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BILLIARD COMPLEXITY IN THE HYPERCUBE

by Nicolas BEDARIDE & Pascal HUBERT

ABSTRACT. — We consider the billiard map in the hypercube of R%. We obtain a
language by coding the billiard map by the faces of the hypercube. We investigate
the complexity function of this language. We prove that n3¢=3 is the order of
magnitude of the complexity.

RESUME. — On considére Papplication du billard dans le cube de R%. On code
cette application par les faces du cube. On obtient un langage, dont on cherche
a évaluer la complexité. On montre que l'ordre de grandeur de cette fonction
est n34=3,

1. Introduction

A billiard ball, i.e. a point mass, moves inside a polyhedron P with unit
speed along a straight line until it reaches the boundary 0P, then it in-
stantaneously changes direction according to the mirror law, and continues
along the new line.

Label the faces of P by symbols from a finite alphabet A whose cardinal-
ity equals the number of faces of P. Either we consider the set of billiard
orbits in a fixed direction, or we consider all orbits.

In both cases the orbit of a point corresponds to a word in the alphabet A
and the set of all the words is a language. We define the complexity of the
language, p(n), by the number of words of length n that appears in this
system. We call the complexity of an infinite trajectory the directional com-
plexity: it does not depend on the initial point under suitable hypotheses.
We denote it by p(n,w) (where w is the initial direction of the trajectory),
and the other one the global complexity or to short simply the complexity.
How complex is the game of billiard inside a polygon or a polyhedron ?

Keywords: Symbolic dynamic, billiard, words, complexity function.
Math. classification: 37A35, 37C35, 05A16, 11N37, 28D.
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The only general result about complexity function is that the billiard in
a polygon has zero entropy [10], [13], and thus the two complexities grow
sub-exponentially. For the convex polyhedron the same fact is true [4].

It is possible to compute the complexity for rational polygons (a polygon
is rational if the angles between sides are rational multiples of 7). For
the directional complexity the first result is in the famous paper of Morse
and Hedlund [16], and it has been generalized to any rational polygon by
Hubert [12]. This directional complexity is always linear in n.

For the global complexity in the square coded by two letters, Mignosi
found an explicit formula see [15], [6]. Then Cassaigne, Hubert and Trou-
betzkoy [8] proved that p(n)/n® has a lower and an upper bound, in the
case of rational convex polygons, and the first author generalized this result
to the case of non convex rational polygons [3]. Moreover, for some regular
polygons they showed that p(n)/n® has a limit, and then calculated it. But
even for the hexagon we are not able to obtain an equivalent statement:
we must use the result of Masur that gives the order of magnitude of the
number of saddle connections [14].

In the polyhedral case much less is known. The directional complexity, in
the case of the cube, has been computed by Arnoux, Mauduit, Shiokawa-
band Tamura [1] and generalized to the hypercube by Baryshnikov [2]; see
also [5] for a generalization. Moreover, in [3] the computation has been done
in the case of some right prisms whose bases tile the plane. For those poly-
hedra the directional complexity is always quadratic in n. In the current
article we compute the global complexity for the hypercube of R? coded
with d letters.

THEOREM 1.1. — Let p(n,d) be the complexity of the language asso-
ciated to the hypercubic billiard (coded with d letters). Then there exists
C1,Cs € R, such that

Cin?43 < p(n,d) < Cynd=3,

Remark 1.2. — 1In the proof some constants appear in the inequalities.
We denote them all by the same letter C'. Moreover we will use the term
“cube” even if d is greater than three.

1.1. Overview of the proof

The proof of [8] is based on the fact that the complexity is related to
the number of generalized diagonals. A generalized diagonal is an orbit
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BILLIARD COMPLEXITY IN THE HYPERCUBE 721

segment which starts and ends on a vertex of the polygon (or an edge
of the polyhedron). If we wish to apply this technique to the hypercube,
however, a generalized diagonal is not necessarily associated to a single
word, so that we must modify the proof. First we show that the complexity
is related to the number of words that appear in one diagonal, see Section 3.
Next we begin to count the numbers of those words. We split the estimates
between several parts. Section 5 is devoted to obtaining the upper bound by
a general geometric argument. In Section 6 we establish the lower bound
by an induction on the dimension d.

2. Background
2.1. Billiard

In this section we recall some definitions: Let P be a polyhedron, the
billiard map is called T and it is defined on a subset of 9P x RP?~1. This
space is called the phase space.

e We will call a face of the cube a face of dimension d — 1. If we use a
face of smaller dimension we will state the dimension.

We define a partition P of the phase space on d sets by the following
method: the boundary of P is partitioned into d sets by identifying the
parallel faces of the cube. Then we consider the partition

P, = \n/ T'P.
=0

DEFINITION 2.1. — The complexity of the billiard map, denoted p(n, d),
is the number of atoms of P,,.

e The unfolding of a billiard trajectory: Instead of reflecting the trajec-
tory in the face we reflect the cube and follow the straight line. Thus we
consider the tiling of R? by Z?, and the associated partition into cubes of
edges of length one. In the following when we use the term “face” we mean
a face of one of those cubes.

The following lemma is very useful in the following.

LEMMA 2.2. — Consider an orthogonal projection on a face of the cube.
The orthogonal projection of a billiard map is a billiard map inside a cube
of dimension equal to the dimension of the face.

TOME 57 (2007), FASCICULE 3
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2.2. Combinatorics

DEFINITION 2.3. — Let A be a finite set called the alphabet.

e By a language L over A we always mean a factorial extendable lan-
guage: a language is a collection of sets (Ly,)n>0 where the only element of
Lg is the empty word, and each L,, consists of words of the form aias - - - an,
where a; € A and such that for each v € L, there exist a,b € A with
av,vb € Lpy1, and for all v € L,y if v = au = v'b with a,b € A
then u,u' € L,.

e The complexity function p : N — N is defined by p(n) = card(L,,).

First we recall a well-known result of Cassaigne [7] concerning combina-
torics of words.

DEFINITION 2.4. — Let L(n) be a factorial extendable language. For
any n > 1 let
s(n) :=p(n+1) —p(n).

For v e L(n) let

my(v) = card{u € 3, uwv € L(n+ 1)},

my(v) = card{w € ¥, vw € L(n+ 1)},

my(v) = card{u € ¥, w € X, wvw € L(n+2)}.
A word is called right special if m,.(v) > 2, left special if mg(v) > 2 and

bispecial if it is right and left special. Let BL(n) be the set of the bispecial
words.

Cassaigne [7] has shown:

LEMMA 2.5. — Let L be a language such that me(v) > 1 and m,(v) > 1
for all words v € L. Then the complexity satisfies

Yn>=1, s(n+1)—s(n)= Z i(v),
vEBL(n)

where i(v) = mp(v) — m,(v) — mye(v) + 1.
For the proof of the lemma we refer to [7] or [§].

Remark 2.6. — If we code the billiard map by the sequence of faces hit
in a trajectory, and if we associate the same letter to the parallel faces of
the cube the two definitions of complexity coincide, i.e. p(n,d) = p(n).

ANNALES DE L’INSTITUT FOURIER
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2.3. Geometry

We recall the Euler’s formula.

LEMMA 2.7 (see [9]). — Let P be a simply connected polyhedron of RY.
Let N; be the number of faces of P of dimension i; then we have

d—1
> (1)'Ni =1 (-1)%
i=0
Remark 2.8. — In the following sections, we will use this formula for

some algebraic manifolds of degree 2, but for simplicity we will always mean
a polyhedron and hyperplanes, since the proofs are the same.

Now we prove the following result.

LEMMA 2.9. — Suppose (H;):<n Is a sequence of hyperplanes of R* and
let (Q;)ier be the connected components of R* \ Hy U...U H,,. Then there
exists C(x) > 0 such that

card I < C(z)n".

Proof. — We will prove the assumption by induction on . The induction
hypothesis states that it is true for all ¢ < .

The hyperplanes (H;) induce a cellular decomposition of R*. We will
denote NV; the number of cells of dimension ¢ for 0 < 7 < . We remark that
card I = N,. We begin by obtaining an upper bound for N; for 0 < i < d.
We will see later that this is sufficient to finish the proof.

e Computation of Ny. We denote H = {Hq,...,H,}, and consider the

map ¢g : H* — {vertices} U0,
H;, n...NnH,;, ifitisa point,
) otherwise.

¢02 (Hil,...,Hiz)'—>{

This map is surjective, thus we deduce Ny < n®. Hence the induction is
true for x = 1.

e Let & the set of subspaces of dimension i which form the cells of
dimension ¢ of the cellular decomposition. We denote E; = card(&;). Then
the map H* % — & U0,

(Hj“.”’szii)'_) Hjlﬂ...ﬂsz_i if dimHjlﬂ...ﬂHjx_i:x,
0 otherwise

is surjective by definition of the partition. We deduce E; < n® ! for
all i <z —1.

TOME 57 (2007), FASCICULE 3
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Now it remains to know into how many pieces each space of dimension ¢
is cut. Let F' € & and H € ‘H, we have FN H = F or X, where X is a
subset of codimension 1 contained in F.

The hyperplanes which partition F' do not contain F', thus their trace
on I is of codimension 1. Thus the problem is reduced to compute the
number of connected components of the partition of F' by m < n hyper-
planes.

The induction hypothesis implies that Nr < C(i)n'. Then

Er < c(i)n'.
max r < c(i)n

We deduce N; < n*~ic(i)n® < c(i)n®. Euler’s formula implies

Therefore N, < Cn®. The induction process has been completed. O

COROLLARY 2.10. — Let P be a polyhedron of R”, let (H;);<n be a
sequence of hyperplanes, and let (Q;);c; be the connected components of
P\ HyU...UH,. Then there exists C(x, P) > 0 such that

card I < C(z, P)n”.

Proof. — We can apply the same proof in the case where P is a poly-
hedron: it suffices to add the hyperplanes which form the boundary of P.
In this case only the constant C' changes. O

Remark 2.11. — 1If we consider algebraic equations of bounded degree
(by ), the same proof works since an intersection of such manifolds has a
bounded number of connected components, and since the Euler character-
istic takes a finite number of values (see Remark 2.8), only depending on
and 4.

2.4. Number theory

A general reference for this section is [11].

DEFINITION 2.12. — Let n be an integer. The invertible elements of
Z/nZ are denoted by (Z/nZ)*, and the cardinality of this set is denoted ¢(n),
which is called the Euler’s function.

ANNALES DE L’INSTITUT FOURIER
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DEFINITION 2.13. — The Moebius function p is defined by u(l) = 1

and
(n) (—1)k ifn=py--pr, p; € P distinct primes,
p(n) =
0 if n has a square factor.

The multiplicative functions ¢, are linked by the following classical
property:

LEMMA 2.14. — For all positive integer n the following holds:

Loif =1 6(n d
Zuw:{o wa 400 50

i else din
Now we use the above lemma to obtain the following result.

LEMMA 2.15. — For all integer p > 1, there exists a C' > 0 such that
for all n the following holds

Zse > CnP P2,

<n
_ p
where Sy = nge,gcd(m,e):l mP.

We give a proof of the lemma for the sake of the completeness. The
integer part is denoted by E().

Proof. — By Lemma 2.14 we have

doomP=2 Y uldm’ =Y pd)krd,

dzngf) ) m<Ld|m, d|¢ k<e/d
ged(m, )=
= St (5w eu(5) +o(p)]

:cpﬂePHZ@Jrcpepzp( + 073 (o /d).

de de de
Then we have
‘Z” 0(1/d) ‘ Clnd,
dle
and by Lemma 2.14
D oud) =0 if £#1.
dle
We deduce
ety B ) | o1
dle

TOME 57 (2007), FASCICULE 3
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and

dSe=)Y cetty @ +) 0@ ),

<n <n d|¢ <n
=5 :c@ S @t L O lnn),
d
d<n n’<n/d

> ,u(d)dpE(%>p+2 +O(nPInd),

dsn
S ) e
— S u@@[(MY 7 2 o((MY ™Y + omrme),
(;“ [ d) ((d H e
C p+QZM+CHP+1 @—&-O(n”lné),
asn asn

d
= OnPt? Z % +nPTO(logn) + O(nP Inf).
a<n
The series of general term pu(d)/d? is absolutely convergent and its sum
is 1/¢(2) which is positive [11]; thus we deduce

> Sp = ot O

L<n

3. Preliminary results

DEFINITION 3.1. — A diagonal y4, g between two faces A, B of the cubic
tesselation, of dimensions less than d — 2, is the set of (oriented) segments
which start from A and stop in B.

DEFINITION 3.2. — We introduce the following order on the faces: two
faces A and B verify A < B if each oriented segment from A to B is such
that in the unfolding, the associated vector has positive coefficients.

The diagonals are of several types due to the dimension of A, B. We call
a diagonal between the faces A, B a positive diagonal if we have B > A.
If we attach a superscript + to an object, then it will consist of positive
diagonals.

DEFINITION 3.3. — We say that two faces A, B are at combinatorial
length n if each orbit segment between A, B passes through n cubes.
We denote the length by d(A, B) = n (see Fig. 3.1).

ANNALES DE L’INSTITUT FOURIER
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A d(A,B) =6
Figure 3.1. Words of billiard

This definition can be made since we are in the hypercube. In other
polyhedron it is not well defined.

DEFINITION 3.4. — If the faces A, B of the cubic tesselation fulfill
d(A, B) = n then the diagonal y4 g is of combinatorial length n. We denote
the set of these diagonals by Diag(n).

Notations. — In the following we only consider diagonals of combina-
torial length n whose initial segment is in the cube [0, 1]¢. If a diagonal is
a positive diagonal, it implies that the final edge is in R+d.

We denote the fact that an orbit in the diagonal v has code v by v € 7.
We consider the bispecial words such that, in the unfolding, the associated
trajectories are in R+d, and not in one of the d coordinates planes, we
denote these words by BL(n,d)™.

In the following we call octant a proper subspace of R? of the form
I x --- x I; where I; is equal to R™ or to Rt.

DEFINITION 3.5. — Let v be a billiard word, we define the cell of v by
the subset
{(m,w) € OP x RPdil}
such that for all 0 < i < |v| — 1, T*(m,w) NOP is in the face labelled by v;.

The aim of this section is to show:

ProprosITION 3.6. — With the preceding notations, there exists C' > 0
such that

217 Y i) = > i)+ O0(s(n+1,d—1) = s(n,d — 1)]),

veBL(n,d) v eBLY(n,d)

> Yie Yo ¥ Y

~v€Diag(n) vEY BLY (n,d) ~v€Diag(n) vEY
where s(n,d) = p(n+ 1,d) — p(n,d).

and

TOME 57 (2007), FASCICULE 3
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For the proof we need the following lemmas.

LEMMA 3.7. — We consider a word v in L(n,d) with n > 2, consider
the unfolding of the billiard trajectories which are coded by v and start
inside the cube [0;1]%. Then for all i,2 < i < n, there exists only one face
corresponding to the letter v;.

Proof. — First we consider the intersection of the cell of v with RP?~1.
This set is a proper subset of an octant since n > 2. Now we make the proof
by contradiction. We consider the first times j where two different faces
appear. There exist two lines starting form a face (corresponding to v;_1)
which pass through these two different faces. These faces are different but
are coded by the same letter, thus they are in two different hypercubes.
Thus the two directions are in different octant, contradiction. O

Figure 3.2. Words of billiard

In Figure 3.2 we show two billiard words in the square. The path repre-
sents the faces at length n of the initial square. In the figure we have n = 3.
The two words are coded by 001 and 101, if we code the horizontal lines
by 0, and the vertical lines by 1.

LEMMA 3.8. — Let v be a word in BL(n,d)™", then there exists only one
positive diagonal associated to this word.

Proof. — If we study the unfolding of a trajectory associated to v, the
fact that we consider only words in BL(n,d)" (and not in BL(n,d)) implies
that there are at most d choices for the suffix of v in the octant R? (a suffix
is a letter ¢ such that vl is a word), and the same result for the prefix.

We consider the faces related to the suffix letter. We claim that these
faces have a non-empty intersection: by Lemma 3.7 these faces are in a
same hypercube. They correspond to different letters of the coding, thus
these faces intersect (by definition of the coding). The claim is proved.

ANNALES DE L’INSTITUT FOURIER
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Those faces have a non-empty intersection, if we consider the same in-
tersection with the prefix, we have built a diagonal associated to this word,
and by construction it is unique. O

DEFINITION 3.9. — We call discontinuity a set of points
X ={(m,w), m e A}

in the phase space such that A is a face, and such that their orbits intersect
another face of dimension d — 2.

Let us remark that a discontinuity is of dimension at most 2(d — 1), and
that a diagonal is in the intersection of two discontinuities.

LEMMA 3.10. — Consider a diagonal v between two faces A, B of di-
mensions 4, j. Then for all word v € v (see Notations) we have

d? >i(v) > 1.

Proof. — Consider a bispecial billiard word v, the cell of v in the phase
space is an open set. It means that if a trajectory has v for coding, a small
perturbation of v has still v for coding.

A face of dimension d — 2 is at the intersection of two faces of dimen-
sion d — 1, thus the face of dimension j is at the intersection of at least d—j
faces, and we deduce m,(v) > d — j by perturbation. The same method
shows that my(v) > d —i. Now by definition of diagonal, see Definition 3.1,
the diagonal is in the interior of the cell of v in the phase space. Moreover
the cell of v is an open set. Now consider a segment [a; b] inside the diago-
nal with a € A. There exists an open set near a such that for all a’ inside
the segment [a’;b] is still coded by v. Now there exists a neighborhood
of b such that for all b’ the segment [a’;b'] has v for coding. This implies
mp(v) = m,(v)me(v). Finally we obtain i(v) = (mg(v) —1)(m,(v)—1) > 1.
The other inequality is obvious. |

3.1. Proof of Proposition 3.6

First we remark that the symmetries of R? implies that >, Lna) 1)
is the same for each octant.

Now we are interested in the bispecial words which are neither in BL(n, d)™
nor in one of the symmetric sets. Their unfolding is in [0,1]¢~! x R*. Thus
for each coordinates plane their number is equal to the number of bispecial
words of the cube of dimension d — 1. Lemma 2.5 implies

> i) <Cls(n+1,d=1) = s(n,d—1)|  (CEeR).
vgBL(n,d)t

TOME 57 (2007), FASCICULE 3
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We consider the map
f:BL(n,d)" — Diag™(n), f:vr— 1.
Lemma 3.8 implies that f is well defined and onto, thus
card (BL(n,d)") = Z card (f(7)).

~v€Diag(n)
Then we obtain
S ¥ Y
BL(n,d)* ~vEDiag(n) vEY

Now we must bound i(v) for each v € 5. This is a consequence of Lemma 3.10.

4. Equations of diagonals

In these section we give in Lemma 4.1 the equations of a diagonal, we
deduce in Proposition 4.2 that several diagonals can not overlay, and we
finish the section by a description of the diagonals of fixed combinatorial
length. Remark that these equations are homogeneous in w.

LEMMA 4.1. — Let A, B two faces of dimension d — 2, we consider
YAB = {(m,w) ER'xR*yme A, m+RwunNB #* @}.

Then 4, has one of the following equations:

1) nw; = pwj, with n,p € N;

2) m; + nw;/w; = p with n,p € N;

3) w;m; —w;m; = nw; + pw; with n,p € N.

Proof. — First we can assume that the point m € A have coordinates of
the following form:

t(ml, ce ,md,g,O, 0)
Then each point of B have two coordinates equal to integers n, p. Thus its
coordinates are of the form:
B:t(bl,...,n,...,p,...,bd_g).

If the line m + Rw intersects B it means that there exists A such that
m + Aw € B. Then there are three choices, depending on the position
of n,p in the coordinates.

e If n,p are at positions d — 1,d we obtain a system of the form
Awg_1 =N, Awg=Dp.

This gives equation 1).

ANNALES DE L’INSTITUT FOURIER
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o If n is at a position 7 less or equal than d — 2, and p is at position d — 1
or d, we obtain

Awg_1 =p, m;+ Aw; =n.
This gives the second equation.
e If n and p are at position less than d — 2, we are in case 3). O

ProPOSITION 4.2. — Let A, B,C;,i =1,...,£ be £ + 2 faces of dimen-
sion d — 2. We deduce the equivalence

YAB = UVA@. <= A, B,C; are contained in a hyperplane of R%.
i

Proof. — We consider the three functions which appear in Lemma 4.1:

f(w) = nw; — pwj,

nw;
g(m,w) =m; + — =p,
w;

h(m,w) = wjm; —w;m; — (nw; + pw;).

The diagonals v4,B,74,c; have equations of the type f,g,h by preceding
lemma (with different n, p, 4, 7). Remark that these equations are quadratic
in the variables m,w. Thus these maps are analytic.

We compute the jacobian of these maps:

df:(0||n—p)7
dg=(0...wj...[|...n...m; —p...),
dh:(0...wj~-~—wi...||...—mi—n...mi—p...).

Now without loss of generality we treat the case ¢ = 1. The sets y4,p,
va,c are equal if and only if two of the preceding functions are equal on a
set of positive measure. It implies that the linear forms are proportional.
Assume that two different forms are proportional (for example d f and dg).
It implies that m; = 0, thus the equality is true on an hyperplane, and
they are not equal on a set of positive measure. Thus the only possibility
is that the two equations are of the same type (i.e. two equations df or
two equations dg). Then the same argument shows that the equality of two
equations of the type dg or dh implies that (m,w) lives on a set of zero
measure. Thus the only possibility is the equality of two vectors d f. And
it is equivalent to the fact that A, B, C' belong to the same hyperplane. O

LEMMA 4.3. — Let A, B be two faces of dimension less or equal than d — 2.
Assume A, B are at combinatorial length n, and that the elements of A are

TOME 57 (2007), FASCICULE 3
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of the form
t(mla v amd—270a 0)
Then we have:

e either A, B are in a subspace of dimension d — 2 then points of B are
of the form
t(bl, . ,bd,27 Ng—1, ’I’Ld),
with ng_1,nq € N, ged(ng—1,nq4) = 1 and Zf;lz Eb;) +ng—1 +ng =n;

e or the points of B have the following coordinates:
t(bla Y (7R 7nj7' <. 7bd—2)7 (Za]) 7£ (di 17d)7
with n;,n; € N and Y07 E(bg) 4+ ni + nj = n.

Proof. — First of all we consider the faces of dimension d — 1 which are
at combinatorial length n of A. We claim that the points (b;);<q of these
faces verify Z?Zl E(b;)) =n.

The proof is made by induction on n. It is clear for n = 1, now consider
a billiard trajectory of length n, it means that just before the last face
we intersect another face of the same cube. These face is at combinatorial

length n — 1, and we can apply the induction process. Now consider a point
of these faces, denote by (c;)i<q its coordinates. We verify easily that

-2 d
ZE(bz‘) - ZE(Ci) =1

for all point b, c. This finishes the proof of the claim.

Figure 4.1. Length of billiard words

In Figure 4.1 the path represents the faces at length n of the initial
square. In the figure we have n = 3.

A trajectory between A and B is a diagonal if the trajectory does not
intersect another face. It means that y4 g must not be the union of v4 ¢;,
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where C; are at length less than n from A. We use Proposition 4.2 which
implies that the only bad case is when A, B are on a same hyperplane.
Thus the second point of the Lemma is proved.

Now assume A, B are contained in a hyperplane. The fixed coordinates of
all points in A and B are at the same places. Then we project on the plane
generated by these coordinates. The diagonal projects on a line. This line
does not contain integer points. Thus we obtain the primality condition. [

COROLLARY 4.4. — We deduce that there exists C' > 0 such that
card Diag(n) < Cn~!.

Proof. — A diagonal v, g can be of several forms among the dimension
of the faces. Since a face of dimension d — 1 has a bounded number of faces
of dimension less than d — 1 in its boundary, we can reduce to count the
diagonals between faces of dimension d — 1. Then the number of diagonals
is bounded by a constant C(d) times the number of diagonals between faces
of dimension d—2. The preceding lemma shows that we have the inequality

d
cardDiag(n) g C card {(ni)lgigd; n; € N’ Zni = n}
i=1

Therefore card Diag(n) < Cnd1. O

5. Upper bound

In this section we show
THEOREM 5.1. — There exists C > 0 such that
s(n,d) < Cn34=4,

LEMMA 5.2. — Let A, B two faces of dimension less than d — 2, then
the set ya,p is of dimension less than 2(d — 2). For all k, for all subset I
of N of cardinality k, there exists C(k) > 0 such that for all (A;);c; faces
of dimension less than d — 2, (7, ;c; V4,4, has at most C(k,d) connected
components.

Proof. — The first part is a consequence of Lemma 4.1. Indeed A is
of dimension less than d — 2, the directions lives in RP%~1 which is of
dimension d — 1 and the manifold has one equation.

For the second part we use again Lemma 4.1. The equation of these
sets are polynomial equation of bounded degree (2), and a theorem of [9,
Exercise 8.4.5] finishes the proof. O
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PROPOSITION 5.3. — There exists C' > 0 such that for all A, B faces of
dimension less than d — 2, at combinatorial length n, we have

Z 1 < Cn?d—4,

VEYA,B

Proof. — We consider the cell related to y4 . This space is partitioned
with several discontinuities. The number of sets of the partition is equal to
the number of words v in y4 . First if a discontinuity does not partition,
we prolong it. It gives an upper bound for the number of words. Then
we consider the partition made by two discontinuities, Lemma 5.2 implies
that the number of connected components is bounded by C. Then we apply
Corollary 2.10 with Cn hyperplanes (in fact algebraic varieties of degree
at most 2, see Remark 2.11), and z = 2(d — 2) due to the first part of
Lemma 5.2. O

5.1. Proof of Theorem 5.1

We make an induction on d.
If d = 2 it is a consequence of [15] or [6], or [8].
By Proposition 3.6 we deduce

3 i(v)<2d[ 3 Zl—ks(n—i—Ld—l)}.

vEBL(n,d) ~v€Diag(n) vEY

Then the preceding proposition shows

3 i(v)éQd[ 3 and*4+s(n+1,d—1)}.

veEBL(n,d) ~vy€Diag(n)

Corollary 4.4 implies that card(Diag(n)) < n?~!, we deduce

> i) <2400t s(n+ 1,d - 1)].
veBL(n,d)

By induction we deduce
s(n+1,d) — s(n,d) < C[n®*¥5 + 03T s(n,d) < Cn3i4,

The induction is proved.
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6. Lower bound

We prove
THEOREM 6.1. — There exists C > 0 such that for all n
s(n+1,d) — s(n,d) > Cn3%=>,
The proof is made by induction on d. It is clear for d = 2 due to [15] or
[6] or [8], assume it is true for i < d — 1.

DEFINITION 6.2. — Let A, B two faces of dimension less than d — 2.
o We denote by C4 g the vector space generated by ff, B.
o Let m:RY — Ca p be the orthogonal projection.

Consider a trajectory of a fixed diagonal, it is coded by a word v, the
image of the trajectory by = is a billiard trajectory, due to Lemma 2.2.
Thus the map 7 can be extended to words, we denote it again by :

Y T ()
s |o
v —— 7(v)

The map 7 consists to erase some letters, due to Lemma 2.2.

6.1. Projection and language

The aim of this section is to prove

PROPOSITION 6.3. — We have
U {r(v),verant= | £Gi.d—1).
va,B€Diag(n) i<n—1

Proof. — The inclusion
U {r@),ven}c |J LGd-1)
v4,B€Diag(n) i<n—1
is a consequence of Lemma 2.2.

To prove the second inclusion we need:

LEMMA 6.4. — Let i < n— 1, and let v € L(i,d — 1) be a billiard
word between two faces A, B’ of dimension d — 2. There exists a face B of
dimension d — 2 such that

d(A,B) =n, ~ap is a diagonal, ma p(B) =D
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Proof. — By Lemma 4.3, we can always lift the face B’ in a face B with
d(A, B) = n. We just have to translate B’ to the coordinate x4 = n—i. The
only point to prove is that the trajectories between A, B form a diagonal.
We make a proof by contradiction. Then each trajectory between A, B
intersects another face C;. It implies that v4 p is cover by some v c;.

Contradiction with Proposition 4.2. O
Now the proof of the proposition is a simple consequence of this lemma
and of Lemma 2.2. O
COROLLARY 6.5. — For any diagonal v we have
Sis Y
veYy vemn(y)

Proof. — By preceding Lemma, a word of 7(7) can be lift in a word of ~.
In other word the map 7 is surjective on the billiard words. O

6.2. Proof of Theorem 6.1

We fix the face A as in Lemma 4.1. By Lemma 4.3 the coordinates
(n1,...,nq) of B can be of two types:

n1+...+nd:n7 ng(nd—land):l or niy—+---+ng=n.

DEFINITION 6.6. — We denote these sets of diagonals by Diag, (n) and
Diag,(n). Let v be a diagonal, the number " __1isdenoted by f(ni,...,nq)
or g(ni,...,nq) if v is in Diag, (n) or not.

vey

Due to Proposition 3.6 we must compute
it
y€Diag(n) vEY
By Corollary 6.5 we can write this sum as

X=> >i+> >

v€Diag, (n) v€Y  y€Diag,(n) veEY

= Z f(ni,...,ng) +Z g(ni,...,nq).

v€EDiag, (n) v€Diag,(n)

Now we use the projection 7. By Lemma 4.3 and 6.5 we deduce

X > Z Z [f(n1,. .. ng—2)x(ng, ng—1) + g(na, ..., na)],

Nd,Nd—1 N1,---,Nd—2
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where x(ng,ng—1) = 1 if ged(ng,ng—1) = 1 and 0 either. Now Proposi-
tion 6.3 implies that

Z [f(n1,...,na—1) +g(n1,...,ng—1)] = p(n,d —1).
ni+-tng—1=n
This can be written as

Z Z [f(n1,...,na-1) + g(n1,...,ng—1)] = p(n,d—1),

ng_1<nN1+-+ng_2=n—ng_1

Z [f(n1,...,na—1) + g(n1,...,ng-1)] = s(na—1,d — 1).

ni+-Ang_2=n—n4q_1

Then we deduce

X2 Z Z [f(nlv"'vnd72)+g(n17'~~»nd)]X(nd71,nd)»

Nd,Nd—1 N1,..-,Nd—2

>ZZ Z [f(nlv"'vnd72)+g(n1w~~and)]X(ndfland),

Nd Nd—1 N1y Nd—2

> Z Z s(ng—1,d — D)x(ng, ng—1)-

NA<N Ng—1<N—"Nd
Then the induction hypothesis shows that
|s(n+1,d—1) — s(n,d— 1)} > n3d-8,

It implies a lower bound on s(n,d — 1):

X=> > (ma-1)*"x(ng,na1).

na<N Ng—1<N—"ng

>3 ) (na-)*x(n — ng,naa).

Na<N Ng—1<N4

> Z Z (nd_1)3d77.

na<n Nd—1<Nd
ng(ndfl,nd):l

We apply Lemma 2.15 with p = 3d — 7 and obtain
X > Cn3d5,
Now by Proposition 3.6 we have
s(n+1,d) —s(n,d) > CX + O(s(n,d—1) — s(n,d — 1)).

We apply again the induction to obtain a lower bound for the error term
of Proposition 3.6. This term is bounded by n3?~8. Thus we have

s(n+1,d) —s(n,d) > Cn3=> —n3=8  s(n+1,d) — s(n) > Cn3>.
The proof by induction is finished.
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7. Proof of the main theorem

We just have to join Theorems 5.1 and 6.1. g
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