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A CAUCHY PROBLEM FOR ELLIPTIC INVARIANT
DIFFERENTIAL OPERATORS AND CONTINUITY OF

A GENERALIZED BEREZIN TRANSFORM

by Bent ØRSTED & Jorge VARGAS (*)

Abstract. — In this note, we generalize the results in our previous paper on
the Casimir operator and Berezin transform, by showing the (L2, L2)-continuity of
a generalized Berezin transform associated with a branching problem for a class of
unitary representations defined by invariant elliptic operators; we also show, that
under suitable general conditions, this generalized Berezin transform is (Lp, Lp)-
continuous for 1 6 p 6∞.

Résumé. — Dans cette note, nous généralisons les résultats de notre article
précédent sur l’opérateur de Casimir et sur la transformée de Berezin, en prou-
vant la continuité (L2, L2) d’une transformée de Berezin généralisée associée à un
problème de bifurcation pour une classe de représentations unitaires définie par
des opérateurs elliptiques invariants. Nous prouvons aussi que, sous des conditions
générales adéquates, cette transformée de Berezin généralisée est (Lp, Lp)-continue
pour 1 6 p 6∞.

1. Introduction

A basic problem in representation theory of Lie groups is to derive
“branching laws”. By this we mean, for a given unitary irreducible rep-
resentation of an ambient group G, consider its restriction to a fixed sub-
group H and find the decomposition as a direct integral, and in particular
compute the multiplicity of each irreducible factor of the restriction. There
is a vast literature on this subject, and here we just direct the reader’s at-
tention to the extensive reviews of [6], [7] and references therein. One way
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694 Bent ØRSTED & Jorge VARGAS

to attack this problem is to consider geometric realizations of the represen-
tation in question. For example, we might consider unitary representations
realized as the L2−kernel of an invariant differential operator acting on sec-
tions of a homogeneous vector bundle and study normal derivatives along
a submanifold. This path has been followed in [9], and in [4] for the case of
holomorphic vector bundles, and this idea occurs in many other works. A
closely connected problem is that of studying certain Cauchy problems for
invariant elliptic operators.

The object of this note is to show some perhaps surprising facts for these
Cauchy problems and the corresponding branching problems. Our methods
are very similar to those in our previous paper [9]; but in the present
paper we show that the explicit construction of Hotta can be replaced by
a general L2 - kernel of an invariant elliptic operator, thus simplifying and
generalizing the argument.

In order to state the main result, we consider a connected semisimple
matrix Lie group G. Henceforth, we fix a connected reductive subgroup H

of G and a maximal compact subgroup K of G such that H∩K is a maximal
compact subgroup of H. We fix Haar measures in G and H and assume that
the group G has a nonempty Discrete Series. For general facts and notation,
see for example [5]. Let (τ,W ) be a finite dimensional representation of K.

Let E := G ×τ W −→ G/K be the G−homogeneous, Hermitian, smooth
vector bundle attached to the representation τ. We denote its space of L2−
(resp. smooth) sections by

L2(G, τ) =
{

f : G −→ W : f(gk) = τ(k−1)f(g), g ∈ G, k ∈ K,∫
G

|f(g)|2dg < ∞
}

(resp. C∞(G, τ)). The Lie algebra of a Lie group will be denoted by the
corresponding German lower case letter, the complexification of a real Lie
algebra will be denoted by adding the subscript C. For this note,

D is a G−homogeneous, elliptic differential operator on C∞(G, τ).

In [1] we find a proof of the fact that the minimal extension of D agrees
with the maximal extension. Therefore, the L2−kernel of D is a well defined
object. For this, we consider the closure D̄ of D as an unbounded linear
operator on L2(G, τ) and then

L2(KerD) := {f ∈ L2(G, τ) : D̄(f) = 0 }

is a well defined closed linear subspace of L2(G, τ) on which G acts contin-
uously and isometrically by the usual left regular action L. Thus, G acts
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CONTINUITY OF BEREZIN TRANSFORM 695

on L2(KerD) by a unitary representation. In the key work [2] it is shown
that the representation of G in L2(KerD) is a finite sum of irreducible
square integrable representations of G. Since D̄ is an elliptic (with real
analytic coefficients) linear differential operator we have that L2(KerD) is
contained in the space of real analytic sections of the bundle E → G/K.

Let (τ?,W ) denote the restriction of τ to the subgroup H ∩K. Let

F := H ×τ?
W −→ H/(H ∩K)

denote the associated H−homogeneous, Hermitian bundle over H/(H∩K).
Owing to our choice, H/(H ∩K) can be thought as the orbit of H through
the point eK on G/K and F as a subbundle of E over this orbit, and
hence we may restrict smooth sections of E over G/K to sections of F over
H/(H ∩K). Let

r : C∞(G, τ) −→ C∞(H, τ?)

denote the restriction map. The first result of this paper is:

Theorem 1.1. — Let G, D, H be as before, then
1) r(L2(KerD)) ⊂ L2(H, τ?).
2) r : L2(KerD) −→ L2(H, τ?) is a continuous map.
3) The generalized Berezin transform, rr?, is a continuous linear operator

on L2(H, τ?).

We also show that,

Theorem 1.2. — Besides, whenever L2(KerD) is a sum of integrable
representation of G, then the generalized Berezin transform, rr?, is a con-
tinuous linear operator on Lp(H, τ?), 1 6 p 6 ∞.

Our hypothesis on H implies that H is invariant under the Cartan invo-
lution associated to K. Thus, we have the Ad(H∩K)−invariant decomposi-
tions g = k⊕s, g = h⊕q, and q = q∩k⊕q∩s. For each nonnegative integer m

let Sm(q∩s) denote the mth−symmetric power of q∩s. Thus, Sm(q∩s)⊗W

is an H ∩K−module. A basic idea in branching theory is to consider nor-
mal derivatives corresponding to the immersion H/H ∩K → G/K. Using
this we may show the following,

Theorem 1.3. — There exists an injective, linear H−map, f → (fm)m>0

from
L2(KerD) into ⊕m>0 L2(H ×H∩K (Sm(s ∩ q)⊗W ))

so that for each m > 0, the linear map

L2(KerD) 3 f → fm ∈ L2(H ×H∩K (Sm(s ∩ q)⊗W ))

is continuous.
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696 Bent ØRSTED & Jorge VARGAS

2. Proof of Theorem 1 and Theorem 2

Recall the restriction r defined in the Introduction; this is the main object
of study, as well as the associated Berezin transform rr?. In order to verify
that r? is defined, we show the following:

i : If f ∈ L2(KerD) is a K−finite function, then r(f) ∈ L2(H, τ?)
ii : Let D := {f ∈ L2(KerD) : r(f) ∈ L2(H, τ?)}, then r : D −→

L2(H, τ?) is a closed densely defined linear transformation.

To justify the above statements we recall the reproducing kernel for
L2(KerD). Since D is an elliptic operator, L2 convergence in L2(KerD)
implies uniform convergence in the induced topology by C∞(G, τ) ([10],
Theorem 52.1) Thus, point evaluations are continuous linear function-
als in L2(KerD). Therefore, the orthogonal projection of L2(G, τ) onto
L2(KerD) is an integral operator given by a smooth kernel

k : G×G −→ EndC(W ).

We have,

(f(z), v)W = (f, k(z, ·)v)L2(G,τ), f ∈ L2(KerD), z ∈ G, v ∈ W. (1)

Here, (., .)Z denotes the inner product in the Hilbert space Z.

k(x, y)? = k(y, x), x, y ∈ G. (2)

For a proof of these facts, we refer to [8]. Since the orthogonal projection
commutes with the action of G, there exists a smooth function k : G →
EndC W so that

k(x, y) = k(x−1y), x, y ∈ G. (3)

Actually, k is the vector in L2(KerD) that represents the linear functional
point evaluation at the identity of e of G. Since point evaluation at the
identity is a K−finite linear functional and L2(KerD) is an admissible rep-
resentation (see [5])there exists nice estimates for k as well for any K−finite
element f ∈ L2(KerD) which we now describe.

For a semisimple Lie group G, let

ΞG(x) =
∫

K

e−ρG(H(xk))dk

denote the Harish-Chandra Ξ−function, see [5] page 186 (with a different
notation). Relative to an Iwasawa decomposition (that we fix) G = KAN ,
we have the projection H given by x ∈ KeH(x)N,x ∈ G. We recall that
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ΞG ∈ L2+γ(G) for every γ > 0. Since L2(KerD) is a finite sum of square in-
tegrable representations, and both k, f are K−finite elements of L2(KerD),
it follows from [11] and the equality

‖f(x)‖2 =
∑

i

(f, Lx(k(·)(wi)))L2(G,τ)

for an orthonormal basis wi of W, that we have an estimate of the pointwise
norm of f(x), coming from the asymptotics of matrix coefficients of the
representation, namely: for any q > 0, and for ε > 0 sufficiently small,
there exists 0 6 Cf < ∞ so that

‖f(x)‖ 6 Cf Ξ1+ε
G (x)(1 + ‖x‖)q, x ∈ G. (2.a)

(In fact we only need this equation for q = 0; such a polynomial term
is relevant when seeking the best possible exponent.) The norm ‖ · ‖ is a
K-biinvariant norm on the group, coming from a Euclidean norm on the
Cartan complement to the Lie algebra of K, defined as in [5] page 256,
‖x‖ =: ‖Y ‖, if x = k1exp(Y ), k1 ∈ K, Y ∈ s. Besides, whenever L2(KerD)
is a sum of integrable representations, as explained in [11] or in [5] page
256, we find the analogous estimate, with q′ > 0,

‖f(x)‖ 6 C ′
f Ξ2+ε

G (x)(1 + ‖x‖)q′
, x ∈ G. (2.b)

We now show that these estimates lead to the following:

Lemma 2.1. — Assume, f ∈ L2(KerD) is a K−finite element, then
there exists 0 < δ < 1 so that

f ∈ Lp(H, τ?) for 2− δ 6 p 6 2 (p.1)

Besides, if L2(kerD) is a sum of integrable representations of G, then

f ∈ L2(H, τ?) ∩ L1(H, τ?) (p.2)

Proof: (Here we follow [9].) We will show that the restriction of f to the
center of H is an integrable function on the center of H, and when H is
semisimple, that f ∈ L2−δ(H, τ?) for δ small and positive. We fix com-
patible Iwasawa decompositions G = KAN,H = (H ∩ K)AHN1, AH ⊂
A, N1 ⊂ N (in particular we have chosen appropriately compatible order-
ings of the restricted roots) and use the integral formula associated to the
Cartan decomposition H = (H ∩K)AH(H ∩K). In particular, we denote
the corresponding density function on AH by ∆ as usual, see e.g. [5]. Let
a+

H be the closed Weyl chamber in aH associated to N1. Let C1, · · · , CS be

TOME 57 (2007), FASCICULE 3



698 Bent ØRSTED & Jorge VARGAS

the open G−Weyl chambers in a so that a+
H ∩ C̄j has non-empty interior in

a+
H . Hence, a+

H = ∪j(a+
H ∩ C̄j). Let ρH(Y ) = 1

2 tr(ad(Y )|n1) and denote by

ρj(Y ) =
1
2
tr(ad(Y )|∑

α:α(Cj)>0
nα

)

the ρ−element in a? corresponding to Cj . Here, positive restricted root
spaces in g are denoted nα, and we also denote similarly n1 β root spaces in
h, the Lie algebra of H. The slight abuse of notation α(Cj) > 0 means that
α takes a positive value on Cj . Hence, for each j, we have the inequality

ρH(Y )− ρj(Y ) 6 0, ∀ Y ∈ a+
H ∩ C̄j . (2.c)

Indeed, if α ∈ Φ(g, a) and α(Cj) > 0, then the restriction of α to aH is
either zero, or a restricted root for (n1, aH), or a nonzero linear functional
on aH , and in general we cannot say that the restriction of α to aH takes
on nonnegative values on a+

H . But, more importantly, we can on the other
hand say , that if β ∈ Φ(n1, aH) then β is the restriction of restricted roots
α1, · · · , αR. Hence, for each 1 6 s 6 R, we have that αs(C̄j ∩a+

H) > 0. The
choice of Cj implies that αs(Cj) > 0 and that

n1 β ⊂ ⊕{α∈Φ(g,a):α(Cj)>0, α|aH
=β} nα. (2.d)

Note that ρH is defined as a sum of positive traces over the spaces on the
left side in equation (2.d), whereas the ρj consists of sums over spaces on
the right side of (2.d), and that the definition of Cj ensures that the value
of ρj is larger than the value of ρH on a+

H ∩ C̄j . Thus, the inequality (2.c)
follows - it is one of the main points in our argument. Now (2.a) and the
above inequality, justify the steps in∫

H

‖f(h)‖2−δdh =
∫

A+
H

|∆(a)|2
∫

H∩K

∫
H∩K

‖f(k1ak2)‖2−δdk1dk2da

<<
∑

j

∫
C̄j∩a+

H

e2ρH(Y )e−(1+ε)(2−δ)ρj(Y )(1 + ‖Y ‖)q(2−δ)dY

6
∑

j

∫
C̄j∩a+

H

e2ρH(Y )e−(1+ε)(2−δ)ρH(Y )(1 + ‖Y ‖)q(2−δ)dY

=
∑

j

∫
C̄j∩a+

H

e2ρH(Y )−2ρH(Y )e(−2ε+δ(1+ε))ρH(Y )(1 + ‖Y ‖)q(2−δ)dY

< ∞
for δ positive and small enough. This shows that f is in L2−δ(H) for δ

small enough. The same formalism shows that whenever L2(KerD) is a
sum of integrable representations, then f is integrable on H, as claimed
in (p.2). When the center of H has a split factor, on the intersection of
the split factor with the closure of a Weyl chamber C in a we have that
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‖f(exp(Y ))‖ is bounded by e−ρC(Y )(1+‖Y ‖)q. (Here ρC is the rho-element
corresponding to C; actually we could have just considered q = 0, the
polynomial term being necessary when seeking the best possible exponent.)
Thus f is integrable when restricted to the center of H.

�

The above consideration and Lemma 1 show that for any f ∈ L2(KerD)
which is K−finite, we have that r(f) ∈ L2(H, τ?)∩L∞(H, τ?). A proof that
(r,D) is a closed linear transformation follows from that L2−convergence
in L2(KerD) implies uniform convergence on compact sets. This concludes
the proof of i, ii.

Therefore, (r,D) is a closed densely defined linear transform, let r? its
adjoint. We want to compute the linear operator rr? evaluated at g in the
domain of r?. For this we note that for each z ∈ H, k(z, ·)v belongs to the
domain of r, and we recall the Kunze-Stein phenomenon, see [3]: for H a
connected semisimple Lie group with finite center, we have that

Lp(H) ∗ L2(H) ⊂ L2(H)

whenever 1 6 p < 2. Hence, Lemma 1 and the Kunze-Stein phenomenon
imply that the map

f →
∫

H

k(h, z)f(h)dh

defines a bounded linear operator on L2(H, τ?). We now verify that

(rr?)(g)(z) = r?(g)(z) =
∫

H

k(h, z)g(h)dh, z ∈ H, (4)

for g in the domain of r?. In fact, the equality (1) applied to r?(g) yields

(r?(g)(z), v)W = (r?(g), k(z, ·)v)L2(G,τ)

Since we have
(r?(g), k(z, ·)v)L2(G,τ) = (g, r(k(z, ·)v)L2(H,τ?)

=
∫

H

(g(h), k(z, h)v)W dh

=
∫

H

(k(z, h)?g(h), v)W dh

=
∫

H

(k(h, z)g(h), v)W dh

(r?(g)(z), v)W = (
∫

H

k(h, z)g(h)dh, v)W .

We now conclude the proof of Theorem 1. Indeed, Lemma 1, (4) and
the Kunze-Stein phenomena imply that rr? extends to a bounded linear
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operator on L2(H, τ?). Since, r is closed, the polar decomposition of r is
valid, that is, for U a partially unitary linear operator (partial isometry),
we have

r = (rr?)1/2U.

Thus, r extends to a bounded linear transformation r̃ from L2(KerD)
into L2(H, τ?). Once again, the fact that L2− convergence in L2(KerD)
implies uniform convergence on compact sets, forces that r̃ is equal to r.

This concludes the proof of Theorem 1. The proof of Theorem 2 follows
the same line of thought and we use (p.2) instead of (p.1).

3. Proof of Theorem 3

Let S(g) (resp. U(g))be symmetric algebra of g (resp. the universal en-
veloping algebra of g). Let λ : S(g) → U(g) be the symmetrization. For any
Y ∈ U(g), f ∈ C∞(G), g ∈ G,

RDY (f)(g) = lim
t→0

f(gexp(tY ))− f(g)
t

defines infinitesimal right translation by Y. Let

rm : C∞(G, τ) → C∞(H,HomC(Sm(s ∩ q),W ))

be the linear map defined by the rule

rm(f)(h)(X1, · · · , Xm) = (Rλ(X1,··· ,Xm)f)(h).

The action, via the Adjoint representation of H ∩ K in s ∩ q, gives rise
to a representation of H ∩ K in HomC(Sm(s ∩ q),W ). We denote this
representation by τm. It readily follows that

rm(f)(hk) = τm(k−1)rm(f)(h), h ∈ H, k ∈ H ∩K.

Thus, rm maps C∞(G, τ) into C∞(H, τm). For any pair G, H and L2(KerD)
we may prove, by arguments similar to those already used, the following
three points below;

(1) rm is a closed densely defined linear transformation from L2(KerD)
into L2(H, τm) whose domain contains the K−finite vectors. In-
deed, this also follows from the estimate in Corollary 7.4 in [11]
and the proof of Lemma 1. Here we obtain it from the formula in
(2) below, and the corresponding boundedness of the restriction rm

derived in a similar way from the estimates of km.
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(2) rm extends to a continuous linear map from L2(KerD) into L2(H, τm).
In fact, as in the proof of Theorem 1, we have that rmr?

m is an in-
tegral operator given by a kernel function analogous to the case of
no derivatives. In the case of derivatives, the kernel is

km(x, y)(Y ⊗ v) = k(x, y)(L̇λ(Y )(v)).

Here, L̇ denotes the differential of the representation L.
(3) The map

f → (rm(f))m>0 from L2(KerD) into ⊕m>0 L2(H,Sm(q ∩ s)⊗W ))

is injective and each component is bounded. Hence Theorem 3 is
proved.

As a final remark we note, that with Theorem 3 we now have in principle
a way of analyzing the restriction to H of the original unitary representa-
tion; one open problem remains to find the image of the restriction map
of the normal derivatives, and another to decompose explicitly the H -
homogeneous vector bundles (which in some sense is covered by Harish-
Chandra’s Plancherel Theorem.)
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