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DEFORMATION OF HOLOMORPHIC MAPS
ONTO FANO MANIFOLDS

OF SECOND AND FOURTH BETTI NUMBERS 1

by Jun-Muk HWANG

Abstract. — Let X be a Fano manifold with b2 = 1 different from the projec-
tive space such that any two surfaces in X have proportional fundamental classes
in H4(X,C). Let f : Y → X be a surjective holomorphic map from a projective
variety Y . We show that all deformations of f with Y and X fixed, come from au-
tomorphisms of X. The proof is obtained by studying the geometry of the integral
varieties of the multi-valued foliation defined by the variety of minimal rational
tangents of X.

Résumé. — Soit X une variété de Fano avec b2 = 1 différente de l’espace
projectif et telle que tout couple de surfaces dans X ont des classes fondamentales
dans H4(X,C) proportionnelles. Soit f : Y → X une application surjective d’une
variété projective Y dans X. Nous montrons que toute déformation de f de Y dans
X (fixés), provient d’automorphismes de X. La preuve est obtenue en étudiant la
géométrie des variétés intégrales du feuilletage multi-valué défini par la variété des
vecteurs tangents des courbes rationnelles minimales de X.

1. Introduction

Given two compact complex manifolds X, Y and a holomorphic map
f : Y → X, an obvious way to deform f as maps from Y to X is by
the automorphisms of X. More precisely, let {gt, t ∈ C, |t| < 1} be a 1-
parameter family of automorphisms of X with g0 = IdX . Then the family
of holomorphic maps {gt◦f, |t| < 1} defines a deformation of f . In this case,
we say that the deformation of f comes from automorphisms of X. The
main result of [5] says that when X is a projective manifold which is not
uniruled, all deformations of a surjective holomorphic map f : Y → X come
from automorphisms of the target up to an etale cover (see [5] for the precise
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816 Jun-Muk HWANG

statement). In particular, when X is a simply connected projective manifold
which is not uniruled, all deformations of f come from automorphisms of X.
For convenience, let us say that a compact complex manifold X has the
target rigidity property if for any surjective holomorphic map f : Y → X,
all deformations of f come from automorphisms of X. Thus [5] says that a
simply connected projective manifold which is not uniruled has the target
rigidity property.

It is natural to ask what happens when X is a simply connected unir-
uled projective manifold, in particular, a Fano manifold. The projective
space Pn does not have the target rigidity property. In fact, given an n-
dimensional projective manifold Y embedded in some projective space PN ,
there are various ways to project Y to Pn ⊂ PN which give examples of
deformations of surjective holomorphic maps to Pn which do not come
from automorphisms of Pn. However, Pn is somewhat exceptional in this
regard. In fact, we expect the following.

Conjecture 1.1. — Let X be a Fano manifold with second Betti num-
ber b2 = 1, which is different from the projective space. Then X has the
target rigidity property.

The strongest evidence for Conjecture 1.1 is the following result of [7].

Theorem 1.2. — [[7], Theorem 3] Let X be a Fano manifold with
b2 = 1, different from the projective space. If the variety of minimal ra-
tional tangents of X at a general point x ∈ X is not a union of positive
dimensional linear subspaces, then X has the target rigidity property.

The technical assumption in Theorem 1.2 on the variety of minimal ra-
tional tangents holds for all examples of Fano manifolds with b2 = 1 for
which the variety of minimal rational tangents has been identified. In fact,
the following stronger form of Conjecture 1.1 is expected.

Conjecture 1.3. — [[7], p. 52, Conjecture] Let X be a Fano manifold
with b2 = 1, different from the projective space. Then the variety of minimal
rational tangents of X at a general point x ∈ X is not a union of positive
dimensional linear subspaces.

Since there seems to be no good approach to Conjecture 1.3 at the mo-
ment, it is worthwhile studying Conjecture 1.1 and trying to replace the
technical assumption in Theorem 1.2 by less technical conditions. We will
prove the following which is a result in this direction.

Theorem 1.4. — Let X be an n-dimensional Fano manifold with b2 =
1, different from the projective space. Suppose the fundamental classes in
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H4(X,C) of any two surfaces in X are proportional. For example, this is
the case if X has b4 = 1. Then X has the target rigidity property.

By Theorem 1.2, the proof of Theorem 1.4 is reduced to the case when the
variety of minimal rational tangents at a general point of X is the union of
linear subspaces of positive dimension. We will exploit the geometry of the
integral varieties of the multi-valued foliation defined by the linear variety
of minimal rational tangents to establish Theorem 1.4. In the course of our
proof of Theorem 1.4, we will obtain the following partial verification of
Conjecture 1.3 (cf. Corollary 2.3).

Theorem 1.5. — Let X be an n-dimensional Fano manifold with b2 =
1. If the variety of minimal rational tangents at a general point x ∈ X is a
union of linear subspaces of dimension > n−1

2 , then X is Pn.

Let us end the introduction with one application of Theorem 1.4.

Corollary 1.6. — Let Y ⊂ Pn+1 be a smooth hypersurface of dimen-
sion n > 5 and let X be a projective manifold different from Pn. Given any
surjective holomorphic map f : Y → X, all deformations of f come from
automorphisms of X.

In fact, this is true for any smooth complete intersection Y of dimension
> 5 in a projective space. Note that by Lefschetz, b1(Y ) = 0 and b2(Y ) =
b4(Y ) = 1. Thus the Picard group of X is cyclic. If X is not Fano, the
result follows from b1(X) = 0 and [[5], Theorem 1.2]. Thus we may assume
that X is a Fano manifold with b2 = 1. Now b4(Y ) = 1 implies that any
two surfaces in X have proportional fundamental classes in H4(X,C), so
Theorem 1.2 can be applied.

Regarding Corollary 1.6, it is expected that when Y is a general hyper-
surface, no such map f exists. In fact, this was proved by Amerik [1] for a
general hypersurface in P4.

2. Fano manifolds with linear variety
of minimal rational tangents

For the back-ground material on minimal rational curves and the variety
of minimal rational tangents, we refer the readers to [3]. Let X be a uniruled
projective manifold and let K be a minimal dominating component of the
space of rational curves on X. For a general point x ∈ X, let Kx be the
subvariety of K consisting of members passing through x. The variety of
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818 Jun-Muk HWANG

minimal rational tangents at x (determined by K) is the subvariety Cx

of PTx(X) defined as the closure of the set of the tangent directions to
members of Kx smooth at x.

Throughout this section, we will make the following assumption.
Assumption. X is an n-dimensional Fano manifold of b2 = 1, different

from Pn, and for some choice of K, the variety of minimal rational tangents
at a general point is the union of linear subspaces of dimension p > 0.

The condition X 6= Pn implies that p < n − 1 and the condition
b2(X) = 1 implies that Cx has at least two (in fact, three by [[4], Propo-
sition 2]) irreducible components. In an analytic local neighborhood of x,
each component of Cx defines a distribution. It is easy to see that this dis-
tribution is integrable and the leaf through x is an immersed Pp+1. More
precisely, we have the following.

Proposition 2.1. — In the above setting, there exists a normal variety
X ′ with a finite holomorphic map ρ : X ′ → X and a dense open subset
U of X ′ equipped with a proper holomorphic map ϕ : U → T such that
each fiber of ϕ is biholomorphic to Pp+1 and each member of Kx for a
general x ∈ X is the image of a line in some fibers of ϕ. Moreover, for each
t ∈ T , let Pt := ρ(ϕ−1(t)) be the subvariety in X. Then Pt is an immersed
submanifold with trivial normal bundle in X, ρ|ϕ−1(t) is its normalization,
and for two distinct points t1 6= t2 ∈ T , the two subvarieties Pt1 and Pt2

are distinct.

Here, when X is a complex manifold and Z ⊂ X is a subvariety. We
say that Z is an immersed submanifold if the normalization Ẑ is smooth
and the normalization map ν : Ẑ → Z ⊂ X is an immersion. The normal
bundle of Z means the vector bundle NZ on Ẑ defined as the quotient of
ν∗T (X) by the image of T (Ẑ). If NZ is a trivial bundle, we say that Z is
an immersed submanifold with trivial normal bundle.

Proof. — The proof of the first sentence is given in [[2], Theorem 3.1] and
the distinctness of Pt1 and Pt2 for t1 6= t2 is obvious from the construction
there. Let us check the triviality of the normal bundle. For a general point
x ∈ X and any member C of K through x, the splitting type of T (X) on
the normalization of C is O(2) ⊕ O(1)p ⊕ On−1−p. Let C ⊂ Pt. Then the
splitting type of T (ϕ−1(t)) on the normalization of C is O(2)⊕O(1)p. Thus
the splitting type of the normal bundle of Pt on any such C through x is
On−p−1. It follows that the normal bundle is trivial by [[8], Theorem 3.2.1].
This shows Pt is an immersed submanifold with trivial normal bundle for a
general t ∈ T . Hence we can say that it is true for each t ∈ T by shrinking
U and T . �
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We have the following consequence.

Proposition 2.2. — In the above setting, two distinct irreducible com-
ponents of Cx for a general point x ∈ X are disjoint.

Proof. — Suppose not. Then for a general point x ∈ X, there are two
distinct points t1, t2 ∈ T such that

x ∈ Pt1 ∩ Pt2 and dim(Pt1 ∩ Pt2) > 1.

Choose a complete curve C, which is not necessarily a rational curve, such
that

x ∈ C ⊂ Pt1 ∩ Pt2 .

Let ν : Ĉ → C be the normalization and consider the diagram

Ĉ
ν1−→ ϕ−1(t1)

ν2 ↓ ↓ ρ1

ϕ−1(t2)
ρ2−→ X

where ν1, ν2 are the natural maps lifting ν and ρ1, ρ2 are the restrictions
of ρ such that

ρ1 ◦ ν1 = ρ2 ◦ ν2 = ν.

From Proposition 2.1, we can regard ν∗i T (ϕ−1(ti)) as a subbundle of ν∗T (X)
via the immersion ρi for each i = 1, 2. Denote this subbundle by Vi for each
i = 1, 2. Then

ν∗T (X)/Vi
∼= On−p−1

Ĉ

from the triviality of the normal bundle. Since V1 and V2 are two distinct
subbundles of ν∗T (X), there exists a point z ∈ Ĉ such that the fibers V1,z

and V2,z are different in ν∗T (X)z. Pick a point y 6= z ∈ Ĉ and let my

be the maximal ideal. Since V1 = ν∗1T (ϕ−1(t1)) and ϕ−1(t1) ∼= Pp+1, the
natural homomorphism

H0(Ĉ, V1 ⊗my) → V1,z

is surjective. Then the image of V1 in

ν∗T (X)/V2
∼= On−p−1

Ĉ

has sections vanishing at y but non-zero at z, a contradiction. �

An immediate consequence is the following, which proves Theorem 1.5.
Recall that the index of a Fano manifold Z is the largest integer i such that
−KZ = iL for some line bundle L in Pic Z.

TOME 57 (2007), FASCICULE 3
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Corollary 2.3. — In the above setting, dim Cx = p < n−1
2 . In partic-

ular, if Z is a Fano manifold of b2 = 1 and of index > n+3
2 , then for any

choice of a minimal dominating component of the space of rational curves
on Z, the variety of minimal rational tangents at a general point cannot
be the union of linear subspaces, unless Z ∼= Pn.

Proof. — If dim Cx = p > n−1
2 , any two components of Cx must intersect

in PTx(X) ∼= Pn−1, a contradiction to Proposition 2.2. Note that p + 2 is
the anti-canonical degree of the rational curves belonging to K. Thus if the
index of Z is > n+3

2 , then p > n−1
2 . �

3. Proof of Theorem 1.4

In this section, we will impose one more condition on X.
Assumption. X is as in Section 2 and any two surfaces in X have pro-

portional fundamental classes in H4(X,C).
For example, this is the case if b4(X) = 1, or X is the image of a holo-

morphic map from a projective manifold with b4 = 1. The condition on
H4(X,C) gives information about the map ρ : X ′ → X in Proposition 2.1,
as follows.

Proposition 3.1. — Let us use the notation of Proposition 2.1. Let
B ⊂ X be an irreducible hypersurface in X. Then there exists an irreducible
component D ⊂ X ′ of ρ−1(B) with the following properties.

(i) D is dominant over T .
(ii) ρ is unramified at a general point of D.
(iii) ρ|D : D → B has degree > 1.

Proof. — B is an ample hypersurface from b2(X) = 1. Given B and a
general point x ∈ B, there exists a member C of K intersecting B transver-
sally at x (and possibly at other points) from the freeness of general mem-
bers of K. This implies that there is t ∈ T with Pt intersecting B transver-
sally at x. By Proposition 2.1, C is the birational image of a line C ′ in
ϕ−1(t). This implies that ρ is unramified at ρ−1(x)∩ϕ−1(t) (e.g. from the
proof of [[6], Lemma 1]). Thus there exits D satisfying (i) and (ii). Suppose
ρ|D is birational over B. We extend ϕ|D to a dominant rational map φ

from D to some projective variety T̄ compactifying T . Let E ⊂ D be the
indeterminacy locus of φ. Then ρ(E) is a subvariety of codimension > 2
in B. Thus we can choose a general point t ∈ T and a surface S ⊂ Pt

such that S ∩B is a curve disjoint from ρ(E). Since ρ|D : D → B is finite
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and birational, we can write (ρ|D)−1(S ∩ B) = A ∪ Q for an irreducible
curve A contained in a fiber of ϕ and a finite set Q. By the choice of S,
Q is disjoint from E. Thus we can choose a hypersurface in T̄ such that
its proper transform F ⊂ D under φ|D is disjoint from A and Q. It follows
that ρ(F ) ⊂ B is disjoint from S ∩ B, and consequently, from S. But by
the assumption on H4(X,C), any subvariety of codimension 2 in X must
have positive intersection with the surface S, a contradiction. �

Proposition 3.2. — In the setting of Proposition 3.1, suppose we are
given an irreducible hypersurface B ⊂ X, a general point x ∈ B and an
open neighborhood W ⊂ X of x. Then there exists a point y ∈ W and two
distinct points t1, t2 ∈ T with y ∈ Pt1 ∩ Pt2 and Ty(Pt1) 6= Ty(Pt2) such
that the irreducible component of W ∩ Pt1 (resp. W ∩ Pt2) containing y

intersects B transversally at some point of B ∩W .

Proof. — Let D ⊂ X ′ be as in Proposition 3.1. Let x1, x2 be two dis-
tinct points on ρ−1(x) ∩D from Proposition 3.1 (iii). We know that ρ are
unramified at x1 and x2 from Proposition 3.1 (ii). There exist open neigh-
borhoods W1 ⊂ U of x1, W2 ⊂ U of x2 and W0 ⊂ W of x with the following
properties:

(1) ρ(W1) = ρ(W2) = W0.
(2) ρ|W1 and ρ|W2 are biholomorphic.
(3) W1 ∩D and W2 ∩D are non-singular and transversal to fibers of ϕ.

There exists an open neighborhood W ′
1 ⊂ W1 of x1 (resp. W ′

2 ⊂ W2

of x2) such that for any z ∈ W ′
1 (resp. z ∈ W ′

2), ϕ−1(ϕ(z)) ∩ W ′
1 (resp.

ϕ−1(ϕ(z)) ∩W ′
2) is connected. Let y be a general point in ρ(W ′

1) ∩ ρ(W ′
2).

Let y1 = W ′
1 ∩ ρ−1(y) and y2 = W ′

2 ∩ ρ−1(y). Then t1 := ϕ(y1) and
t2 := ϕ(y2) give the desired two points. They must be distinct from the
generality of y. �

We get the following consequence for subvarieties of the tangent bundle
T (X).

Proposition 3.3. — Let Y ′ be a projective subvariety in T (X) domi-
nant over X. Then the natural projection Y ′ → X is birational. In partic-
ular, Y ′ defines a section in H0(X, T (X)).

Proof. — Let Y be the normalization of Y ′ and f : Y → X be the
induced finite holomorphic map. If f is birational, it is biholomorphic and
consequently, the projection Y ′ → X is biholomorphic. Thus it suffices to
show that f is birational.

Suppose that f is not birational. Let R ⊂ Y be an irreducible ramifica-
tion divisor of f and B = f(R). Let z ∈ R be a general point. Let r be the

TOME 57 (2007), FASCICULE 3
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local sheeting number of f at z in the sense of [6]. We can choose a holo-
morphic coordinate neighborhood V of z with coordinates (w1, . . . , wn) at
z and a holomorphic coordinate neighborhood W of f(z) with coordinates
(z1, . . . , zn) such that f−1(W ) ⊂ V and f is given by

z1 = w1, . . . , zn−1 = wn−1, zn = wr
n.

By Proposition 3.2, there exists a point xo ∈ W \ B, two distinct points
t1, t2 ∈ T and members C1, C2 of K such that

C1 ⊂ Pt1 , C2 ⊂ Pt2 , xo ∈ C1 ∩ C2

and the irreducible component of C1 ∩ W (resp. C2 ∩ W ) containing xo

intersects B transversally at some point of B ∩ W . A direct computation
in the coordinates of V and W , as in [[6], p. 636, Lemma 1], shows that for
any irreducible complex analytic curve C on V intersecting B transversally,
f−1(C) ∩W is irreducible. Thus there exists a unique irreducible compo-
nent C ′

1 (resp. C ′
2) of f−1(C1) (resp. f−1(C2)) intersecting V such that an

irreducible component of C ′
1 ∩ V (resp. C ′

2 ∩ V ) contains f−1(xo) ∩ V . In
particular, C ′

1 ∩ C ′
2 contains the r distinct points f−1(xo) ∩ V . Note that

the holomorphic map ν : Y → T (X) given by the normalization map of Y ′

induces a canonical section σ ∈ H0(Y, f∗T (X)) such that

f∗(σ(y)) = ν(y) ∈ Tf(y)(X).

From here, for the simplicity of the notation, we will assume that the
immersed submanifolds C1, C2, Pt1 , Pt2 of X are embedded submanifolds
of X. It is easy to see that our argument below works verbatim without
this assumption by lifting things to the normalizations of the immersed
submanifolds. Consider the exact sequence

0 −→ H0(C ′
1, f

∗T (Pt1)) −→ H0(C ′
1, f

∗T (X)) −→ H0(C ′
1, f

∗NPt1
)

where NPt1
is the normal bundle of Pt1 . Since the normal bundle of Pt1 is

trivial,
H0(C ′

1, f
∗NPt1

) = f∗H0(C1, NPt1
).

It follows that for any two distinct y1 6= y2 ∈ f−1(xo) ∩ V ,

f∗(σ(y1))− f∗(σ(y2)) ∈ Txo(Pt1).

By the same argument, we get

f∗(σ(y1))− f∗(σ(y2)) ∈ Txo
(Pt2).

However, by Proposition 2.2, we have Txo(Pt1) ∩ Txo(Pt2) = 0. It follows
that

f∗(σ(y1)) = f∗(σ(y2)) for any two y1, y2 ∈ f−1(xo) ∩ V.
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But by the definition of the canonical section σ of f∗T (X) on Y , f∗(σ(y1)) 6=
f∗(σ(y2)) if y1 6= y2. This is a contradiction. Thus f : Y → X must be bi-
rational. �

We are ready to prove Theorem 1.4.
Proof of Theorem 1.4. — Note that the Kodaira-Spencer class of a de-

formation of a holomorphic map f : Y → X is in H0(Y, f∗T (X)). Thus to
prove Theorem 1.4, it suffices to show that for any surjective holomorphic
map f : Y → X,

H0(Y, f∗T (X)) = f∗H0(X, T (X)).

Suppose σ∈H0(Y, f∗T (X)). Then associating to y ∈ Y the vector f∗σ(y)∈
Tf(y)(X), we get a holomorphic map Y → T (X) whose image Y ′ is a
projective subvariety in T (X). By Proposition 3.3, Y ′ is a section v ∈
H0(X, T (X)). It follows that σ = f∗v. �
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