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THOM POLYNOMIALS AND SCHUR FUNCTIONS:
THE SINGULARITIES I2,2(−)

by Piotr PRAGACZ (*)

Abstract. — We give the Thom polynomials for the singularities I2,2 associated
with maps (C•, 0)→ (C•+k, 0) with parameter k > 0. Our computations combine
the characterization of Thom polynomials via the “method of restriction equations”
of Rimanyi et al. with the techniques of Schur functions.

Résumé. — Nous présentons les polynômes de Thom pour les singularités I2,2

associées aux applications (C•, 0) → (C•+k, 0) de paramètre k > 0. Nos calculs
combinent la caractérisation des polynômes de Thom via la « méthode des équations
restreintes » de Rimanyi et al. avec les techniques des fonctions de Schur.

1. Introduction

The global behavior of singularities is governed by their Thom polynomials
(cf. [35], [14], [1], [12], [31]). Knowing the Thom polynomial of a singularity η,
denoted T η, one can compute the cohomology class represented by the η-
points of a map. We do not attempt here to survey all activities related to
computations of Thom polynomials, which are difficult tasks in general.

In the present paper, following a series of papers by Rimanyi et al. [32],
[31], [7], [2], we study the Thom polynomials for the singularities I2,2 of the
maps (C•, 0) → (C•+k, 0) with parameter k > 0.

The way of obtaining the thought Thom polynomial is through the
solution of a system of linear equations, which is fine when we want to
find one concrete Thom polynomial, say, for a fixed k. However, if we
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loci, Schur functions, resultants.
Math. classification: 05E05, 14N10, 57R45.
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want to find the Thom polynomials for a series of singularities, associated
with maps (C•, 0) → (C•+k, 0) with k as a parameter, we have to solve
simultaneously a countable family of systems of linear equations. As stated
by Rimanyi in [31], p. 512 :

“However, another challenge is to find Thom polynomials containing k
as a parameter.”

We do it here for the restriction equations for the singularities I2,2 (any k)
with the help of Schur functions. It appears that a use of these functions
puts a transparent structure on computations of Thom polynomials. In
particular, we get in this way some recursive formulas (cf., e.g., Lemma 14)
that are not so easy to find using other bases (e.g. the Chern monomial
basis that was used in [31] and in the references quoted there). In fact,
various recursions play a prominent role in the present paper – apart
from Lemma 14, see Eq. (4.34). Let us note that in a recent paper [6],
Feher and Komuves compute Thom polynomials for some second order
Thom-Boardman singularities also using Schur functions, and obtain similar
recursions for the coefficients.

Another feature of using the Schur function expansions for Thom polyno-
mials is that in all known to us cases, all the coefficients are nonnegative.
In fact, we state the following “positivity conjecture”:

Conjecture. — The coefficients of the Schur function expansion of a
Thom polynomial are nonnegative.(1)

To be more precise, we use here (the specializations of) supersymmetric
Schur functions, also called “Schur functions in difference of alphabets”
together with their three basic properties: vanishing, cancellation and fac-
torization, (cf. [34], [3], [17], [27], [29], [19], [9], and [16]). These functions
contain resultants among themselves. Their geometric role was illuminated,
e.g., in the study of ideals of polynomials supported on degeneracy loci of
[26], i.e. P-ideals of singularities Σi in the terminology of of the present
paper (cf. the end of Section 2 and Theorem 11).

The main goal of this paper is to give the Thom polynomials for the singu-
larities I2,2 (in Mather’s notation) associated with maps (C•, 0) → (C•+k, 0)
with parameter k > 0. We do it via establishing the Schur function expan-
sions for these Thom polynomials. We prove first in Lemma 12 that the
partitions appearing nontrivially have not more than three parts. Then,

(1) Note added in May 2006: this conjecture (formulated also by Feher and Komuves [6])
has been recently proved by Weber and the author in [30].
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THOM POLYNOMIALS 1489

in Lemma 14, we establish a recursive relation for Thom polynomials as-
sociated with the successive values of the parameter k. This reduces our
calculation to compute the (sub)sum indexed by partitions with precisely
two parts. This is essentially done in Proposition 16 (see also Propositions 17,
18, 19).

Our main result (Theorem 20), combined with Propositions 18 and 19,
gives an explicit presentation of the Thom polynomial for the singulari-
ties I2,2 with parameter k > 0 as a Z-combination of Schur functions. We
give closed algebraic expressions for the coefficients of these expansions.
It turns out that these coefficients are the same as the coefficients of the
Schur function expansions of the Segre classes of the second symmetric
power of a rank 2 vector bundle, computed in [33], [26], [15], and [28].

Our main result offers a generalization (to any k > 0) of the formulas
obtained previously by Porteous [21] and Rimanyi [31] for k = 0 and k = 1,
respectively.

In our calculations, we use extensively the functorial λ-ring approach to
symmetric functions developed mainly in Lascoux’s book [16].

Main results of the present paper were announced in [22].
The forthcoming author’s articles [24] and [23] will be devoted to study

the Schur function expansions of Thom polynomials for the Morin’s singular-
ities Ai. Inspired by the present paper, [22], [24], and [23], Ozer Ozturk [20]
computed the Thom polynomials for A4 and k = 2, 3.

2. Recollections on Thom polynomials

Our main reference for this section is [31]. We start with recalling what we
shall mean by a “singularity”. Let k > 0 be a fixed integer. By a singularity
we shall mean an equivalence class of stable germs (C•, 0) → (C•+k, 0),
where • ∈ N, under the equivalence generated by right-left equivalence
(i.e. analytic reparametrizations of the source and target) and suspension
(by suspension of a germ κ we mean its trivial unfolding: (x, v) 7→ (κ(x), v)).

We recall(2) that the Thom polynomial T η of a singularity η is a polyno-
mial in the formal variables c1, c2, . . . that after the substitution

(2.1) ci = ci(f∗TY − TX) =
[
c(f∗TY )/c(TX)

]
i
,

for a general map f : X → Y between complex analytic manifolds, evaluates
the Poincaré dual of [V η(f)], where V η(f) is the cycle carried by the closure

(2) This statement is usually called the Thom-Damon theorem [35], [4].

TOME 57 (2007), FASCICULE 5



1490 Piotr PRAGACZ

of the set

(2.2) {x ∈ X : the singularity of f at x is η} .

By codimension of a singularity η, codim(η), we shall mean codimX(V η(f))
for such an f . The concept of the polynomial T η comes from Thom’s
fundamental paper [35]. For a detailed discussion of the existence of Thom
polynomials, see, e.g., [1]. Thom polynomials associated with group actions
were studied by Kazarian in [12], [13].

In fact, the above is the case with singularities without moduli [12], [7]
and [2]. The singularities I2,2, studied in the present paper, have this
property for k > 0. Indeed, the moduli of singularities start at codimension
greater than 6k + 8 (loc.cit.) whereas codim(I2,2) = 3k + 4.

According to Mather’s classification, singularities are in one-to-one corre-
spondence with finite dimensional C-algebras. We shall use the following
notation:
. Ai (of Thom-Boardman type Σ1i) will stand for the stable germs with

local algebra C[[x]]/(xi+1), i > 0;
. I2,2 (of Thom-Boardman type Σ2) for stable germs with local algebra

C[[x, y]]/(xy, x2 + y2);
. III2,2 (of Thom-Boardman type Σ2) for stable germs with local algebra

C[[x, y]]/(xy, x2, y2) , here k > 1.

In the present article, the computations of Thom polynomials shall use
the method which stems from a sequence of papers by Rimanyi et al. [32],
[31], [7], [2]. We sketch briefly this approach, refering the interested reader
for more details to these papers, the main references being the last three
mentioned items.

Let k > 0 be a fixed integer, and let η : (C•, 0) → (C•+k, 0) be a
singularity with a prototype κ : (Cn, 0) → (Cn+k, 0). The maximal compact
subgroup of the right-left symmetry group

(2.3) Autκ =
{
(ϕ,ψ) ∈ Diff(Cn, 0)×Diff(Cn+k, 0) : ψ ◦ κ ◦ ϕ−1 = κ

}
of κ will be denoted by Gη. Even if Autκ is much too large to be a
finite dimensional Lie group, the concept of its maximal compact subgroup
(up to conjugacy) can be defined in a sensible way (cf. [10] and [36]).
In fact, Gη can be chosen so that the images of its projections to the
factors Diff(Cn, 0) and Diff(Cn+k, 0) are linear. Its representations via the
projections on the source Cn and the target Cn+k will be denoted by λ1(η)
and λ2(η). The vector bundles associated with the universal principal Gη-
bundle EGη → BGη using the representations λ1(η) and λ2(η) will be

ANNALES DE L’INSTITUT FOURIER



THOM POLYNOMIALS 1491

called E′
η and Eη. The total Chern class of the singularity η is defined

in H∗(BGη,Z) by

(2.4) c(η) :=
c(Eη)
c(E′

η)
·

The Euler class of η is defined in H2 codim(η)(BGη,Z) by

(2.5) e(η) := e(E′
η) .

In the following theorem, we collect information from [31], Theorem 2.4
and [7], Theorem 3.5, needed for the calculations in the present paper.

Theorem 1. — Suppose, for a singularity η, that the Euler classes of all
singularities of smaller codimension than codim(η), are not zero-divisors.(3)

Then we have:
(i) if ξ 6= η and codim(ξ) 6 codim(η), then T η(c(ξ)) = 0;
(ii) T η(c(η)) = e(η).

This system of equations (taken for all such ξ’s) determines the Thom
polynomial T η in a unique way.

To use this method of determining the Thom polynomials for singularities,
one needs their classification, see, e.g., [5].

In Section 4, we shall use these equations to compute Thom polynomials.
Sometimes, it is convenient not to work with the whole maximal compact
subgroup Gη but with its suitable subgroup; this subgroup should be,
however, as “close” to Gη as possible (cf. [31], p. 502). We shall denote
this subgroup by the same symbol Gη. We recall the following recipe for
computing maximal compact subgroups from [31], pp. 505–507. Let η be a
singularity whose prototype is κ : (Cn, 0) → (Cn+k, 0). The germ κ is the
miniversal unfolding of another germ β : (Cm, 0) → (Cm+k, 0) with dβ = 0.
The group Gη is a subgroup of the maximal compact subgroup of the
algebraic automorphism group of the local algebra Qη of η times the unitary
group U(k − d), where d is the difference between the minimal number
of relations and the number of generators of Qη. With β well chosen,
Gη acts as right-left symmetry group on β with representations µ1 and µ2.
The representations λ1 and λ2 are

(2.6) λ1 = µ1 ⊕ µV and λ2 = µ2 ⊕ µV ,

(3) This is the so-called “Euler condition” (loc.cit.) The Euler condition holds true for
the singularities I2,2 for any k > 0.

TOME 57 (2007), FASCICULE 5
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where µV is the representation of Gη on the unfolding space V = Cn−m

given, for α ∈ V and (ϕ,ψ) ∈ Gη, by

(2.7) (ϕ,ψ) α = ψ ◦ α ◦ ϕ−1 .

For example, for the singularity of type Ai: (C•, 0) → (C•+k, 0), we have

GAi = U(1)× U(k)

with

(2.8) µ1 = ρ1, µ2 = ρi+1
1 ⊕ ρk, µV =

i⊕
j=2

ρj
1 ⊕

i⊕
j=1

(ρk ⊗ ρ−j
1 ) ,

where ρj denotes the standard representation of the unitary group U(j).
Hence, we obtain assertion (i) of the following

Proposition 2. — (i) Let η = Ai. For any k, writing x and y1,. . . , yk

for the Chern roots of the universal bundles on BU(1) and BU(k),

(2.9) c(Ai) =
1 + (i+ 1)x

1 + x

k∏
j=1

(1 + yj) .

(ii) Let η = I2,2. Denote by H the extension of U(1)×U(1) by Z/2Z (“the
group generated by multiplication on the coordinates and their exchange”).
For k > 0, Gη = H × U(k). Hence, for the purpose of our computations,
we can use Gη = U(1)×U(1)×U(k). Writing x1, x2 and y1, . . . , yk for the
Chern roots of the universal bundles on two copies of BU(1) and on BU(k),
we have

c(I2,2) =
(1 + 2x1)(1 + 2x2)
(1 + x1)(1 + x2)

k∏
j=1

(1 + yj) ,(2.10)

e(I2,2) = x1x2(2x1 − x2)(2x2 − x1)(2.11)

×
k∏

j=1

(yj − x1)(yj − x2)(yj − x1 − x2).

(iii) Let η = III2,2. For k > 1, Gη = U(2)× U(k − 1), and writing x1, x2

and y1, . . . , yk−1 for the Chern roots of the universal bundles on BU(2)
and BU(k − 1),

(2.12) c(III2,2) =
(1 + 2x1)(1 + 2x2)(1 + x1 + x2)

(1 + x1)(1 + x2)

k−1∏
j=1

(1 + yj) .

ANNALES DE L’INSTITUT FOURIER
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(Assertions (ii) and (iii) are obtained, in a standard way, following the
instructions of [31], Sect. 4. As for assertion (ii), compare [31, pp. 506–507]
whereas assertion (iii) stems from [2, p. 65].)

Let η be a singularity. As it was illuminated in the author’s paper [26],
in the case of the singularities η = Σi, it is natural and useful to consider
a certain (homogeneous) ideal in the polynomial ring R = Z[c1, c2, . . .]
whose component of minimal degree is generated by T η. Namely, we denote
by Pη the ideal of polynomials in R which – after the substitution (1) – are
supported on V η(f), where f : X → Y is a general map between complex
analytic manifolds. (The notion of a “polynomial supported on a subscheme”
can be found in [9], Appendix A.) Keeping track of [26], we shall call Pη

the P-ideal of the singularity η. For example, the P-ideal of the singularity

Σi : (Cm, 0) → (Cn, 0)

is
PΣi

= Pm−i ,

where on the RHS we have the ideal studied extensively in [26] (cf. also [25]
and [27]). We shall use this ideal in the proof of Theorem 11.

In the present paper, it will be more handy to use, instead of k, a “shifted”
parameter

(2.13) r := k + 1 .

Sometimes, we shall write η(r) for the singularity η : (C•, 0) → (C•+r−1, 0),
and denote the Thom polynomial of η(r) by T η

r – to emphasize the depen-
dence of both items on r.

We have
ci(f∗TY − TX) = Si

(
TX∗ − f∗(TY ∗)

)
,

where Si means the Segre class. We shall follow of the notation on the RHS
and use, more generally, Schur functions S(i1,i2,...,ih), indexed by partitions,
cf. the next section.

3. Recollections on Schur functions

In this section, we collect needed notions related to symmetric functions.
We adopt the functorial point of view of [16] for what concerns symmetric
functions. Namely, given a commutative ring, we treat symmetric func-
tions as operators acting on the ring. (Here, these commutative rings are
mostly Z-algebras generated by the Chern roots of the vector bundles
from Proposition 2.)

TOME 57 (2007), FASCICULE 5
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Definition 3. — By an alphabet A, we understand a (finite) multi-set
of elements in a commutative ring.

For m ∈ N, by “an alphabet Am” we shall mean an alphabet A =
(a1, . . . , am) (of cardinalitym); ditto for Bn = (b1, . . . , bn), Yk = (y1, . . . , yk),
and X2 = (x1, x2).

Definition 4. — Given two alphabets A, B, the complete functions
Si(A − B) are defined by the generating series (with z an extra variable):

(3.1)
∑

Si(A − B)zi =
∏
b∈B

(1 − bz)/
∏
a∈A

(1 − az) .

So Si(A − B) interpolates between Si(A) – the complete homogeneous
symmetric function of degree i in A and Si(−B) – the ith elementary
function in B times (−1)i. The notation A − B is compatible with the
multiplication of series

(3.2)
∑

Si(A−B)zi ·
∑

Sj(A′−B′)zj =
∑

Si

(
(A + A′)− (B + B′)

)
zi ,

the sum A + A′ denoting the union of two alphabets A and A′.

Convention 5. — We shall often identify an alphabet A = {a1, . . . , am}
with the sum a1 + · · ·+ am and perform usual algebraic operations on such
elements. For example, Ab will denote the alphabet (a1b, . . . , amb). We will
give priority to the algebraic notation over the set-theoretic one. In fact,
in the following, we shall use mostly alphabets of variables.

We have
(A + C)− (B + C) = A− B,

and this corresponds to simplification of the common factor for the rational
series:

(3.3)
∑

Si

(
(A + C)− (B + C)

)
zi =

∑
Si(A− B)zi .

Definition 6. — By a partition I = (i1, i2, . . . , ih) we mean a weakly
increasing sequence 0 6 i1 6 i2 6 · · · 6 ih of natural numbers.

In the following, we shall identify partitions with their Young diagrams,
as is customary.

Definition 7. — Given a partition I and two alphabets A and B, the
Schur function SI(A − B) is defined by the determinant

(3.4) SI(A − B) :=
∣∣Sip+p−q(A − B)

∣∣
16p,q6h

.

ANNALES DE L’INSTITUT FOURIER
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These functions are often called supersymmetric Schur functions or Schur
functions in difference of alphabets. Their properties were studied, among
others, in [34], [3], [17], [27], [29], [19], [9], and [16]. From the last item,
we borrow a use of increasing “French” partitions and the determinant
of the form (3.4) evaluating a Schur function. We shall use the simplified
notation i1i2 · · · ih or i1, i2, . . . , ih for a partition (i1, i2, . . . , ih) (the lat-
ter one if ih > 10). The rectangle partition (i, i, . . . , i) (h times) will be
denoted (ih).

For example,

S33344(A − B) =

∣∣∣∣∣∣∣∣∣∣

S3 S4 S5 S7 S8

S2 S3 S4 S6 S7

S1 S2 S3 S5 S6

1 S1 S2 S4 S5

0 1 S1 S3 S4

∣∣∣∣∣∣∣∣∣∣
,

where Si means Si(A − B).
We shall now give some properties of Schur functions. The details can

be found in the just quoted references. By Eq. (3.3), we get the following
cancellation property:

(3.5) SI(
(
A + C)− (B + C)

)
= SI(A− B) .

We record the following property justifying the notational remark from
the end of Section 2; for a partition I,

(3.6) SI(A − B) = (−1)|I|SJ(B − A) = SJ(B∗ − A∗) ,

where J is the conjugate partition of I (i.e. the consecutive rows of J are
equal to the corresponding columns of I), and A∗ denotes the alphabet
{−a1,−a2, . . .}.

Fix two positive integers m and n. We shall say that a partition I =
(i1, i2, . . . , ih) is contained in the (m,n)-hook if either h 6 m, or h > m and
ih−m 6 n. Pictorially, this means that the Young diagram of I is contained
in the “tickened" hook

-�

6

?

n

m

We record the following vanishing property. Given alphabets A and B of
cardinalities m and n, if a partition I is not contained in the (m,n)-hook,

TOME 57 (2007), FASCICULE 5
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then

(3.7) SI(A− B) = 0 .

For example,

S3569(A2 − B4) = S3569(a1 + a2 − b1 − b2 − b3 − b4) = 0

because 3569 is not contained in the (2, 4)-hook. In fact, we have the
following result.

Theorem 8. — If Am and Bn are alphabets of variables, then the
functions SI(Am − Bn), for I running over partitions contained in the
(m,n)-hook, are Z-linearly independent.

(They form a Z-basis of the abelian group of the so-called “supersymmetric
functions”.)

In the present paper, by a symmetric function we shall mean a Z-linear
combination of the operators SI(−).

Definition 9. — Given two alphabets A,B, we define their resultant

(3.8) R(A,B) :=
∏

a∈A, b∈B
(a − b) .

This terminology is justified by the fact that R(A,B) is the classical
resultant of the polynomials R(x,A) and R(x,B). We have

(3.9) R(Am,Bn) = S(nm)(A − B) =
∑

I

SI(A)S(nm)/I(−B) ,

where the sum is over all partitions I ⊂ (nm).
When a partition is contained in the (m,n)-hook and at the same time

it contains the rectangle (nm), then we have the following factorization
property: for partitions I = (i1, . . . , im) and J = (j1, . . . , jh),

(3.10) S(j1,...,jh,i1+n,...,im+n)(Am − Bn) = SI(A) R(A,B) SJ(−B) .

The following convention stems from Lascoux’s paper [18].

Convention 10. — We may need to specialize a letter to 2, but this
must not be confused with taking two copies of 1. To allow one, never-
theless, specializing a letter to an (integer, or even complex) number r
inside a symmetric function, without introducing intermediate variables, we
write r for this specialization. Boxes have to be treated as single variables.
For example,

Si(2) = i+ 1, but Si

(
2

)
= 2i.

A similar remark applies to Z-linear combinations of variables. We have:

ANNALES DE L’INSTITUT FOURIER
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. S2(X2) = x2
1 + x1x2 + x2

2 but S2

(
x1 + x2

)
= x2

1 + 2x1x2 + x2
2,

. S11(X2) = x1x2 but S11

(
x1 + x2

)
= 0,

. S2(3x) = 6x2 but S2

(
3x

)
= 9x2, etc.

For example,

(3.11)
k∏

j=1

(x1 − yj)
(
x2 − yj)(x1 + x2 − yj) = R(X2 + x1 + x2 ,Yk

)
.

This convention will be used in the next section.

We end the present section with the following result which is a consequence
of the author’s study [26], [25], [27] of the P-ideals of the singularities Σi.

Theorem 11. — Suppose that a singularity η is of Thom-Boardman
type Σi. Then all summands in the Schur function expansion of T η

r are
indexed by partitions containing(4) the rectangle partition (r + i− 1)i.

Proof. — Since η is of Thom-Boardman type Σi, the Thom polynomial T η
r

belongs to the P–ideal of the singularity Σi with parameter r. We also
know by the Thom-Damon theorem (cf. [4]) that T η

r is a Z-linear combi-
nation of Schur functions in TX∗ − f∗(TY ∗). The assertion now follows
by combining Theorem 3.4 from [26] with Lemma 2.5 from [25] (see also
Claim in the proof of Theorem 5.3(i) in [27]). Indeed, it follows from the
former result that any Z-combination of Schur functions indexed by par-
titions containing (r + i− 1)i belongs to PΣi(r), whereas the latter result
implies that no nonzero Z-combination

∑
I αISI , where all I 6⊃ (r+ i− 1)i,

belongs to PΣi(r). �

4. Thom polynomial for I2,2(r)

The codimension of I2,2(r), r > 1, is 3r + 1. The Thom polynomial
for I2,2(1) is S22 = S22(TX∗ − f∗(TY ∗)) (cf. [21]). In the following, we
shall often omit the arguments of Schur functions.

>From now on, we shall assume that r > 2. The Thom polynomial
for I2,2(2) is (cf. [31])

S133 + 3S34 .

(4) We say that one partition is contained in another if this holds for their Young diagrams
(cf. [16]).

TOME 57 (2007), FASCICULE 5
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By virtue of Proposition 2, the equations from Theorem 1 characterizing
the Thom polynomial for I2,2(r) are

(4.1) P (−Br−1) = P
(
x− 2x − Br−1

)
= P

(
x− 3x − Br−1

)
= 0 ,

and (using Eq. (3.11))

P
(
X2 − 2x1 − 2x2 − Br−1

)
(4.2)

= x1x2(x1 − 2x2)(x2 − 2x1)R
(
X2 + x1 + x2 ,Br−1

)
.

Here, without loss of generality, we assume that x, x1, x2, and Br−1 are
variables. Moreover, P (−) denotes a symmetric function. For the remainder
of this paper, we set

(4.3) D := 2x1 + 2x2 + x1 + x2 .

Then, additionally, for variables x1, x2 and an alphabet Br−2, we have the
vanishing imposed by III2,2:

(4.4) P (X2 − D− Br−2) = 0 .

Indeed, the singularities 6= I2,2 with codimension 6 codim(I2,2) are: A0, A1,
A2 and III2,2.

For r > 1, we set

(4.5) Tr := T I2,2
r .

Our goal is to give a presentation of Tr as a Z-linear combination of Schur
functions with explicit algebraic expressions of the coefficients:

(4.6) Tr =
∑

I

αISI .

We shall say that a partition I appears nontrivially in Eq. (4.6) if αI 6= 0.

Lemma 12. — (i) A partition appearing nontrivially in the Schur function
expansion of Tr contains the partition (r + 1, r + 1).

(ii) A partition appearing nontrivially in the Schur function expansion
of Tr has at most three parts.

Proof. — (i) Since the singularity I2,2 is of Thom-Boardman type Σ2,
this is a particular case of Theorem 11.

(ii) We can assume that r > 3. In addition to information contained in (i),
we shall use Eq. (4.4)

Tr(X2 − D− Br−2) = 0 .
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By virtue of (i), we can use factorization property (3.10) to all summands of

(4.7) Tr(X2 − D− Br−2) =
∑

I

αISI(X2 − D− Br−2)

(we assume that αI 6= 0). We divide each summand of this last polynomial
by the resultant

R(X2,D + Br−2) .

Suppose that the resulting factor of SI is

(4.8) Sp,q(X2) SJ(−D− Br−2) ,

cf. (3.10). Since |I| = 3r + 1, we have

(4.9) |J | 6 r − 1 .

Now, let us assume that I has more than 3 parts, that is, J has 2 or more
parts. This assumption (together with the inequality (4.9)) implies that

SJ(−Br−2) 6= 0

(Br−2 is an alphabet of variables). Expanding (4.8), we get among summands
the following one of largest possible degree |J | in Br−2:

(4.10) Sp,q(X2) SJ(−Br−2) 6= 0 .

Take in the sum ∑
I

αISp,q(X2) SJ(−D− Br−2)

the (sub)sum of all the nonzero summands of the form (4.8) with the largest
possible weight of J . Since Schur polynomials are independent, this (sub)sum
is nonzero, and moreover, it is Z-linearly independent of other summands
both in the sum indexed by partitions I with > 3 parts, and in that indexed
by partitions with two parts (this last sum does not depend on Br−2).
Hence, there is no Z-linear combination of SI ’s involving nontrivially I

with more than three parts (and possibly also those with 3 or 2 parts) that
satisfies Eq. (4.4). Assertion (ii) has been proved. �

(For example, S1144 cannot appear in the Schur function expansion of T3

because S1144(X2 − D − B1) after division by the resultant contains the
summand S11(−B1) = S2(B1), which does not occur in similar expressions
for S55, S46, S244, S145.)

Corollary 13. — If Si1,i2 appears nontrivially in the Schur function
expansion of Tr, then i1 = r + 1 + p and i2 = 2r − p, where 0 6 2p 6 r − 1.
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The following lemma gives a recursive description of Tr. Denote by Φ
the linear endomorphism on the Z-module spanned by Schur functions
indexed by partitions of length 6 3, that sends a Schur function Si1,i2,i3

to Si1+1,i2+1,i3+1. Let Tr denote the sum of those terms in the Schur
function expansion of Tr which are indexed by partitions of length 6 2.
Note that T1 = T1 = S22.

Lemma 14. — With this notation, for r > 2, we have the following
recursive equation:

(4.11) Tr = Tr + Φ(Tr−1) .

Proof. — Write

(4.12) Tr =
∑

I

αISI =
∑

J

αJSJ +
∑
K

αKSK ,

where J have two parts and K = (k1, k2, k3) have three parts (we assume
that αI 6= 0). We set

(4.13) Q =
∑
K

αKSk1−1,k2−1,k3−1 ,

and our goal is to show that Q = Tr−1. Since a partition I appearing
nontrivially in the Schur function expansion of Tr must contain the parti-
tion (r + 1, r + 1), any partition (k1 − 1, k2 − 1, k3 − 1) above contains the
partition (r, r). Since this last partition is not contained in the (1, r−1)-hook,
Eqs. (4.1) with r replaced by r − 1 and P by Q are automatically fulfilled
by virtue of the vanishing property (3.7). Note that Eq. (4.4) is a particular
case of Eq. (4.2). Indeed, specializing br−1 to x1 + x2 in Eq. (4.2), we
get Eq. (4.4). Therefore it suffices to show that

(4.14) Q(X2−E−Br−2) = x1x2(x1−2x2)(x2−2x1)R
(
X2+ x1 + x2 ,Br−2

)
,

where E = 2x1 + 2x2 . We apply to each summand

αKSk1−1,k2−1,k3−1(X2 − E− Br−2)

of Q(X2 − E− Br−2) the factorization property (3.10), and divide it by the
resultant

R(X2,E + Br−2) .

Suppose that the resulting factor is

(4.15) αKSa,b(X2) Sc(−E− Br−2) ,

where (k1 − 1, k2 − 1, k3 − 1) = (c, r + a, r + b).
Performing the same division of

x1x2(x1 − 2x2)(x2 − 2x1)R
(
X2 + x1 + x2 ,Br−2

)
,
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we get R( x1 + x2 ,Br−2). Thus, the desired equation Q = Tr−1 is equivalent
to

(4.16)
∑

a+b+c=r−2

αKSa,b(X2)Sc(−E− Br−2) = R
(
x1 + x2 ,Br−2

)
.

To prove Eq. (4.16), we use Eqs. (4.2) and (4.12) for Tr∑
I

αISI(X2−E−Br−1) = x1x2(x1−2x2)(x2−2x1)R
(
X2 + x1 + x2 ,Br−1

)
.

Using again the factorization property (this time with respect to the larger
rectangle (r + 1, r + 1)) and dividing both sides of the last equation by the
resultant

R(X2,E + Br−1) ,

we get the identity

(4.17)
∑

p+q+j=r−1

αISp,q(X2)Sj(−E− Br−1) = R
(
x1 + x2 ,Br−1

)
.

Since

Sj(−E− Br−1) = Sj(−E− Br−2)− br−1Sj−1(−E− Br−2)

and
R

(
x1 + x2 ,Br−1

)
= (x1 + x2 − br−1)R

(
x1 + x2 ,Br−2

)
,

taking the coefficients of (−br−1) in both sides of Eq. (4.17), we get the
desired Eq. (4.16). The lemma has been proved. �

(For example, writing T3 = αS46 + βS55 + γS244 + δS145, we get that

γS1(−E−B1) + δS1(X2) = R
(
x1 + x2 ,B1

)
,

by taking the coeficients of (−b2) in both sides of

αS2(X2)+βS11(X2)+γS2(−E−B2)+δS1(−E−B2)S1(X2) = R
(
x1 + x2 ,B2) .

)
Iterating Eq. (4.11) gives

Corollary 15. — With the above notation, we have

(4.18) Tr = Tr + Φ(Tr−1) + Φ2(Tr−2) + · · ·+ Φr−1(T1) .

Of course, Tr is uniquely determined by its value on X2. The following
result gives this value.

Proposition 16. — For any r > 1, we have

(4.19) Tr(X2) = (x1x2)r+1 Sr−1(D) .
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Proof. — We use induction on r. For r = 1, 2, the assertion holds true.
Suppose that the assertion is true for T i where i < r. Fix a partition
I = (j, r + 1 + p, r + 1 + q) appearing nontrivially in the Schur function
expansion (4.6) of Tr. Note that j varies from 0 to r−1 because |I| = 3r+1.
We obtain, by the factorization property (3.10),

SI(X2 − D− Br−2) = R · Sj(−D− Br−2) · Sp,q(X2) ,

where R = R(X2,D + Br−2). Hence, using Eq. (4.18), we see that

(4.20) Tr(X2 − D− Br−2) = R ·
(r−1∑

j=0

Sj(−D− Br−2)
Tr−j(X2)

(x1x2)r−j+1

)
.

By the induction assumption, for positive j 6 r − 1,

Tr−j(X2) = (x1x2)r−j+1 Sr−1−j(D) .

Substituting this to (4.20), and using the vanishing (4.4), we obtain

(4.21)
r−1∑
j=1

Sj(−D− Br−2)Sr−1−j(D) +
Tr(X2)

(x1x2)r+1
= 0 .

But we also have, by a formula for addition of alphabets,

(4.22)
r−1∑
j=1

Sj(−D− Br−2)Sr−1−j(D) + Sr−1(D) = Sr−1(−Br−2) = 0 .

Combining Eqs. (4.21) and (4.22) gives

Tr(X2) = (x1x2)r+1 Sr−1(D) ,

that is, the induction assertion. The proof of the proposition is now complete.
�

The Schur function expansion of Si(D) was described in [26], [15], and
[28, App. A3] in the context of the Segre classes of the second symmetric
power of a rank 2 vector bundle. Indeed, D is the alphabet of the Chern
roots of the second symmetric power of a rank 2 bundle with the Chern
roots x1, x2.

Denote by 〈p, q〉 the coefficient of Sp,q := Sp,q(X2) in Sp+q(D), where
0 6 p 6 q. A proof of the next proposition, due to Lascoux with the help of
divided differences, can be found in [28], pp. 163–166. We give here another
proof without divided differences.

Proposition 17. — For p > 0, we have

(4.23) 〈p, q〉 = 〈p− 1, q〉+ 〈p, q − 1〉 .
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Proof. — We have

Si(D) =
i∑

h=0

Sh

(
2x1 + 2x2

)
Si−h

(
x1 + x2

)
(4.24)

=
i∑

h=0

2hSh · (x1 + x2)i−h ,

and (cf., e.g., [19] I.4, Ex.3)

(4.25) (x1 + x2)j =
∑

a,b>0

(a+ b

a

)b− a+ 1
b+ 1

Sa,b ,

where a + b = j and a 6 b. Combining Eqs. (4.24), (4.25) with the Pieri
formula (cf., e.g., [16], [19]), we get for 0 6 p 6 q,

(4.26) 〈p, q〉 =
p+q∑
h=0

2h
∑

h1,h2>0

(p + q − h

p − h1

) (q − h2) − (p − h1) + 1
q − h2 + 1

,

where h1 + h2 = h and h1 6 p 6 q − h2.
We also compute the Schur function expansion of S1,i−1(D). Denote

by [p, q] the coefficient of Sp,q in S1,p+q−1(D), 0 6 p 6 q. We have the
following expansion for S1,i−1(D):

i∑
h=1

S(1,i−1)/(i−h)

(
2x1 + 2x2

)
Sh

(
x1 + x2

)
=

i∑
h=1

2hSh · (x1 + x2)i−h +
i∑

h=1

2hS1,h−1 · (x1 + x2)i−h .

We get from both sums in the last line that for p > 0 the coefficient [p, q] is
equal twice the RHS of Eq. (4.26), that is,

(4.27) [p, q] = 2〈p, q〉 .

We have, by the Pieri formula,

(4.28) Si−1(D) · S1(D) = Si−1(D) · 3S1 = Si(D) + S1,i−1(D) .

This equation implies that Sp,q appears in Si(D)+S1,i−1(D) with multiplicity
3(〈p − 1, q〉+ 〈p− 1, q〉) (we use the Pieri formula once again). The desired
Eq. (4.23) now follows by virtue of Eq. (4.27). �

We now pass to some “closed” algebraic expressions for the 〈p, q〉’s.
We have

(4.29) 〈0, q〉 = Sq

(
1 + 2

)
= 1 + 2 + · · ·+ 2q = 2q+1 − 1 .

The following result was obtained in [33], [26], and [15].
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Proposition 18. — For 0 6 p 6 q, we have

(4.30) 〈p, q〉 =
(p+ q + 1

p+ 1

)
+

(p+ q + 1
p+ 2

)
+ · · ·+

(p+ q + 1
q + 1

)
.

We propose now an alternative expression involving powers of 2, which
is a natural generalization of the equation 〈0, q〉 = 2q+1 − 1, and which
stems directly from Eq. (4.23). Namely, with the convention that

(
a
0

)
= 1

for any a ∈ Z, we have

Proposition 19. — For 0 6 p 6 q,

(4.31) 〈p, q〉 = 2p+q+1 −
p∑

s=0

[(p + q − 2s − 1
p − s

)
−

(2p − 2s − 1
p − s + 1

)]
22s.

Proof. — The proof uses double induction on p and q. We use Eq. (4.23)
several times:

〈p, q〉 = 〈p − 1, q〉+ 〈p, q − 1〉
= 〈p − 1, q〉+ 〈p − 1, q − 1〉+ 〈p, q − 2〉
= · · · = 〈p − 1, q〉+ · · ·+ 〈p − 1, 1〉+ 〈p, 0〉 .

We know the values of all summands in the last row by the induction
assumption (the last summand being equal to 2p+1 − 1). Using several times
Eq. (4.29) as well as a well-known equality:

1 +
(a + 1

a

)
+

(a + 2
a

)
+ · · ·+

(2a − 2
a

)
=

(2a − 1
a + 1

)
,

we get the desired induction assertion (4.31) for 〈p, q〉. �

Using Proposition 16, we shall now give the Schur function expansion of Tr.
Denote by drj the coefficient of Sr+j,2r+1−j in Tr for r > 1 and j > 1. By
virtue of Corollary 13, drj 6= 0 entails j 6 [ 12 (r + 1)] (for example, the only
Schur functions that can appear with nonzero coefficients in T5 are S6,10,
S79, and S88), so that we have

(4.32) Tr =
[ 12 (r+1)]∑

j=1

drj Sr+j,2r+1−j .

We have the following link between the drj ’s and 〈p, q〉’s: suppose that
drj 6= 0, then we have

(4.33) drj = 〈j − 1, r − j〉 .

We may display the drj ’s with the help of the following “Pascal triangle”-
type matrix:
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d11 0 0 0 0 . . .

d21 0 0 0 0 . . .

d31 d32 0 0 0 . . .

d41 d42 0 0 0 . . .

d51 d52 d53 0 0 . . .

d61 d62 d63 0 0 . . .

d71 d72 d73 d74 0 . . .
...

...
...

...
...

=

1 0 0 0 0 . . .

3 0 0 0 0 . . .

7 3 0 0 0 . . .

15 10 0 0 0 . . .

31 25 10 0 0 . . .

63 56 35 0 0 . . .

127 119 91 35 0 . . .
...

...
...

...
...

By Proposition 17, if drj > 0, then we have

(4.34) drj = dr−1,j−1 + dr−1,j .

We have the following values:

T1 = S22,

T2 = 3S34,

T3 = 7S46 + 3S55,

T4 = 15S58 + 10S67,

T5 = 31S6,10 + 25S79 + 10S88,

T6 = 63S7,12 + 56S8,11 + 35S9,10,

T7 = 127S8,14 + 119S9,13 + 91S10,12 + 35S11,11 .

Summing up all our considerations, we get the main result of the present
paper. It gives the desired Thom polynomial in a parametric form (the para-
meter being r).

Theorem 20. — For r > 1, the Thom polynomial for I2,2(r) is equal to

(4.35)
r−1∑
i=0

∑
j>1

i+2j6r+1

dr−i,j Si,r+j,2r−i−j+1 ,

where the coefficients

dr−i,j = 〈j − 1, r − i − j〉

are given by Eq. (4.30) (or (4.31)).
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We have the following values of T1, T2 = Φ(T1)+T2, . . . , T7 = Φ(T6)+T7:
T1 = S22,

T2 = S133 + 3S34,

T3 = S244 + 3S145 + 7S46 + 3S55,

T4 = S355 + 3S256 + 7S157 + 3S166 + 15S58 + 10S67,

T5 = S466 + 3S367 + 7S268 + 3S277 + 15S169 + 10S178

+ 31S6,10 + 25S79 + 10S88,

T6 = S577 + 3S478 + 7S379 + 3S388 + 15S2,7,10 + 10S289

+ 31S1,7,11 + 25S1,8,10 + 10S199

+ 63S7,12 + 56S8,11 + 35S9,10,

T6 = S688 + 3S589 + 7S4,8,10 + 3S499 + 15S3,8,11 + 10S3,10,10

+ 31S2,8,12 + 25S2,9,11 + 10S2,9,10 + 63S1,8,13

+ 56S1,9,12 + 35S1,10,11 + 127S8,14

+ 119S9,13 + 91S10,12 + 35S11,11 .
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