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INTERPOLATION OF HYPERGEOMETRIC RATIOS IN
A GLOBAL FIELD OF POSITIVE CHARACTERISTIC

by Greg W. ANDERSON

Abstract. — For each global field of positive characteristic we exhibit many
examples of two-variable algebraic functions possessing properties consistent with
a conjectural refinement of the Stark conjecture in the function field case recently
proposed by the author. All the examples are Coleman units. We obtain our results
by studying rank one shtukas in which both zero and pole are generic, i. e., shtukas
not associated to any Drinfeld module.

Résumé. — Pour chaque corps global de caractéristique non nulle, nous don-
nons de nombreux exemples de fonctions algébriques en deux variables qui pos-
sèdent des propriétés consistantes avec un raffinement de la conjecture de Stark
conjecturé récemment par l’auteur. Tous les exemples sont des unités de Coleman.
Nous obtenons nos résultats en étudiant les chtoucas de rang un dont le zéro et le
pôle sont génériques, et ne sont donc associés avec aucun module de Drinfeld.

1. Introduction

Our main result (Theorem 2.4 below) provides in connection with each
global field of positive characteristic many examples of two-variable alge-
braic functions with at least some properties predicted by the author’s
conjecture [2, Conj. 9.5]. Most notably, each example is a Coleman unit.
Furthermore, each example figures in an interpolation formula in which
the hypergeometric ratios mentioned in the title of the paper appear on
the right side. The notion of Coleman unit, which was inspired by Cole-
man’s remarkable paper [5], was introduced in [2] and is reviewed in §3.3
below. The notion of interpolation formula can be traced back to papers
of Thakur, especially [11] and [12]; roughly speaking, in such a formula
a Frobenius endomorphism appears on the left side raised to a variable

Keywords: Shtuka, hypergeometric ratio, Coleman unit.
Math. classification: 11R37, 11T99.



1656 Greg W. ANDERSON

power. The notion of hypergeometric ratio, which is a specialization of the
notion of Catalan symbol introduced in [2], is defined in §2.3 below.

Our constructions are based on the study of rank one shtukas in a rela-
tively elementary setting similar to that of Thakur’s paper [13]. The Cole-
man units we produce come into existence as invariants naturally attached
to shtukas. But the new twist here in comparison to [13] is that our shtukas
have both generic zero and generic pole, and hence are not attached to any
Drinfeld module.

Ultimately an analysis of the examples constructed here with tools devel-
oped in [2] and [3] yields a proof of [2, Conj. 9.5], but because the bookkeep-
ing needed to complete that proof is heavy and lengthy, we will provide the
details on another occasion. Here we will just focus on the construction of
Coleman units satisfying interpolation formulas. The main point we want
to make is that the Coleman unit property follows naturally from a variant
(Lemma 5.3 below) of Drinfeld’s powerful “χ = 0 ⇒ h0 = h1 = 0” lemma
[6] (see also [8, p. 146]).

We consider this paper to be third in a series starting with [2] and [3],
and accordingly we recommend that the reader scan the introductions of
those papers for background, motivation, and further references. (The in-
troduction to [4] might also be helpful.) But no detailed familiarity with [2]
and [3] is assumed here. This paper is largely independent of the preceding
two in the series.

2. Formulation of the main result

2.1. Basic setting and notation

2.1.1. The curve X/Fq

Let X/Fq be a smooth projective geometrically connected curve of genus
g, where the base Fq is a field of q <∞ elements. The curve X/Fq remains
fixed throughout the paper. We denote the function field of X by Fq(X).
We use standard notation for coherent sheaves and cohomology on X.

2.1.2. Moore determinants

Put

Moore(x1, . . . , xn) =

∣∣∣∣∣∣∣∣
xqn−1

1 . . . xqn−1

n
...

...
xq0

1 . . . xq0

n

∣∣∣∣∣∣∣∣ ∈ Fq[x1, . . . , xn]

ANNALES DE L’INSTITUT FOURIER



INTERPOLATION OF HYPERGEOMETRIC RATIOS IN A GLOBAL FIELD1657

where x1, . . . , xn are independent variables. Recall the Moore determinant
identity:

Moore(x1, . . . , xn) =
∏

0 6=a=(a1,...,an)∈Fn
q

such that the leftmost
nonzero entry of a

is equal to 1

n∑
i=1

aixi.

See [7, §1.3] or [14, §2.11] for further discussion of Moore determinants.

2.1.3. Residues

Given an effective divisor D of X and a meromorphic differential ω on X,
we define RESD ω to be the sum of terms traceFx/Fq

Resx ω extended over
closed points x of X in the support of D, where Fx is the residue field at x
and Resx ω ∈ Fx is the residue of ω at x. Note that RESD induces a perfect
Fq-bilinear pairing H0(OX(D)/OX)×H0(ΩX/Fq

/ΩX/Fq
(−D)) → Fq.

2.1.4. Generalized divisor classes

Given an effective divisor D of X and a nonzero meromorphic function
f on X, we write f |D ≡ 1 if f is regular in a neighborhood of D and its
restriction f |D to the closed subscheme D is identically equal to 1, in which
case we also say that the divisor (f) is principal to the conductor D. Given
an effective divisor D of X and divisors E1 and E2 of X supported away
from D, we say that E1 and E2 belong to the same generalized divisor
class of conductor D and we write E1 ∼D E2 if E1 −E2 is principal to the
conductor D.

2.1.5. Miscellaneous

Let A× denote the multiplicative group of a ring A with unit.

2.2. Apparatus from class field theory

2.2.1. The idèle group of X

Let AX (resp., A×X) be the adèle ring (resp., idèle group) ofX. We identify
Fq(X)× with the diagonal subgroup of A×X , as usual. Let

‖ · ‖ : A×X → qZ

TOME 57 (2007), FASCICULE 5



1658 Greg W. ANDERSON

be the idèle norm homomorphism. To each idèle a ∈ A×X we associate a
divisor

Div a =
∑

x

(ordx a)x,

where the sum is extended over closed points x of X, and ordx a denotes
the order of vanishing of a at x. The rule Div extends the usual rule for
associating a divisor to a meromorphic function on X. Note that

−deg Div a = logq ‖a‖

for all a ∈ A×X . Given an effective divisor D of X and a ∈ A×X , we say that
a is supported away from D if for every closed point x in the support of D
we have

ordx(a− 1) > ordxD,

in which case the divisor Div a is also supported away from D.

2.2.2. The reciprocity law homomorphism

Let Fq(X) be an algebraic closure of Fq(X). Let Fq(X)ab be the abelian
closure of Fq(X) in Fq(X). Let Fq(X)perf (resp., Fq(X)abperf) be the closure
of Fq(X) (resp., Fq(X)ab) in Fq(X) under the extraction of qth roots. We
define

ρ : A×X → Gal(Fq(X)ab/Fq(X)) = Gal(Fq(X)abperf/Fq(X)perf)

to be the reciprocity law homomorphism of global class field theory, “renor-
malized” in the fashion of [10] so that

ρ(a)C = C‖a‖

holds for every C belonging to the algebraic closure Fq of Fq in Fq(X) and
a ∈ A×X . We define

ρ∗ : A×X → Aut(Fq(X)abperf/Fq)

by the rule

ρ∗(a)x = (ρ(a)−1x)‖a‖

for all x ∈ Fq(X)abperf and a ∈ A×X . The homomorphism ρ∗ actually plays a
more important role in this paper than does ρ.

ANNALES DE L’INSTITUT FOURIER



INTERPOLATION OF HYPERGEOMETRIC RATIOS IN A GLOBAL FIELD1659

2.2.3. The homomorphism rD

Let D be an effective divisor of X. Let UD ⊂ A×X be the open compact
subgroup consisting of idèles a such that for all closed points x ∈ X, if x
is (resp., is not) in the support of D, then ordx(a − 1) > ordxD (resp.,
ordxD = 0). There is a unique exact sequence

(2.1) 1 → Fq(X)×UD ⊂ A×X
rD−−→

(
generalized divisor class
group of conductor D

)
→ 0

such that

rD(a) =
(

generalized divisor class
of −Div a of conductor D

)
for every idèle a ∈ A×X supported away from D.

2.2.4. Remark

Let D be an effective divisor of X. Let K/Fq(X) be a finite abelian
extension of conductor dividing D. Let x be a closed point of X not in the
support of D and hence unramified in K/Fq(X). Let σx ∈ Gal(K/Fq(X))
be the arithmetic Frobenius element at x, i. e., the traditional value of the
Artin symbol (x,K/Fq(X)). Let a ∈ A×X be such that rD(a) = x. Then we
have ρ(a)|K = σx. In a nutshell: the minus sign intervening in the definition
of rD cancels the renormalization of ρ.

2.3. Hypergeometric ratios

We introduce a notion which is actually a specialization of the notion of
Catalan symbol introduced in [2].

2.3.1. Definition (high degree case)

Let D be a nonzero effective divisor of X. Let E be a divisor of X
supported away from D. Assume that degE > 2g − 2, in which case
H1(OX(E)) = 0, and hence the sequence

0 → H0(OX(E)) → H0(OX(E +D)) → H0(OX(D)/OX) → 0

TOME 57 (2007), FASCICULE 5



1660 Greg W. ANDERSON

is exact. Let nonzero α, β ∈ H0(OX(D)/OX) be given, along with liftings
α̃, β̃ ∈ H0(OX(E +D)), respectively, via the exact sequence above. In this
situation we define

HypD(α, β,E) =
∏

e∈H0(OX(E))

α̃+ e

β̃ + e
∈ Fq(X)×,

which is independent of the choice of liftings α̃ and β̃. We call HypD(α, β,E)
a hypergeometric ratio. Note that HypD(α, β,E) depends only on the gen-
eralized divisor class of E of conductor D. More generally, we have

(2.2) HypD(α, β,E + (f)) = HypD((f |D)α, (f |D)β,E)

for all f ∈ Fq(X)× such that (f) is supported away from D. We have

(2.3) HypD(α, β,E) =
Moore(α̃, e1, . . . , en)
Moore(β̃, e1, . . . , en)

for every Fq-basis

e1, . . . , en ∈ H0(OX(E)) (n = h0(OX(E)) = degE − g + 1),

whence follow the relations

(2.4) HypD(cα, β,E) = HypD(α, c−1β,E) = cHypD(α, β,E)

for all c ∈ F×q and

(2.5) HypD(α, β,E) = HypD(α1, β, E) + HypD(α2, β, E)

for all decompositions α = α1 + α2 where α1, α2 ∈ H0(OX(D)/OX) are
nonzero.

2.3.2. Definition (low degree case)

As in the previous paragraph, let D be a nonzero effective divisor of X
and let E be a divisor of X supported away from D. But this time let us
assume that degE < −degD, in which case h1(ΩX/Fq

(−E −D)) = 0 and
hence the sequence

0 → H0(ΩX/Fq
(−E −D)) → H0(ΩX/Fq

(−E)) →

H0(ΩX/Fq
/ΩX/Fq

(−D)) → 0

is exact. Let nonzero α, β ∈ H0(OX(D)/OX) be given, along with liftings
α̃ and β̃ to meromorphic functions on X, respectively. In this situation we

ANNALES DE L’INSTITUT FOURIER
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define

HypD(α, β,E) =
∏

ω∈H0(ΩX/Fq (−E))

RESD(ωβ̃)=1

ω

/ ∏
ω∈H0(ΩX/Fq (−E))

RESD(ωα̃)=1

ω ∈ Fq(X)×,

which is independent of the choice of liftings α̃ and β̃. The ratio does indeed
define a meromorphic function on X because there are exactly qg−2−deg E

factors in the numerator, and an equal number of factors in the denomi-
nator. Note that in the low degree case, just as in the high degree case,
HypD(α, β,E) depends only on the generalized divisor class of E to the
conductor D, and furthermore satisfies (2.2). Trivially, formula (2.4) con-
tinues to hold. Perhaps surprisingly, formula (2.5) also continues to hold in
the low degree case—this will follow from our main result, and is anyhow
easy to verify directly using tricks discussed in [2, §3].

2.3.3. Remark

This remark will not be needed to follow the main line of inquiry. But it
will be needed to make sense of later remarks. Given a divisor E of X, let
us associate to it an open compact subgroup [E] ⊂ AX by the rule

[E] = {a ∈ AX | ordx a+ ordxE > 0 for all closed points x ∈ X}.

This rule has the property that

[E] ∩ Fq(X) = H0(X,OX(E)).

Now fix a nonzero effective divisor D of X and

α, β ∈ H0(OX(D)/OX) = [D]/[0].

Fix liftings
α̃, β̃ ∈ [D] ⊂ AX ,

respectively. Fix also a divisor A0 of X supported away from D of degree
g − 2. Given any subset S ⊂ AX , let 1S be the {0, 1}-valued function on
AX taking the value 1 on S and 0 elsewhere. It can be shown that

(2.6)

(
a

1α̃+[A0] − 1β̃+[A0]

)
= HypD(α, β,A0 + rD(a))min(‖a‖,1)

for all a ∈ A×X such that the right side is defined, where the object (··)
on the left is the Catalan symbol defined in [2]. We omit the details of
the comparison since we wish to avoid introducing a lot of machinery of
harmonic analysis which otherwise we will not be using.

TOME 57 (2007), FASCICULE 5



1662 Greg W. ANDERSON

2.4. The ring D

2.4.1. Definitions

Consider the ring
D = Fq(X)⊗Fq

Fq(X).

We define the diagonal evaluation homomorphism

(ϕ 7→ ϕ|∆) : D → Fq(X)

by the rule
(x⊗ y)|∆ = xy,

and correspondingly we define

∆ = ker (ϕ 7→ ϕ|∆) ⊂ D,

which is a maximal ideal of D. For all θ1, θ2 ∈ Aut(Fq(X)/Fq) such that

θ1|Fq
= θ2|Fq

we define
θ1 ⊗ θ2 : D → D

by the rule
(θ1 ⊗ θ2)(x⊗ y) = (θ1x)⊗ (θ2y).

In the case (θ1, θ2) = (identity automorphism, θ) we write θ1 ⊗ θ2 = 1⊗ θ.

Lemma 2.1. — (i) The ring D is a domain. (ii) Every nonzero ideal of
D is maximal. (iii) The local ring D∆ of Spec(D) at ∆ is a nondiscrete
valuation ring of rank one. (iv) Every maximal ideal M ⊂ D is of the form

M = ker
(
(ϕ 7→ ((1⊗ θ)ϕ)|∆) : D → Fq(X)

)
for unique θ ∈ Aut(Fq(X)/Fq).

Proof. — Let L/Fq(X) be a finite subextension of Fq(X)/Fq(X) and put
F` = L ∩ Fq. Realize L as the function field F`(Y ) of a smooth projective
geometrically connected curve Y/F`. Given also a finite nonempty set S of
closed points of Y , let

DL,S = Fq(X)⊗F`
H0(Y \ S,OY ).

The ring DL,S is the coordinate ring of an irreducible smooth affine curve
defined over the field Fq(X) and in particular is a Dedekind domain. More-
over, by the Nullstellensatz, the maximal ideals of DL,S correspond bĳec-
tively to (Fq(X) ⊗ 1)-linear homomorphisms DL,S → Fq(X). Let DL be
the limit over S of DL,S . Again DL is a Dedekind domain and maximal

ANNALES DE L’INSTITUT FOURIER
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ideals of DL correspond bĳectively to (Fq(X)⊗ 1)-linear homomorphisms
DL → Fq(X). Given a tower L2/L1/Fq(X) contained in Fq(X)/Fq(X)
with L2/Fq(X) finite, the ring extension DL2/DL1 is finite flat, and more-
over étale if L2/L1 is separable. The ring D is the union of rings of the
form qn√

DL with L/Fq(X) ranging over finite separable subextensions of
Fq(X)/Fq(X) and n ranging over positive integers. The result follows by
passage to the limit on L and n. �

2.4.2. Extensions

For all θ1, θ2 ∈ Aut(Fq(X)/Fq) with a common restriction to Fq we
extend the automorphism θ1 ⊗ θ2 of D to the fraction field of D in the
unique possible way. We extend diagonal evaluation to a homomorphism

(ϕ 7→ ϕ|∆) : D∆ → Fq(X)

in the unique possible way, and for convenience we set ϕ|∆ = ∞ for every
ϕ in the fraction field of D which does not belong to D∆.

Lemma 2.2. — Let ϕ be an element of the fraction field of D such that
for infinitely many integers n there exists θ ∈ Aut(Fq(X)/Fq) with the
following two properties: θ|Fq(X)perf = (x 7→ xqn

) and ((1 ⊗ θ)ϕ)|∆ = 0.
Then ϕ = 0.

Proof. — Notation as in the proof of Lemma 2.1, the function ϕ belongs
to the fraction field of some Dedekind domain of the form DL. By hypoth-
esis ϕ has positive valuation at infinitely many distinct maximal ideals of
DL, and hence vanishes identically. �

2.4.3. Critical automorphisms and their exponents

Given θ ∈ Aut(Fq(X)/Fq), we say that θ is critical if there exists a ∈ A×X
such that

θ|Fq(X)abperf
= ρ∗(a),

in which case a is uniquely determined by θ, and will be called the exponent
of θ.

Lemma 2.3. — Fix θ ∈ Aut(Fq(X)/Fq). The following properties are
equivalent:

• θ is critical.
• θ|Fq(X)perf = (x 7→ xqn

) for some integer n.

TOME 57 (2007), FASCICULE 5



1664 Greg W. ANDERSON

Proof. — The first property trivially implies the second. The second
property granted, the automorphism qn√

θ fixes every element of Fq(X)perf ,
stabilizes Fq(X)abperf , and restricts on Fq to an integer power of the qth

power Frobenius automorphism. But then qn√
θ|Fq(X)abperf

belongs to the im-
age of the reciprocity law homomorphism ρ, and hence θ has the first
property. �

The following is our main result.

Theorem 2.4. — Fix a nonzero effective divisorD ofX. Also fix nonzero

α, β ∈ H0(OX(D)/OX),

and a divisor A0 of X supported away from D such that

degA0 = g − 2.

Then there exists a unique element ϕ of the fraction field of D such that
for all θ ∈ Aut(Fq(X)/Fq), the following statements hold. Firstly,

(2.7) ((1⊗ θ)ϕ)|∆ = HypD(α, β,A0 + rD(a))min(‖a‖,1)

if θ is critical of exponent a and the right side is defined. Secondly,

(2.8) ((1⊗ θ)ϕ)|∆ 6= 0,∞

if θ is not critical.

Some amplifying remarks are in order.
(i) Formula (2.7) is the interpolation formula mentioned in the intro-

duction.
(ii) Formula (2.8) forces ϕ to be a Coleman unit. See Prop. 3.1 and its

proof for a detailed explanation of this point.
(iii) Lemma 2.2 already proves the uniqueness asserted in the theorem.
(iv) Lemma 2.2, the theorem and relation (2.5) among hypergeometric

ratios in the high degree case force (2.5) to hold in the low degree
case.

(v) Lemma 2.3 simplifies the task of recognizing when θ is critical.
(vi) The theorem says nothing about ϕ in the case that θ is critical of

exponent a such that the right side of (2.7) is undefined—but the
gap is filled by the author’s conjecture [2, Conj. 9.5].

In §3 we provide further amplification of the theorem, in particular indi-
cating the position of the theorem with respect to the author’s conjecture.

The proof of the theorem commences in §4 and takes up the rest of the
paper. In §4 we collect tools for the proof and in particular we put what

ANNALES DE L’INSTITUT FOURIER
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we need of geometric class field theory into a form compatible with the
Thakur-style approach to shtukas. In §5 we study rank one shtukas and
we set up the Catalan-Drinfeld symbol formalism. A version of Drinfeld’s
“χ = 0 ⇒ h0 = h1 = 0” lemma (Lemma 5.3 below) plays the key role. The
Catalan-Drinfeld symbol formalism is of intrinsic interest and no doubt
further study of it will lead to refinements of our conjecture. In §6 we
finish the proof of Theorem 2.4 by evaluating the Catalan-Drinfeld symbol
in apt ways.

3. Discussion

We calculate hypergeometric ratios and verify Theorem 2.4 “by hand”
in a simple special case. We review the notion of Coleman unit and explain
why the functions produced by the theorem are Coleman units. We discuss
the theorem in relation to Coleman’s paper [5] and the author’s conjecture
[2, Conj. 9.5].

3.1. Sample calculation of hypergeometric ratios

We assume under this heading that

X/Fq = P1
t /Fq, Fq(X) = Fq(t).

For each c ∈ Fq ∪ {∞} = P1
t (Fq), let [c] be the corresponding closed point

of P1
t . Let

α∞, α1, α0 ∈ H0(OP1
t
([∞] + [1] + [0])/OP1

t
)

be the Fq-basis consisting of elements represented by

t,
1

1− t
,
t− 1
t

(
=

1
1− 1

1−t

)
∈ H0(OP1

t
([∞] + [1] + [0])),

respectively. We claim that

(3.1)

Hyp[∞]+[0](α∞, α0, (N − 2)[1]) = tεN
q|N|−1

q−1 ,

Hyp[1]+[∞](α1, α∞, (N − 2)[0]) =
(

1
1−t

)εN
q|N|−1

q−1
,

Hyp[0]+[1](α0, α1, (N − 2)[∞]) =
(

t−1
t

)εN
q|N|−1

q−1

for all nonzero integers N , where εN ∈ {±1} is the sign of N . By symmetry
(the map t 7→ 1/(1− t) is an automorphism of P1

t /Fq of order 3) we have

TOME 57 (2007), FASCICULE 5



1666 Greg W. ANDERSON

only to prove the first formula. Call the left side of the first formula Hyp(N)
to abbreviate. Note that the case N > 0 (resp., N < 0) corresponds to the
high (resp., low) degree case of the definition of the hypergeometric ratio.
Assume at first that N > 0. Take liftings α̃∞ = t−1 and α̃0 = (t−1)

t . Then
we have

Hyp(N) =
∏

e∈H0(OP1
t
((N−2)[1]))

t− 1 + e
(t−1)

t + e

=
∏

e∈H0(OP1
t
(−[0]+(N−1)[∞]))

t− 1 + e
t(t−1)N−2

(t−1)
t + e

t(t−1)N−2

=
Moore(tN , tN−1, . . . , t)

Moore((−1)N−1, tN−1, . . . , t)
=

Moore(tN , tN−1, . . . , t)
Moore(tN−1, . . . , 1)

= t
qN−1
q−1 .

We turn to the remaining case N < 0. Put ν = |N |. We have

Hyp(N) =
∏

ω∈H0(ΩP1
t

/Fq
((ν+2)[1]))

RES[∞]+[0](
t−1

t ω)=1

ω

/ ∏
ω∈H0(ΩP1

t
/Fq

((ν+2)[1]))

RES[∞]+[0](tω)=1

ω

=
∏

e∈H0(OP1
t
(ν[∞]))

Res[0](t
−1e(t−1)−ν−2dt)=−1

e

/ ∏
e∈H0(OP1

t
(ν[∞]))

Res[∞](te(t−1)−ν−2dt)=1

e

=
Moore((−1)ν+1, t, . . . , tν)

Moore(t, . . . , tν)

/
Moore(−tν , 1, . . . , tν−1)

Moore(1, . . . , tν−1)

=
Moore(1, . . . , tν−1)
Moore(t, . . . , tν)

= t−
qν−1
q−1 .

The claim is proved.

3.2. Sample instance of theorem

Continuing in the setting of §3.1, we verify Theorem 2.4 in the case

(3.2) X = P1
t , Fq(X) = Fq(t), (D,A0, α, β) = ([∞] + [0],−2[1], α∞, α0).

Fix
τ ∈ Fq(X)ab ⊂ Fq(X)

such that
τ q−1 = t.
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Note that [∞] + [0] is a conductor for the abelian extension Fq(t, τ)/Fq(t).
Put

ϕ = τ−1 ⊗ τ ∈ D×.

We will verify that ϕ has the properties (2.7) and (2.8) required by Theo-
rem 2.4. Because ϕ is a unit of D, condition (2.8) of the theorem is trivially
satisfied by ϕ. Only condition (2.7) requires proof. In more detail, what we
need to prove is that

(3.3) ((1⊗ θ)ϕ)|∆ = Hyp[∞]+[0](α∞, α0,−2[1] + r[0]+[∞](a))min(‖a‖,1)

for every a ∈ A×X and θ ∈ Aut(Fq(X)/Fq) such that

ρ∗(a) = θ|Fq(X)abperf
, ‖a‖ 6= 1.

Fix such a and θ now, and also fix c ∈ F×q and an integer N 6= 0 such that

r[∞]+[0](a) =

 the generalized divisor class
of [c] + (N − 1)[1] of
conductor [∞] + [0]

 , and hence ‖a‖ = qN .

Since the image of r[∞]+[0] is a copy of Z × F×q we can indeed find N

and c with these properties. Notice now that ρ(a) restricted to Fq(t, τ) is
an arithmetic Frobenius element in Gal(Fq(t, τ)/Fq(t)) above [c] (see the
remark of §2.2.4) and hence

ρ(a)τ = cτ, ρ∗(a)τ = c−1τ qN

.

It follows that

(3.4) ((1⊗ θ)ϕ)|∆ = c−1τ qN−1 =

 c−1t
qN−1
q−1 if N > 0,

q|N|
√
c−1t−

q|N|−1
q−1 if N < 0.

Now by combining (2.2) and (2.4) with the first of the suite of formulas
(3.1), we have

(3.5) Hyp[∞]+[0](α∞, α0, [c] + (N − 3)[1]) = c−1tεN
q|N|−1

q−1 .

Finally, compare (3.4) and (3.5) in order to see that (3.3) and hence (2.7)
hold for ϕ. The verification of the theorem in the special case (3.2) is
complete.

3.3. The notion of Coleman unit

We review a notion introduced in the author’s paper [2] and inspired by
Coleman’s paper [5]. Definitions recalled under this heading are local to §3
and will not be used from §4 onward.
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3.3.1. The ring K

Consider the subrings

K̃ = Fq(X)abperf ⊗Fq
Fq(X)abperf , K = K̃{σ⊗σ|σ∈Gal(Fq(X)abperf/Fq(X)perf)}

of D. By an evident modification of the proof of Lemma 2.1, one verifies
that for every maximal ideal M ⊂ K, the corresponding local ring KM is
a nondiscrete valuation ring of rank 1. Note that since D/K is an integral
extension of domains, every maximal ideal of K lies below some maximal
ideal of D. Note also that the image of diagonal evaluation restricted to K
is Fq(X)perf .

3.3.2. The twisting action

We define the twisting action ϕ 7→ ϕ(a) of A×X on K̃ by the rule

(x⊗ y)(a) = (ρ(a)x)⊗ y‖a‖.

Note that the twisting action stabilizes K. We remark that for every a ∈ A×

the automorphisms

x⊗ y 7→ (x⊗ y)(a), x⊗ y 7→ x⊗ ρ∗(a)y

of K̃ agree on K. We extend the twisting action to the fraction field of K
in the unique possible way.

3.3.3. Definition of Coleman unit

According to the definition [2, §9.4], a Coleman unit ϕ is a nonzero
element of the fraction field of K such that for every maximal ideal M ⊂ K,
if ϕ fails to be a unit of the local ring KM, then M is of the form

M = ker
(
(ϕ 7→ ϕ(a)|∆) : K → Fq(X)perf

)
for some a ∈ A×X .

Proposition 3.1. — Fix D, α, β, and A0 as in Theorem 2.4, and let ϕ
satisfy the conclusion of the theorem. Then ϕ is a Coleman unit.

ANNALES DE L’INSTITUT FOURIER



INTERPOLATION OF HYPERGEOMETRIC RATIOS IN A GLOBAL FIELD1669

Proof. — By Lemma 2.2 and property (2.7) we have

(σ ⊗ σ)ϕ = ϕ

for all σ ∈ Gal(Fq(X)/Fq(X)perf) and

(1⊗ σ)ϕ = ϕ

for all σ ∈ Gal(Fq(X)/Fq(X)abperf). Thus ϕ belongs to the fraction field of
K. Now fix a maximal ideal M ⊂ K such that

M 6= ker((ψ 7→ ψ(a)|∆) : K → Fq(X)perf)

for every a ∈ A×. By Lemma 2.1 and integrality of the ring extension D/K,
for some θ ∈ Aut(Fq(X)/Fq), we have

M = K ∩ ker((ψ 7→ ((1⊗ θ)ψ)|∆) : D → D).

By hypothesis concerning M, the automorphism θ cannot be critical, and
hence by (2.8) it follows that ϕ is a unit of the local ring KM. Therefore ϕ
is indeed a Coleman unit. �

3.4. Coleman’s function on the product of a Fermat curve with
itself

We return to the settings of §3.1 and §3.2, assuming as before that

X = P1
t , Fq(X) = Fq(t).

Fix τ0, τ1 ∈ Fq(X)ab such that

τ q−1
0 = t, τ q−1

1 = 1− t.

Then (τ0, τ1) is a generic point of the Fermat curve xq−1 + yq−1 = 1 over
Fq. Put

ϕ = τ0 ⊗ τ−1
0 + τ1 ⊗ τ−1

1 − 1 ∈ D.

Then ϕ is the function on the product of two copies of the Fermat curve of
degree q− 1 over Fq considered in Coleman’s paper [5]. Let A0 be a divisor
of P1

t supported away from [∞] + [1] + [0] such that

degA0 = −2, A0 ∼[∞]+[0] −2[1], A0 ∼[∞]+[1] −2[0].

By an evident modification of the calculation undertaken in §3.2 which
uses not only the first but also the second of the three formulas (3.1), we
have

(3.6) ((1⊗ θ)ϕ)|∆ =

Hyp[∞]+[1]+[0](α0 + α1 − α∞, α∞, A0 + r[0]+[∞](a))min(‖a‖,1)
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for all a ∈ A× such that logq ‖a‖ 6= −1, 0 and θ ∈ Aut(Fq(X)/Fq) such
that θ|Fq(X)abperf

= ρ∗(a). In other words, Coleman’s function ϕ makes (2.7)
hold for suitable data (D,α, β,A0), and therefore by Theorem 2.4 and
Proposition 3.1 must be a Coleman unit. But it is actually easy to verify
that ϕ is a Coleman unit “by hand”. Indeed, the divisor of ϕ on the product
of two copies of the Fermat curve can be worked out exactly, and that
is exactly what Coleman did in [5] in order to carry out his remarkable
elementary analysis of the Frobenius endomorphism of the Jacobian of the
Fermat curve of degree q − 1 over Fq. Theorem 2.4 says that Coleman-like
functions are not special or isolated—rather, they are ubiquitous.

3.5. Position of the main result with respect to the author’s
conjecture

If one rewrites the right side of formula (2.7) in terms of the Cata-
lan symbol defined in [2] using formula (2.6), one sees that Theorem 2.4
confirms the author’s conjecture [2, Conj. 9.5] “asymptotically”, i. e., for
max(‖a‖, ‖a‖−1) large. Further, our conjecture granted, every Coleman unit
it produces must be constructible by natural operations from the Coleman
units which Theorem 2.4 produces; this follows from remark [2, §9.6.4]. The
proof of our conjecture thus comes down to a straightforward (if rather long
and painstaking) analysis of the examples produced by Theorem 2.4 using
the adelic theory of [2] and the local theory of [3]. We will provide the
details on another occasion.

4. Toolkit

We review what we need of geometric class field theory. The standard
reference for the latter is [9]. We put the needed material in a form compat-
ible with the statement of Theorem 2.4 and the Thakur-style approach to
shtukas. Proposition 4.2 below summarizes the discussion. Along the way
we formulate a very special case of Bertini’s theorem (Lemma 4.1) needed
as a technical tool. Notation introduced here is in force for the rest of the
paper.
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4.1. Expansion of the setting for Theorem 2.4

4.1.1. The universal domain W

We have previously chosen an algebraic closure Fq(X)/Fq(X) and defined
Fq to be the algebraic closure of Fq in Fq(X). We now fix an algebraically
closed field W containing Fq as a subfield. Save for requiring W to contain
Fq, we choose W independently of our previous choice of algebraic closure
Fq(X)/Fq(X). Elements of W will sometimes be called constants. The field
W will play the role of a Weil-style universal domain. Later we will need W
to be large enough to permit construction of an embedding D →W , but for
the moment we make no assumption concerning the absolute transcendence
degree of W , so that the conclusions we draw here will be valid for any
algebraically closed field extending Fq. Given a ring R between Fq and W ,
let Rperf be the closure of R in W under the extraction of qth roots. Given
a field K between Fq and W , let K be the algebraic closure of K in W , let
Ksep be the separable algebraic closure of K in K, let Kab be the abelian
closure of K in Ksep, let Kab

perf = (Kab)perf , and finally, let

XK/K = X ×Spec(Fq) Spec(K)/Spec(K)

be the base-change of X/Fq.

4.1.2. Points and divisors defined over the universal domain

Abusing notation, we write X = X(W ) = XW . In other words, some-
times X denotes the set of W -valued points of X and sometimes X denotes
the W -scheme XW . In context this usage should not cause confusion. Cor-
respondingly, we identify the free abelian group generated by the set X with
the divisor group of the curve X. Given a divisor D of X, let suppD ⊂ X

be the support of D. Given a divisor D of X, let the divisor of X obtained
by base-change be again denoted by D. Given ξ ∈ X, let Fq(ξ) be the
subfield of W generated over Fq by the coordinates of ξ. We say that ξ is
generic if Fq(ξ) is an isomorphic copy of Fq(X). We say that two generic
points ξ, η ∈ X are independent if the fields Fq(ξ) and Fq(η) are linearly
disjoint over Fq, in which case Fq(ξ) and Fq(η) are linearly disjoint over Fq.

4.1.3. Generalized divisor classes defined over the universal domain

We adapt to X/W the definitions given in §2.1.4 for X/Fq, in evident
fashion.
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Lemma 4.1. — Let D be an effective divisor of X. Let E be a divisor
of X supported away from D. Let S be a finite subset of X \ suppD. Then
there exist

• a divisor Ẽ of X, and
• a divisor A of X

such that:
• Ẽ and A are effective and supported away from D;
• Ẽ ∼D A+ E;
• S ∩ supp Ẽ = ∅ = S ∩ suppA; and
• Ẽ has multiplicity 6 1 everywhere on X.

Proof. — Let XD be the singular model of X constructed according to
the procedure of [9, Chap. IV, §4]. Roughly speaking, XD is obtained by
crushing D to a single closed point ∞D. Choose an effective divisor A of
X of positive degree supported away from D and S. Consider the space

V = {f ∈ H0(OX(A+ E)) | f |D is constant},

and choose a W -basis v0, . . . , vn ∈ V . After replacing A by a sufficiently
high multiple of itself, we may assume that the map

(v0 : · · · : vn) : X → Pn
/W

is a projective embedding of XD. For simplicity, let us identify XD with
its image under this projective embedding, and in turn identify X \ suppD
with XD \ {∞D}. Any hyperplane section H ∩XD to which ∞D does not
belong can then be construed as a member of the generalized divisor class
of A + E of conductor D. But any sufficiently general hyperplane H does
not intersect S ∪ {∞D} and by Bertini’s theorem cuts XD transversely.
Take Ẽ = H ∩XD for a general hyperplane H. �

4.2. Further expansion of the setting

We prepare to state a version of explicit reciprocity.

4.2.1. Twisting

Given ξ ∈ X and an integer n (possibly negative), let ξ(n) be the result
of applying the (qn)th power automorphism of W to ξ, and let the map
(ξ 7→ ξ(n)) : X → X thus defined be extended additively to the group of
divisors of X. Let f 7→ f (n) be the unique automorphism of the function
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field of X which restricts on W to the (qn)th power automorphism of W
and which restricts on the function field of X to the identity automorphism.
We call the operations D 7→ D(n) on divisors and f 7→ f (n) on functions
n-fold twisting. Twisting commutes with formation of principal divisors,
i. e., (f (n)) = (f)(n). A meromorphic function f on X satisfies f (1) = f if
and only if f descends to a meromorphic function on X. Similarly, a divisor
D of X satisfies D(1) = D if and only if D descends to a divisor of X. For
each effective divisor D of X, n-fold twisting preserves the group of divisors
principal to the conductor D.

4.2.2. Conjugation of divisors

Given algebraically closed subfields L1, L2 ⊂ W , a divisor E of X with
suppE ⊂ X(L1), and an Fq-linear isomorphism θ : L1

∼−→ L2, let θ(E) be
the result of applying the unique additive extension of the map (ζ 7→ θ(ζ)) :
X(L1)

∼−→ X(L2) to E. The operation θ fixes every divisor of X. If now
further we are given an effective divisor D of X, and we suppose that E is
supported away from D and satisfies E ∼D 0, then necessarily θ(E) ∼D 0.

4.2.3. Key exact sequences

Let D be an effective divisor of X. Let JD/Fq be the generalized Jacobian
of X/Fq of conductor D, as defined by Rosenlicht. Put JD = JD(W ). Then
JD(Fq) (resp., JD) is canonically equal to the group of generalized divisor
classes of X (resp., X) of conductor D and degree 0. Crucially:

(4.1)
The operation E 7→ E(1) on divisors of X supported away
from D induces a map JD → JD equal to that induced by
the qth power Frobenius endomorphism Frobq : JD → JD.

We have an exact sequence

(4.2) 0 → JD(Fq) ⊂ JD
x7→(1−Frobq)x−−−−−−−−−→ JD → 0

compatible with conjugation of divisors at our disposal, due to Lang. The
preceding exact sequence is invariably applied below in conjunction with
the exact sequence

(4.3) 0 → JD(Fq) →
(

group of generalized divisor
classes of X of conductor D

)
E 7→deg E−−−−−−→ Z → 0

the existence of which is well-known (for example, see [15, Cor. 4, Chap.
VII, §5]).

TOME 57 (2007), FASCICULE 5



1674 Greg W. ANDERSON

4.2.4. Slightly modified versions of ρ and ρ∗

Suppose we are given a generic point ξ ∈ X. Let

ρξ : A×X → Gal(Fq(ξ)abperf/Fq(ξ)perf)

be the result of composing the reciprocity law homomorphism ρ with the
isomorphism

Gal(Fq(X)abperf/Fq(X)perf)
∼−→ Gal(Fq(ξ)abperf/Fq(ξ)perf)

induced by the evaluation isomorphism

(f 7→ f |ξ) : Fq(X) ∼−→ Fq(ξ).

Let
ρ∗ξ : A×X → Aut(Fq(ξ)abperf/Fq(ξ)perf)

be defined by the rule

ρ∗ξ(a)x = (ρξ(a)−1x)‖a‖

for all x ∈ Fq(X)abperf .

Proposition 4.2. — Fix a nonzero effective divisor D of X. Fix a
generic point ξ ∈ X. Fix a divisor I of X supported away from D of
degree 1. Fix a divisor E of X supported away from D such that

degE = 0, E − E(1) ∼D ξ − I.

Fix a ∈ A×X , N ∈ Z and µ ∈ Aut(W/Fq) such that

‖a‖ = qN , µ|Fq(ξ)abperf
= ρ∗ξ(a).

Then we have

(4.4) µ(E) ∼D E(1) + rD(a)− I +


−
∑N−1

k=1 ξ(k) if N > 1,
0 if N = 1,∑|N |

k=0 ξ
(−k) if N 6 0.

Once we have proved the proposition we are free of any further necessity to
discuss generalized Jacobians. Knowledge of the facts (4.1–4.4) will suffice.
We will be able to do all our work by manipulating divisors and functions
on X, just as in Thakur’s paper [13]. For convenient application to the
proof of Theorem 2.4 we have emphasized ρ∗ rather than ρ.

Proof. — We may assume without loss of generality that W = Fq(ξ).
There exists a unique morphism

AbelD,I : X \D → JD
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of Fq-schemes such that

AbelD,I(x̄) =
(

generalized divisor class
of x̄− I of conductor D

)
for all points x̄ ∈ X \ suppD. Put

τ =
(

generalized divisor class
of E of conductor D

)
∈ JD.

Then τ is a solution of the Lang torsor equation

(1− Frobq)(τ) = AbelD,I(ξ).

Now according to Lang we know that

(1− Frobq) : JD → JD

is finite étale surjective, and hence τ ∈ JD(K) for some finite subexten-
sion K/Fq(ξ) of Fq(ξ)ab/Fq(ξ). Now let a place v of Fq(ξ) unramified in
K/Fq(ξ) be given and let x be the closed point of X corresponding to
v under the isomorphism (f 7→ f |ξ) : Fq(X) ∼−→ Fq(ξ). Suppose that
σv ∈ Aut(W/Fq(ξ)perf) restricts to an arithmetic Frobenius element in
Gal(K/Fq(ξ)) at v. Then we have

(4.5) (1− σv)τ =
(

generalized divisor class of
x− (deg x)I of conductor D

)
.

Now let σ ∈ Aut(W/Fq(ξ)perf) be defined by the rule

(σ(x))qN

= µ(x),

in which case
σ|Fq(ξ)abperf

= ρξ(a)−1.

Then from (4.5) and the remark of §2.2.4 we deduce that

(1− ρξ(a))τ = (σ − 1)τ =
(

generalized divisor class of
rD(a)−NI of conductor D

)
,

or equivalently,

(4.6) σ(E) ∼D E + rD(a)−NI.

One verifies easily that

(4.7) E(N) ∼D E(1) + (N − 1)I +


−
∑N−1

k=1 ξ(k) if N > 1,
0 if N = 1,∑|N |

k=0 ξ
(−k) if N 6 0.

Finally, apply the N -fold twisting operation to both sides of (4.6), and then
apply (4.7) to obtain (4.4). �
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5. Invariants of rank one shtukas

We take a relatively elementary point of view on rank one shtukas similar
to that taken in Thakur’s paper [13]. By means of a variant (Lemma 5.3)
of Drinfeld’s marvelous “χ = 0 ⇒ h0 = h1 = 0” lemma we prove a result
(Theorem 5.2) giving us control of the cohomology of shtukas. We apply
the result to justify the definition of the Catalan-Drinfeld symbol. We show
how to realize all hypergeometric ratios as values of the Catalan-Drinfeld
symbol (Props. 5.4 and 5.5). We also write out a determinantal formula
(Prop. 5.6) for the value of the Catalan-Drinfeld symbol.

5.1. Shtukas

5.1.1. Definition

We call a quadruple (D, ξ, η, E) a shtuka under the following conditions:
• D is a nonzero effective divisor of X.
• ξ, η ∈ X \ suppD.
• E is a divisor of X supported away from D.
• E − E(1) ∼D −ξ(1) + η.
• degE = g − 1.

We call D, ξ, ξ(1), η and E the conductor, basepoint, pole, zero, and divisor
of the shtuka (D, ξ, η, E), respectively. The notion of the basepoint of a
shtuka has not previously been emphasized and here will be crucial.

Lemma 5.1. — (i) For all nonzero effective divisors D of X and points
ξ, η ∈ X such that ξ, η 6∈ suppD, there exists a divisor E of X supported
away from D such that (D, ξ, η, E) is a shtuka. (ii) The generalized divisor
class of E of conductor D is unique up to the addition of a generalized
divisor class of X of conductor D and degree zero.

Proof. — Exact sequences (4.2) and (4.3) prove this. �

5.1.2. Special functions attached to a shtuka

By definition there is associated to the shtuka (D, ξ, η, E) a unique mero-
morphic function fD,ξ,η,E on X such that

• fD,ξ,η,E |D ≡ 1, and
• (fD,ξ,η,E) = E(1) − E − ξ(1) + η.
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Were we to follow the terminology of [13] more closely, we would actually
call the function fD,ξ,η,E a shtuka, but we prefer not to do so. Note that if
{ξ(1), η} ∩E = ∅, and ξ(1) 6= η, then the pole and zero of the shtuka are in
fact a pole and a zero of fD,ξ,η,E , respectively. Let

Ψ(D, ξ, η, E) =
{
ψ ∈ H0(X,OX(E +D))

∣∣∣∣ ψ − ψ(1) is regular in some
neighborhood of D.

}
.

Another way to describe Ψ(D, ξ, η, E) is as the subset of H0(OX(E +D))
consisting of liftings of elements of H0(OX(D)/OX) via the exact sequence

0 → H0(OX(E)) → H0(OX(E +D)) → H0(OX(D)/OX).

From the latter point of view it is clear that we have an exact sequence

(5.1) 0 → Ψ(D, ξ, η, E) ∩H0(OX(E))

→ Ψ(D, ξ, η, E)
?D,ξ,η,E−−−−−→ H0(OX(D)/OX)

at our disposal.

5.1.3. Nondegeneracy

We say that a shtuka (D, ξ, η, E) is nondegenerate if the following con-
dition holds:

• η 6∈ {ξ(i) | i ∈ [1− deg(E +D),+∞) ∩ (−∞, g] ∩ Z}.
We remark that the set in question here is empty if and only if (g,degD) =
(0, 1) if and only if deg(E +D) = 0.

Theorem 5.2. — Let (D, ξ, η, E) be a nondegenerate shtuka. Then the
following hold:

(i) hi(OX(E)) = 0 for i = 0, 1.
(ii) Ψ(D, ξ, η, E)⊗Fq W = H0(OX(E +D)).
(iii) Ψ(D, ξ, η, E) ∩H0(OX(E +D − ξ)) = {0}.

First we need a lemma.

Lemma 5.3. — Let (D, ξ, η, E) be any shtuka and put f = fD,ξ,η,E . Fix
• a divisor D1 of X,
• a nonnegative integer m, and
• a positive integer N

such that
• m 6 deg(E +D1), and
• η 6∈ {ξ(i)|i ∈ [1− deg(E +D1), N −m] ∩ Z}.
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Let there be given

0 6= ψ ∈ H0(OX(E +D1 −
m−1∑
i=0

ξ(−i))),

and, for every integer k > 0, define ψk by the rules

ψ0 = ψ, ψk+1 = fψ
(1)
k .

Then the functions ψ0, . . . , ψN are W -linearly independent.

This is a refinement of [1, Lemma 3.3.1] and a direct descendant of Drin-
feld’s “χ = 0 ⇒ h0 = h1 = 0” lemma. For the latter see [6] or [8, p.
146].

Proof. — After replacing m by a larger integer if necessary, we may as-
sume without loss of generality that

(5.2) ψ ∈ H0(OX(E +D1 −
m−1∑
i=0

ξ(−i))) \H0(OX(E +D1 −
m∑

i=0

ξ(−i))).

Put

E1 = E −
m−1∑
i=0

ξ(−i), ξ1 = ξ(−m),

noting that

(5.3) (f) = E
(1)
1 − E1 − ξ

(1)
1 + η.

For k > −1 put

Ξk =


−ξ1 if k = −1,

0 if k = 0,∑k
i=1 ξ

(i)
1 if k > 0,

noting that

(5.4) Ξk = Ξ(1)
k−1 + ξ

(1)
1 = Ξk−1 + ξ

(k)
1 for k > 0.

We claim that

ψk ∈ H0(OX(E1 +D1 +Ξk))\H0(OX(E1 +D1 +Ξk−1)) for k = 0, . . . , N .

The case k = 0 is our hypothesis (5.2). For N > k > 0, we have

ψk = fψ
(1)
k−1 ∈ H

0(OX(E1 +D1 + Ξk − η)) \H0(OX(E1 +D1 + Ξk−1− η))

by (5.3,5.4) and induction on k, and we have

η 6= ξ(k−m) = ξ
(k)
1

by hypothesis, so the claim holds in general. The claim granted, the lemma
is proved. �
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Proof of Theorem 5.2. — Put f = fD,ξ,η,E .
(i) Supposing that statement (i) fails, we have g > 0 and we can find

some
0 6= ψ ∈ H0(OX(E)).

The lemma in the case

(D1,m,N) = (0, 0, g)

combined with our hypothesis of nondegeneracy yields W -linearly indepen-
dent functions

ψ = ψ0, . . . , ψg ∈ H0(OX(E +
g∑

i=1

ξ(i))).

But

deg(E +
g∑

i=1

ξ(i)) = 2g − 1 > 2g − 2

and hence

h0(OX(E +
g∑

i=1

ξ(i))) = g.

This contradiction proves statement (i).
(ii) By statement (i), the natural sequence

0 = H0(OX(E)) → H0(OX(E +D)) → H0(OX(D)/OX) → 0

is exact, hence the homomorphism ?D,ξ,η,E in exact sequence (5.1) is an
isomorphism, and hence statement (ii) holds.

(iii) Supposing now that statement (iii) fails, there exists

0 6= ψ ∈ Ψ(D, ξ, η, E) ∩H0(OX(E +D − ξ)).

Since the case (g,degD) = (0, 1) is already ruled out, we have

deg(E +D) > 0.

The lemma in the case

(D1,m,N) = (D, 1, 1)

combined with our hypothesis of nondegeneracy produces W -linearly inde-
pendent functions

ψ0 = ψ ∈ H0(OX(E +D − ξ)), ψ1 = fψ(1) ∈ H0(OX(E +D − η))

from which, since f |D ≡ 1, we get a nonzero function

ψ1 − ψ0 ∈ H0(OX(E)).
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But the latter space is 0-dimensional by statement (i). This contradiction
proves statement (iii). �

5.2. The Catalan-Drinfeld symbol

Let (D, ξ, η, E) be a nondegenerate shtuka. For each

α ∈ H0(OX(D)/OX)

there exists by Theorem 5.2 a unique lifting

ψα ∈ Ψ(D, ξ, η, E)

with respect to the exact sequence

(5.5) 0 = H0(OX(E) → H0(OX(E +D)) → H0(OX(D)/OX) → 0,

and moreover for α 6= 0, the order of vanishing of the meromorphic function
ψα at the point ξ is independent of α. For all nonzero α, β ∈ H0(OX(D)/OX)
we define [

D ξ η E

α β

]
= (ψα/ψβ)(ξ) ∈W×,

which depends only on the generalized divisor class of E to the conductorD.

We call the rule
[
· · · ·
· ·

]
the Catalan-Drinfeld symbol.

Proposition 5.4. — Let ξ ∈ X be a generic point. Let N > g be an
integer. Let (D, ξ, ξ(N), E) be a shtuka. Then the following hold:

(i) (D, ξ, ξ(N), E) is nondegenerate.
(ii) There exists a divisor E0 of X supported away from D such that

E ∼D E0 − (ξ(1) + · · ·+ ξ(N−1)).

(iii) We have [
D ξ ξ(N) E

α β

]
= HypD(α, β,E0)|ξ

for all nonzero α, β ∈ H0(OX(D)/OX).

Proof. — Statement (i) is immediate. Statement (ii) follows from the
definitions via exact sequence (4.2). We have only to prove statement (iii).
Without loss of generality we may assume that

E = E0 − (ξ(1) + · · ·+ ξ(N−1)).
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By hypothesis degE0 > 2g− 2, hence HypD(α, β,E0) is defined and more-
over

h0(OX(E0)) = N − 1, h1(OX(E0)) = 0.

Choose an Fq-basis e1, . . . , eN−1 ∈ H0(OX(E0)). Via the natural exact
sequence

0 → H0(OX(E0)) → H0(OX(E0 +D)) → H0(OX(D)/OX) → 0

choose a lifting α̃ ∈ H0(OX(E0+D)) of α. Since hi(OX(E)) = 0 for i = 0, 1
by Theorem 5.2, there exist unique constants C1, . . . , CN−1 ∈W such that

ψα = α̃−
N−1∑
i=1

Ciei ∈ H0(OX(E +D)).

Put CN = ψα(ξ). The coefficients C1, . . . , CN satisfy the matrix equation
e1(ξ(N−1)) . . . eN−1(ξ(N−1)) 0

...
...

...
e1(ξ(1)) . . . eN−1(ξ(1)) 0
e1(ξ(0)) . . . eN−1(ξ(0)) 1




C1

...
CN−1

CN

 =


α̃(ξ(N−1))

...
α̃(ξ(1))
α̃(ξ(0))

 .
By Cramer’s Rule we have

ψα(ξ) = CN = (−1)N−1 Moore(α̃, e1, . . . , eN−1)
Moore(e1, . . . , eN−1)q

∣∣∣∣
ξ

,

whence the claimed formula via the Moore determinant identity. �

Proposition 5.5. — Let ξ ∈ X be a generic point. Let N > −2 + g +
degD be an integer. Let (D, ξ(N), ξ, E) be a shtuka. Then the following
hold:

(i) (D, ξ(N), ξ, E) is nondegenerate.
(ii) There exists a divisor E0 of X supported away from D such that

E ∼D E0 + ξ(0) + · · ·+ ξ(N).

(iii) We have [
D ξ(N) ξ E

α β

]
= HypD(α, β,E0)|ξ

for all nonzero α, β ∈ H0(OX(D)/OX).

Proof. — As in the proof of the preceding proposition, statements (i)
and (ii) are easy to check. We have only to prove statement (iii).

We pause to introduce some notation. Given a meromorphic differential
ω on X, let RESD ω be the sum of the residues Resx̄ ω ∈W extended over
closed points x̄ of X in the support of D. If D descends to a divisor of
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X and ω descends to a meromorphic differential on X, then RESD ω as
defined here coincides with RESD ω as previously defined in §2.1.3.

We turn to the proof of statement (iii). We may assume without loss of
generality that

E = E0 + ξ(0) + · · ·+ ξ(N).

Fix a lifting α̃ of α to a meromorphic function on X. By hypothesis
degE0 < −degD, hence HypD(α, β,E0) is defined, moreover

h0(ΩX(−E0)) = N + 1, h1(ΩX(−E0 −D)) = 0,

and hence we can find an Fq-basis ω0, . . . , ωN ∈ H0(ΩX(−E0)) such that

RESD α̃ωk = δ0k for k = 0, . . . , N.

Fix a nonzero meromorphic differential ζ on X arbitrarily. By “sum-of-
residues-equals-zero” we have

N∑
i=0

(ωk/ζ)qi

|ξ Resξ(i) ψαζ =
N∑

i=0

Resξ(i) ψαωk = −RESD ψαωk = −δ0k,

and hence, equivalently,(ω0/ζ)qN |ξ . . . (ωN/ζ)qN |ξ
...

...
(ω0/ζ)|ξ . . . (ωN/ζ)|ξ


Resξ(N) ψαζ

...
Resξ(0) ψαζ

 =


−1
0
...
0

 .
By Cramer’s Rule we have

Resξ(N) ψαζ = − Moore(ω1/ζ, . . . , ωN/ζ)
Moore(ω0/ζ, . . . , ωN/ζ)

∣∣∣∣
ξ

,

whence the desired result now via the Moore determinant identity. �

5.3. A determinantal formula for the Catalan-Drinfeld symbol

Fix a nondegenerate shtuka (D, ξ, η, E) and nonzero

α, β ∈ H0(OX(D)/OX).

Suppose we can write E = E1 − E2 where

• E1 and E2 are supported away from D,
• E2 is effective and of multiplicity 6 1 everywhere on X,
• The sets suppE1, suppE2 and {ξ} are disjoint.
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Put

n = degE2, E2 =
n∑

i=1

ξi (ξi ∈ X), ξ0 = ξ.

We have at our disposal a natural exact sequence

(5.6) 0 = H0(OX(E1−E2)) → H0(OX(E1)) → H0(OX/OX(−E2)) → 0.

It follows in particular that

h0(OX(E1)) = n, h1(OX(E1)) = 0.

Choose any W -basis

f1, . . . , fn ∈ H0(OX(E1)).

We have at our disposal a natural exact sequence

0 → H0(OX(E1)) → H0(OX(E1 +D)) → H0(OX(D)/OX) → 0.

Choose any liftings
α̃, β̃ ∈ H0(OX(E1 +D))

of α and β, respectively. Put

gi = fi for i = 1, . . . , n, f0 = α̃ and g0 = β̃.

Note that for i, j = 0, . . . , n, both fi and gi have no pole at ξj .

Proposition 5.6. — Notation and hypotheses as above,

n

det
i,j=0

gi(ξj) ·
[
D ξ η E

α β

]
=

n

det
i,j=0

fi(ξj),

and moreover neither of the determinants vanish.

Proof. — By exactness of (5.6) and distinctness of the points ξ1, . . . , ξn,
we have

n

det
i,j=1

fi(ξj) =
n

det
i,j=1

gi(ξj) 6= 0.

Applying Cramer’s Rule again, as in the proof of Proposition 5.4, we find
that

ψα(ξ) =
n

det
i,j=0

fi(ξj)
/

n

det
i,j=1

fi(ξj),

where ψα ∈ H0(OX(E +D)) is the unique lifting of α via exact sequence
(5.5). Moreover, since ξ 6∈ supp(E1 − E2 + D), we have ψα(ξ) 6= 0 by
Theorem 5.2. Our conclusions for α hold for β also. The result follows. �
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6. Proof of the main result

6.1. Reduction to a calculation of Catalan-Drinfeld symbols

6.1.1. Data for the theorem

Let D, α, β and A0 be as specified in Theorem 2.4. We also fix θ ∈
Aut(Fq(X)/Fq) arbitrarily, save for imposing without loss of generality the
following condition: if θ is critical of exponent a ∈ A×X , then

g − 2 + logq ‖a‖ = deg(A0 + rD(a)) 6∈ [−degD,∞) ∩ (−∞, 2g − 2].

The latter is precisely the condition under which HypD(α, β,A0 + rD(a))
is defined should θ happen to be critical of exponent a.

6.1.2. Embeddings

We fix independent generic points ξ, η ∈ X. (And so at this point we
are imposing the further condition on W that the latter be of absolute
transcendence degree at least 2.) Fix an Fq-linear isomorphism

λ : Fq(ξ)
∼−→ Fq(X)

such that f = λ(f |ξ) for all f ∈ Fq(X). Let ι : Fq(ξ)
∼−→ Fq(η) be an

Fq-linear isomorphism such that ι(ξ) = η. Let

ε : (compositum in W of Fq(ξ) and Fq(η))
∼−→ (fraction field of D)

be the unique isomorphism such that ε(xι(y)) = λ(x) ⊗ λ(y) for all x, y ∈
Fq(ξ). Let µ : Fq(ξ)

∼−→ Fq(ξ) be the unique Fq-linear automorphism such
that θλ = λµ. Then we have

(6.1) ((1⊗ θ)(ε(x ι(y))))|∆ = λ(xµ(y))

for all x, y ∈ Fq(ξ).

6.1.3. The reduction

We fix a divisor I supported away from D such that deg I = 1. We select
a divisor E of X supported away from D such that

suppE ⊂ X(Fq(ξ)), degE = 0, E − E(1) ∼D ξ − I,

as is evidently possible by applying (4.1) and (4.2) with W = Fq(ξ). One
verifies that

(D, ξ, η,A0 + I − E(1) + ι(E)), (D, ξ, µ(ξ), A0 + I − E(1) + µ(E))
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are nondegenerate shtukas, immediately in the former case since ξ and η

are independent, and via Lemma 2.3 in the latter case. Further, by Propo-
sitions 4.2, 5.4 and 5.5 we have[

D ξ µ(ξ) A0 + I − E(1) + µ(E)
α β

]
= (HypD(α, β,A0 + rD(a))|ξ)min(‖a‖,1)if θ is critical of exponent a.

It will therefore be enough to show that

(6.2) ϕ = ε

[
D ξ η A0 + I − E(1) + ι(E)

α β

]
is defined,

(6.3) ϕ0 = λ

[
D ξ µ(ξ) A0 + I − E(1) + µ(E)

α β

]
is defined, and

(6.4) ((1⊗ θ)ϕ)|∆ = ϕ0

in order to finish the proof of Theorem 2.4.

Lemma 6.1. — There exist

• divisors E1 and E2 of X, and
• a divisor A1 of X

such that:

(i) A1, E1 and E2 are effective and supported away from D;
(ii) suppE1 ∪ suppE2 ⊂ X(Fq(ξ));
(iii) E2 is of multiplicity 6 1 everywhere on X;
(iv) A0 + I − E(1) + µ(E) ∼D A1 − E1 − µ(E2);
(v) A0 + I − E(1) + ι(E) ∼D A1 − E1 − ι(E2);
(vi) the sets supp(A1 − E1), suppµ(E2) and {ξ} are disjoint; and
(vii) the sets supp(A1 − E1), supp ι(E2) and {ξ} are disjoint.

Proof. — By Lemma 4.1 (applied with W = Fq(ξ)) we can find

• a divisor E3 of X, and
• a divisor A3 of X

such that:

• A3 and E3 are supported away from D;
• E3 is effective;
• E3 ∼D A3 − µ(E);
• suppE3 ⊂ X(Fq(ξ)) \ {ξ}; and
• E3 has multiplicity 6 1 everywhere on X.
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By Lemma 4.1 (again applied with W = Fq(ξ)) we can find

• a divisor E1 of X, and
• a divisor A1 of X

such that:

• A1 and E1 are effective and supported away from D;
• E1 ∼D A1 − (A0 + I − E(1) +A3);
• suppA1 ∩ suppE3 = ∅; and
• suppE1 ⊂ X(Fq(ξ)) \ ({ξ} ∪ suppE3).

Then A1, E1 and E2 = µ−1(E3) have all the desired properties. �

6.2. Completion of the proof of Theorem 2.4

Let A1, E1 and E2 be as provided by Lemma 6.1. We now apply Propo-
sition 5.6. Put

K = Fq(ξ), n = degE2, E2 =
n∑

i=1

ξi, ξ0 = ξ.

Choose a K-basis

f1, . . . , fn ∈ H0(OXK
(A1 − E1)) ⊂ K ⊗Fq H

0(OX(A1))

and liftings

α̃, β̃ ∈ H0(OXK
(A1 − E1 +D)) ⊂ K ⊗Fq H

0(OX(A1 +D)).

Put

gi = fi for i = 1, . . . , n, f0 = α̃ and g0 = β̃.

Then we have formulas

n

det
i,j=0

gi(ι(ξj)) ·
[
D ξ η A0 + I − E(1) + ι(E)

α β

]
=

n

det
i,j=0

fi(ι(ξj)),

n

det
i,j=0

gi(µ(ξj)) ·
[
D ξ µ(ξ) A0 + I − E(1) + µ(E)

α β

]
=

n

det
i,j=0

fi(µ(ξj))

which verify (6.2,6.3) and, in view of (6.1), also prove (6.4). The proof of
Theorem 2.4 is complete. �
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