to the choice of the line V (I) in a projective

space P(ρ⊕ρ) as explicitly described in §6.1. The fact that no other ample
bundle occurs reflects the property that once one choice has been made,
the other generators of the ideal do not involve the choice any more, as
one can easily notice from the explicit computations of [13, §13,§14] (see
§9 in this paper for an example). In the three-dimensional case, the same
situation occurs by Corollary 8.3.

We get now Theorem 1.1, presented in the introduction, as a consequence
of Theorem 8.1:

Corollary 8.5. — The image Y := S (G̃-Hilb
(
C2

)
) projects onto the

quotient K/G, inducing a partial resolution of singularities containing only
the exceptional curves corresponding to pure representations. The mor-
phism S : G̃-Hilb

(
C2

)
−→ Y is a resolution of singularities contracting

the excess exceptional curves to ordinary nodes.

Proof. — The projection π : Y −→ C3/G factors through K/G by con-
struction of Y. The other assertions result from Theorem 8.1. The excess
curves contract to ordinary nodes since, as one checks with Figures 5.1 and
5.2, each excess (−2)-curve is contracted to a different point. �
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Remark 8.6. — It is not difficult to see that in fact Y = G-Hilb(K).

9. Example: The cyclic group case

Let the cyclic group C̃n ∼= Z/(2n)Z act on C2 with generator:(
ξ 0
0 ξ−1

)
with ξ = e

2πi
(2n) .

The choice of coordinates made in §7 implies that the group Cn ∼= Z/nZ

acts on C3 with generator:  ξ2 0 0
0 ξ−2 0
0 0 1

 .

The irreducible representations of the cyclic group C̃n are given by the
matrices (ξi), i = 0, . . . , 2n − 1. For i even, they are also the irreducible
representations of Cn. There are then n pure and n binary representations.
We set χi := ρ2i and χ̃i = ρ2i+1 for i = 0, . . . , n − 1. By Theorem 8.1,
the exceptional curves on C̃n-Hilb

(
C2

)
corresponding to the binary rep-

resentations are contracted by S to a node on S (C̃n-Hilb
(
C2

)
) whereas

the curves corresponding to the pure representations are in 1 : 1 corre-
spondence with the exceptional curves downstairs (see Figure 9.1). In this
section, we check this by a direct computation.

``````

#
#

#
#

#
#

c
c

c
c

c
c

χ̃1

χ̃2

χ̃3

χ̃4

χ1

χ2

χ3

?

S

aaaaaa!!!!!!!aaaaaa

χ1
χ2

χ3

Figure 9.1. Contracted fibres for C̃4
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The ring of invariants C[x, y]C̃n is generated by x2n, y2n, xy and C[a, b, c]Cn

is generated by c, an, bn, ab. We recall the description of the exceptional
curves of C̃n-Hilb

(
C2

)
following [13, Theorem 12.3]. We sort the basis of

the algebra of coinvariants with respect to each irreducible representation:

{1}, {x, y2n−1}, . . . , {xi, y2n−i}, . . . , {x2n−1, y}.

To choose a cluster I/nA supported at the origin amounts in choosing one
copy of each non trivial representation, i.e. for all i = 1, . . . , 2n− 1 a point
(pi : qi) ∈ P1

C defining the ideal by the generators:

〈p1x− q1y
2n−1, . . . , pix

i − qiy
2n−i, . . . , p2n−1x

2n−1 − q2n−1y〉.

But the point is that one only needs one choice. Assume that there exists
an index i such that piqi 6= 0, and take the smallest i with this property.
Set p = pi, q = qi and v = pxi − qy2n−i. Then since xy is invariant,
xi+1, . . . , x2n−1 ∈ I/nA and y2n−i+1, . . . , y2n−1 ∈ I/nA so all our other
choices were trivial, and V (I) = C ·v. More formally, we parameterized the
exceptional curve E(ρi) by a subbundle:

OP1
C
(−1)⊗ ρi ⊕

⊕
j 6=i

OP1
C
⊗ ρj ↪→

⊕
j

(OP1
C
⊕OP1

C
)⊗ ρj .

If there is no such index, let xi be the minimal power of x in the choice: To
find once each non trivial representation one has to choose y2n−i+1 and the
minimal set of generators V (I) = C ·xi⊕C · y2n−i+1 contains two adjacent
representations.

Otherwise stated, a C̃n-cluster at the origin takes the form:

Ij(p : q) := 〈pxj − qy2n−j , xy, xj+1, y2n−j+1〉

for 1 6 j 6 2n− 1, (p : q) ∈ P1
C and E(ρj) = {Ij(p : q)}.

By the same method, a Cn-cluster at the origin takes the form:

Jk(s : t) := 〈sak − tbn−k, c, ak+1, bn−k+1, ab〉

for 1 6 k 6 n− 1, (s : t) ∈ P1
C and C(χk) = {Jk(s : t)}.

With the construction (7.1) we have to compute σ−1(Ij(p : q)). Setting
σ̄ : B

/
〈ab− c2〉 −→ A, it is equivalent to compute σ̄−1(Ij(p : q)). First we

compute Ij(p : q)τ ∈ Aτ . We distinguish two cases:

• j even, i.e. j = 2j′, j′ = 1, . . . , n−1. We have in Aτ = C[x2, y2, xy]:

Ij(p : q)τ = Ij(p : q) = 〈p(x2)
j′ − q(y2)

n−j′
, xy, (x2)

j′+1
, (y2)

n−j′+1〉

σ̄−1(Ij(p : q)) = 〈paj
′
− qbn−j

′
, c, aj

′+1, bn−j
′+1〉 = Jj′(p : q).
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• j odd, i.e. j = 2j′+1, j′ = 0, . . . , n−1. Note that xy ∈ Ij(p : q)τ and
(x2)j

′+1, yn−j
′ ∈ Ij(p : q)τ , but px2j′+1 − qy2n−2j′−1 /∈ Ij(p : q)τ .

So σ̄−1(Ij(p : q)) = 〈aj′+1, bn−j
′
, c〉. Since:

σ̄−1(Ij(p : q)) = Jj′(0 : 1) = Jj′+1(1 : 0),

one has σ̄−1(Ij(p : q)) ∈ C(ρj′) ∩ C(ρj′+1).
The curves E(ρj) with j even correspond to the pure representations and
are not contracted by S as the previous computation shows. The curves
with j odd correspond to the binary representations and are contracted
by S .

10. Application: Pencils of symmetric surfaces

The polynomial invariants of the bipolyhedral groups G6, G8 and G12

are studied by the second author in [17]: The first non trivial invariant
other than a power of the quadric Q : x2 + y2 + z2 + t2 = 0 is a homo-
geneous polynomial Sn of degree n. Consider then the following pencil of
Gn-symmetric surfaces in P3

C:

Xn(λ) = {Sn + λQn/2 = 0}, λ ∈ C.

The general surface Xn(λ) is smooth and for each n there are precisely
four singular surfaces in the corresponding pencil. The singularities of these
surfaces are ordinary nodes forming one orbit through Gn (see [17]).

Consider now the pencil of quotient surfaces in P3
C

/
Gn:

{Xn(λ)/Gn}, λ ∈ C.

These quotient surfaces have only A-D-E singularities and the minimal
resolutions of singularities Yn(λ) → Xn(λ)/Gn are K3 surfaces with Picard
number greater than 19 (see [2]). For the four nodal surfaces in each pencil,
a careful study of the stabilizers of the nodes shows that, if X denotes one
of these nodal surfaces, the image of the node on X/Gn ⊂ P3

C

/
Gn is

a particular quotient singularity locally isomorphic to C2/G̃ ⊂ C3/G for
some polyhedral group G explicitly computed (see [2, §3, Proposition 3.1]):

• for n = 6: C3, T ;
• for n = 8: D2, D3, D4,O;
• for n = 12: D3, D5, T , I.

Therefore, Theorem 1.1 gives locally a group-theoretic interpretation of
the exceptional curves of the K3 surfaces Yn(λ) over the particular singu-
larities of the nodal surfaces.
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