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ANNIHILATORS OF MINUS CLASS GROUPS OF
IMAGINARY ABELIAN FIELDS

by Cornelius GREITHER & Radan KUČERA

Abstract. — For certain imaginary abelian fields we find annihilators of the
minus part of the class group outside the Stickelberger ideal. Depending on the
exact situation, we use different techniques to do this. Our theoretical results are
complemented by numerical calculations concerning borderline cases.

Résumé. — Pour certains corps imaginaires abéliens, on trouve des annulateurs
pour la partie moins du groupe des classes en dehors de l’idéal de Stickelberger.
En fonction du cadre précis, on emploie des méthodes différentes. Les résultats
théoriques sont accompagnés de calculs numériques, ayant trait à quelques cas
extrêmes.

Introduction

This article deals with the question whether Stickelberger’s theorem tells
us the whole truth about the annihilators of the minus class group Cl−L of
an absolutely abelian field L, and our main results say that in several more
or less frequently occurring situations there are extra annihilators, that
is, annihilators outside the Stickelberger ideal in the sense of Sinnott. To
simplify the setup, we fix an odd prime ` and only look at `-primary parts
of class groups (a quite harmless restriction), and we also assume that L
has a particular shape: It is the compositum of an imaginary quadratic field
F and a (real) elementary `-abelian extension K/Q. This restriction is not
so harmless, but it should be pointed out that the case “[L : Q] coprime to
`” is probably less interesting: This is the so-called semisimple case, and
we do not expect in that case to find extra annihilators in any systematic
way.

Keywords: Imaginary abelian number fields, minus part of the ideal class group, anni-
hilators, Stickelberger ideal, Fitting ideals.
Math. classification: 11R20, 11R29.



1624 Cornelius GREITHER & Radan KUČERA

Before we start, we would like to point out that there are large classes
of cases even in our restricted setting where one should not expect extra
annihilators in general. We are interested in results which hold in large
families, and not in a search à la Cohen-Lenstra, where one conjectures
that any Galois module one could possibly expect does occur for a positive
density of cases. Thus for example we may not expect general results on
extra annihilators if L = F (the very simplest case), since A−

F := ClF {`}− is
often cyclic as a Galois module (the Cohen-Lenstra heuristics even predict
the precise frequency of this event), and one knows then that the annihilator
is essentially the Stickelberger ideal. (Note that ClF = Cl−F .) From this one
obtains many similar situations (cf. [4], Theorem 2.1): If no rational prime
that ramifies in K/Q is split in F and ζ` 6∈ F , then A−

L := ClL{`}− is
cohomologically trivial over Gal(L/F ). This implies Galois codescent, that
is: The Gal(L/F )-coinvariants of A−

L can be identified with A−
F . Therefore,

by Nakayama’s Lemma, A−
L will be a cyclic Galois module whenever A−

F is
cyclic. In this frequently occurring case the annihilator of A−

L agrees with
the (initial) Fitting ideal of A−

L , and by a recent result of Kurihara this
agrees with the Stickelberger ideal in the minus part.

In all cases considered in this paper there will be at least one prime that
ramifies in K/Q and splits in F . Recall L = FK.

We consider three different situations:

(a) In §2-3, K/Q is its own genus field (§1 contains algebraic prepara-
tions).

(b) In §4, we assume K/Q to ramify in many primes and that K is not
too far below its genus field.

(c) In §6 we consider the case that K/Q is cyclic (§5 is again devoted
to preparations).

The assumptions we have to impose and the degree of explicitness we
achieve vary strongly, depending on the situations just sketched. In more
detail:

(a) We work with fairly indirect algebraic methods in §2. We do obtain,
under a suitable hypothesis, explicit annihilators outside the Stickelberger
ideal, but this arises from algebraic considerations and not from the dis-
covery of new principal ideals. Our hypothesis can be loosely expressed by
saying that A−

L needs more generators as a Galois module than usual; we
provide a simple arithmetic criterion just when this happens, see Theo-
rem 2.2. If s is the number of ramified primes in K/Q which split in F ,
and we put Γ = Gal(L/F ) = Gal(K/Q), and m(M) = mZ[Γ](M) denotes
the minimal number of generators of a Z[Γ]-module M , then m(A−

L ) > s is

ANNALES DE L’INSTITUT FOURIER



ANNIHILATORS OF MINUS CLASS GROUPS 1625

always true. If m(A−
L ) > s+ 2, then we can construct new annihilators. In

the borderline cases m(A−
L ) = s or m(A−

L ) = s+ 1 we did computer calcu-
lations which show that no general result is possible: In some examples one
finds some extra annihilators, in some others (and they seem to be more
frequent) there are none (see §3). We also ran one case with m(A−

L ) = s+2
on the machine, as a numerical test and as an illustration.

(b) In §4 we prove some results on non-genus fields, which are derived
algebraically from the genus field case, making suitable assumptions. Here
we assume that all primes ramifying in K are split in F , and we can only
prove the existence of extra annihilators, because the methods of §4 are
too indirect to write them down explicitly.

(c) In contrast with (a) and (b), we show in §6 that for cyclic L one may
extract certain roots from Gauss sums, which gives new annihilators in a
rather satisfactory way whenever s > 2. This is based on the distribution
relation for Gauss sums, which is recalled in §5, and shown by methods used
before by Darmon, Hayward, and the present authors in slightly different
contexts.

A concluding comment: For finite Z-modules M , it is quite easy to see
that the annihilator of M is larger than its Z-Fitting ideal if (and only if)
M is not cyclic. One might expect a similar behaviour for Galois modules,
and therefore our results which give extra annihilators in cases where many
generators are needed are perhaps not totally unexpected. On the other
hand, our calculations in §3.1-3.2 together with Kurihara’s theorem show
that A−

L can be non-cyclic and still its annihilator can agree with the Fitting
ideal, and this seems to be an interesting observation.

1. Preliminary lemmas

In this section, all rings are commutative, all modules finitely gener-
ated, and the minimal number of generators of the R-module M is denoted
mR(M) or m(M) if R is clear from the context. The i-th Fitting ideal of
M over R is denoted Fitti

R(M) (the i is never an exponent here). If i = 0,
it may be omitted from the notation, and Fitt0R(M) is known as the initial
Fitting ideal (sometimes, abusively, called first Fitting ideal).

Lemma 1.1. — Let R be a discrete valuation ring (DVR) whose maxi-
mal ideal is generated by π, and M a torsion R-module with mR(M) = n.
Let f be a generator of Fitt0R(M). Then fπ1−n is in R and

f

πn−1
Fitt1R(M) ⊂ Fitt0R(M).

TOME 57 (2007), FASCICULE 5



1626 Cornelius GREITHER & Radan KUČERA

Proof. — We may calculate the Fitting ideals from any presentation
Rn → Rn →M → 0; in particular, since R is a DVR, we may assume that
the map Rn → Rn is afforded by a diagonal matrix D = diag(πk1 , . . . , πkn).
All ki must be positive since M cannot be generated by fewer than n el-
ements. Then Fitt0R(M) is generated by πk where k = k1 + · · · + kn, and
Fitt1R(M) is generated by πk−k′ where k′ is the maximum of the ki. So f
is exactly divisible by πk, and since k > n we of course have fπ1−n ∈ R.
Since k − k′ is the sum of all ki with just one of them omitted, we also
have k − k′ > n−1, so π1−n Fitt1R(M) ⊂ R. The inclusion stated above is
equivalent to this. �

Lemma 1.2. — If R is any commutative ring, M has a projective reso-
lution of length one and FittR(M) is generated by a nonzerodivisor f , then
for every b ∈ R we have the implication:

b Fitt1R(M) ⊂ Fitt0R(M) ⇒ bM = 0.

Proof. — It is routine to reduce the lemma to the case where R is local.
We write M = Rn/U , where U is R-free of rank n because f is a nonzerodi-
visor. Let z1, . . . , zn ∈ Rn be fixed generators of U and let Z be the square
matrix whose rows are the zi. Then f = det(Z) generates Fitt0R(M). Let
ei ∈ Rn be the i-th standard basis vector. Write bei as a linear combina-
tion of the zj with coefficients in R[1/f ]. The coefficients are, by Cramer’s
rule, all of the form: b times a maximal minor of Z divided by f . By our
hypothesis, b times every maximal minor is in Fitt0R(M), that is, divisible
by f . Hence the coefficients are in R, bei is in the R-span of the zj , and
bRn ⊂ U . This says that bM = 0. �

From now on we assume that R is local and its full ring of quotients is a
finite product of fields (main example: Group rings of abelian `-groups over
a DVR of residue characteristic `). This will not be repeated. We also make
the assumption that the integral closure R̃ of R in its ring of quotients is
a finite product of DVRs:

R̃ =
t⊕

i=1

Ri.

This holds true for group rings over DVRs.
The conductor c = c(R̃/R) is defined as the set of all x ∈ R̃ with xR̃ ⊂ R.

It is an ideal in R̃, contained in R, and can be described as the largest
R̃-ideal contained in R, or alternatively, as the R-annihilator of R̃/R. In
general it can be hard to calculate the conductor exactly.

ANNALES DE L’INSTITUT FOURIER



ANNIHILATORS OF MINUS CLASS GROUPS 1627

Lemma 1.3. — Let R and R̃ be as above and c ∈ c. Let M be an R-
module satisfying the conditions imposed on M in the last lemma, and let
n = mR(M). Then for every a ∈ R̃ such that the valuations vRi(a) = 1 for
1 6 i 6 t we have:

fa1−n ∈ R̃, and R 3 cfa1−n annihilates M.

Proof. — As in the last proof we write M = Rn/U with U again free of
rank n. Let f be a generator for Fitt0R(M). Since M needs n generators,
all entries of vectors in U must lie in the Jacobson radical of R. We note
that rad(R) ⊂ rad(R̃) since R̃ is integral over R. We consider the module
M̃ = R̃⊗RM . The well-known base change properties for the Fitting ideal
give us that Fitti

R̃
(M̃) = R̃ · Fitti

R(M) for i = 0, 1. (This is all we need to

know about M̃ ; we do not claim that M embeds into M̃ , which is actually
false in general). The module M̃ again requires n generators over R̃, since
R̃ U is in the radical of R̃n. Lemma 1.1 now yields that fa1−n ∈ R̃ and

fa1−n Fitt1
R̃
(M̃) ⊂ Fitt0

R̃
(M̃).

Therefore fa1−nR̃ Fitt1R(M) ⊂ R̃ Fitt0R(M), and this gives

fa1−n Fitt1R(M) ⊂ R̃ Fitt0R(M).

Upon multiplying with c, we then find

cfa1−n Fitt1R(M) ⊂ cR̃ Fitt0R(M) ⊂ Fitt0R(M).

We can now finish the argument by using Lemma 1.2 on b = cfa1−n. �

Now we apply this in a rather concrete situation: First we specify R, and
later we establish the connection with abelian genus fields.

We fix a positive integer s and an odd prime `. The group Γ will always
be abelian of order `s, generated by σ1, . . . , σs where each σi has order `.
The notation Nσ will mean the norm element 1 + σ + · · · + σ`−1. For
ease of writing let Z = Z`[ζ`]. Let B denote the set of all multiindices
i = (1 i2 . . . is) with ik ∈ {1, . . . , `−1} for 2 6 k 6 s. We intend to
examine the ring R = Z`[Γ]/(Nσ1 , . . . ,Nσs

) more closely. We first remark
that the Z`-algebra R can be decomposed as the following tensor product:

R =
(
Z`[σ1]/(Nσ1)

)
⊗Z`

· · · ⊗Z`

(
Z`[σs]/(Nσs)

)
.

Note that each tensor factor is a copy of the ring Z, and hence a DVR, but
R itself is far from being a DVR if s > 1. Indeed, we have R̃ = ZB (cartesian
product of copies of Z, indexed with the set B), and the inclusion (!) α
from R to R̃ is given by:

α(x) = (αi(x))i∈B ,

TOME 57 (2007), FASCICULE 5



1628 Cornelius GREITHER & Radan KUČERA

with
αi(σk) = ζik

` .

Thus, the map α is given by evaluating an element at all characters χ of Γ
that map σ1 to ζ` and that do not map any σk to 1.

We will identify Z`[σ1]/(Nσ1) with Z by identifying (the image of) σ1

with ζ`. Now we can describe the indecomposable idempotents of R̃. For
i ∈ B let

ei = |∆|−1
∑
σ∈∆

αi(σ)σ−1 ∈ QR,

where ∆ is the subgroup of Γ generated by σ2, . . . , σs. Then ei maps to 1
under αi and to 0 under each αj with i 6= j, so we may identify it with the
i’th standard indecomposable idempotent of the product ZB . In particular,
the R-module R̃ is generated by all these idempotents.

Probably it is difficult to calculate the conductor c = c(R̃/R) exactly,
but we have a lower bound which will suffice for our applications. Let λi

denote the image of σi−1 in R. Since we factored out by Nσi
, we know that

λ`−1
i is associated to ` in R, and ` is a nonzerodivisor. Hence λi is also a

nonzerodivisor and `/λi is a well-defined element of R for all i = 1, . . . , s.

Proposition 1.4. — The conductor c contains the ideal
〈
`/λ1, . . . ,

`/λs

〉s−1.

Proof. — We consider the idempotent e = e(1 1 ... 1) and factor it as e =
e2 · · · es with ei = `−1

∑`−1
t=0 σ

t
1σ

−t
i . (Recall that we identify σ1 ∈ R with

ζ`.) In R we have, using Nσi
= 0:

`ei = 1 + σ1σ
−1
i + . . .+ σ`−2

1 σ2−`
i + σ`−1

1 σ1−`
i

= (1− σ`−1
1 ) + (σ1 − σ`−1

1 )σ−1
i + . . .+ (σ`−2

1 − σ`−1
1 )σ2−`

i ,

which is divisible by λ1. Thus (`/λ1)ei ∈ R. Hence

(`/λ1)s−1e =
s∏

k=2

(
`

λ1
ek)

is likewise in R. On the other hand, σie = σje for all 1 6 i, j 6 s, and this
shows that 〈

`/λ1, . . . , `/λs

〉s−1
e ∈ R.

If we replace each σk by its ik-th power (1 6 ik 6 `−1), then we get the
same statement with e replaced by ei, since the ideal

〈
`/λ1, . . . , `/λs

〉
stays

the same (the element σik

k −1 is associated to λk = σk−1 in R). Since R̃ is
generated by the ei, we are done now. �

ANNALES DE L’INSTITUT FOURIER
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In the next result we prove an annihilation statement whose significance
will only become clear in the next section, upon application to a certain
minus class group. The statement below is sharper than just the state-
ment FittR(M) ( AnnR(M), and this extra sharpness will be needed in
Section 2. Let λ = λ1 · · ·λs ∈ R.

Corollary 1.5. — Assume M is an R-module with t = mR(M) > s+2
and which satisfies the hypotheses of Lemma 1.2, so in particular, FittR(M)
is principal and generated by a nonzerodivisor f ∈ R. Then for any positive
integers ki satisfying

∑s
i=1 ki = t− 2, the element

δ =
f`s−1∏s

i=1 λ
ki+1
i

is in R, annihilates M , and λδ is not divisible by f in R.

Proof. — Let β be any monomial in the λk of weight t−1. Let α ∈ R be
such that in each Ri, α has valuation 1. (For example any λk will do as α.)
The quotient γ = β/αt−1 is a unit in R̃. Then for any c ∈ c, we have

δ =
cf

β
=

cf

αt−1
γ−1 = cγ−1 f

αt−1
,

and by Lemma 1.3 δ ∈ R is an annihilator for M since cγ−1 is again in c.
We now specify c and β: Let

c =
`s−1

λ1 · · ·λs−1
, β = λk1

1 · · ·λks−1
s−1 λ

ks+1
s ,

where ki are positive integers satisfying
∑s

i=1 ki = t− 2. Thus the element
δ given by

δ =
cf

β
=

f`s−1∏s
i=1 λ

ki+1
i

annihilates M . We claim that λδ is not divisible by f . Indeed λδ = ηf with

η =
`s−1∏s
i=1 λ

ki
i

∈ QR,

and we must show that η is not in R. Since the exponents of λi in the de-
nominator are positive, it suffices to show that λs does not divide the prod-
uct (`/λ1) · · · (`/λs−1) in R. This is most easily done by passing to R/`R,
which is isomorphic to

⊗s
i=1 F`[σi]/(Nσi) ∼= F`[d1, . . . , ds]/(d`−1

1 , . . . , d`−1
s )

with λi mapping to di. Each element `/λi is associated to λ`−2
i in R, hence

(`/λ1) · · · (`/λs−1) maps to a unit times d`−2
1 · · · d`−2

s−1, and this is not divis-
ible by ds in R/`R. �

TOME 57 (2007), FASCICULE 5



1630 Cornelius GREITHER & Radan KUČERA

We finish this section by the following classical lemma on class groups.
Recall that A−

L = ClL{`}−.

Lemma 1.6. — Let N0 ⊂ N be imaginary abelian fields. Then we have:
(a) The natural map (induced by the norm) from A−

N to A−
N0

is surjec-
tive.

(b) If ζ` /∈ N then the natural map (induced by extension of ideals)
ι : A−

N0
→ A−

N is injective.
(c) Let ζ` /∈ N , α ∈ Z`[Gal(N0/Q)], and β = corN/N0 α ∈ Z`[Gal(N/Q)].

Then β annihilates A−
N if and only if α annihilates A−

N0
.

Proof.
(a) By class field theory, the cokernel of the norm map ClN → ClN0

can be identified with Gal(HN0 ∩ N/N0), where HN0 is the Hilbert class
field of N0. Complex conjugation acts naturally on this Galois group, and
the two involved class groups. Moreover the action on Gal(HN0 ∩ N/N0)
is trivial, since N is absolutely abelian. Thus, on taking `-parts and then
minus parts, one sees that the cokernel of A−

N → A−
N0

vanishes.
(b) Let ∆ = Gal(N/N0). The kernel of ι embeds into H1(∆,O∗

N ). (Proof:
ker(ι) can be identified with a subgroup of P∆

N /PN0 , where PN denotes the
group of principal fractional ideals of N . Since PN = N∗/O∗

N , one easily
sees that P∆

N /PN0 embeds into (actually is equal to) H1(∆,O∗
N ).) On the

`-part of that cohomology group, complex conjugation acts trivially since
the `-part of the group µN of roots of unity in N is trivial. Since complex
conjugation acts as inversion on the kernel in question, and the kernel is
an `-group, the kernel must be zero.

(c) Suppose β A−
N = 0. Every y ∈ A−

N0
can be written in the form

y = NN/N0 x, x ∈ A−
N , by (a). We have 0 = β x = (cor α)x = ι(α y), where

ι is the map from (b). Since ι is injective, we get α y = 0. Suppose on the
other hand αA−

N0
= 0. Take x ∈ A−

N . Then β x = ι(α NN/N0 x) = 0. �

2. The case of K being a genus field

We are interested in imaginary abelian fields of the form L = FK with
F quadratic, and K a genus field. Before we come to that, we need a result
on descent of so-called minus extensions. Let L always denote an imaginary
abelian field over Q, and consider abelian extensions H/L which have the
extra property (tacitly assumed throughout this section) of being normal
over Q. In particular complex conjugation (denoted τ) acts canonically
on Gal(H/L). We will also always assume that the degree of H over L

ANNALES DE L’INSTITUT FOURIER
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is odd. To simplify things we call H/L a “plus extension” (resp. “minus
extension”), if τ acts on Gal(H/L) as identity (resp. as −1). Since H/L
has odd degree, one can write H canonically as the disjoint compositum
over L of a plus extension and a minus extension.

Lemma 2.1. — Let L0 ⊂ L be imaginary absolutely abelian fields and
assume that [L : L0] is odd. Let H/L be an abelian minus extension of
odd degree, which is normal over Q, and assume that the resulting action
of Gal(L/L0) on Gal(H/L) is trivial. Then there exists a unique minus
extension H ′/L0 with H = LH ′.

Proof. — Let us start by pointing out that L ∩H ′ must equal L0, since
L/L0 is a plus extension. This also proves uniqueness: H ′/L0 is the minus
part of the abelian extension H/L0. Note that the fact “H is abelian over
L0” is a byproduct of the whole proof, and not evident from the outset.

We proceed by induction over [L : L0], beginning with the case that L/L0

is cyclic. There we have a short exact sequence of groups

1 → Gal(H/L) → Gal(H/L0) → Gal(L/L0) → 1,

and by assumption the cyclic group Gal(L/L0) acts trivially on Gal(H/L).
As is well-known, this implies that the group in the middle is also abelian.
Since τ acts on Gal(H/L0), we may write H uniquely as the composite
H = H0H

′, where H0/L0 is a plus extension, H ′/L0 is a minus extension,
and H0 ∩H ′ = L0. The extension H0 must contain L since L is contained
in H and L/L0 is a plus extension. On the other hand, H0 cannot be larger
than L because this would produce a nontrivial plus part of the extension
H/L. Thus H0 = L and we have decomposed H = LH ′ as we wanted. From
the uniqueness of H ′ we also get that H ′ must be again normal over Q.

Induction step: Here we have three fields L0 ⊂ L1 ⊂ L and assume
both inclusions are proper. The action of Gal(L/L1) on Gal(H/L) is trivial
by hypothesis. Hence by induction, we obtain a decomposition H = LH ′

1

with H ′
1/L1 an abelian minus extension which is normal over Q. From the

triviality of the Gal(L/L0)-action on Gal(H/L) we deduce the triviality
of the Gal(L1/L0)-action on Gal(H ′

1/L1), because the action respects the
decomposition H = LH ′

1, as at the end of the preceding paragraph. Hence
we can repeat the argument, and finish the proof by a second application
of the induction hypothesis. �

We now come to our arithmetic setup. We fix an odd prime number ` and
a positive integer s. We consider different primes p1, . . . , ps all congruent
to 1 modulo ` and the cyclic fields Ki of degree ` and conductor pi over Q.
Let K = K1 · · ·Ks be the compositum. Furthermore, we fix an imaginary

TOME 57 (2007), FASCICULE 5



1632 Cornelius GREITHER & Radan KUČERA

quadratic field F , with the assumption that ζ` 6∈ F and that each pi splits
in F . Let L = FK.

The Galois group Γ = Gal(L/F ) is elementary abelian of order `s, and we
fix generators σ1, . . . , σs such that σi generates Gal(Ki/Q) and is identity
on the other Kj . We are interested in the Z`[Γ]-annihilator of the module

A−
L = ClL{`}−.

The first and rather important step is to understand the Γ-coinvariants of
A−

L ; a main point is that (A−
L )Γ, which maps canonically to A−

F , is larger
than A−

F in a systematic way. To make this precise, we require some more
notation.

Let Ñ/F be the maximal abelian `-extension of F which is unramified
outside p1, . . . , ps and whose inertia groups at each prime dividing some pi

are of exponent at most `. Let N/F denote the minus part of the extension
Ñ/F (see above); clearly Ñ is normal over Q. Using the facts that O∗

F only
consists of roots of unity, that ζ` 6∈ F , and that O∗

F,p/`
∼= Z/`Z for every

prime p of F dividing some pi, we get the following exact sequence from
class field theory:

0 → (Z/`Z)s → Gal(N/F ) → A−
F → 0. (∗)

The exponent s (instead of 2s) in the left hand term comes from taking
minus parts. This sequence can be split or nonsplit. (Numerical examples:
If we take s = 1, ` = 3, F = Q(

√
−23), we have A−

F of order 3 and the
sequence is split for p1 = 151 and nonsplit for p1 = 73, 127, 139.) But in
any case, Gal(N/F ) requires at least s generators as a Z-module.

Theorem 2.2.
(a) (A−

L )Γ is canonically isomorphic to Gal(N/F ).
(b) The Z`[Γ]-module A−

L requires at least s generators.

Proof.
(a) Let H/L be the largest abelian minus extension which is unramified,

of `-power degree, and such that Γ acts trivially on Gal(H/L). By class field
theory, H exists and Gal(H/L) is isomorphic to (A−

L )Γ. By Lemma 2.1, we
can write H = LH ′ with a uniquely determined abelian minus extension
H ′/F . Since H ′ ⊂ H and H/L is unramified, H ′/F must be unramified
outside p1, . . . , ps, and at any prime dividing some pi, the ramification
group must be of exponent 1 or ` since this is so in L/F . (Indeed, the
ramification degree can only be 1 or ` since all ramification is tame.) Hence
H ′ is contained in N . To finish the proof, it suffices to show that H ′ is
equal to N . Local class field theory gives that tame ramification groups in
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an abelian extension of number fields are always cyclic. In our situation each
p | pi does ramify (tamely) in L/F with exponent `, hence the extension
LN/L is unramified everywhere, therefore LN ⊂ H. Since N/F is a minus
extension, it must be contained in H ′ which is the minus part of H/F .

(b) This is a direct consequence of (a), the remark preceding the theorem,
and Nakayama’s lemma. �

The next step is to bring Stickelberger ideals (in the sense of Sinnott) into
play. We know that they provide annihilators for class groups, and we are in-
terested in finding cases where there are extra annihilators. To the extension
L/Q one attaches the Stickelberger ideal SL ⊂ Z`[Gal(L/Q)] as follows: For
every subfield L′ ⊂ L which is the intersection of L and a cyclotomic field,
one takes the standard Stickelberger element ΘL′ ∈ Z`[Gal(L′/Q)] (cf. [11],
beginning of §6.2), and lets SL be the ideal generated by all corL/L′ ΘL′ .
(Note that we use the condition ζ` 6∈ L to be sure that there are no denom-
inators.) We identify the minus part of Z`[Gal(L/Q)] with the group ring
Z`[Γ]. The image S̃L of the minus part of SL under this identification is
then generated by all corL/L′ Θ̃L′ , where L′ only runs over the imaginary
intersections with cyclotomic fields, and (1− τ) · Θ̃L′ = (1− τ) ·ΘL′ . It fol-
lows from Sinnott’s generalization of Stickelberger’s classical theorem that
S̃L annihilates A−

L . In fact we have a much stronger result due to Kurihara
([8], Theorem 0.6; note that this theorem also assumes ζ` /∈ L):

Theorem 2.3. — The Z`[Γ]-Fitting ideal of A−
L is exactly S̃L.

Proof. — Kurihara proved in loc. cit. that FittZ`[Γ](A−
L ) = SKu(L). Here

SKu(L) is obtained from Kurihara’s Stickelberger ideal defined on page 48
(and written with capital Theta there) by tensoring with Z` and taking the
minus part. We must show that SKu(L) = S̃L in our case.

Let L̄ denote the genus field of L. As a genus field it satisfies condition (A)
on page 47 of loc. cit., and therefore by Remark 2.4 of loc. cit., SKu(L̄) = S̃L̄.
By definition

SKu(L) = resL̄/L SKu(L̄) = resL̄/L S̃L̄ ⊂ S̃L.

For any α ∈ S̃L we have corL̄/L α ∈ S̃L̄ = SKu(L̄) and so

[L̄ : L]α = resL̄/L corL̄/L α ∈ resL̄/L SKu(L̄) = SKu(L).

Therefore [S̃L̄ : SKu(L)] can be nontrivial only if ` | [L̄ : L]. This is not the
case since L̄ is the compositum of K and the genus field of F , and so the
degree [L̄ : L] is a power of 2. �
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The trouble with Stickelberger ideals is that they need so many gener-
ators in general. This leads us to the following: We consider the ring R

defined just after the proof of Lemma 1.3 and consider it as a factor ring
of Z`[Γ], factoring out by the ideal I generated by all norm elements Nσi ,
i = 1, . . . , s. Let overbar consistently denote base change from Z`[Γ] to R, so
in particular A−

L = R⊗Z`[Γ]A
−
L . From Kurihara’s theorem and base change

for Fitting ideals it follows that FittR(A−
L ) is generated by the image of S̃L

in R. Taking this image drastically simplifies things: All generators of S̃L

go to zero except the generator ϑ := Θ̃L associated to the top field. Let
f = ϑ̄ be the image of ϑ in R. So FittR(A−

L ) = Rf .
We can now combine this with a result of Cornacchia and the first author.

Proposition 4 in [1] shows the equivalence of three properties; the basis ring
used there is slightly more special, but the more general argument is exactly
the same. Finiteness of A−

L forces f to be a nonzerodivisor in R, so the R-
Fitting ideal of A−

L is principal and generated by a nonzerodivisor. This is
exactly property 3 in the cited proposition. Hence property 2 in loc. cit. is
also true, that is, A−

L has a projective resolution of length one over R. This
is just what we require for applying the results of §1. We can now show:

Theorem 2.4. — With the above notations, as soon as A−
L requires

at least s+ 2 generators over Z`[Γ], the Z`[Γ]-annihilator of A−
L is strictly

larger than the Stickelberger ideal S̃L (and explicit annihilators outside the
Stickelberger ideal will be given at the end of the proof).

Proof. — In the sequel we let λ′ = (σ1−1) · · · (σs−1) and we use the
following abuse of notation: λ′δ denotes λ′δ′ where δ′ is any lift of δ ∈ R

to Q`[Γ]. This makes sense since any two lifts δ′ and δ′′ differ by some
element in Q`I, where I ⊂ Z`[Γ] is generated by the norm elements Nσi

,
and λ′I = 0.

Let t be the number of generators of A−
L over Z`[Γ]. Then by Nakayama’s

lemma the R-module M := A−
L needs t generators as well. For any annihi-

lator δ ∈ R of the R-module M , we claim that λ′δ (see above) annihilates
A−

L . Indeed, A−
L = A−

L/IA
−
L and so for any lift δ′ ∈ Z`[Γ] of δ we have

δ′A−
L ⊂ IA−

L . From this it is immediate that λ′δA−
L = λ′δ′A−

L = 0.
Recall that f = ϑ̄. By Corollary 1.5, for each choice of positive integers

ki satisfying
∑s

i=1 ki = t− 2, the corresponding elements

δ =
f`s−1∏s

i=1 λ
ki+1
i
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are in AnnR(M), where λi∈R is the image of σi−1. Hence λ′δ∈AnnZ`[Γ]A
−
L .

Corollary 1.5 says that λδ (the image of λ′δ in R) is not in fR (the image
of S̃L in R), therefore λ′δ is never in S̃L.

It remains to write out explicitly the elements λ′δ. They are in Z`[Γ]
since δ can be lifted to Z`[Γ]. We first transform δ: For each i = 1, . . . , s,
let µi be determined by λiµi = ` in R. Then µi is associated to λ`−2

i , so we
may choose its lift as follows: µ′i = u′i(σi−1)`−2 ∈ Z`[Γ], where u′i is a lift
of a suitable unit ui of R. Note that u′i is automatically a unit since Z`[Γ]
and R are local. Then

δ = f`s−1
s∏

i=1

(µi`
−1)ki+1 = f`1−t

s∏
i=1

µki+1
i .

Since (σi−1)µ′i = `−Nσi and ki > 0, we have

λ′δ = ϑ`1−t
s∏

i=1

(`−Nσi)(u
′
i(σi−1)`−2)ki = ϑ`s+1−t

s∏
i=1

(u′i(σi−1)`−2)ki .

Therefore λ′δ is associated to

ϑ`s+1−t
s∏

i=1

(σi−1)(`−2)ki ,

which is an explicit annihilator of A−
L outside the Stickelberger ideal. �

The preceding theorem should be considered in conjunction with the
following proposition, whose proof is clear from the short exact sequence (∗)
(just before Theorem 2.2):

Proposition 2.5. — The condition “A−
L requires at least s + 2 gen-

erators” and hence the conclusion of Theorem 2.4 hold in the following
cases:

(i) The class group ClF has `-rank at least s+ 2.
(ii) The class group ClF has `-rank at least 2 and the exact sequence

mentioned above is split.

When looking for examples, we need `-rank at least 3 in (i) (since we
are assuming s > 1), which forces F to have a large conductor already for
` = 3 (over 3 million). For an example where (ii) is applicable, see §3.3; we
actually checked the validity of Theorem 2.4 numerically in this example.

Let us sum up: We know that A−
L needs at least s generators. If the

minimal number of generators is at least s + 2, we are able to exhibit
extra annihilators. The cases where mZ`[Γ](A−

L ) = s or s+ 1 remain unde-
cided. However, the case s = 1 and mZ`[Γ](A−

L ) = s is clear: Here A−
L is a

cyclic Galois module, hence its annihilator and Fitting ideal coincide, and
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Theorem 2.3 gives the answer: The Stickelberger ideal is indeed the exact
annihilator.

Henceforward we shall relax our assumption that all primes pi split in F .
Let us assume that besides our primes p1, . . . , ps we also have new primes
ps+1, . . . , pt, all congruent to 1 modulo ` and all inert in F . Even though
it would not be necessary, we exclude the case of primes ramifying in F

to keep things simple. Again let Ki be the cyclic fields of degree ` and
conductor pi over Q. Let K ′ = K1 · · ·Kt be the compositum and L′ = FK ′,
so K ⊂ K ′ and L ⊂ L′. We shall show that if η is a new annihilator of A−

L

then corL′/L η is a new annihilator of A−
L′ . Lemma 1.6(c) states that if η is

an annihilator of A−
L then corL′/L η is an annihilator of A−

L′ . So we need to
show

Proposition 2.6. — Let η∈Z`[Gal(L/F )]. If η /∈ S̃L then corL′/L η /∈ S̃L′ .

Proof. — We begin by stating a lemma. For any subset T ⊂ {1, . . . , s}
and any subset T ′ ⊂ {s + 1, . . . , t} let LT∪T ′ = F

∏
i∈T∪T ′ Ki. We shall

also use the abbreviation L′T = LT∪{s+1,...,t} for any T ⊂ {1, . . . , s}. The
Galois group G = Gal(L′/F ) may be canonically identified with

∏t
i=1Gi,

where Gi = Gal(Ki/Q). Let us fix a generator σi of Gi; then σ1, . . . , σt

form a basis of G (as a vector space over Z/`Z). So σi acts as identity on
all Kj , j 6= i. Let ∆ = Gal(L′/L) = 〈σs+1, . . . , σt〉.

Lemma 2.7. — The set{(∏
i∈T

σai
i

t∏
i=s+1

σbi
i

)
corL′/L′

T
Θ̃L′

T

∣∣∣T ⊂ {1, . . . , s},

0 6 ai 6 `− 2, 0 6 bi 6 `−1
}

is a basis of S̃L′ as a Z`-module and in particular S̃L′ is free over Z`[∆].

Proof. — It is easy to see that this set consists of exactly

`t−s
s∑

j=0

(
s
j

)
(`−1)j = `t = [L′ : F ]

elements, which is the Z`-rank of S̃L′ . Let M be the Z`-module generated
by the mentioned set of generators. So we only need to show that M = S̃L′ .
For any i ∈ T ⊂ {1, . . . , s} we have the following distribution relation(`−1∑

a=0

σa
i

)
· corL′/L′

T
Θ̃L′

T
= (1− Frob(pi)−1) · corL′/L′

T\{i}
Θ̃L′

T\{i}
,
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where Frob(pi) ∈ G is any extension to L′ of the Frobenius automorphism
for pi on F

∏
j=1,...,t, j 6=iKj . Using induction with respect to the cardinality

of T we can easily prove that the mentioned set generates(∏
i∈T

σai
i

t∏
i=s+1

σai
i

)
· corL′/L′

T
Θ̃L′

T

for all T ⊂ {1, . . . , s} and all 0 6 ai 6 `−1. But this means that M is a
Z`[G]-module. For any i > s the prime pi stays inert in F and so Frob(pi)
restricts on F to the nontrivial automorphism. Hence τ Frob(pi) ∈ G (recall
that τ is complex conjugation). Therefore, in Z`[Gal(L′/Q)],

(1− τ)(1− Frob(pi)−1) = (1− τ)(1 + τ Frob(pi)−1)

which gives for any T ′ ⊂ {s + 1, . . . , t} the following distribution relation
(recall that we are identifying the minus part of Z`[Gal(L′/Q)] with the
group ring Z`[G])

( ∏
i∈{s+1,...,t}\T ′

`−1∑
ai=0

σai
i

)
· corL′/L′

T
Θ̃L′

T

=
( ∏

i∈{s+1,...,t}\T ′

(1 + τ Frob(pi)−1)
)
· corL′/LT∪T ′

Θ̃LT∪T ′ .

Since ` 6= 2, it is easy to see that (1 + τ Frob(pi)−1) is a unit of Z`[G], and
so we have obtained that corL′/LT∪T ′

Θ̃LT∪T ′ ∈M . The lemma follows. �

Let us finish the proof of Proposition 2.6. As S̃L′ is a free Z`[∆]-module,
we have S̃∆

L′ = N∆ S̃L′ and so

cor−1
L′/L(S̃L′) = cor−1

L′/L(S̃∆
L′) = cor−1

L′/L(N∆ S̃L′) = resL′/L(S̃L′) ⊂ S̃L,

and the proposition is proved. �

In the cases where we have proved the existence of extra annihilators,
we did not prove explicitly that one can extract roots of Gauss sums. It
is not clear how the fact that ClF has high `-rank (which may be seen
as a statement concerning Gauss sums attached to F ) influences Gauss
sums attached to L, since there is no direct arithmetic link between Gauss
sums attached to L and Gauss sums attached to F : The norm from L to
F annihilates the former ones, because of the presence of Euler factors and
the condition that at least one ramified prime in L/F splits in F .
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3. Numerical results for the borderline cases

We recall that L = FK, and K is the compositum of s distinct fields
Ki, each abelian of the same odd prime degree `, totally tamely ramified
at pi, unramified elsewhere. We also recall that the pi are assumed to split
in the quadratic field F . From Theorem 2.2 we know that m(A−

L ) is always
at least s, and we now distinguish three cases, two of which are not covered
by Theorem 2.4.

3.1. The case m(A−
L ) = s

From Theorem 2.2 and the exact sequence (∗), we see that A−
L needs

exactly s generators over Z[Γ], whenever Cl−F has trivial `-part.
We put ` = 3 and F = Q(i), so that the latter condition is certainly sat-

isfied. Hence m(A−
L ) = s, so the hypothesis of Theorem 2.4 is not satisfied,

and it is not clear a priori whether the annihilator JL of A−
L is equal to, or

larger than S̃L.
For our calculations we put s = 2. The smallest possible field K then has

conductor 13·37. The minus class group of L = K(i) is of type 18×18×9×3,
so A−

L has order 37, and S̃L has index |A−
L | in Z3[Γ]. (The latter statement

is correct for all odd `, all s and K by Sinnott’s formula – see Theorems 2.1,
5.2 and 5.4 of [10]). We then calculated the index of JL as follows. PARI
gives the class group as a product of cyclic groups, and also the action of Γ
on the class group. The Galois group is given by PARI as an unstructured
set of automorphisms, in which only the identity is clearly identifiable. We
took the lazy approach of finding two generators of Γ ∼= Z/3×Z/3 just by
determining sufficiently many products of automorphisms, which is easy in
PARI. (Of course one might be more systematic: Class field theory affords
a natural epimorphism (Z/p1p2Z)∗ → Γ. The natural thing to do would
be to determine generators of Γ as images of generators of (Z/p1p2Z)∗.
However, PARI does not directly support this calculation, and we do not
need the extra information.) We thus found, with little effort, generators
σ1 and σ2 of Γ and 4×4-matrices M1, M2 that give the action of these two
automorphisms on the module A−

L
∼= Z/9× Z/9× Z/9× Z/3.

Determining the Z3[Γ]-annihilator of this module is in principle easy
linear algebra: Every element σ of Γ gives an automorphism Mσ of the Z3-
module A−

L , encoded as a square matrix with integer (or mod 9) entries,
and the kernel of the map Z3[Γ] → EndZ(A−

L ), σ 7→ Mσ, is JL. Hence
the desired index [Z3[Γ] : JL] is equal to the order of the additive group
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generated by all nine matrices Mσ. To find this order is not difficult: One
unpacks the matrices Mσ into long row vectors (of length 16 in our exam-
ple), and looks at the Hermite normal form of the resulting 9× 16-matrix;
from it one can read off the order of the row space. A little care is needed
here and in all other examples, since A−

L is a direct sum of modules Z/3i

with various i, and consequently the entries of the matrices live in different
factor rings of Z, but this is not a serious problem. The outcome in this
example was: The index [Z3[Γ] : JL] is 37 again, so JL = S̃L (since one
inclusion is clear from Stickelberger’s classical theorem).

The main computational hurdle is to obtain the matrices for the action of
σ1 and σ2 on the class group, since this invokes the function
bnfisprincipal, one of the most time-consuming functions in this part
of PARI. We computed 22 examples. In each example we had ` = 3, s = 2,
and p1, p2 were taken from the set {13, 37, 61, 73, 109, 157, 181, 337, 373,
421}. All ten combinations with both pi at most 109 were done; the others
were chosen by computational expedience (the calculations begin to get
sluggish for greater values). The result is quick to state:

In one of these 22 cases, the annihilator ideal JL is (by an index 3)
larger than the Stickelberger ideal; in all other cases we have equality. The
exceptional case is: (p1, p2) = (109, 157).

There were various consistency checks in our calculations. First, no case
was found where the index of the annihilator ideal was larger than that
of the Stickelberger ideal. Second, we double-checked that the module A−

L

needs exactly two generators over Z3[Γ], by calculating the coinvariants
(A−

L )Γ and noting that this is a Z3-module which needs exactly 2 generators.
We did not do any case with s = 3 since even the minimal choice

(p1, p2, p3) = (13, 37, 61) probably leads to an intractable field.

3.2. The case m(A−
L ) = s+ 1

This is another case where Theorem 2.4 gives no information. We again
took ` = 3, but now s = 1. We chose F = Q(

√
−23) which has class num-

ber 3. Therefore, by Theorem 2.2 and the exact sequence (∗), the minimal
number of generators of A−

L is 2 or 1, depending on whether the exact
sequence is split or not, and we will only consider cases where it splits.
Via PARI we produced a list of primes p1 such that for L = FK with K

the cubic field of conductor p1, the sequence does split. This was easy by
calculating a ray class group using bnrclass. The list begins with 151, 163,
307, . . . . It is relatively easy to calculate A−

L (hence the index of S̃L) and
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also JL for each case. For instance if p1 = 151, A−
L is Z/9 × Z/3, with a

generator σ of Γ acting via the matrix(
7 0
6 1

)
(multiplication by this matrix on the right). One can even check by hand
that the annihilator is (3, σ−1)2 (the square of the radical of Z3[Γ]) in this
example, and this has index 33, hence one gets equality of indices.

We treated all relevant p1 up to 5000. This comes to 43 values (the largest
being 4957). Our findings can be summarized as follows:

In exactly 13 of these 43 cases, the annihilator ideal is larger than the
Stickelberger ideal. The first such case is p1 = 307, the third on the total
list; it has |A−

L | = 33 and annihilator index 32. In all of the 13 cases with
a discrepancy, the discrepancy was exactly a factor 3. The largest value
observed for |A−

L | was 39, for the single prime p1 = 4129, and this happened
to agree with the annihilator index.

3.3. The case m(A−
L ) = s+ 2

In principle we do not need to calculate examples in this situation,
since Theorem 2.4 applies! Nevertheless, we did one case numerically as
a double-check. We take s = 1, ` = 3 again; we need to change F how-
ever, since we need 3-rank 2 for ClF , plus splitting of (∗), to ensure that
m(A−

L ) = 3. The minimal example for 3-rank 2 with prime conductor is
F = Q(

√
−4027); here ClF = A−

F = Z/3 × Z/3. The prime 97 splits in F ,
and the exact sequence (∗) can be shown to split as well by PARI. One
finds A−

L = Z/9 × Z/9 × Z/3 × Z/3. Hence the Stickelberger ideal has in-
dex 36, and the same kind of calculation as in earlier examples shows that
the annihilator index is 34. (Note that the discrepancy 32 is larger than
in the previous subsection. The first “3” comes from the fact that A−

F is
not cyclic, which yields the annihilator 3 Nσ, while the Stickelberger ideal
only contains 9 Nσ. The second “3” comes from Theorem 2.4, which pro-
vides the annihilator (σ−1)3, while the Stickelberger ideal only contains
(σ−1)4.) This numerically confirms Theorem 2.4.

4. The non-genus case

We now consider an imaginary field L0 which is the compositum of the
imaginary field F and an elementary `-abelian field K0 which is not a
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genus field. Let K be the genus field of K0, and let L = FK. We retain the
notations s, Γ attached to L in §2, and also the assumption that ζ` 6∈ F .
As in §2, we think of K as being the compositum K = K1 · · ·Ks where
Ki/Q is of degree ` and conductor pi, and pi splits in F , and we choose
generators σ1, . . . , σs of Γ according to this decomposition. In particular
s is the number of primes ramifying in K0/Q, and likewise in K/Q. Let
∆ = Gal(K/K0); this will always be identified with Gal(L/L0). Let cor =
corL/L0 denote the usual corestriction Q`[Γ/∆] → Q`[Γ]. We recall that the
minus part of the Stickelberger ideals attached to L (resp. L0) are identified
(see §2) with ideals S̃L ⊂ Z`[Γ] (respectively S̃L0 ⊂ Z`[Γ/∆]). If res denotes
the canonical map Q`[Γ] → Q`[Γ/∆], then the maps cor : S̃L0 → S̃L and
res : S̃L → S̃L0 are well-defined, and we remark that cor is injective.

The point of all this is that one sometimes can obtain annihilators for
A−

L0
outside S̃L0 by taking a detour via the genus field. Lemma 1.6(c) says:

The full preimage cor−1 S̃L ⊂ Z`[Γ/∆] annihilates A−
L0

. On the other hand
it follows from the definition of cor that

cor cor−1 S̃L = S̃∆
L .

Thus cor induces an isomorphism

cor−1 S̃L/S̃L0
∼= S̃∆

L / cor S̃L0 ,

and we now see: As soon as these modules are nontrivial, the annihilator
of A−

L0
is strictly larger than S̃L0 .

Our idea is now to relate the right hand quotient to Ĥ
0
(∆, S̃L) in Tate’s

sense. Actually cor S̃L0 contains N∆ S̃L, and we want to control both the
discrepancy between cor S̃L0 and N∆ S̃L, and the size of the module
Ĥ

0
(∆, S̃L). More to the point, we would like the discrepancy to be small,

and Ĥ
0
(∆, S̃L) to be large.

Let d denote the Z/`Z-dimension of ∆. Via the generators σ1, . . . , σs we
identify Γ with (Z/`Z)s. We say that ∆ is in general position, if any pro-
jection (Z/`Z)s → (Z/`Z)d, arising from the choice of a d-element subset
of {1, . . . , s}, becomes bĳective when restricted to ∆. Note that in case
d = 1, ∆ is automatically in general position, since otherwise K0 would
have smaller conductor than K.

Lemma 4.1. — If ∆ is in general position, then cor S̃L0/N∆ S̃L can be
generated by a(d) elements over Z`[Γ], where a(d) = 1 +

(
s
1

)
+ · · ·+

(
s

d−1

)
.

In case d = 1, this factor module is at most of order `.

Proof. — By the construction of Sinnott’s Stickelberger ideal, S̃L0 is gen-
erated by terms ηI,0 := corL0/FKI∩L0 resFKI/FKI∩L0 Θ̃FKI

, where I runs
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through all subsets of {1, . . . , s} and KI is the compositum of the Ki with
i ∈ I. One has the formula

[L : L0KI ] corL/L0 ηI,0 = N∆ ηI ,

with ηI = corL/FKI
Θ̃FKI

∈ S̃L. It suffices to show that the factor [L :
L0KI ] is 1 for |I| > d: Then the quotient module in the lemma is generated
by the ηI,0 with |I| < d, which gives exactly what we want. For |I| > d,
the statement [L : L0KI ] = 1 is a consequence of the “general position”
hypothesis: The degrees [L : L0] and [FKI : L0 ∩ FKI ] are both equal to
`d for |I| > d, and this translates into [L : L0KI ] = 1. For d = 1, we only
require the generator η∅,0, and this spans a trivial module; the quotient

module in the lemma is a submodule of Ĥ
0
(∆, S̃L), hence annihilated by

|∆| which is ` in case d = 1. Hence this trivial submodule is of order at
most `. �

In general the cohomology of S̃L does not seem to be manageable at all.
We discuss one special case now.

Proposition 4.2. — Suppose that each pi is an `-th power residue
modulo every other pj (i, j ∈ {1, . . . , s}). Then:

(a) The Γ/∆-module Ĥ
0
(∆, S̃L) has a direct summand which is a direct

sum of
(

s
d+1

)
cyclic factors.

(b) The module S̃∆
L / cor S̃L0 requires at least

(
s

d+1

)
− a(d) generators;

so if this number is positive, the annihilator of A−
L0

is strictly larger
than S̃L0 .

Proof.
(a) Under the hypothesis of the proposition, S̃L is the direct sum of the

Galois modules spanned by the generators ηI , and each of these is isomor-
phic to RI := Z`[〈σi | i∈I〉]/(Nσi | i∈I) (cf. [3], Lemma 5.4). By the next
lemma, for every I containing exactly d+1 elements, the group Ĥ

0
(∆, RI)

is cyclic and nontrivial. The number of such sets I is exactly
(

s
d+1

)
.

(b) This follows from (a), the tautological short exact sequence

0 → cor S̃L0/N∆ S̃L → Ĥ
0
(∆, S̃L) → S̃∆

L / cor S̃L0 → 0

and Lemma 4.1. �

Lemma 4.3. — Under the above assumptions on ∆, let I be a subset
of {1, . . . , s}, |I| = d + 1, and RI := Z`[〈σi | i ∈ I〉]/(Nσi

| i ∈ I). Then
Ĥ

0
(∆, RI) is a nontrivial cyclic Z`[Γ]-module.
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Proof. — We may suppose I = {1, . . . , d + 1} and consider everything
as Γ′-modules, with Γ′ = 〈σ1, . . . , σr〉, where r = d + 1. We also know
that ∆ has `-rank d and is in general position. Without loss of generality
we can assume that ∆ = 〈σiσ

−1
1 | i = 2, . . . , r〉. Multiplication with λ′ :=

(σ1−1) · · · (σr−1) induces an isomorphism RI
∼= A ⊂ Z`[Γ′], where A is the

cyclic ideal generated by λ′. Then N∆A is generated by N∆ ·λ′, whereas
B := A∆ is the intersection of A with the cyclic ideal generated by N∆. By
easy direct arguments one proves for any α ∈ Z`[Γ′]:

α ∈ A ⇐⇒ Nσi α = 0, ∀i = 1, . . . , r.

On the other hand, since ∆ = 〈σiσ
−1
1 | i = 2, . . . , r〉, the expressions

(σi−1) N∆ are all equal (i = 1, . . . , r). A direct argument shows: β ∈ 〈N∆〉
is annihilated by Nσi

if and only if it has the form (σi−1) N∆ γ, where
γ ∈ Z`[〈σi〉]. Taking all this together yields:

A = 〈N∆ ·(σ1−1)r〉; B = 〈N∆ ·(σ1−1)〉.

Since B/A is the desired cohomology group, we are done. �

We have two applications of this, one for a whole range of values of d
but assuming strong extra conditions, and another for d = 1.

Proposition 4.4. — In the following two situations, the annihilator of
A−

L0
is strictly larger than S̃L0 :

(1) For all i, j ∈ {1, . . . , s}, i 6= j, pi is an `-th power residue modulo pj ,
and d is such that

(
s

d+1

)
> a(d). (Recall that a(d) = 1 +

(
s
1

)
+ · · ·+(

s
d−1

)
.)

(2) d = 1 and s > 1.

Proof.
(1) is already proved in Proposition 4.2 b).
(2) In this situation, the cohomology group Ĥ

0
(∆, S̃L) was in principle

already calculated by Sinnott (Proposition 5.3 in [10]): S̃L is canonically
isomorphic to the module U attached to K (the real subfield of L), η̃I

mapping to αf,nI
, where f is the conductor of K and nI the conductor

of KI . The outcome is: Ĥ
0
(∆, S̃L) is a direct sum of 2s−1 factors Z/`Z. We

look again at the short exact sequence in the proof of Proposition 4.2 b).
By Lemma 4.1 (last statement), the left hand term is of order at most `.
The middle term has 2s−1 factors Z/`Z, and therefore the right hand term
cannot be trivial. As above this proves our assertion. �
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5. Distribution relations for Gauss sums

Let m be a positive integer and p be an odd prime, p - m. Let P | p be a
prime ideal of the m-th cyclotomic field Q(ζm), where ζm = e2πi/m. Let f
be the minimal positive integer satisfying m | pf−1, i.e. f is the absolute
inertia degree of P. So Z[ζm]/P ' Fpf ⊃ Fp. Let χ : F∗pf → µm = 〈ζm〉 ⊂
Q(ζm)∗ be the m-th power residue symbol, i.e. for any a ∈ Z[ζm] such that
P - a we have

χ(a mod P) ≡ a(pf−1)/m (mod P).

Let ψ : Fpf → Q(ζp) be the usual additive character of Fpf , i.e. ψ(t) =
ζ
Tr(t)
p . For any integer a, 0 < a < m, let us consider the following Gauss

sum xa:
xa = g(χm−a, ψ) = −

∑
t∈F∗

pf

χ(t)m−aψ(t).

The following proposition states the well-known Davenport-Hasse distri-
bution relations for Gauss sums.

Proposition 5.1. — For any positive integer r | m and any a ∈ Z we
have

(5.1)
r−1∏
i=0

xa+i m
r

= χ(r)ar · xar ·
r−1∏
i=1

xi m
r

and

(5.2)
r−1∏
i=1

x2
i m

r
=

(
(−1)(p−1)/2 · p

)f(r−1)
.

Proof. — The first formula (equation (5.1)) can for instance be found in
Theorem 10.1 of Chapter 2 of [9]. The notations differ slightly, for example
the m of loc. cit. corresponds to our r.

The second formula follows from Lemma 6.1(b) in [11] and the following
easy observation concerning the case of even m: χm/2(−1) = −1 if and only
if the order of the multiplicative group of Fpf is not divisible by 4, which
is the case if and only if f is odd and p ≡ 3 (mod 4). �

For any integer a we put za =
(
x2

a ·
(
(−1)(p−1)/2p

)−f)m if m - a and
za = 1 if m | a. Well-known properties of Gauss sums show that za is
a system of non-zero numbers of the m-th cyclotomic field. We can even
say more, namely za ∈ Q(ζm/(a,m)). Moreover, if an automorphism σ of
Q(ζm) satisfies ζσ

m = ζt
m for an integer t then we have zσ

a = zat. Finally, the
numbers za satisfy distribution properties stated in the following corollary
of Proposition 5.1:
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Corollary 5.2. — For any integer a and any positive r | m we have

(5.3)
r−1∏
i=0

za+i m
r

= zar.

Moreover, if r > 1 is a power of a prime s and (r, m
r ) = 1, then we have

(5.4)
∏

b≡a (mod m/r)
s-b, 06b<m

zb = z1−Frob(s)−1

ar ,

where Frob(s) is the Frobenius of s on the m
r -th cyclotomic field, i.e. the

automorphism sending each root of unity to its s-th power.

Proof. — It is easy to see that (5.3) follows directly from the definition of
za and (5.1) and (5.2). To prove (5.4) let us notice that nothing is changed
if we write a + m

r instead of a. So we can assume that s | a and so (5.3)
gives

∏
b≡a (mod m/r)

s-b, 06b<m

zb =
(r−1∏

i=0

za+i m
r

)
·
(r/s−1∏

i=0

za+i ms
r

)−1

= zar · z−1
ar/s = z1−Frob(s)−1

ar

and the corollary is proved. �

Formula (5.4) needs some final interpretation. Its left hand side is simply
the norm of za from Q(ζm) to Q(ζm/r). We will need to keep track of the
conductor m in our notation, so we write z(m)

a for the quantity za when
necessary. For f = 1 (which will always be assumed in the sequel) one
easily checks that z(m)

ar =
(
z
(m/r)
a

)r. Thus we may rewrite the last corollary
in the following form, which does show that we have a kind of Euler system
of Gauss sums.

Corollary 5.3. — With notations as in Corollary 5.2 and assuming
f = 1, we have

NQ(ζm)/Q(ζm/r)z
(m)
a =

(
z(m/r)
a

)r·(1−Frob(s)−1)
.

This last corollary shows that we can perform just about the same tricks
on the z(m)

a as on circular units. (It will suffice to work with a = 1.) The only
major difference is the fact that the circular units form an even distribution
while the z(m)

a ’s form an odd one, that is: z(m)
a ·z(m)

m−a = 1 for any integer a.
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6. The cyclic case via roots of Gauss sums

We again consider an imaginary field L0 which is the compositum of the
imaginary field F of conductor f and an `-abelian field K0. But instead of
assuming that K0 is an elementary `-abelian we assume that K0 is cyclic
of `-power degree. Let d = `k = [K0 : Q] denote this degree and let m be
the conductor of K0. We exclude the trivial case K0 = Q, so k > 0.

We suppose that ` does not ramify in L0 = FK0. This means that
m = p1 . . . pt with pairwise distinct primes pi. Finally, we assume that all
p1, . . . , ps are split in F , while ps+1, . . . , pt stay inert, where 1 6 s 6 t. (We
repeat that the case of primes ramified in F is excluded for expository rea-
sons.) So we are assuming that at least one prime ramifies in K0 and splits
in F . Then fm is the conductor of L0 and ` - fm. The reader should note
that f has an entirely different meaning compared to §5; the f occurring
there will always have the value 1 (i.e., P will be of absolute degree 1) in
what follows, and therefore will never be needed again.

For each i ∈ {1, . . . , t} let Ki be the unique subfield of the pi-th cy-
clotomic field Q(ζpi

) such that the ramification index of pi in K0 equals
[Ki : Q]. For every subset T ⊂ {1, . . . , t} let mT =

∏
i∈T pi and LT = FKT ,

where KT =
∏

i∈T Ki. Then K{1,...,t} is the genus field of K0 and L0 is a
subfield of L{1,...,t}. Let GT = Gal(KT /Q); as before, this will be identified
with Gal(LT /F ). Each group GT may be canonically identified with the
product of the groups G{i} = Gal(Ki/Q) with i running over T ; at times it
will also be convenient to consider G{i} as a subgroup of GT in the obvious
way. Let IT denote the augmentation ideal of the group ring Z`[GT ]. Fi-
nally, the Galois group of L0/F will be called Γ (not G!); we fix a generator
γ of it, and the kernel of the natural epimorphism G{1,...,t} → Γ will be
denoted by ∆.

The following result produces a new annihilator for all s > 2. Let Θ̃L0 ∈
Z`[Γ] be obtained from the standard Stickelberger element ΘL0 ∈
Z`[Gal(L0/Q)] (cf. [11], beginning of §6.2) by the condition (1− τ)Θ̃L0 =
(1− τ)ΘL0 similarly as in the text preceding Theorem 2.3.

Theorem 6.1. — There exists ϑ0 ∈ Z`[Γ] with (γ−1)sϑ0 = Θ̃L0 , and
such that ϑ := (γ−1)ϑ0 annihilates A−

L0
.

(Since the annihilators of (γ−1)s and γ−1 on Z`[Γ] coincide, the element
ϑ is independent of the choice of ϑ0.)

Proof. — For now, we only give the proof modulo an intermediate result
(Theorem 6.2). Lemma 1.6(a) gives that the natural map A−

Q(ζfm) → A−
L0

is
surjective. Therefore every element in A−

L0
is represented by some prime p of
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L0 lying under a prime P of Q(ζfm) of absolute degree 1, by Chebotarev’s
Theorem applied to Q(ζfm). Exactly as in §5 we have the element z(fm)

1 ∈
Q(ζfm) (obtained from a Gauss sum by a slight modification), where the
dependency on P is not expressed by the notation. We define more generally

xT,PT
= NQ(ζfmT

)/LT
(z(fmT )

1 ),

where PT is the prime of Q(ζfmT
) under P and again the Gauss sum giving

z
(fmT )
1 is taken with respect to PT . Let z = NL{1,...,t}/L0(x{1,...,t},P). Then

the classical Stickelberger factorization of Gauss sums gives

zOL0 = p2fm(1−τ)Θ̃L0 .

We now state Theorem 6.2 and explain afterwards how it allows to finish
the proof of Theorem 6.1:

Theorem 6.2. — There is an element y ∈ Z` ⊗ L∗0 such that

y(γ−1)s

= z.

Let us assume this result and continue in the proof of Theorem 6.1.
Theorem 6.2 together with the preceding formula implies directly that
2fm(1 − τ)Θ̃L0 , and hence also Θ̃L0 , are divisible by (γ−1)s in Z`[Γ].
Pick ϑ0 ∈ Z`[Γ] with (γ−1)sϑ0 = Θ̃L0 . Let J denote the multiplicative
group of fractional ideals of L0, tensored with Z`. Then J is torsion-free,
and again the annihilator of γ−1 is the same as the annihilator of (γ−1)s

on J . Therefore the equality

yOL0 = p2fm(1−τ)ϑ0

holds in J up to a factor which is fixed by γ. If we let ϑ = (γ−1)ϑ0 and
y1 = yγ−1, we find that the following equality is valid in J :

y1OL0 = p2fm(1−τ)ϑ.

Passing to A−
L0

, we see that the class represented by pϑ is trivial, as had to
be shown. �

Theorem 6.2 in its turn follows from a more general result which we are
going to formulate now. We will need Gauss sums in various fields. For any
T ⊂ {1, . . . , t} we defined the element xT,PT

in L∗T . We recall that PT is
the prime of LT under a chosen degree one prime P in the biggest occurring
cyclotomic field Q(ζmf ). Let p be the rational prime below P and let ET

and E0 be the groups of all p-units of LT and L0, respectively. So we have
xT,PT

∈ ET . From Corollary 5.3 we deduce, for every i ∈ T , the following
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formula which is an Euler system relation, up to the extra exponent pi on
the right:

NGi(xT,PT
) = x

pi·(1−Frob(pi)
−1)

T\i,PT\i
.

Theorem 6.3. — For all T ⊂ {1, . . . , t} the following statement holds:

h(xT,PT
) ∈ I |T∩{1,...,s}|

T for all h ∈ HomZ[GT ](ET ,Z`[GT ]).

(NB. The latter Hom can be identified with HomZ`[GT ](Z` ⊗ET ,Z`[GT ]).)

Proof. — This will be modeled on arguments of Darmon and Hayward.
The main trick (the definition of u below) is due to Darmon (Lemma 8.1
in [2]), and Hayward introduced the systematic use of the “linear forms” h
(cf. Proposition 5.5 in [6]).

We proceed by induction over |T ∩ {1, . . . , s}|. For empty T ∩ {1, . . . , s}
there is nothing to prove, so let us assume that we have T ⊂ {1, . . . , t}
such that T1 = T ∩ {1, . . . , s} is not empty and that the theorem has been
proved for all subsets T ′ ⊂ T with |T ′ ∩ {1, . . . , s}| < |T1|.

We need a little notation: For any σ ∈ GT , denote by σi ∈ Gi (i ∈ T )
the elements which are uniquely determined by σ =

∏
i∈T σi. We express

h via coefficients: h(x) =
∑

σ∈GT
hσ(x)σ with hσ ∈ HomZ(ET ,Z`). Notice

that hσ(xρ) = hρ−1σ(x) for any ρ ∈ GT . We let

u =
∑

σ∈GT

hσ(xT,PT
)
( ∏

i∈T\T1

σi

) ∏
i∈T1

(σi−1).

Multiplying out the rightmost product into a sum of 2|T1| terms in the
obvious way, we obtain

u =
∑

T ′⊂T
T\T1⊂T ′

(−1)|T |−|T
′|uT ′ ,

with

uT ′ :=
∑

σ∈GT

hσ(xT,PT
) prT ′(σ) = prT ′

(
h(xT,PT

)
)
.

Here we have written prT ′ : Z`[GT ] → Z`[GT ] for the linear mapping in-
duced by the obvious projection GT → GT ′ followed by the obvious injec-
tion GT ′ ⊂ GT . We now define a new linear form

h′ ∈ HomZ[GT ′ ]
(ET ′ ,Z`[GT ′ ]), h′(x) :=

∑
σ′∈GT ′

hσ′(x)σ′.
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Then (letting T ′′ = T \ T ′) we find

prT ′(h(x)) =
∑

σ′∈GT ′

∑
σ′′∈GT ′′

hσ′σ′′(x)σ′

=
∑

σ′∈GT ′

∑
σ′′∈GT ′′

hσ′(xσ′′−1
)σ′

= h′
(
NLT /LT ′

(x)
)
.

Moreover the Euler condition implies that NLT /LT ′
(xT,PT

) = xβ
T ′,PT ′

with

some β ∈ I
|T |−|T ′|
T , because pi splits in F for each i ∈ T \ T ′. For each

proper subset T ′ of T , our induction hypothesis therefore implies that

uT ′ = prT ′(h(xT,PT
)) = h′(NLT /LT ′

(xT,PT
)) = βh′(xT ′,PT ′ )

lies in I
|T1|
T . Since the term u visibly lies in I

|T1|
T , we infer that uT ∈ I |T1|

T ,
and uT happens to coincide with the desired value h(xT,PT

) itself. �

Comment. — Contrary to what Hayward is able to do in [6], it does not
seem to be clear in our context how to prove a “leading term statement” –
we just get a containment relation for now. However we hope to come back
to “leading terms”, that is, to a congruence modulo the next higher power
of the augmentation ideal, in a future paper.

Lemma 6.4. — Let G be an `-group and let M be a finitely generated
Z`[G]-module. If N is a submodule of M such that M/N is non-zero and
without Z-torsion, then any Z`[G]-homomorphism from N to Z`[G] can be
homomorphically extended to M .

Proof. — Since both Z`[G] and M/N are non-zero and without Z-torsion
they are of grade one, because one can take {`} as a maximal Z`[G]-
sequence on both Z`[G] and M/N . As G is an `-group, Z`[G] is a local
Gorenstein ring. Therefore Theorem 217 in [7] gives

Ext1Z`[G](M/N,Z`[G]) = 0,

and the lemma follows. �

It remains to prove Theorem 6.2 using Theorem 6.3. This is quite similar
to the proof of Theorem 4.2 in [5], using the same kind of algebra, with one
little twist.

First step: For all Z`[Γ]-homomorphisms φ : Z` ⊗ E0 → Z`[Γ] we have
φ(z) ∈ (γ−1)sZ`[Γ]. (Recall that z ∈ E0 was a norm of a slightly modified
particular Gauss sum.)

Let T = {1, . . . , t}. The corestriction map Z`[Γ] → Z`[GT ] gives an iso-
morphism ν : Z`[Γ] → N∆ Z`[GT ]. Let φ be as in the statement of Step 1.
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Lemma 6.4 for the submodule Z` ⊗ E0 of Z` ⊗ ET gives that νφ ex-
tends to a Z`[GT ]-homomorphism h : Z` ⊗ ET → Z`[GT ]. Then νφ(z) =
h(NLT /L0 xT,P) = N∆ ·h(xT,P) (the first equality by definition of z), and
by Theorem 6.3, h(xT,P) ∈ Is

T . Thus νφ(z) ∈ N∆ ·Is
T = ν((γ−1)sZ`[Γ]).

Since ν is an isomorphism, we infer φ(z) ∈ (γ−1)sZ`[Γ].

Second step: Let U ⊂ Z` ⊗ E0 be the kernel of multiplication with the
norm element NΓ. Then z ∈ (γ−1)s−1U .

By Corollary 3.3 in [5] (the ring Z`[Γ]/(NΓ) is written R there) it is
enough to show that for all φ ∈ HomZ`[Γ]/(NΓ)(U,Z`[Γ]/(NΓ)) we have
φ(z) ∈ (γ−1)s−1Z`[Γ]/(NΓ). Multiplication by γ−1 defines an isomorphism
ι : Z`[Γ]/(NΓ) → (γ−1)Z`[Γ], and γ−1 is a nonzerodivisor on these two
modules. So we need to show that for all φ ∈ HomZ`[Γ](U, (γ−1)Z`[Γ]) we
have φ(z) ∈ (γ−1)sZ`[Γ]. It is easy to see that HomZ`[Γ](U, (γ−1)Z`[Γ]) =
HomZ`[Γ](U,Z`[Γ]), and Lemma 6.4 applied to the Z`[Γ]-modules U ⊂ Z`⊗
E0 gives that each such φ can be extended to φ ∈ HomZ`[Γ](Z`⊗E0,Z`[Γ]).
The first step gives φ(z) = φ(z) ∈ (γ−1)sZ`[Γ] which we wanted to show.

Third and last step: From Hilbert 90 one easily obtains that U ⊂
(γ−1)(Z` ⊗ L∗0). Putting this together with the result of the second step
we obtain at once

z ∈ (γ−1)s(Z` ⊗ L∗0),

and this proves Theorem 6.2.
We have two comments concerning Theorem 6.1.
(1) It is not difficult to show that there is some power `e such that `eϑ

is in the Z[Γ]-span of Θ̃L0 . (Actually `e = ds−1 is enough.) This implies
that wFϑ is in Z[Γ], and that (1− τ)wFϑ annihilates the whole class group
and not just the minus part of the `-part of it (as usual, wF denotes the
number of roots of unity in F ).

(2) If s > 2, then (1− τ)ϑ is not in the `-completion of the Stickelberger
ideal SL0 attached to L0 in the sense of Sinnott. This can be seen as
follows: SL0 is generated by (1−τ)Θ̃L0 and other terms coming from proper
subfields; those other terms are all divisible by NΓ0 where Γ0 is the minimal
nontrivial subgroup of Γ. The ring R = Z`[Γ]/(NΓ0) is then a DVR; the
image of ϑ in R cannot be a multiple of the image of Θ̃L0 because the image
of γ−1 in R is not invertible, and the other generators of SL0 go to zero
in R.

To conclude the paper we show how to find still more annihilators. Let
us consider all subfields

Q = K
(0)
0 ⊂ K

(1)
0 ⊂ K

(2)
0 ⊂ · · · ⊂ K

(k)
0 = K0
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with [K(i)
0 : Q] = `i. For each 0 6 i 6 k, let

L
(i)
0 = FK

(i)
0 , κi = cor

L0/L
(i)
0

Θ̃
L

(i)
0
∈ Z`[Γ],

and let si be the number of ramified primes in K(i)
0 that split in F . If si > 0

then we define θi = cor
L0/L

(i)
0
ϑ

L
(i)
0

, where ϑ
L

(i)
0

means the ϑ of Theorem 6.1

for the field L
(i)
0 instead of L0. Theorem 6.1 gives Θ̃

L
(i)
0

= (γ−1)si−1ϑ
L

(i)
0

,
so we have κi = (γ−1)si−1θi. In the case si = 0 we put θi = κi. Let
S be Sinnott’s Stickelberger ideal of L0. Then (1 − τ)S ⊗ Z` is equal to
(1− τ) times the ideal (κ0, . . . ,κk) ⊂ Z`[Γ]. But we can also consider the
ideal (θ0, . . . , θk), and Theorem 6.1 together with Lemma 1.6(c) gives that
(θ0, . . . , θk) annihilates A−

L0
. We can even compute the relative index of

these ideals:

Theorem 6.5. — Let r be the smallest positive integer that sr > 0.
Then the relative index

[(θ0, . . . , θk) : (κ0, . . . ,κk)] =
k∏

i=r

`si−1,

which can be characterized as the product of the ramification degrees of
all primes that ramify in K0 and split in F divided by the largest of these
ramification degrees. Moreover this index divides the relative class number
h−L0

of L0.

Remark. — If there is no ramifying prime in K0 that is inert in F then
the product in Theorem 6.5 is equal to the degree [K0 : K0], where K0 is
the genus field of K0.

Proof. — It is easy to see that si is the number of all primes that split in
F and have ramification index in K0 at least `k−i+1. So if such a prime has
ramification index `a then it contributes the amount 1 to sk−a+1, sk−a+2,
. . . , sk, and so

∏k
i=r `

si equals the product of the ramification degrees
of all such primes, while `k−r+1 is the largest of these ramification de-
grees. The divisibility relation for the relative class number follows from
the Sinnott formula (see [10], Theorems 2.1 and 5.3) which implies that
[Z`[Γ] : (κ0, . . . ,κk)] equals the `-part of h−L0

. Therefore the theorem will
be proved if we show by induction with respect to j = 0, 1, . . . , k that

[(θ0, . . . , θj) : (κ0, . . . ,κj)] =
j∏

i=r

`si−1.
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If j < r then θj = κj . So let us assume that j > r and that the statement
has been proved for j−1. The well-known distribution relations give that

(1− τ) Nj κj = (1− τ)κj−1

∏
p

(1− Frob(p)−1),

where Nj =
∑`−1

i=0 γ
i`j−1

is the norm operator from L
(j)
0 to L(j−1)

0 and where
the product is taken over all primes q that ramify in L(j)

0 but do not ramify
in L

(j−1)
0 ; here Frob(q) is an extension of the Frobenius automorphism for

q on L
(j−1)
0 to L0. If the prime q is inert in F then τ Frob(q) ∈ Γ and so

1 − Frob(q)−1 acts on (1 − τ)κj−1 as 1 + τ Frob(q)−1 which is a unit in
Z`[Γ]. But if the prime q splits in F (and we have exactly sj − sj−1 such
primes) then Frob(q) ∈ Γ and so 1 − Frob(q)−1 is divisible by 1 − γ in
Z`[Γ] (and belongs to the unique maximal ideal of Z`[Γ]). Therefore there
is δj ∈ Z`[Γ] such that

Nj κj = (1− γ)sj−sj−1δjκj−1.

We are assuming that sj > 0 and so κj = (γ−1)sj−1θj . On one hand, if
sj−1 = 0 then κj−1 = θj−1 and so

Nj(γ−1)sj−1θj = (1− γ)sjδjθj−1,

and since θj is in the augmentation kernel (see Theorem 6.1) we have

Nj θj = (1− γ)δjθj−1.

On the other hand if sj−1 > 0 then we have κj−1 = (γ−1)sj−1−1θj−1 and
so

Nj(γ−1)sj−1θj = (1− γ)sj−1δjθj−1

and since both θj and θj−1 are in the augmentation kernel we have

Nj θj = δjθj−1.

The rest of the argument proceeds by induction over j quite similarly as
in [5]. �
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