
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Christiane ROUSSEAU & Colin CHRISTOPHER

Modulus of analytic classification for the generic unfolding of a codimension
1 resonant diffeomorphism or resonant saddle
Tome 57, no 1 (2007), p. 301-360.

<http://aif.cedram.org/item?id=AIF_2007__57_1_301_0>

© Association des Annales de l’institut Fourier, 2007, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2007__57_1_301_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Ann. Inst. Fourier, Grenoble
57, 1 (2007) 301-360

MODULUS OF ANALYTIC CLASSIFICATION FOR THE
GENERIC UNFOLDING OF A CODIMENSION 1

RESONANT DIFFEOMORPHISM OR
RESONANT SADDLE

by Christiane ROUSSEAU & Colin CHRISTOPHER (*)

Abstract. — We consider germs of one-parameter generic families of resonant
analytic diffeomorphims and we give a complete modulus of analytic classification
by means of the unfolding of the Écalle modulus. We describe the parametric resur-
gence phenomenon. We apply this to give a complete modulus of orbital analytic
classification for the unfolding of a generic resonant saddle of a 2-dimensional vec-
tor field by means of the unfolding of its holonomy map. Here again the modulus
is an unfolding of the Martinet-Ramis modulus of the resonant saddle. When the
saddle passes through the resonance we observe a “transcritical bifurcation”: the
dynamics in the neighborhood of the saddle is governed by different parts of the
unfolding of the modulus on each side of the bifurcation. We then include the time
dependence and give a complete modulus of analytic conjugacy for the unfolding
of a generic resonant saddle.

Résumé. — On considère des germes de familles génériques à un paramètre
déployant un germe de difféomorphisme résonant et on montre que le déploiement
du module d’Ecalle donne un module complet de classification analytique. On décrit
le phénomène de résurgence paramétrique. On applique les résultats précédents à
la construction d’un module complet de classification analytique orbitale pour le
déploiement d’un point de selle résonant générique au moyen du déploiement de
son difféomorphisme d’holonomie. Ce module est le déploiement du module de
Martinet-Ramis pour un point de selle résonant. Quand le point de selle passe par
la résonance on observe une “bifurcation transcritique” : la dynamique du point de
selle est contrôlée par des parties différentes du déploiement du module de chaque
côté de la bifurcation. On regarde aussi la dépendance du temps et on donne un
module complet de conjugaison analytique pour le déploiement d’un point de selle
résonant générique.

Keywords: Unfolding of a resonant diffeomorphism, modulus of analytic classification,
unfolding of a resonant saddle, unfolding of Écalle modulus, unfolding of Martinet-Ramis
modulus, unfolding of holonomy map, parametric resurgence phenomenon, transcritical
bifurcation.
Math. classification: 34M35, 37F75, 32S65.
(*) This work is supported by NSERC in Canada.
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1. Introduction

This paper is part of a general program to study the dynamics of a germ
of analytic diffeomorphism with a fixed point at the origin:

(1.1) f(z) = λ0z + o(z), λ0 6= 0.

The behaviour is known for the different values of λ0 and we want to “glue”
these different behaviours in a global picture with λ0 as a parameter. Indeed
it is known that:

1) For |λ0| 6= 1 then f is linearizable in the neighborhood of the origin,
i.e. there exists a change of coordinate Z = z + o(z) = h(z) such that

(1.2) h ◦ f ◦ h−1(Z) = λ0Z.

2) For λ0 = exp(2πiα) with α ∈ R\Q then the diffeomorphism is formally
linearizable, i.e. there exists a formal change of coordinate

(1.3) Z = h(z) = z +
∑
n>2

anz
n

such that (1.2) is satisfied at the formal level. We distinguish the two cases:

• If α is diophantian (badly approximated by rational numbers) then
the change of coordinate (1.3) is indeed analytic.

• If α is Liouvillian (well approximated by rational numbers) then
the change of coordinate (1.3) is generically divergent [10] (in the
measure theoretic sense).

3) If λ0 = exp(2πip/q) and the diffeomorphism is formally linearizable
then it is analytically linearizable [2].

4) In the general case of λ0 = exp(2πip/q) there are obstructions to lin-
earizability at the level of the finite jet of f(z). The geometric meaning
of these obstructions corresponds to the birth of periodic orbits of period
q as λ0 bifurcates from exp(2πip/q). These orbits are called “material-
izations of resonances” by Arnold [1], Ilyashenko and Pyartli [12]. It was
conjectured that their presence would be the obstruction to linearization
when perturbing λ0 to λ of the form exp(2πiα) with α Liouvillian irrational
number. The works of Yoccoz [27] and Pérez-Marco [19] have shown that,
although this happens quite often and in particular for the quadratic map,
there are other types of nonlinearities which obstruct linearizability. In this
paper we focus on the case λ0 = exp(2πip/q) and f non linearizable with
nonzero first resonant monomial.

ANNALES DE L’INSTITUT FOURIER



RESONANT DIFFEOMORPHISMS 303

As two non linearizable resonant diffeomorphisms of the form (1.1) are
conjugate if and only if their q-th iterates are conjugate [11], we limit our-
selves to the study of their q-th iterates which have, in suitable coordinates,
the form

(1.4) g(z) = fq(z) = z + zkq+1 + o(zkq+1).

The integer k is a first formal invariant. In this paper we limit ourselves
to the generic case k = 1. As the diffeomorphism g is not linearizable we
look for a nonlinear (more complex) “normal form”. There exists a formal
change of coordinates (1.3) which conjugates g with the time-one map of
the flow of the vector field

(1.5)
zq+1

1 + azq
· ∂
∂z

,

where a ∈ C is an analytic invariant.
• If the series (1.3) is convergent and h is analytic then we say that

the diffeomorphism (1.1) is normalizable. If (1.1) with fixed λ0 depends
on a finite number of analytic parameters then, for each fixed k, this is
satisfied for an analytic subset of the parameter space [7]. Again it is a very
exceptional phenomenon.
• In the generic case the normalizing series (1.3) is divergent and the

modulus of analytic classification is a functional one. Why? Let us limit
ourselves to the case k = 1. Then, when we perturb λ0 from its initial value,
the diffeomorphism has a fixed point and a periodic orbit of period q. If
we perturb λ0 to λ in the Poincaré domain (i.e. |λ| 6= 1) then both the
fixed point and the periodic orbit are linearizable. In the neighborhoods of
the fixed and periodic points it is possible to find changes of coordinates
transforming the family gε to the “model family” unfolding (1.5) namely
the time-one map of the flow of the vector field

(1.6)
z(zq − ε)
1 + a(ε)zq

· ∂
∂z

but the changes of coordinates to the model family in the neighborhood
of the origin and in the neighborhood of the periodic points are not com-
patible. This was conjectured by Arnold and proved by Martinet [15] and
Glutsyuk [8] in the case λ0 = 1 and we extend it here to the case λ0 =
exp(2πip/q). What happens if we perturb λ0 to λ in the Siegel direction
(|λ| = 1)? The case λ0 = 1 is treated in [14]. There it was shown that
the dynamics near the two fixed points can be obtained from the unfold-
ing of the Ecalle-Voronin functional modulus (ψ0, ψ∞), where ψ0 and ψ∞

are germs of analytic diffeomorphisms at the origin and at ∞. The non
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normalizability of (1.1) is expressed by the nonlinearity of at least one
of ψ0 and ψ∞. Moreover the paper shows the existence of the parametric
resurgence phenomenon: the nonlinearities of ψ0 or ψ∞ control the nonlin-
earizability of one of the fixed points for sequences of resonant parameter
values converging to λ0 = 1.

In this paper we extend to the case λ0 = exp(2πip/q) the results of [14]
for λ0 = 1. The modulus of (1.1) is described in the literature by Écalle [7],
Martinet-Ramis [16] and Ilyashenko [11] in slightly different ways. We work
here with the description given by Ilyashenko [11] and we make the link
with the presentation of Martinet-Ramis in Section 4.5. The modulus is
given by a 2-tuple

(1.7) (ψ0
1 , ψ

∞
1 )

of germs of analytic functions at the origin and at infinity respectively,
which we extend to a 2q-tuple of germs of analytic functions

(1.8) (ψ0
1 , . . . , ψ

0
q , ψ

∞
1 , . . . , ψ∞q ),

where σ is the permutation of {1, . . . , q} generated by j 7→ j + p (mod q)
and

(1.9) ψ0,∞
σ(j)(w) = exp(2πi/q) · ψ0,∞

j

(
exp(−2πi/q)w

)
.

We show that a complete modulus of analytic classification for a generic
1-parameter unfolding of (1.1) is given by an unfolding of (1.7), which
we can identify with an unfolding of (1.8) which still satisfies (1.9). This
unfolding can be taken continuous in the parameter over appropriate sec-
tors of parameter space. From this unfolding one can study the dynamics
near the bifurcating fixed and periodic points. In particular the parametric
resurgence phenomenon again occurs.

We then apply these results to the generic 1-parameter unfolding of a
vector field in the neighborhood of a generic resonant hyperbolic saddle. (A
hyperbolic saddle is generic if the first resonant monomial of the orbital nor-
mal form is nonzero and a 1-parameter unfolding is generic if the derivative
with respect to the parameter of the quotient of eigenvalues is nonzero.)
We consider both orbital equivalence and conjugacy. We first show that a
complete modulus for orbital analytic classification is given by the modu-
lus of analytic classification of the unfolding of any of its holonomy maps
(there is one for each separatrix). A complete modulus of classification of
vector fields with a resonant hyperbolic saddle has been given by Voronin
and Grintchy [26]. This modulus is composed of two parts: the first part
is the Ecalle-Voronin modulus of the holonomy and the second part, the
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time-part, is composed by a pair of germs of analytic functions at the origin
and at infinity respectively. We show that a complete modulus of analytic
classification under conjugacy between two germs of generic families of vec-
tor fields unfolding germs of vector fields with a generic resonant saddle is
given by the unfolding of the Voronin-Grintchy modulus.

The point of view taken throughout the paper is to compare the family
of diffeomorphisms (vector fields) with the model family which would be
the family expected if we had convergence of the normalizing changes of
coordinates.

The paper is organized in the following way. In Section 2 we “prepare
the family” of diffeomorphisms so as to change the initial parameter to
the “canonical parameter” which is in particular an analytic invariant. In
Section 3 we construct Fatou coordinates bringing the family of diffeomor-
phisms to the model family. In Section 4 we describe the modulus of an-
alytic classification for a generic family of analytic diffeomorphisms. In
Section 5 we describe the parametric resurgence phenomenon. In Section 6
we describe the modulus of orbital analytic classification of a generic family
unfolding a generic resonant saddle. In Section 7 we describe the “trans-
critical bifurcation” phenomenon which is natural in this context. Finally
in Section 8 we give the modulus of analytic conjugacy of a generic family
unfolding a generic resonant saddle. We end up with questions for future
research.

2. Preparation of the family

We consider a germ of generic resonant diffeomorphism of the form

(2.1) f0(z) = e2iπp/qz +
e2iπp/q

q
zq+1 + o(zq+1).

Then fq
0 has a fixed point at the origin of multiplicity q + 1, which corre-

sponds for f0 to the coalescence of a fixed point with a periodic orbit of
period q: the fixed point and periodic orbit bifurcate in a generic unfold-
ing. Because we can always localize the fixed point at the origin, bring the
family in normal form up to order q+1 and rescale, then a germ of generic
unfolding can be taken of the form

(2.2) fε(z) = (e2iπp/q − α)z +
e2iπp/q

q
zq+1 + o(zq+1)

TOME 57 (2007), FASCICULE 1
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with α a small parameter. However, it turns out that the parametrization
is easier to study if we take it with respect to a parameter ε given by

(2.3) (1− ε) =
(
e2πip/q − α

)q
.

This gives
ε = qe−2πip/qα+ o(α),

and so the two parameterizations are locally equivalent. We have used the
notation fε in anticipation of this.

In the particular case q = 1 this means that we study the transcritical
bifurcation since the generic unfolding of a double fixed point has been
studied in [14] (the transcritical bifurcation means that we limit ourselves
to unfoldings preserving the origin).

We can limit ourselves to consider the conjugacy problem for the q-th
iterate gε = fq

ε of fε. This will be proved in Lemma 4.13 below.

It is easier to work with the q-th iterate g0 = fq
0 (resp. gε = fq

ε ) of f0
(resp. fε) because g0 has multiplier equal to 1 at the origin. Using the
expression for α in terms of ε, we can write gε as

(2.4) gε(z) = z(1− ε) +
(
1 +O(ε)

)
zq+1 + o(zq+1),

which explains our choice of reparameterization above.

Proposition 2.1. — There exists an analytic change of variable (z, ε) 7→
(z̃, ε̃) tangent to the identity and fibered over the parameter space bringing
the family (2.4) to the prepared form

(2.5) g̃ε̃(z̃) = z̃ + z̃(z̃q − ε̃)
[
1 +B(ε̃) +A(ε̃)z̃q + z̃(z̃q − ε̃)

(
1 + h(ε̃, z̃)

)]
,

where
B(ε̃) =

(
1− ε̃− exp(−ε̃)

)
/ε̃ = O(ε̃),

and h(0, 0) = 0. This has fixed points z̃0 = 0 and z̃j , j = 1, . . . , q with z̃q
j = 1.

The multiplier λ0 of the fixed point z̃0 = 0 satisfies

(2.6) λ0 = exp(−ε̃),

and hence the parameter ε̃ is an analytic invariant for g̃ε̃; we call it the
canonical parameter. Let λ1, . . . λq be the multipliers of the fixed points z̃j

where z̃q
j = ε̃. The formal parameter

(2.7) a(ε̃) =
1

lnλ0
+

q∑
j=1

1
lnλj

depends analytically on ε̃ and hence on ε. It is an analytic invariant of gε.
(As λ0, . . . λq are all close to 1 there is no problem in choosing the lnλj
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close to zero in a continuous way.) It can be calculated directly from the
expression for g̃ε̃ above by

exp
( qε̃

1 + a(ε̃)

)
= 1 + q

(
1 + ε̃B(ε̃)

)
+ qε̃2A(ε̃).

Proof. — The equation of fixed points for gε yields z = 0 and(
1 +O(ε)

)
zq − ε+ o(zq) = 0.

We make the change of coordinate ẑ = z(1 +O(ε)) + o(z) so that the fixed
points become ẑq = ε. In the ẑ-coordinate this yields for gε:

(2.8) ĝε(ẑ) = ẑ + ẑ(ẑq − ε)h(ẑ, ε)

with h(ẑ, ε) = 1 + c0(ε) +O(ẑ). Using a rescaling in

(ẑ, ε) 7−→
(
1 + c0(ε)

)−1/q
ẑ,

(
1 + c0(ε))−1ε

)
we can of course suppose that h(ẑ, ε) = 1 + O(ẑ). Using the Weierstrass
division theorem we write

(2.9) h(ẑ, ε)− 1 =
q∑

j=1

cj(ε)ẑj + ẑ(ẑq − ε)k(ẑ, ε).

We will show in Lemma 2.2 below that c1(ε) = · · · = cq−1(ε) ≡ 0, which
yields that the multipliers of the fixed points ẑq = ε are exactly
1 + qε(1 + cq(ε)ε).

Unfortunately in general ε is not an analytic invariant in (2.8). To achieve
this we need to make a scaling (z̃, ε̃) = (ẑ(1 + b(ε))1/q, ε(1 + b(ε))) in (2.8)
transforming ĝε into g̃ε̃ so that

(2.10) g̃′ε̃(0) = 1− ε̃

1 + b(ε)
= exp(−ε̃).

The condition (2.10) (and (2.6)) will be satisfied for b(ε) satisfying b(0) = 0
by the implicit theorem.

The formal parameter a(ε̃) defined in (2.7) is analytic for ε 6= 0. As it is
bounded at ε = 0 it is analytic. �

Lemma 2.2. — In (2.9) we have

(2.11) c1(ε) = · · · = cq−1(ε) ≡ 0.

Proof. — The proof uses that ĝε(ẑ) is the q-th iterate of f̂ε (where f̂ε is fε

in ẑ-coordinate) so the multipliers λj of the fixed points ẑj = e2πij/qε1/q

are all the same. This yields the system of equations
q−1∑
k=1

εk/qck =
q−1∑
k=1

εk/qck e2πijk/q.

TOME 57 (2007), FASCICULE 1
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Hence the εk/qck are solutions of a homogeneous system of linear equations
with matrix

(2.12) M =


e2πi/q − 1 e4πi/q − 1 . . . e2(q−1)πi/q − 1
e4πi/q − 1 e8πi/q − 1 . . . e4(q−1)πi/q − 1

...
...

...
...

e2(q−1)πi/q − 1 e4(q−1)πi/q − 1 . . . e2(q−1)2πi/q − 1

 .

We divide each column by its first coefficient. Then, starting from the last
row, we subtract from each row the row immediately above. This yields a
Vandermonde determinant which is nonzero. �

As in [14] we want to compare the prepared family g̃ε̃ in (2.5) with the
“model family” which is the time-one map of the vector field

(2.13)
z̃(z̃q − ε̃)
1 + a(ε̃)z̃q

· ∂
∂z̃

,

where a(ε̃) is defined as in (2.7). The vector field (2.13) has singular points
z̃0 = 0, z̃1, . . . , z̃q with respective eigenvalues

(2.14) µ0 = −ε̃, µj =
qε̃

1 + a(ε̃)ε̃
, j = 1, . . . , q.

As µ0 and µ−1
0 +

∑q
j=1 µ

−1
j = a(ε̃) are analytic invariants of (2.13) which

also depend analytically on ε̃ it follows that ε̃ and a(ε̃) are analytic invari-
ants of (2.13). The multipliers of the time-one map of (2.13) are λj = eµj ,
i.e. there are precisely the multipliers of the fixed points of g̃ε̃.

Definition 2.3. — A family (2.2) to which we have applied the change
of coordinate and parameter of Proposition 2.1 is called prepared. We use
the same term for the corresponding gε = fq

ε .

Remark 2.4. — This gives the geometric interpretation of the formal
invariant a(0): indeed a(ε) measures a shift between the fixed points and
the periodic points through (2.7) and a(0) is the limit of this shift.

3. The construction of Fatou coordinates

From now on we will limit ourselves to a prepared family fε(z) such that

gε(z) = fq
ε (z) = z + z(zq − ε)

[
1 +B(ε) +A(ε)zq + z(zq − ε)(1 + h(ε, z))

]
= z + z(zq − ε)

(
1 + kε(z)

)
,(3.1)

with kε(z) = O(|ε, z|) and B(ε) = (1− exp(−ε))/ε− 1.
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Fatou coordinates are changes of coordinates which transform the fam-
ily (3.1) to the associated “model family” which is the time-one map of the
vector field

(3.2)
z(zq − ε)
1 + a(ε)zq

· ∂
∂z

,

where a(ε) is chosen so that the multipliers of the periodic points z1, . . . , zq

of gε are given by λj = exp(µj) = exp(qε/1 + εa(ε)).

We give the construction with little details as it is quite standard and
very similar to [14].

3.1. The two charts

We want to study the dynamics of the germ of family gε(z). So we will
study its dynamics on any sufficiently small neighborhood of the origin in z-
coordinate which we can choose of the form U = {z ; |z| < r} with r ∈ (0, 1)
for all sufficiently small values of the parameter ε in a small ball V =
{ε ; |ε| < ρ}. We limit ourselves to values of ε sufficiently small so that the
fixed points of gε remain inside U . For this it suffices to take

(3.3) ρ <
rq

2
,

a condition which will be assumed throughout the paper.

We will not be able to give a uniform treatment for all ε ∈ V and we will
need to cover V with two sectors, each of opening 2π−2δ with δ ∈ (0, 1

2π),
but we are essentially interested to δ arbitrarily small. The parameter δ ∈
(0, 1

2π) is chosen at the beginning and kept fixed for all the treatment.
The size of the neighborhoods U and V defined above (for V we will need
a stronger condition than (3.3)) depends on δ. We will be able to give a
uniform treatment of gε over the following two sectors of V :

(3.4)
Vδ,+ =

{
ε ∈ V ; arg ε ∈ (− 1

2π + δ, 3
2π − δ)

}
,

Vδ,− =
{
ε ∈ V ; arg ε ∈ ( 1

2π + δ, 5
2π − δ)

}
.

3.2. The lifted diffeomorphism

We first introduce a change of coordinate which nearly rectifies the fam-
ily gε to the translation by 1 and sends the fixed points to infinity. Let

(3.5) Tβ(Z) = Z + β.

TOME 57 (2007), FASCICULE 1
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We will in particular consider Tα(ε)(Z) with

(3.6) α(ε) =


2πi
qε

ε 6= 0,

0 ε = 0.

We introduce the change of coordinate pε : Sε → CP1 \{0, z1, . . . , zq} given
by

(3.7) z = pε(Z) =


( ε

1− eqεZ

)1/q

ε 6= 0,(
− 1
qZ

)1/q

ε = 0,

where Sε is the Riemann surface of the function

(3.8)


( eqεZ − 1

ε

)1/q

ε 6= 0,

Z1/q ε = 0.

Figure 3.1. The domain of Z in the case q = 2

It is the composition of the map

(3.9) ζ = p̃ε(Z) =


ε

1− eqεZ
ε 6= 0,

− 1
qZ

ε = 0,

which is periodic of period α(ε) and which we may consider as defined
over Sε with the map z = ζ1/q. On a strip of width α(ε) if ε 6= 0 the image
of each sheet of Sε by p̃ε covers CP \ {0, ε} once. Hence pε restricted to a
union of q sheets of width α(ε), one in each sheet of Sε, covers CP \ {0, ε}
once. Its (multivalued) inverse is given by

(3.10) Z = p−1
ε (z) =


1
qε

ln
zq − ε

zq
ε 6= 0,

− 1
qzq

ε = 0,
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which is the composition of z 7→ ζ = zq with the multivalued map

(3.11) Z = p̃−1
ε (ζ) =


1
qε

ln
ζ − ε

ζ
ε 6= 0,

− 1
qζ

ε = 0.

For ε 6= 0 it is univalued when the image is restricted to a strip of width α(ε).
We can lift the map Tα(ε) to Sε.

The image of U \ {0, z1, . . . , zq} under p−1
ε is

(3.12) Ûε = Sε \
⋃
j∈Z

Bj

where B0 is the component of p−1
ε (C \ U) which contains the origin and

Bi = T i
α(ε)(B0) = Tiα(ε)(B0).

B0 is called the fundamental hole. It is a q-covering of a neighborhood of
the origin.

We lift the function gε(z) to a function Gε(Z) commuting with Tqα(ε).

Proposition 3.1. — The function Gε is a small perturbation of the
translation Z 7→ Z + 1 in the C1-topology. More precisely, there exists
K > 0 such that, for r > 0 sufficiently small and condition (3.3),∣∣Gε(Z)− Z − 1

∣∣ < Kr.(3.13) ∣∣G′ε(Z)− 1
∣∣ < Krq+1.(3.14)

Proof. — Since kε(z) = O(z, ε) the function Gε(Z) can be written

Gε(Z) =
1
qε

ln
(g(z)q − ε

g(z)q

)
(3.15)

=
1
qε

ln
( (zq − ε)

[
1 +

∑q
j=1

(
q
j

)
zq(zq − ε)j−1(1 + kε)j

]
zq[1 + (zq − ε)(1 + kε)]q

)
= Z +

1
qε

ln
(1 +

∑q
j=1

(
q
j

)
zq(zq − ε)j−1(1 + kε)j

1 +
∑q

j=1

(
q
j

)
(zq − ε)j(1 + kε)j

)

= Z +
1
qε

ln
(
1 + ε

∑q
j=1

(
q
j

)
(zq − ε)j−1(1 + kε)j

[1 + (zq − ε)(1 + kε)]q
)

= Z + 1 +O(z, ε).

Let

Rε(Z) =

∑q
j=1

(
q
j

)
(zq − ε)j−1(1 + kε)j

(1 + (zq − ε)(1 + kε))q
·
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Then

(3.16)
dGε

dZ
= 1 +

1
q(1 + εRε)

dRε

dz
(z)

dz
dZ

·

The result follows as dRε/dz is bounded for small (z, ε) and

(3.17)
dz
dZ

=
1

dZ/dz
= z(zq − ε) = O

(
|z|q+1 + |εz|

)
.

�

From now on we suppose
• Condition (3.3);
• r is sufficiently small so that if we define

(3.18) M(r) := Kr,

then

(3.19) M(r) <
δ

4
< 1;

• r is sufficiently small so that the estimates of Proposition 3.1 are
satisfied.

3.3. Translation domains

The Fatou coordinates are defined on maximal domains in Z-space called
translation domains.

Definition 3.2. — A line ` ⊂ Ûε is called an admissible line if ` and
Gε(`) are disjoint and the strip Ĉε(`) between ` and G(`) is included in Ûε.
The strip Ĉε(`) is called an admissible strip.

Lemma 3.3. — There exists θ0(r) defined by

(3.20) tan θ0(r) = 2M(r) 6
δ

2
such that if the angle θ(`) of the line with the horizontal axis satisfies

(3.21) θ0(r) 6 θ(`) 6 π − θ0(r)

then Gε(`) is located to the right of `.

Proof. — Let θ1 be the angle of the horizontal line through Z with
the line through Z and tangent to the circle centered in Z + 1 of radius
M(r) = Kr. Then | sin θ1| = M(r) < | tan θ1|. We need sin θ0 > | sin θ1|.
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We let tan θ0 = 2M(r) 6 1
2δ. As δ < 1

2π < 2 then tan θ0 < 1 yielding
that θ0 < 1

4π. Hence cos θ0 > 1√
2

yielding that

sin θ0 = 2M(r) cos θ0 >
√

2M(r) >
√

2| sin θ1|.

The condition tan θ0 = 1
2δ is easier to manipulate than a condition on

sin θ0. �

The translation domains are the saturation of admissible strips under
iterations of Gε.

Definition 3.4. — Let ` be an admissible line for Gε. The translation
domain associated with ` is the set

Qε(`) =
{
Z ∈ Ûε ; ∃n ∈ Z Gn

ε (Z) ∈ Ĉε(`)(3.22)
and ∀j ∈ [0, n] ⊂ Z, Gj

ε(Z) ∈ Ûε

}
(For n < 0, [0, n] = {j ∈ Z ; n 6 j 6 0}.)

Proposition 3.5. — 1) The domain Qε(`) is a simply connected open
subset of Ûε.

2) Ĉε(`) \ ` is a fundamental domain for Gε restricted to Qε(`) : each
Gε-orbit in Qε(`) has one and only one point in this subset.

3) If `′ is another admissible line, then `′ ⊂ Qε(`) if and only if ` ⊂ Qε(`′).
This defines an equivalence relation among the admissible lines for Gε, each
equivalence class corresponding to a different translation domain.

Definition 3.6. — A Lavaurs translation domain (Figure 3.2) is a do-
main associated with an admissible line passing between the fundamental
hole and one of its two adjacent holes (notation QL

ε ).

Figure 3.2. A fundamental domain Ĉε(`) associated to an admissible
line ` and the Lavaurs translation domain it generates (the figure is
drawn for q = 2).

Remark 3.7. — It is also possible to define Glutsyuk translation domains
associated with admissible lines parallel to the line of holes. The projection
of the corresponding admissible strips are fundamental domains having the
shape of annuli (tori once quotiented by gε). But Glutsyuk translations
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domains do not exist for all values of ε and this is why we have prefered
the other approach.

Proposition 3.8. — Let us suppose that r, ρ, δ and θ0 satisfy the
following conditions

(3.23) ρ < r2q, tan θ0(r, ρ) = 2M(r) <
1
2
δ,

and r < 1
2 is sufficiently small so that

(3.24) rq <
δπ
√

2
16

·

Then for Vδ,+ (resp. Vδ,−) to each admissible line for some ε0 with arg ε0 =
1
2π (resp. arg ε0 = − 1

2π) is associated a unique family of Lavaurs translation
domains associated with admissible lines depending continuously on ε (see
Figure 3.3 for the case of Vδ,+).

Figure 3.3. A continuous family of admissible lines and strips for
ε ∈ Vδ,+ (for the sake of simplicity we have not drawn the ramifica-
tion of Sε at the holes).

Proof. — Let us take the case of Vδ,+. The worst cases are the extreme
cases when arg(ε) = − 1

2π+δ and arg(ε) = 3
2π−δ. Let us discuss the second

case. The slope of the line joining the holes is tan δ. The radius of the holes
is bounded by

(3.25) − 1
qε

ln
(
1− ε

rq

)
<

1
qε

ε/rq

1− ε/rq
<

2
qrq

since − ln(1 − k) < k/(1− k) and ρ < 1
2r

q. Hence the vertical distance
between the top of one ball and the bottom of the next one is greater
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than |α| sin δ − 4/qrq. We want to pass a strip admissible line with slope
| tan θ0(r)| = 2M(r) < 1

2δ. Its maximum vertical size is less than(
1 +M(r)

)
tan θ0(r) <

1
2
(
1 +M(r)

)
δ < δ

since M(r) < 1
4δ < 1. The horizontal distance between the center of two

balls is |α| cos δ, and the largest horizontal distance between two points of
the different balls is less than |α| cos δ + 4/qrq. Hence it suffices to have

(3.26)
δ

2
<
|α| sin δ − 4/qrq − δ

|α| cos δ + 4/qrq
·

As sin δ − 1
2δ cos δ > δ/2

√
2 (see comment below) it suffices to have

(3.27) |α| · δ

2
√

2
>

4
qrq

+ δ
(
1 +

2
qrq

)
,

which is satisfied if we have

(3.28) |α| · δ

4
√

2
>

4
qrq

, |α| · δ

4
√

2
>

4δ
qrq

> δ
(
1 +

2
qrq

)
.

As |α| = 2π/qρ, the first inequality is satisfied under condition (3.24). The
second is satisfied for r2q < 1

2π which is automatically satisfied for r < 1
2 .

Let m(δ) = sin δ − 1
2δ cos δ − 1

2
√

2
δ. Then m(0) = 0, m′(0) > 0 and

m′′(δ) > 0 yielding that m′(δ) > 0 for all δ ∈ [0, 1
2π]. Hence m(δ) > 0

for δ ∈ (0, 1
2π]. �

3.4. Existence of Fatou coordinates

Theorem 3.9. — Let Qε = Qε(`) be any translation domain and
Z0(ε) ∈ Qε.

1) There exists a holomorphic diffeomorphism Φε : Qε → C, such that

(3.29) Φε

(
Gε(Z)

)
= Φε(Z) + 1,

for Z ∈ Qε ∩G−1
ε (Qε). Moreover

(3.30) lim
Im(Z)→±∞

Im
(
Φε(Z)

)
= ±∞.

2) If Φ1,ε and Φ2,ε are two solutions of (3.29), then there exists A ∈ C
such that Φ2,ε(Z) = A+Φ1,ε(Z). In particular if Z0(ε) ∈ Qε(`) there exists
a unique holomorphic diffeomorphism Φε satisfying (3.29) together with
Φε(Z0(ε)) = 0.
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Proof. — The proof is exactly the same as in [14] as it relies only on
(3.13), (3.14) and (3.19). We put it here for the sake of completeness.
The technique we use is identical to that of Shishikura [23], as adapted
in [14]. It consists in constructing a quasi-conformal conjugacy of Gε to the
translation by 1 and then using Ahlfors-Bers theorem to transform it into
a conformal conjugacy.

All along the proof we do not mention the ε-dependence. Let ` be an
admissible line in the translation domain Q, Ĉ(`) the corresponding strip
and let Z1 be any point of `. Points of ` can be written as Z1 + Y eiθ,
Y ∈ R, where θ = θ(`) ∈ (θ0, π − θ0) is the angle of ` with R. We recall
that θ0(r) 6 θ(`) 6 π − θ0(r). We define

h1 : C0 =
{
(X,Y ) ∈ R2 ; 0 6 X 6 1

}
−→ Ĉ(`)

by

(3.31) h1(X,Y ) = (1−X)(Z1 + Y eiθ) +XGε(Z1 + Y eiθ).

Then

(3.32)


∂h1

∂X
= Gε(Z1 + Y eiθ)− (Z1 + Y eiθ),

∂h1

∂Y
= X eiθG′ε(Z1 + Y eiθ) + eiθ(1−X).

Using the estimates (3.13) and (3.14), these formulas imply that

(3.33)
∂h1

∂X
= 1 + u(X,Y ),

∂h1

∂Y
= eiθ + v(X,Y ),

with |u|, |v| 6 M(r) 6 1
4δ. Let

µh1 =
∂h1/∂Z

∂h1/∂Z

be the dilatation coefficient field of h1. One has

(3.34)
∂h1

∂Z
=

1
2
[
1 + u+ i(eiθ + v)

]
and

∂h1

∂Z
=

1
2
[
1 + u− i(eiθ + v)

]
.

When u, v ≡ 0, i.e. when Gε ≡ T1, µh1 reduces to

µ0 =
1 + ieiθ

1− ieiθ
=

i cos θ
1 + sin θ

and

(3.35)
∣∣µ0

∣∣ =
1√

1 + tan2 θ + | tan θ|
6

1
1 + 4M(r)
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as | tan θ| > tan θ0 = 2M(r). From (3.34) one can write

(3.36) µh1 = µ0
(
1 +

u− iv

1− ieiθ

)−1

+
u+ iv

1− ieiθ + u− iv
·

Let us remark that |1− ieiθ| >
√

2. Then, from (3.36) one deduces (where
M = M(r))

‖µh1‖∞ = Sup
{
|µh1(z)| ; z ∈ C0

}
(3.37)

6 (1 + 4M)−1(1−M)−1 +M(1−M)−1

= 1− 2M − 8M2

(1 + 4M)(1−M)
< 1,

for 1 − 4M > 0, which is satisfied for δ < 1. So h1 is a quasi-conformal
mapping on the strip C0 and satisfies h−1

1 (Gε(Z)) = h−1
1 (Z) + 1 for Z ∈ `

when M(r, ρ) is small enough. Moreover, µ = µh1 is a Beltrami field on C0.

(This just means that µ is defined by a L∞-function with a norm strictly
less than 1.) One can also write that µ = h∗1µ0, where µ0 is the standard
Beltrami field on C (defined by the function 0).

We extend µ to all of C by means of the translation T1: the extended µ is
periodic of period 1, is in L∞(C) and has a L∞-norm ‖µ‖∞ = ‖µh1‖∞ < 1
(µ may have discontinuities along the lines {ReZ = c ; c ∈ Z}). Then this
extended µ is a Beltrami field on C.

The universal covering

(3.38) w = E(W ) = exp(−2πiW )

from C to C∗ induces a holomorphic diffeomorphism from C/T1 to C∗. As µ
is invariant by T1 the map E induces a Beltrami field µ̃ on C∗ with the
same norm µ = E∗(µ̃). Considering the Riemann sphere S2 as C∗∪{0,∞},
one can extend µ̃ on S2 by, for instance, µ̃(0) = µ̃(∞) = 0. Then µ̃ defines
a Beltrami field on the Riemann sphere.

By Ahlfors-Bers measurable mapping theorem there exists a unique quasi-
conformal mapping

h̃2 : S2 −→ S2

such that

h̃∗2µ0 = µ̃ and h̃2(0) = 0, h̃2(∞) = ∞, h̃2(1) = 1.

As 0, 1 ∈ E−1(1), this map lifts to a quasi-conformal map h2 : C → C
sending 0 to 0 and 1 to 1. Indeed, one can lift h̃2 into a map h2 such that
h2(0) = 0. The circle in S2 which turns one time around 0 or ∞ lifts into
the line segment [0, 1] in C. This means that h2(1) = 1. We have also that
Im(h2(X + iY )) → ±∞ when Y → ±∞.
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The most important property of h2 is that it commutes with T1. To
see this, consider the homeomorphism H2 = h2 ◦ T1 ◦ h−1

2 . It induces the
identity on S2 and must then be a power of the deck transformation T1

of the universal covering map E : i.e. H2 = Tn
1 for some n ∈ Z. Now

H2(0) = h2 ◦ T1(0) = h2(1) = 1. This forces n = 1 and then H2 = T1,

i.e. h2 ◦ T1 = T1 ◦ h2.

We define φ : Ĉ(`) → C by φ = h2◦h−1
1 and extend it by T1 to a mapping

φ : C → C which is quasi-conformal and preserves the standard conformal
structure. Hence it is conformal. For Z ∈ ` one has T1 ◦ φ(Z) = φ ◦Gε(Z).
Then φ extends to a map Φ of Q into C by

Φ(Z) = φ ◦Gn
ε (Z)− n,

where n ∈ Z is such that Gn
ε (Z) ∈ Ĉ(`). This map Φ is a holomorphic

diffeomorphism which verifies Φ ◦Gε = T1 ◦ Φ.
The property (3.30) follows from the definition of h1 and the fact that

Im(h2(X + iY )) → ±∞ when Y → ±∞.

If Φi,ε, i = 1, 2, satisfy (3.29), let

χ1,ε = Φ2,ε ◦ (Φ1,ε)−1 and χ2,ε = Φ1,ε ◦ (Φ2,ε)−1.

Both χj,ε satisfy χj,ε(W + 1) = χj,ε(W ) + 1 and this relation allows to
extend them to global functions on C. Moreover χ2,ε ◦ χ1,ε is the identity
over a strip of width 1, hence everywhere on C. It follows that Φ2,ε ◦ Φ−1

1,ε

is a translation. �

Definition 3.10. — A function Φε constructed in Theorem 3.9 is called
a Fatou coordinate associated with the translation domain Qε. The base
point of a Fatou coordinate is the point Z0(ε) = Φ−1

ε (0).

3.5. Dependence on the parameters of Fatou coordinates

Theorem 3.11. — Let gε be a prepared family (3.1) and Gε the lifted
unfolding. Let δ > 0 and r0, ρ0 be given sufficiently small and let r, ρ be
chosen so that the conclusions of Proposition 3.1 hold. Let Qε be a family
of translation domains for ε in one of the sectors Vδ,± constructed by means
of an admissible line depending continuously on ε.

1) The family (Qε)ε∈Vδ,± is continuous in the following sense. Let us
consider

(3.39) Q± =
⋃

ε∈Vδ,±

(
{ε} ×Qε

)
⊂ C2.
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Then Q± is an open subset of Vδ,± × C. Moreover
⋂

ε∈Vδ,±
Qε 6= ∅.

2) Let Z0(ε) ∈ Qε depend holomorphically on ε (including at ε = 0) and
let Φε be the Fatou coordinate defined on Qε for ε ∈ Vδ,± and normalized
by Φε(Z0(ε)) = 0. Let Φ± : Q± → C defined by

Φ±(ε, Z) = Φε(Z).

The function Φ± is holomorphic in Int(Q) (i.e. for ε 6= 0), and continuous
in Q.

Proof. — The proof is as in [14]. �

Definition 3.12. — The function Φ± : Q± → C of Theorem 3.11 is
called a global Fatou coordinate associated to the sector Vδ,±.

4. The modulus of analytic classification

Before defining the modulus it is necessary to understand better the
geometry of the domain of definition of (3.7) and (3.10). When ε = 0, S0

is the standard Riemann surface of the function Z1/q obtained by glueing
together q sheets along cuts from 0 to ∞. Fatou coordinates are defined
on translation domains which belong to the complement of a q-sheeted
neighborhood of 0. If we consider an admissible line located in a sheet
on one side of the hole and the translation domain it generates, then for
q > 2 this domain intersects exactly two translation domains associated to
admissible lines located on the other side of the hole B0 (see Figure 4.1).

B0

`
+

j
`
−

j

`
+

j−1

`
−

j−1

Figure 4.1. Four admissible lines and one translation domain (q = 3).

Moreover each of the two intersections is simply connected yielding that
a comparison of the two Fatou coordinates is possible only in a domain
containing a half-plane. When ε 6= 0 we have a similar picture but repeated
at each of the holes. Remember that the whole surface looks like Figure 3.1.
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So, for the sector Vδ,+ (resp. Vδ,−), we consider 2q global Fatou coordi-
nates Φ±j,+ (resp. Φ±j,−) generated by admissible lines `±j,+(ε) (resp. `±j,−(ε)),
j = 1, . . . , q, located respectively between B0 and either B1 or B−1 on the
different sheets and generating admissible strips Ĉ±j,ε,+ (resp. Ĉ±j,ε,−). The
lines are chosen so that no positive iterates of points of a fundamental do-
main generated by a line `−j,± ever enters a fundamental domain generated
by a line `+j,±. So lines `−j,− and `+j,+ (resp. `−j,+ and `+j,−) pass through B0

and B−1 (resp. B0 and B1). (For the index j we work (mod q).) They
generate translation domains Q±j,ε,±. Their indices are chosen so that the
translation domains of `+j,±(ε) and `−j,±(ε) (resp. `+j+1,±(ε) and `−j,±(ε)) inter-
sect and contain an “upper domain” (resp. “lower domain”), i.e. a domain
whose intersection with Ĉ±j,ε,± contains an upper end (resp. lower end) of
the cylinder Ĉ±j,ε,±/Gε. We give ourselves 2q base points Z±j,±(ε) located
in the different translation domains and depending analytically on ε. This
gives us, for each sector Vδ,±, 2q global Fatou coordinates Φ±j,ε,± associated
to each of the 2q admissible lines `±j,±(ε) and base points Z±j,±(ε).

For j = 1, . . . , q, we define

(4.1) Ψ∞
j,ε,± = Φ−j,ε,± ◦ (Φ+

j,ε,±)−1, Ψ0
j,ε,± = Φ−j,ε,± ◦ (Φ+

j+1,ε,±)−1,

where we identify Φ+
q+1,ε,± = Φ+

1,ε,±.

Whenever possible we will drop the lower indices ± referring to the sec-
tors.

Proposition 4.1. — Here we drop the lower indices ± in the Ψ0,∞
j,ε,±.

1) Each map Ψ0,∞
j,ε commutes with the translation by 1 :

Ψ0,∞
j,ε ◦ T1 = T1 ◦Ψ0,∞

j,ε .

Hence Ψ∞
j,ε (resp. Ψ0

j,ε) induces a mapping Ψ̂∞
j,ε (resp. Ψ̂0

j,ε) defined on
an open set of Φ+

j,ε(Q
+
j,ε ∩ Q

−
j,ε)/Z (resp. Φ+

j+1,ε(Q
−
j,ε ∩ Q

+
j+1,ε)/Z) of the

cylinder C/Z with values in C/Z.
2) Using the exponential function W 7→ w = E(W ) = exp(−2iπW ),

we can identify C/Z with the sphere minus two points: CP1 \ {0,∞}. The
upper end of the cylinder C/Z, corresponds to ∞ ∈ CP1 and the lower end
to 0. Conjugating Ψ0

j,ε (resp. Ψ∞
j,ε) with this map yields an analytic map

ψ0
j,ε (resp. ψ∞j,ε) defined in the neighborhood of 0 (resp. ∞) on CP1 :

(4.2) ψ0,∞
j,ε (w) = exp

(
−2iπΨ0,∞

j,ε

(
− 1

2iπ
log(w)

))
,

where

(4.3) ψ0
j,ε(0) = 0, ψ∞j,ε(∞) = ∞.

ANNALES DE L’INSTITUT FOURIER



RESONANT DIFFEOMORPHISMS 321

ψ0

1

ψ∞

1

ψ0

2

ψ∞

2

ψ0

3

ψ∞

3

S
+

1,0

S
−

1,0
S

+

2,0

S
−

2,0

S
+

3,0
S
−

3,0

(a) ε = 0

(b) ε ∈ Vδ,+, arg ε =
1

2
π (c) ε ∈ Vδ,−, arg ε = −

1

2
π

S
+

1,ε

S
−

1,ε
S

+

2,ε

S
−

2,ε

S
+

3,ε S
−

3,ε

ψ0

1,ε,+

ψ∞

1,ε,+

ψ0

2,ε,+

ψ∞

2,ε,+

ψ0

3,ε,+

ψ∞

3,ε,+

S
+

1,ε

S
−

1,εS
+

2,ε

S
−

2,ε

S
+

3,ε
S
−

3,ε

ψ0

1,ε,−

ψ∞

1,ε,−

ψ0

2,ε,−

ψ∞

2,ε,−

ψ0

3,ε,−

ψ∞

3,ε,−

Figure 4.2. The maps ψj,ε for different values of ε

3) The functions ψ0,∞
j,ε,± depend analytically on ε 6= 0 in Vδ,± and are

continuous in ε at ε = 0.

Proof. — The proof is identical to that made in [14]. �

We now need to exploit that gε = fn
ε . This will yield that only Ψ0,∞

1,ε

are independent and the other Ψ0,∞
j,ε , j > 1, are conjugate to them by

translations.

Normalized set of Fatou coordinates. — Fatou coordinates are uniquely
determined by the base points. The maps Ψ0,∞

j,ε,±(W ) − W , by Proposi-
tion 4.1, 1), can be expanded as Fourier series with constant terms A0,∞

j,ε,±.
It is possible to choose the base points of the Fatou coordinates in Theo-
rem 3.9, 2) so that all A0,∞

j,ε,± = A0,∞
ε for some constants A0,∞

ε independent
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ψ0

1,ε,+

ψ∞

1,ε,+

ψ0

2,ε,+

ψ∞

2,ε,+

ψ0

3,ε,+

ψ∞

3,ε,+

ψ0

1,ε,+

ψ0

2,ε,+

ψ0

3,ε,+

ψ0

1,ε,+

ψ0

2,ε,+

ψ0

3,ε,+

ψ0

1,ε,+

ψ0

2,ε,+

ψ0

3,ε,+

ψ0

1,ε,+

ψ0

2,ε,+

ψ0

3,ε,+

Figure 4.3. The crescents and maps ψ0,∞
j,ε,+ for ε ∈ Vδ,+

of j and of the sector Vδ,+ or Vδ,− and such that A0
ε = −A∞ε (see for

instance details in [11] for the case ε = 0 and also Lemma 4.2 below).
A set of Fatou coordinates Φ±j,ε, j = 1, . . . q, such that the corresponding

transition maps Ψ0,∞
j,ε , j = 1, . . . , q, have this property, is called a normal-

ized set of Fatou coordinates.

Lemma 4.2. — We consider a normalized set of Fatou coordinates. Then

A0
ε = −A∞ε = πia/q

and the derivatives of ψ0,∞
j,ε satisfy

(4.4) (ψ0
j,ε)

′(0) = exp(2π2a/q), (ψ∞j,ε)
′(∞) = exp(2π2a/q).

Proof. — The proof of the lemma will follow from the proof of 2) in
Proposition 5.2. �
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ψ0

1,ε,−

ψ∞

1,ε,−

ψ0

2,ε,−

ψ∞

2,ε,−

ψ0

3,ε,−

ψ∞

3,ε,−

ψ∞

1,ε,−

ψ∞

1,ε,−

ψ∞

2,ε,−

ψ∞

2,ε,−

ψ∞

3,ε,−

ψ∞

3,ε,−

ψ∞

1,ε,−

ψ∞

2,ε,−

ψ∞

3,ε,−

ψ∞

1,ε,−

ψ∞

2,ε,−

ψ∞

3,ε,−

Figure 4.4. The crescents and maps ψ0,∞
j,ε,− for ε ∈ Vδ,−

Proposition 4.3. — We consider a map gε as in (3.1), being the q-th
iterate of a map fε as in (2.2), the corresponding lifted diffeomorphism Gε

and a normalized set of Fatou coordinates on either Vδ,+ or Vδ,−.
1) Let σ defined by σ(j) = j + p (mod q) be the shift which represents

the iterates of exp(2πi/q) under multiplication by exp(2πip/q). Then

(4.5) Ψ0,∞
σ(j),ε(W ) = Ψ0,∞

j,ε (W − 1/q) + 1/q.

2)

(4.6) ψ0,∞
σ(j),ε(w) = exp(−2πi/q) · ψ0,∞

j,ε

(
exp(2πi/q)w

)
.

3) Once Φ±1,ε is chosen the other Fatou coordinates can be taken such
that

(4.7) Φ±σ(j),ε ◦ Fε = T 1
q
◦ Φ±j,ε.
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Proof. — The map fε commutes with gε = fq
ε . Hence Fε = p−1

ε ◦ fε ◦ pε

commutes with Gε. We deduce that

(4.8) Φ±σ(j),ε

(
Gε

(
Fε(Z)

))
= Φ±σ(j),ε

(
Fε(Z)

)
+ 1 = (Φ±σ(j),ε ◦ Fε)

(
Gε(Z)

)
.

Then Φ±σ(j),ε ◦Fε is a Fatou coordinate on a translation domain containing
`±j (ε). Hence there exists C±ε,j such that

(4.9) Φ±σ(j),ε ◦ Fε = TC±
ε,j
◦ Φ±j,ε.

Using (4.1) we get

(4.10)

Ψ∞
σ(j),ε(W ) = Ψ∞

j,ε(W − C+
ε,j) + C−ε,j ,

Ψ0
σ(j),ε(W ) = Ψ0

j,ε(W − C+
ε,j+1) + C−ε,j .

As the set of Fatou coordinates is normalized we get C±j,ε = Cε.
Moreover, using F q

ε = Gε we get

Φ±σq(j),ε ◦Gε(W ) = Φ±j,ε(W ) + qCε = Φ±σq(j),ε(W ) + 1.

As σq(j) = j we get Cε = 1/q. �

Definition 4.4. — Let Diff0 (resp. Diff∞) be the set of germs of diffeo-
morphisms of CP1 defined in the neighborhood of 0 (resp. ∞) and fixing 0
(resp. ∞).

1) We consider the set of 2-tuples of diffeomorphisms (ψ∞1 , ψ0
1) in

(Diff∞ ×Diff0) having equal first derivatives at their distinguished point:

(ψ0
1)′(0) = (ψ∞1 )′(∞).

We define an equivalence relation on it by

(4.11) (ψ∞1 , ψ0
1) ∼ (ψ

∞
1 , ψ

0

1) ⇐⇒ ∃c ∈ C∗ ψ
0,∞
1 (w) = c−1ψ0,∞

1 (cw).

Let M be the quotient space.
2) We identify M with the set of equivalence classes of 2q-tuples of

diffeomorphims ψ = (ψ∞1 , ψ0
1 , ψ

∞
2 , ψ0

2 , . . . ψ
∞
q , ψ0

q ) where the ψ∞,0
j satisfy

(4.12) ψ∞,0
σ(j)(w) = exp(−2πi/q) · ψ∞,0

j

(
exp(2πi/q)w

)
.

In particular all ψ∞,0
j have the same derivative at their respective distin-

guished point.

Corollary 4.5. — For a prepared family G = {gε}ε∈V with V = Vδ,+∪
Vδ,− of the form (3.1) we have two applications

(4.13) mG,± : Vδ,± −→M, ε 7−→ mG,±(ε),
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where mG,±(ε) is the equivalence class of (ψ∞1,ε,±, ψ
0
1,ε,±) (which is the same

as that of ψε,± = (ψ∞1,ε,±, ψ
0
1,ε,±, . . . , ψ

∞
q,ε,±, ψ

0
q,ε,±)). This equivalence class

depends only on G and not of the choice of the base points.

Remark 4.6. — The two maps mG,± do not coincide on the intersection
Vδ,+ ∩ Vδ,−. Indeed for ε ∈ Vδ,+ (resp. ε ∈ Vδ,+) the point 0 and ∞ of the
spheres correspond respectively to the fixed point z0 = 0 of gε and the fixed
points z1, . . . , zq of gε (resp. the fixed points z1, . . . , zq of gε and the fixed
point z0 = 0 of gε). A neighborhood of them on the spheres corresponds to
a sectorial neighborhood of the corresponding fixed points of gε.

Definition 4.7. — Two germs of analytic families fε and f ε̄ of diffeo-
morphisms with a fixed point at the origin are conjugate if there exists a
germ of analytic diffeomorphism H(ε, z) = (k(ε), h(ε, z)) fibered over the
parameter space such that

(4.14) hε ◦ fε = fk(ε) ◦ hε

where hε(z) = h(ε, z).

Theorem 4.8. — We consider two prepared families F = {fε} and
F = {fε} of the form (2.2) and the families of their q-th iterates G = {gε}
and G = {gε} of the form (3.1). We choose common sectors Vδ,± on which
the previous analysis applies. Then the two families are conjugate if and
only if mG,± = mG,±.

Proof. — It is clear that two analytically conjugate families gε and gε

have the same invariant. Indeed in Proposition 2.1 we showed that the
canonical parameter is an analytic invariant, so the conjugacy is over the
identity and it suffices to compare the two families for a given ε̂ ∈ Vδ,±
corresponding to some ε ∈ V . From a conjugacy between gε and gε we
construct an equivalence between the Fatou coordinates, etc., which will
yield equality of the moduli. We postpone the proof of the converse since
it uses the notion of Lavaurs phase which will be discussed in the next
section.

Theorem 4.8 can be generalized to families not in prepared form.

Definition 4.9. — The 2-tuple mG = (mG,+,mG,−) of Corollary 4.5 is
called the modulus of the prepared family F (and of the prepared family G).

Theorem 4.10. — To any 1-parameter analytic family H = {hη} which
is a generic unfolding of a generic resonant fixed point (i.e. ∂2hη/∂z∂η 6= 0)
we associate a prepared analytic family F = {fε} and its q-th iterate
G = {gε}. We call mH the modulus mG of G. Then
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1) mH is well defined;
2) two families H and H are analytically conjugate if and only if they

have the same formal invariant a(0) for ε = 0 and mH = mH. Hence a(0)
together with mH is a complete invariant of analytic classification under
conjugacy.

Proof. — The passage from a family to its prepared form is analytic in
the parameter. Moreover the parameter of the prepared family is uniquely
defined and canonical as it is an analytic invariant. The conjugacy between
two prepared families is constructed as in Theorem 4.8. Composing it with
the changes of coordinate and parameter bringing the families to their
prepared forms yields a conjugacy between the initial families. �

4.1. The Lavaurs phase

Definition 4.11. — 1) For Vδ,+, the q Lavaurs translations are the
maps

(4.15) Lj,ε,+ = Φ+
j,ε,+ ◦ T−qα(ε) ◦ (Φ−j,ε,+)−1 : Q−j,+ → Q+

j,+.

2) For Vδ,−, the q Lavaurs translations are the maps

(4.16) Lj,ε,− = Φ+
j+1,ε,− ◦ T−qα(ε) ◦ (Φ−j,ε,−)−1 : Q−j,− → Q+

j+1,−.

Proposition 4.12. — The maps Lj,ε,± commute with W 7→ W + 1.
Hence they induce automorphisms of C/Z. By conjugating with W 7→
w = E(W ) = exp(−2iπW ) they yield diffeomorphisms of CP1 preserving
0 and ∞, hence linear maps `j,ε,± defined by

(4.17) `j,ε,±(w) = νj,±(ε)w.

So the map Lj,ε,± is a translation W 7→W + τj,±(ε) where

(4.18) νj,±(ε) = exp
(
−2iπ τj,±(ε)

)
.

The νj,± depend only of a and ε when we have a normalized set of Fatou
coordinates and are calculated below in (5.6).

Proof. — The proof is completely straightforward. See for instance [14].
�
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4.2. Proof of Theorems 4.8 and 4.10

End of proof of Theorem 4.8. — Here we prove the converse, i.e. two pre-
pared families with same modulus are analytically conjugate. The proof
is in three steps. Considering two prepared families G = {gε = fq

ε } and
G = {gε = f

q

ε} which have the same modulus (and hence the same canoni-
cal parameter ε) we first construct, for each ε, a conjugacy between gε and
gε. Using our global Fatou coordinates this will in fact yield conjugacies
hε,± for ε ∈ Vδ,±, each depending analytically on ε 6= 0 and continuously
on ε near ε = 0. We have shown that it yields a conjugacy between fε

and fε. We finally show that it is possible to construct a conjugacy which
depends analytically of ε. This will be shown in Theorem 4.15 below.

Because the families have the same modulus we can consider that on
each sector Vδ,± they have a common set of translations domains Q±j,ε,± and

the same transition functions Ψ0,∞
j,± = Ψ

0,∞
j,± defined on the corresponding

intersections. We first consider a conjugacy Hε,± defined on the union of
the translation domains Q± =

⋃q
j=1(Q

+
j,ε,± ∪ Q

−
j,ε,±). Then we check that

the composition hε,± = pε ◦Hε,± ◦p−1
ε yields a conjugacy over U . The map

Hε,± is defined as

(4.19) Hε,±(Z) =

{
(Φ

+

j,ε,±)−1 ◦ Φ+
j,ε,± Z ∈ Q+

j,ε,±

(Φ
−
j,ε,±)−1 ◦ Φ−j,ε,± Z ∈ Q−j,ε,±.

The map Hε,± is well defined because the two families have the same mod-
ulus. We need to show that hε,± = pε ◦Hε,± ◦ p−1

ε is well defined over U .
For this we need to show that Hε,± commutes with the translation Tqα(ε),
where α is given in (3.6). For the rest of the proof we do not write the
dependence in ε. We write the proof for Vδ,+ and do not write the index
referring to it in the functions Φ±j , Φ

±
j and Ψ0,∞

j .

(4.20)

{
Ψ∞

j ◦ Lj,+ = Φ−j ◦ T−qα ◦ (Φ−j )−1,

Ψ
∞
j ◦ Lj,+ = Φ

−
j ◦ T−qα ◦ (Φ

−
j )−1.

We will show in Proposition 5.2 below that Lj,ε,± depends only on the
modulus, and hence that Lj,ε,± = Lj,ε,±. So

(4.21)

(Φ
−
j )−1 ◦ Φ−j ◦ T−qα = (Φ

−
j )−1 ◦Ψ∞

j ◦ Lj,+ ◦ Φ−j
= (Φ

−
j )−1 ◦Ψ

∞
j ◦ Lj,+ ◦ Φ−j

= (Φ
−
j )−1 ◦ Φ

−
j ◦ T−qα ◦ (Φ

−
j )−1 ◦ Φ−j

= T−qα ◦ (Φ
−
j )−1 ◦ Φ−j .

TOME 57 (2007), FASCICULE 1



328 Christiane ROUSSEAU & Colin CHRISTOPHER

Similarly, using that

(4.22) Lj,+ ◦Ψ0
j = Φ+

j ◦ T−qα ◦ (Φ+
j+1)

−1,

we get

(4.23)

(Φ
+

j )−1 ◦ Φ+
j ◦ T−qα = (Φ

+

j )−1 ◦ Lj,+ ◦Ψ0
j ◦ Φ+

j+1

= (Φ
+

j )−1 ◦ Lj,+ ◦Ψ
0

j ◦ Φ+
j+1

= T−qα ◦ (Φ
+

j+1)
−1 ◦ Φ+

j+1

= T−qα ◦ (Φ
+

j )−1 ◦ Φ+
j .

The last line follows as Hε,± is well defined. The diffeomorphism Hε,± in-
duces an analytic equivalence hε between the two diffeomorphims gε and gε

except at the fixed points. Since the equivalence is bounded it can be ex-
tended at the fixed points. The domain of hε contains a ball of radius r
independent of ε.

The proof on Vδ,− is analogous.
The last step of the proof is to show that it is possible to choose hε

depending analytically on ε. This will be done in Theorem 4.15 below. �

Lemma 4.13. — Let gε = fq
ε and gε = f

q

ε . If gε and gε are conjugate
then fε and fε are conjugate.

Proof. — Here again we drop the lower indices referring to the sectors
Vδ,±. Let Fε and F ε be the lifts of fε and fε. From (4.7) we get

(4.24) Fε = (Φ±σ(j))
−1 ◦ T1/q ◦ Φ±j , F ε = (Φ

±
σ(j))

−1 ◦ T1/q ◦ Φ
±
j .

The map Hε defined in (4.19) which is a conjugacy between Gε and Gε

clearly induces a conjugacy between Fε and F ε. Hε induces a map hε which
conjugates fε and fε. �

Remark 4.14. — Because of the analytic character of the maps ψ∞,0
j,ε,±,

in order to show that two families are analytically equivalent, it suffices to
show that they have the same mG,+(ε) or the same mG,−(ε), or even the
same mG,±(ε) for ε in an open subsector of Vδ,± with vertex at the origin.

4.3. Symmetries of families unfolding a resonant fixed point

In this section we discuss briefly the symmetries of prepared families gε

of the form (3.1) as a tool to prove:
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Theorem 4.15. — If there exist conjugacies hε,± for ε ∈ Vδ,± between
two prepared families gε and gε as in (3.1), depending analytically on ε 6= 0
and continuously on ε near ε = 0, then the two families gε and gε are
analytically conjugate.

Definition 4.16. — 1) The group of symmetries of g0 is the commu-
tator of g0 inside the group of germs of analytic diffeomorphisms tangent
to the identity at the origin.

2) Similarly, given gε defined on a neighborhood containing its fixed
points, we will call symmetry of gε any analytic diffeomorphism on the
same neighborhood which commutes with it.

The continuous symmetries of gε unfold the symmetries of g0. So we first
recall these.

Proposition 4.17 (see [11]). — Depending on the modulus (ψ0
1,0, ψ

∞
1,0)

we get the following cases:
1) If g0 is generic, i.e. ψ0

1,0 or ψ∞1,0 does not commute with any linear
map, then the symmetry group of g0 is the group of iterates {gn

0 |n ∈ Z}.
2) If g0 is not embedable and m ∈ N is maximum so that there exists k0

satisfying g0 = km
0 with k0 tangent to the identity (i.e. ψ0

1,0(w) = wξ01,0(w
m)

and ψ∞1,0(w) = wξ∞1,0(w
m) and one of them is nonlinear), then the symmetry

group of g0 is the group of iterates {kn
0 |n ∈ Z}.

3) If g0 is embedable, i.e. ψ0
1,0 and ψ∞1,0 are linear and g0 is conjugate by

m0 to the time-one map v1 of the flow of the vector field v given in (1.5)
then all symmetries of g0 are conjugate by m0 to the time-t maps vt of the
flow of v for t ∈ C.

Proposition 4.18. — We consider a prepared family gε unfolding g0.
1) If g0 is generic i.e. ψ0

1,0 or ψ∞1,0 does not commute with any linear
map, then, for sufficiently small ε, any symmetry of gε is of the form gn

ε for
n ∈ Z. In particular if γε is a symmetry of gε depending continuously on ε

in a sector, and such that γ0 = id, then γε = id.
2) If g0 is not embedable and m ∈ N is maximum so that there exists k0

satisfying g0 = km
0 with k0 tangent to the identity (i.e. ψ0

1,0(w) = wξ01,0(w
m)

and ψ∞1,0(w) = wξ∞1,0(w
m) and one of them is nonlinear) and if γε is a

symmetry of gε depending continuously on ε in a sector such that γ0 = id,
then γε = id.

3) If g0 is embedable, then one of the following cases occurs:
a) If γε is a symmetry of gε depending continuously on ε in a sector,

and such that γ0 = id, then γε = id.
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b) For all ε the map gε is embedable, i.e. conjugate to the time-one map
of the flow v1

ε of the vector field (1.6) under mε and its continuous
symmetries are conjugate by mε to the time-t(ε) maps vt(ε)

ε of the
flow of vε for a continuous function t(ε) with values in C. The map
t(ε) is unique as soon as it unfolds t(0) = 1, in which case it makes
sense to call the corresponding symmetry the t(ε)-th iterate gt(ε)

ε of
gε.

Proof. — A symmetry sends orbits to orbits. For ε 6= 0 the orbit struc-
ture is completely determined by the quotient of a sphere (CP1) by the
return maps in the neighborhood of 0 and ∞. So a symmetry is given by a
diffeomorphism of the sphere preserving 0 and ∞ (i.e. a linear map) which
commutes with the return maps.

1) This case occurs as soon as one of ψ0
1,0 and ψ∞1,0 is nonlinear and both

are not of the form ψ0
1,0(w) = wξ01,0(w

m) and ψ∞1,0(w) = wξ∞1,0(w
m) for some

m > 1. This can be seen on a finite jet. (Indeed if ψ0
1,0(w) =

∑∞
i=1 aiw

i

and ψ∞1,0(w) =
∑∞

i=1 biw
i this occurs as soon as there exists m,n > 1 with

(m,n) = 1 such that an 6= 0 or bn 6= 0 and simultaneously am 6= 0 or
bm 6= 0.) Then the same property is true for ψ0

1,ε and ψ∞1,ε for ε sufficiently
small. So all symmetries γε of gε are of the form gn

ε with n ∈ Z. If a family
γε depends continuously on ε then n needs to be constant and n = 0 is the
only possibility if we add the condition that limε→0 γε = id.

2) The proof is similar. Note that the discrete symmetries may or may
not be preserved in the unfolded family. Continuous families of symmetries
will be given by some κn

ε for a fixed n ∈ Z where κd
ε = gε, d|m and κε is

continuous in ε.
3) We consider the cases separately.

a) The first case occurs as soon as one of ψ0
1,ε or ψ∞1,ε is nonlinear. Indeed

suppose that ψ0
1,ε(w) = a1(ε)w + as(ε)ws + o(ws) with as 6≡ 0. As

as(ε) depends analytically on ε 6= 0 it is nonzero on an open dense
subset on which we can apply the same argument as in 1) or 2) since
the only possible symmetries are discrete.

b) Let us look at an individual symmetry Hε of vε, given by the time-
t(ε) map of its flow. Then

H ′
ε(0) = exp

(
−εt(ε)

)
and H ′

ε(zi) = exp
( qεt(ε)

1 + aε

)
·
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Different times t(ε) and τ(ε) yield the same symmetry Hε if and only
if there exists k, k′ ∈ Z such that

T (ε) = t(ε)− τ(ε) = −2kπi
ε

=
2k′πi(1 + aε)

qε
·

The only continuous solution T (ε) satisfying T (0) = 0 is T ≡ 0. �

Proof of Theorem 4.15. — The idea of the proof is the following: on each
of the sectors Vδ,± we have constructed diffeomorphisms hε,± between gε

and gε which depend analytically on ε 6= 0 and continuously on ε near
ε = 0. To get the conclusion it suffices to prove that it is possible to
choose the hε,± so that they coincide on the intersections of Vδ,±. Indeed
γε = (hε,−)−1 ◦ hε,+ is a symmetry of gε. Moreover γε depends analytically
on ε 6= 0 and has a continuous limit at ε = 0. It is of course possible to
adjust the hε,± so that h0,+ = h0,−. Then γ0 = id. In cases 1), 2) and 3), a)
of Proposition 4.18 it follows that γε = id.

So we only need to discuss case 3), b). Let λ±(ε) = h′ε,±(0). We define
on Vδ,± the symmetries γε,± of gε which have the property that

γ′ε,±(0) =
(
λ±(ε)

)−1
.

Indeed gε is conjugate by some map kε,± to the time one map of the flow
ofvε given in (1.6). Each symmetry γε,± of gε is conjugate by kε,± to the
time t map vt

ε of the flow of vε. As (vt
ε)
′(0) = exp(−εt) we must choose

t±(ε) = lnλ±(ε)/ε in γε,±, i.e. γε,± = g
t±(ε)
ε . We replace the maps hε,±

by hε,± = γε,± ◦ hε,±. As h
′
ε,+(0) = h

′
ε,−(0) = 1 and the two maps hε,+

and hε,− both conjugate gε with gε then they coincide on Vδ,+ ∩ Vδ,−. �

4.4. The Glutsyuk point of view

Instead of taking admissible lines as in Proposition 3.8 it is also possible
to take admissible lines parallel to the lines of holes as in Figure 4.5 but
only for values of ε such that | arg ε − k 1

2π| > δ with k ∈ Z, which we call
the Glutsyuk domain.

Then the fundamental domains are tori as Gε commutes with Tqα (details
as in [14]). The Fatou coordinates on the associated translation domains
yield analytic changes of coordinates to the model family in the neighbor-
hood of each of the fixed points of gε: these are named ΦG

j,ε,± for those
covering a neighborhood of zj and ΦG,j

0,ε,± for those covering a neighbor-
hood of z0 (there are q of these, one in each sheet of the covering). The
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Figure 4.5. Continuous families of admissible lines and strips for ε in
the Glutsyuk domain (for the sake of simplicity we have not drawn the
ramification of Sε at the holes).

lower index is + (resp. −) if Re ε > 0 (resp. Re ε < 0). As in the proof of
Proposition 4.3 we can show that they can be chosen so as to satisfy

(4.25)
ΦG

σ(j),ε,±
(
Fε(Z)

)
= ΦG

j,ε,±(Z) +
1
q

,

ΦG,σ(j)
0,ε,±

(
Fε(Z)

)
= ΦG,j

0,ε,±(Z) +
1
q
·

From the shape of the Riemann surface as in Figure 3.1, it is clear that the
domain of any ΦG

j,ε,± intersects the domain of any ΦG,m
0,ε,±.

The transitions between the Fatou coordinates are given by

(4.26)
ΨG

j,ε,+ = ΦG,j
0,ε,+ ◦ (ΦG

j,ε,+)−1,

ΨG
j,ε,− = ΦG

j,ε,− ◦ (ΦG,j
0,ε,−)−1.

(There also exist other functions Ψ corresponding to the other intersections
but they can be deduced from these ones by means of (4.25).) They depend
continuously on ε as ε→ 0. At the limit the domain becomes disconnected
and the ΨG

j,ε,± tend to Ψ0
j on one half of the domain and Ψ∞

j on the other
half. If one of the Ψ0,∞

j is not a translation then so does the correspond-
ing ΨG

j,ε,±. So the changes of coordinates to the model in the unfolding
in the Poincaré domain are not compatible. We write very few details as
things are completely similar to [8] and [14] and as this is not needed for
what follows.
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Remark 4.19. — The projection of a Glutsyuk translation domain on
which we can bring the family to the model yields a neighborhood of one
fixed point on which we can linearize the diffeomorphism.

4.5. The Martinet-Ramis point of view

In [16] Martinet and Ramis present the orbit space of f0 as the union of
two spheres identified in the neighborhoods of 0 and ∞ by two germs of
diffeomorphisms (instead of our descriptions with 2q-spheres and 2q germs
of diffeomorphisms). Their description carries over to the unfolding. Indeed

Proposition 4.20. — Over each sector Vδ,± the orbit space of fε is
described by the union of the two spheres S+

1,ε∪S
−
1,ε identified in the neigh-

borhood of ∞ (resp. 0) by ψ∞1,ε (resp. ψ̃0
1,ε) where

(4.27) ψ̃0
1,ε = ψ0

1,ε ◦ Lm

with

(4.28) Lm(w) = exp(2πim/q)w, where mp ≡ −1 (mod q).

Proof. — The map fε induces a global diffeomorphim between S±j,ε and
S±σ(j),ε fixing 0 and ∞, hence a linear map. From (4.7) it is easily seen that
w ∈ S±j,ε and w ∈ S±σ(j),ε belong to the same orbit if w = exp(−2πi/q)w.
Let m be such that mp ≡ −1 (mod q). Then w ∈ S+

2,ε belongs to the same
orbit as w = exp(−2πim/q)w = L−1

m (w) ∈ S+
1,ε. Then identifying points

with same orbits in S+
2,ε and S−1,ε through ψ0

1,ε is the same as identifying
points with same orbits in S+

1,ε and S−1,ε through ψ̃0
1,ε = ψ0

1,ε ◦ Lm. �

We do not discuss this point of view any longer as this is not needed in
the rest of the paper.

5. The parametric resurgence phenomenon

For ε 6= 0 the construction of Fatou coordinates allows to define renor-
malized return maps. These maps allow to study the dynamics of the fixed
points of gε.
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5.1. The renormalized maps as an alternative description
to the modulus

We consider a normalized set of Fatou coordinates generated by admissi-
ble lines `±j (ε). These lines together with their images Gε(`±j (ε)) determine
strips Ĉ±j,ε. Their images by pε are crescents C±j,ε. Their quotient under gε

are conformally equivalent to CP1\{0,∞} by Proposition 4.1. We call these
quotient spaces S±j,ε.

Proposition 5.1. — 1) For ε ∈ Vδ,+ \ {0} there exist for the map gε:

i) a renormalized return map: kj,ε,+ : S+
j,ε → S+

j,ε, j = 1, . . . , q, defined
by

(5.1) kj,ε,+ = `j,ε,+ ◦ ψ∞j,ε,+,

where the map kj,ε,+ is conjugate to Φ+
j,ε,+ ◦ T−qα ◦ (Φ+

j,ε,+)−1 by
means of E given in (3.38);

ii) a renormalized return map: k0,ε,+ : S+
1,ε → S+

1,ε defined by

(5.2) k0,ε,+ = `1,ε,+ ◦ ψ0
1,ε,+ ◦ · · · ◦ `+q,ε,+ ◦ ψ0

q,ε,+,

where the map k0,ε,+ is conjugate to Φ+
1,ε,+ ◦ T−q2α ◦ (Φ+

1,ε,+)−1 by
means of E.

2) For ε ∈ Vδ,− \ {0} there exist for the map gε:

i) a renormalized return map: kj,ε,− : S−j,ε → S−j,ε, k = 1, . . . , q, defined
by

(5.3) kj,ε,− = ψ0
j,ε,− ◦ l−j,ε,−,

where the map kj,ε,− is conjugate to Φ−j,ε,− ◦ T−qα ◦ (Φ−j,ε,−)−1 by
means of E;

ii) a renormalized return map: k0,ε,− : S+
1,ε → S+

1,ε defined by

(5.4) k0,ε,− = lq,ε,− ◦ ψ∞q,ε,− ◦ · · · ◦ `1,ε,− ◦ ψ∞1,ε,−,

where the map k0,ε,− is conjugate to Φ+
1,ε,− ◦ T−q2α ◦ (Φ+

1,ε,−)−1 by
means of E.

The proof is completely straightforward.

Proposition 5.2. — 1) The first derivatives k′0,ε,+(0), k′j,ε,−(0), j =
1, . . . , q, k′0,ε,−(∞), k′j,ε,+(∞), j = 1, . . . , q, are analytic invariants. Their
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values are:

(5.5)


k′0,ε,+(0) = e4π2/µ0(ε) = e−4π2/ε

k′j,ε,−(0) = e4π2/µj(ε) = e4π2(1+aε)/(qε) j = 1, . . . , q

k′0,ε,−(∞) = e4π2/µ0(ε) = e−4π2/ε

k′j,ε,+(∞) = e4π2/µj(ε) = e4π2(1+aε)/(qε) j = 1, . . . , q

as µ0(ε) and µj(ε) are given in (2.14).
2) The maps `j,ε,± are independent of j when we deal with a normalized

set of Fatou coordinates. They are given by `j,ε,±(w) = ν±(ε) with

(5.6) ν±(ε) = exp
(
∓

(4π2

qε
+

2π2a

q

))
.

They depend on ε, a(ε) and q.
3) The (q + 1)-tuples (k0,ε,±, . . . , kq,ε,±) defined in Proposition 5.1 are

representatives of the modulus.
The maps Lj,ε,± defined in (4.15) and (4.16) depend only of the formal

part of the modulus and of the parameter ε.

Proof. — 1) It is classical that, if a diffeomorphism with a fixed point
at the origin has a multiplier of the form exp(2πiβ), then the renormalized
return map has a multiplier exp(−2πi/β). A proof in the case β ∈ R appears
in [27]. A geometric proof for β non real appears in [14].

2) We have the two systems, each in two unknowns:

(5.7)

k
′
0,ε,+(0) =

∏q
j=1(ψ

0
j,ε,+)′(0)(ν+(ε))q = e−4π2/ε,

k′j,ε,+(∞) = (ψ∞j,ε,+)′(∞)(ν+(ε))−1 = e4π2(1+aε)/(qε),

where j = 1, . . . , q and

(5.8)

k
′
j,ε,−(0) = (ψ0

j,ε,−)′(0)ν−(ε) = e4π2(1+aε)/(qε),

k′0,ε,−(∞) =
∏q

j=1(ψ
∞
j,ε,−)′(∞)(ν−(ε))−q = e−4π2/ε

from which we find (5.6) and also (4.4), hence proving Lemma 4.2.
3) It is clear that the ψ0,∞

j,ε,± can be recovered from the (q + 1)-tuples
(k0,ε,±, . . . , kq,ε,±).

4) The formula (5.6) shows that the maps `j,ε,±(w) = ν±(ε)w depend
only of the formal part of the modulus. Then so do the translations Lj,ε,±.

�
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5.2. The parametric resurgence

We call parametric resurgence the phenomenon in which the non triviality
of the modulus for ε = 0 allows to conclude to the non-linearizability of gε

(or fε) on some sequences of parameter values converging to the origin.

Proposition 5.3. — We suppose that for all j = 1, . . . q, (ψ0,∞
j,ε,±)′(0) =

exp(2π2a/q). In the sequel we will speak of normal form of resonant maps
at ∞. By this we mean the normal form at the origin of the conjugate
under w̃ = 1/w of the corresponding map.

1) Let us suppose that the coefficients of ψ0
1,0 are such that

ξ1 = exp
(2πir
m

− 2π2a

q

)
ψ0

1,0

is not linearizable at the origin because the s-th coefficient of the normal
form does not vanish, then the periodic (resp. fixed) points z1, . . . zq, of fε

(resp. gε) will be nonlinearizable as soon as ε has the form

ε = − 2πim
q(r + nm) + 2πiam

with n sufficiently large. More precisely the s-th coefficient of the renor-
malized return map of fq

ε is nonzero.
2) Let us suppose that the coefficients of ψ∞1,0 are such that

ξ2 = exp
(2πir
m

+
2π2a

q

)
ψ∞1,0

is not linearizable at ∞ because the s-th coefficient of the normal form does
not vanish, then the periodic (resp. fixed) points z1, . . . zq, of fε (resp. gε)
will be nonlinearizable as soon as ε has the form

ε =
2πim

q(r + nm)− 2πiam

with n sufficiently large. Indeed the s-th coefficient of the renormalized
return map of fq

ε is nonzero.
3) Let us suppose that all ψ0

1,0, . . . , ψ
0
q,0 are such that the map

(5.9) ξ3 = ψ0
1,0 ◦ ` ◦ ψ0

2,0 ◦ ` ◦ · · · ◦ ψ0
q,0 ◦ `,

where ` is a linear map such that ξ′3(0) = exp(2πir/m), is not linearizable
at the origin because the s-th coefficient of the normal form does not vanish,
then the fixed point z0 = 0 of fε (and gε) will be nonlinearizable as soon
as ε has the form ε = 2πim/(r + nm) with n sufficiently large. Indeed the
s-th coefficient of the renormalized return map of fq

ε is nonzero.
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4) Let us suppose that all ψ∞1,0, . . . , ψ
∞
q,0 are such that

(5.10) ξ4 = ψ∞q,0 ◦ ` ◦ · · · ◦ ψ∞2,0 ◦ ` ◦ ψ∞1,0 ◦ `,

where ` is a linear map such that ξ′4(∞) = exp(−2πir/m), is not lineariz-
able at ∞ because the s-th coefficient of the normal form does not vanish,
then the fixed point z0 = 0 of fε (and gε) will be nonlinearizable as soon as
ε has the form ε = −2πim/(r + nm) with n sufficiently large. Indeed the
s-th coefficient of the renormalized return map of fq

ε is nonzero.

Proof. — If a map has the form g(z) = exp(2πiβ)z+o(z), then its renor-
malized return map has the form h(z) = exp(−2πi/β)z + o(z) (see Propo-
sition 5.2).

1) and 2) The renormalized return map around z1 has the form

k1,ε,− = ψ0
1,ε,− ◦ `1,ε,−,

where ψ0
1,ε,− depends continuously on ε. A priori `1,ε,− is a wild map, but

we limit ourselves to values of ε such that k′1,ε,−(0) = exp(2πir/m), i.e.
`1,ε,−(w) = exp(2πir/m − 2π2a/q)w. The map k1,ε,− is hence resonant.
It is nonlinearizable as soon as one of the coefficients of its normal form
is nonzero. As ψ0

1,ε,− depends continuously on ε the non vanishing of the
s-th coefficient of the normal form of ξ1 implies the non vanishing of the
s-th coefficient of the normal form of k1,ε,−. The situation is similar at the
other singular points because of (4.6).

3) and 4) This case is very similar to the previous one. Indeed we
limit ourselves to values of ε for which the renormalized return map k0,ε,+

(resp. k0,ε,−) has same derivative at the origin (resp. at ∞) as ξ3 (resp. ξ4)
and is very close to it. So, if the s-th coefficient of the normal form of ξ3
(resp. ξ4) is non vanishing, then the same is true for the s-th coefficient
of k0,ε,+ (resp. k0,ε,−) for ε sufficiently small as described. �

6. The modulus of orbital analytic classification of a
family unfolding a resonant saddle

In [22] it is shown that the modulus of orbital analytic classification of
a generic family unfolding a generic saddle-node under weak equivalence is
given by the modulus of the unfolded holomomy map of its strong separa-
trix. We show that the same holds for a generic family unfolding a generic
resonant saddle.
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6.1. Orbital preparation of the family

We consider a vector field with a generic resonant saddle at the origin,
i.e. such that the first coefficient of its normal form is nonzero and a generic
family unfolding it.

Proposition 6.1. — With a change of coordinates and scaling of time
we can bring the family to the form Θη given by

(6.1) Θη : ẋ = x, ẏ = y
[
− p

q
(1 + η) +Au+ h(x, y)

]
,

with A 6= 0, u = xpyq and h(x, y) = o(u).

Proof. — As it is very standard we only give the main idea. A change of
coordinates brings the analytic separatrices to the axes and scaling allows
to transform the system to

(6.2) ẋ = x, ẏ = y
[
− p

q
(1 + η) +O

(
|x, y|

)]
.

The final form is achieved through a change of coordinates of the form

(6.3) y = Y
(
1 +

p−1∑
j=0

aj(Y )xj +
q−1∑
k=0

bk(x)Y k
)
.

�

The holonomy map of its x-separatrix has the form

fη(y) = exp
(
−2πip/q(1 + η)

)
y(6.4)

+
(
2πiA exp(−2πip/q) +O(η)

)
yq+1 + o(yq+1).

If we choose to scale x and y so that A = 1/(2πiq), then the map is almost
of the form (2.2): only p is changed to −p and the parameter is different.

An orbital preparation of the family must of course bring the holonomy
map and its q-th iterate to a prepared form. It is possible to apply a scal-
ing (x, y) 7→ (αx, βy) with αpβq = 1 so that the family is defined in the
region |x| < 2 and the holonomy is defined as a map from {x = 1} to
itself. When we make further changes of coordinates we apply if necessary
other scalings of this type so that the holonomy is always defined as a map
from {x = 1} to itself.

Theorem 6.2. — There exists an analytic change of coordinate (x, y) 7→
(x̃, ỹ) = (x, βy(1+O(u)) and of parameter η 7→ ε bringing the family (6.1)
to an orbitally prepared form with parameter

(6.5) ε = 2πipη,
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i.e. a form in which the holonomy of the x-separatrix on the section {x = 1}
is in prepared form and in which the invariant manifold has an equation
ũ = ε, where ũ = x̃pỹq.

Proof. — The fact that the vector field is non integrable of order 1 leads
to the “materialization” of the resonance [12], i.e. to the birth of an analytic
invariant manifold of a special form which in the limit η → 0 goes to u = 0.
There exists a formal change of coordinate (X,Y ) = (x, y + o(u)) bringing
the system to the normal form

(6.6) Ẋ = X, Ẏ = Y
[
− p

q
(1 + η) +AU + h(U)

]
,

where h(U) = o(U) is a power series in U . In these coordinates the invariant
manifold has the form

(6.7) η = k(U) =
∞∑

j=1

aj(η)U j ,

with a1(0) 6= 0 and the ai(η) depending analytically on η [12]. Even if
the change of coordinates is generically divergent, the invariant manifold is
analytic. Coming back to the original variables x and y it has an equation
of the form

η = k1(x, y) = a1(η)u+ o(u) = u
(
a1(η) +m(x, y)

)
with m(x, y) = O(u). We take a change of coordinates

(x̃, ỹ) =
(
x, y

(a1(η)
2πip

+
m(x, y)
2πip

)1/q)
in which the invariant manifold has the equation ε = ũ with ũ = x̃pỹq.

This means in particular that the analytic invariant manifold intersects
the section {x = 1} at ỹq = ε. Let f̃η be the holonomy map in the vari-
able ỹ. We know that ỹq − ε = 0 is the equation of the q-periodic points of
the holonomy map coming from the intersection of the invariant manifold
with x = 1. Then the q-th iterate of f̃η has the form

(6.8) f̃q
η (y) = ỹ + ỹ

(
ỹq − ε))(1 +O(η) +O(ỹ)

)
.

The map is already prepared as (f̃q
η )′(0) = exp(−2πipη) = exp(−ε). �

From now on we will always limit ourselves to orbitally prepared families
of vector fields unfolding a resonant saddle. We can suppose that the family
has the form (6.1). We will consider the family as depending of the param-
eter ε, where ε is given in (6.5), and we will suppose that the holonomy
fε(y) of the variable y has the form (2.2) in which we replace z by y and p
by −p. Then its q-th iterate gε(y) has the form (3.1).
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The variable u plays a special role as the equation of the analytic invari-
ant manifold is given by u = ε. Note that changes of coordinates of the
form

(6.9) (x̃, ỹ) 7−→
(
x̃ exp

(
h(x̃, ỹ

))
, ỹ exp

(
−p
q
h(x̃, ỹ)

))
preserve u as ũ = u.

Remark 6.3. — In the particular case p = q = 1 the two separatri-
ces play identical roles although their holonomy maps are never conjugate
(when not linearizable) as they do not have the same formal invariant. A
negative rescaling of time, t 7→ −t, allows to exchange them. To study the
analytic orbital equivalence of two families we will have to distinguish one
separatrix for each family and build the analytic orbital equivalence by
extending the conjugacy of the holonomies of these distinguished separa-
trices.

6.2. Complete invariant of orbital analytic classification for a
generic family of vector fields unfolding a generic resonant

saddle

Definition 6.4. — Two germs of analytic families of vector fields,
Θε1(x1, y1) (resp. Θε2(x2, y2)) unfolding a resonant saddle at the origin
for ε1 = 0 (resp. ε2 = 0) are orbitally equivalent if there exists a germ of a
map

(6.10) K = (h,Φ, ξ) : (ε1, x1, y1) 7−→
(
h(ε1),Φ(ε1, x1, y1), ξ(ε1, x1, y1)

)
fibered over the parameter space where

i) h : ε1 7→ ε2 = h(ε1) is a germ of an analytic diffeomorphism preserv-
ing the origin;

ii) there exists a representative Φε1(x1, y1) = Φ(ε1, x1, y1) which is an
analytic diffeomorphism in (ε1, x1, y1) on a small neighborhood of
the origin in (ε1, x1, y1)-space;

iii) there exists a representative ξε1(x1, y1) = ξ(ε1, x1, y1) depending an-
alytically on (ε1, x1, y1) in a small neighborhood of the origin in
(ε1, x1, y1)-space with values in C∗;

iv) the change of coordinates Φε1 and the scaling of time ξε1 is an equiv-
alence between Θε1(x1, y1) and Θh(ε1)(x2, y2) over a ball of small
radius r > 0:

(6.11) Θh(ε1)(Φε1(x1, y1)) = ξ(ε1, x1, y1)(Φε1)∗(Θε1(x1, y1)).
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Theorem 6.5. — We consider a generic family unfolding a generic res-
onant saddle with hyperbolicity ratio p/q in prepared form. The modulus
of analytic classification of the holonomy map of the unfolded vector field
as described in Theorem 4.8, namely the two families of equivalence classes

(6.12)
(
(ψ∞1,ε,±, ψ

0
1,ε,±)/ ∼

)
ε∈Vδ,±

,

together with a(0) is a complete modulus of orbital analytic classification
under orbital equivalence. In the case p = q = 1 it is the modulus of the
family of resonant saddles with a marked separatrix.

Proof. — The proof uses essentially the fact that the holonomy char-
acterizes the differential equation [17] and [16]. This proof can be carried
nearly verbatim over a fixed neighborhood of the origin for values of ε in a
small neighborhood of the origin.

One direction is obvious: If two orbitally prepared families are equivalent
then there exists an equivalence transforming one to the other. In these
coordinates they have conjugate holonomies for each value of ε over a fixed
neighborhood in y-space, hence the same modulus.

Let us now consider the converse. We consider two orbitally prepared
families of vector fields Θ1,η and Θ2,η, which are generic unfoldings of
resonant saddles with hyperbolicity ratio p/q defined on the same neigh-
borhood of the origin containing |x| < 2. We suppose that the families of
holonomies are conjugate. In particular the parameters η for the vector
fields and ε = 2πiη for the holonomies are the same. For each ε in a neigh-
borhood of the origin we need to construct an orbital equivalence between
the two vector fields over a neighborhood of the origin W = B(0, 2) × U ,
which is independent of ε: the orbital equivalence will depend analytically
on ε. As the hononomies fj,ε, j = 1, 2, are conjugate there exists an analytic
change of coordinate y2 = ζε(y1) = ζ(y1, ε) conjugating f1,ε with f2,ε, i.e.
f1,ε = ζ−1

ε ◦ f2,ε ◦ ζε. ζε is defined from {x1 = 1} to {x2 = 1}. We want to
perform a change of coordinates on Θ1,η on a whole neighborhood of the
origin so that the two holonomies become identical. As ζε(0) = 0 since 0 is
a fixed point, and since the q-th roots of ε are periodic points of period q,
then ζε(y1) = e2πik/qy1+y1(y

q
1−ε)ζ1,ε(y1). We let the change of coordinate

on W be given by

(6.13) (x1, y1) = (x1, y1(e2πik/q + (u1 − ε)ζ1,ε(y1))) = Λε(x1, y1).

The change of coordinates Λε transforms the invariant manifold u1 = ε

of Θ1,ε into u1 = ε. Moreover (Λε)∗(Θ1,η) and Θ2,η have the same holonomy
on {x1 = 1} and {x2 = 1} respectively.
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So we can suppose that Θ1,η and Θ2,η have the same holonomy on xj = 1.
The next step consists in constructing a change of coordinate Kε(x1, y1) =
(x2, y2) transforming the first system to the second. This change of coor-
dinate will of course be the identity (i.e. Kε(1, y1) = (1, y2)) on xj = 1.
The first step is to extend Kε to |xj | = 1. For that we consider the path
(eiθ, 0), θ ∈ [0, 2π] which is lifted in the leaf of the foliation through (1, yj)
as (eiθ, αj(θ, yj)). We let

(6.14) Kε

(
eiθ, α1(θ, y1)

)
=

(
eiθ, α2(θ, y1)

)
.

The next step consists in extending Kε along lifting of radial paths:

(6.15) rxj
:
[
0,− ln |xj |

]
−→W, rxj (s) = (xj es, 0),

for 0 < |xj | < 1. The lifting in the leaf through (xj , yj) is a path

(xj es, βj,xj (s))

with endpoint δj(xj , yj) = (xj/|xj |, βj,xj (− ln |xj |)). The map δj is the
flow of Θj,η for the time − ln |xj |: δj = Θ− ln |xj |

j,η . So the inverse map is well
defined. We let

(6.16) δ1(x1, y1) =
( x1

|x1|
, γ1(x1, y1)

)
, δ−1

2

( x2

|x2|
, y2

)
=

(
x2, γ2(x2, y2)

)
.

Then we let

(6.17) Kε(x1, y1) =
(
x1, γ2

( x1

|x1|
, γ1(x1, y1)

))
.

The map Kε is a holomorphic equivalence between the vector fields outside
xi = 0. As it is bounded by Lemma 6.6 below it can be extended to xi = 0.
It clearly depends analytically on ε. �

Lemma 6.6. — We consider a vector field

(6.18) ẋ = x, ẏ = y
(
−λ+ a(x, y)

)
defined on |x| < 2 and y < r, in which λ ∈ C is a parameter in a small
neighborhood of λ0 > 0 where Reλ > 0 and a(x, y) = O(|xy|). We consider
a radial path as in (6.15) (we drop the indices). Its lifting through (x, y)
has endpoint δλ(x, y) = (x/|x|, γλ(x, y)). Then there exists a neighborhood
Λ ⊂ C of λ0 and a neighborhood U of 0 such that for all λ ∈ Λ, for all x0

with 0 < |x0| < 1 and for all y0 ∈ U

(6.19) |y0| · |x0|
3
2 λ0 6

∣∣γλ(x0, y0)
∣∣ 6 |y0| · |x0|

1
2 λ0 .
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Proof. — The proof is very close to that of [17] and [16]. From (6.15) we
get ṡ = 1. This yields to the differential equation

(6.20)
dy(s)
ds

= y(s)
(
−λ+ a

(
x0es, y(s)

))
with initial condition y(0) = y0. So

(6.21)
d|y(s)|

ds
=

∣∣y(s)∣∣(−Reλ+ α
(
x0es, y(s)

))
.

For |x| < 2 and |y| < r0 with r0 sufficiently small we have |α(x, y)| < 1
4λ0.

Then

(6.22) −
(λ0

4
+ Reλ

)
s 6 ln

∣∣∣y(s)
y0

∣∣∣ 6
(
−Reλ+

λ0

4

)
s.

Hence

(6.23) |y0|e−(Re λ+ 1
4 λ0)s 6

∣∣y(s)∣∣ 6 |y0|e(−Re λ+ 1
4 λ0)s.

We evaluate this at s = − ln |x0| and take |λ−λ0| < 1
4λ0 from which (6.19)

follows for |x0| < 1. �

7. The transcritical bifurcation

We consider here the case of a resonant hyperbolic saddle of a real system
(6.1) in prepared form. Hence the parameter η is real and also the formal
invariant a. Moreover in that case we usually only observe the singular point
and not the invariant manifold. We only need to describe the behaviour for
η < 0 and η > 0. As ε = 2πipη this corresponds to ε ∈ iR− and ε ∈ iR+.
In the first case the renormalized return map for the q-th power of the
holonomy is given by (5.4), namely

(7.1) k0,ε,− = `−q,ε,− ◦ ψ∞q,ε,− ◦ · · · ◦ `−1,ε,− ◦ ψ∞1,ε,−.

We see that the renormalized return map, and hence the normalizability
of the origin depends on ψ∞1,ε,− only. In the second case the renormalized
return map is given by (5.2):

(7.2) k0,ε,+ = `1,ε,+ ◦ ψ0
1,ε,+ ◦ · · · ◦ `+q,ε,+ ◦ ψ0

q,ε,+.

The normalizability of the origin depends on ψ0
1,ε,+ only. In particular if we

start with a semi-normalizable saddle point: ψ0
1 linear and ψ∞1 nonlinear

(resp. ψ0
1 nonlinear and ψ∞1 linear) we may observe families in which the

origin is non integrable for sequences of negative rational values of η and
integrable for η > 0 (resp. the origin is integrable for η < 0 and non
integrable for sequences of positive rational values of η).

TOME 57 (2007), FASCICULE 1



344 Christiane ROUSSEAU & Colin CHRISTOPHER

Such examples of families appear in [3] and [5] and raised the first au-
thor’s interest in the subject. They are families of polynomial vector fields.

8. Modulus of analytic conjugacy for a generic family
unfolding a resonant saddle

8.1. Preparation of the family

We consider a generic analytic 1-parameter family of vector fields un-
folding a resonant saddle of order 1. As the separatrices are analytic and
depend analytically on the parameter the family can always be brought by
an analytic change of coordinates to the form

(8.1) Xε : ẋ = λ1(ε)xh1,ε(x, y), ẏ = λ2(ε)y h2,ε(x, y),

where λ2(0)/λ1(0) = −p/q, d(λ2/λ1)/dε 6= 0 and hi,ε(x, y) = 1 + O(x, y).
Modulo some preparation on the orbital form as in the beginning of Sec-
tion 6.1 we can suppose that

(8.2)
λ2(ε)
λ1(ε)

= −p
q
(1 + η) with η =

ε

2πip
·

We can of course suppose that the family

(8.3) Θε =
Xε

λ1(ε)h1,ε(x, y)

is in prepared form (6.1) (because the transformations to get (6.1) are in y
only and hence preserve the equation ẋ = x).

Proposition 8.1. — There exists a change of coordinate depending
analytically on ε and bringing the family Xε = λ1(ε)h1,ε(x, y)Θε with Θε

given in (6.1) to the prepared form

(8.4) λ1(ε)k1,ε(x, y)Θε,

with k1,ε(x, y) = 1 +O(u).

Proof. — A conjugacy given by the flow X
ξε(x,y)
ε of Xε for a time ξε(x, y)

transforms the vector field Xε to the vector field λ1(ε)k1,ε(x, y)Θε provided

(8.5)
1

1 +Xε(ξε)
=
k1,ε

h1,ε

,

(see for instance [4]). Hence

(8.6) Xε(ξε) =
h1,ε

k1,ε
− 1.
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We need to choose ξε in such a way that k1,ε(x, y) = 1 + O(u), with
u = xpyq. For that purpose we write

(8.7) h1,ε(x, y) = 1 +
q−1∑
i=0

yiai,ε(x) +
p−1∑
j=0

xjbj,ε(y) +mε(x, y)

with ai,ε(0) = 0 and bj,ε(0) = 0 and mε(x, y) = O(u) and we take

(8.8) ξε(x, y) =
q−1∑
i=0

yiαi,ε(x) +
p−1∑
j=0

xjβj,ε(y).

Let nε(x, y) =
∑q−1

i=0 y
iai,ε(x) +

∑p−1
j=0 x

jbj,ε(y). As

Xε(ξε) = λ1(ε)
(
1 + nε(x, y) +O(u)

)
×

[ q−1∑
i=0

(
xα′i,ε(x) + iαi,ε(x)

(
−

(p
q

+ η
)

+O(u)
))
yi

+
p−1∑
j=0

(
jβj,ε(y) + yβ′j,ε(y)

(
−

(p
q

+ η
)

+O(u)
))
xi

]
(8.9)

and writing

(8.10)
nε(x, y)

λ1(ε)(1 + nε(x, y) +O(u))
=

q−1∑
i=0

yiγi,ε(x) +
p−1∑
j=0

xjδj,ε(y) +O(u)

with γi,ε(0) = δj,ε(0) = 0 (this decomposition is not unique), this yields
linear differential equations

(8.11)

xα′i,ε(x)− i
(p
q

+ η
)
αi,ε(x) = γi,ε(x),

jβj,ε(y)−
(p
q

+ η
)
yβ′j,ε(y) = δj,ε(y)

which all have analytic solutions vanishing at the origin. �

As in the previous section we can assume that we work in a neighbor-
hood of the origin of the form {|x| < 2} × W , where W is a neighbor-
hood of the origin in y-space (a scaling in (x, y) preserving u may be nec-
essary to achieve this.) We will always limit ourselves to families Xε =
λ1(ε)h1,ε(x, y)Θε in prepared forms, i.e. such that h1,ε(x, y) = 1 +O(u).

Proposition 8.2. — The family Xε has four formal invariants:

i) ε = 2πipη: the multiplier of the q-th iterate of the holonomy map of
the x-separatrix is exp(−ε).
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ii) a(ε), where the multiplier of the q-th iterate of the holonomy of the
x-separatrix at the invariant manifold is exp(qε/(1 + a(ε)ε)).

iii) t1(ε) = 2πi/λ1(ε) is the time spent along the loop x = x0eiθ, y = 0
when θ ∈ [0, 2π]. This time is independent of x0. In particular we
can take x0 = 1.

iv) t2(ε) is the time spent along the loop x = x0eiθ, u = ε, when θ ∈
[0, 2πq]. We can of course assume that

(8.12) t2(ε) =
2πiq

λ1(ε)(1 + εC(ε))
·

Again it is independent of x0. In particular we can take x0 = 1. C(ε)
is completely determined by t2(ε) and admits a continuous extension
at ε = 0.

The first two invariants depend only of the orbital analytic classification
and the last two involve time, so they are only invariant under conjugacy.

The problem we are interested in is the classification of analytic families
under conjugacies (the definition is similar to Definition 6.4 above except
that we do not allow to divide by a nonzero function: see below). For that
purpose we compare our family to an adequate model family. As above
the comparison with the model family will generically be ramified and we
will find the modulus from this ramification. The modulus will have two
parts, the first part being the modulus of analytic orbital classification and
a second part dealing with the time.

8.2. Comparing the family to a model family

This step is an intermediate step in deciding if two families are conjugate.
Indeed a conjugacy, if it exists will be found by composing conjugacies
of each family to the model family. The conjugacy is first defined on a
section of the separatrix and then extended. Here we limit ourselves to the
definition of the conjugacy on a section.

We compare our family to a model family

(8.13) Yε =

ẋ = λ1(ε)x
(
1 + C(ε)u

)
,

ẏ = −λ1(ε)
p

q
y(1 + η)

(1 +B(ε)u)
(1 +A(ε)u)

(
1 + C(ε)u

)
,

where A(ε) and B(ε) are chosen so that u = ε be the invariant manifold.
Hence 2iπp(A−B−ηB) = 1, which determines B(ε) as a function of A(ε):

(8.14) B(ε) =
A(ε)
1 + η

− 1
2πip(1 + η)

.
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Then the family can be rewritten

(8.15) Yε =

ẋ = λ1(ε)x
(
1 + C(ε)u

)
,

ẏ = −λ1(ε)
p

q
y
[
1− 1

2πip
u− ε

1 +A(ε)u

](
1 + C(ε)u

)
.

Taking v = u1/q yields the equation

(8.16)
dv
dx

=
1

2πiq
v(vq − ε)

x(1 +A(ε)vq)
·

To calculate the q-th iterate of the holonomy we take x = exp(2πiqθ) with
θ ∈ [0, 1], which yields

(8.17)
dv
dθ

=
v(vq − ε)

1 +A(ε)vq
.

The coefficients A(ε), λ1(ε), C(ε) are chosen so that the family has the same
four analytic invariants described in Proposition 8.2 as (8.1). This goes in
the following way:

ii) we simply have A(ε) = a(ε) as the q-th iterate of the holonomy is
the time-one map of (8.17);

iii) we have t1(ε) = 2πi/λ1(ε);
iv) t2(ε) = 2πiq/(λ1(ε)(1 + εC(ε))).

We look for a conjugacy of a certain type, namely the flow of Xε for
a certain time ξε(x, y). This flow map preserves the leaves over a fixed
neighborhood of the origin for sufficiently small ε. It is shown in [4], [25]
and [24] that Xε is mapped to Yε by an analytic diffeomorphism, Hε being
the flow map X

ξε(x,y)
ε of Xε for some time ξε(x, y), if

(8.18)
1

1 +Xε(ξε)
=

1 + C(ε)u
h1,ε

·

Hence we must construct a solution of (8.18). Let

(8.19) τε =
h1,ε

1 + C(ε)u
− 1.

Thus we want to construct ξε(x, y) satisfying

(8.20) Xε(ξε) = τε.

The construction goes in two steps. We first construct a solution ξε(1, y)
over the section Σ = {x = 1}: this step will be sufficient to define the
modulus of conjugacy. We should then extend it to a full neighborhood of
the origin but we will see that this second step is not necessary to solve
the problem of deciding when two families are conjugate. Let y ∈ Σ such
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that fq
ε (y) ∈ Σ, where fε is the holonomy map of the x-separatrix and fq

ε

its q-th iterate. Then the function ξε(1, y) = ξ1,ε(y) must satisfy

(8.21) ξ1,ε(fq
ε (y))− ξ1,ε(y) =

∫
γq(y)

τεdtXε

where fε is the holonomy map, γq(y) is the lifting of the curve

γq,0 =
{
(x = eiθ, y), θ ∈ [0, 2πq]

}
to the leaf through (1, y) joining (1, y) and (1, fq

ε (y)) and dtXε is the time-
form of Xε.

Before discussing the first step, namely the construction of a solution
to (8.21) let us give the definition of a time-form of a vector field.

Definition 8.3. — A time form dtX of a vector field X is a 1-form
such iX dtX = 1.

Remark 8.4. — (i) Let ω be a form such that iX(ω) = 0. Such a form
is called a dual form to X. Then the time form is uniquely determined up
to the addition of a dual form to X.

(ii) It is easily checked that if dtX is a time form for X and Y = φ∗(X)
for some change of coordinates then φ∗(dtX) is a time form for Y .

Lemma 8.5. — Let

(8.22) kε(y) =
∫

γ(y)

τεdtXε .

where γ(y) is the lifting of the curve γ0 = {(x = eiθ, y), θ ∈ [0, 2π]}, to the
leaf through (1, y) joining (1, y) and (1, fε(y)). The function kε(y) of (8.22)
is analytic in y. Moreover there exists positive constants c1(ε), c2(ε) such
that

(8.23)

{
|kε(y)| 6 c1(ε)|y| near y = 0,

|kε(y)| 6 c2(ε)|y − ε1/q| near y 6 ε1/q.

Proof. — This comes from the fact that Yε has the same formal time in-
variants as Xε. Indeed, if dtXε

(resp dtYε
), is the time-form of Xε (resp. Yε)

and if γε is a trajectory of Xε (hence of Yε), then

(8.24)
∫

γε

dtYε
− dtXε

=
∫

γε

τεdtXε

and this integral vanishes for y = 0 and yq = ε, yielding the estimate
(8.23). �

We now examine the holonomy on x = 1 with z = y as a coordinate and
we lift to the Z-plane by composition with (3.7): z = pε(Z).
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Theorem 8.6. — Let

(8.25) Kε = kε ◦ pε, Fε = p−1
ε ◦ fε ◦ pε.

Let Q+
j,ε,± be a translation domain and Φ±j,ε,± be a Fatou coordinate on it.

Let σ be the permutation on {1, . . . , q} given by j 7→ j + p (mod q) and σi

its i-th iterate.
1) There exists a unique holomorphic function Ξ̃±j,ε,± defined on Φ±j,ε,±(Q±j,ε,±)

satisfying

(8.26) Ξ̃±j,ε,±(W + 1)− Ξ̃±j,ε,±(W ) =
q−1∑
i=0

K̃±
σi(j),ε,±

(
W +

i

q

)
,

where

(8.27) K̃±
j,ε,±(W ) = Kε ◦ (Φ±j,ε,±)−1(W ),

and such that its limit is zero at the lower end of the strip and its limit at
the upper end of the strip exists. The function Ξ̃±j,ε,± depends analytically
on ε ∈ Vδ,± for ε 6= 0 and continuously on ε near ε = 0.

2) The different Ξ̃±j,ε,± are related by the following recurrence relations:

(8.28) Ξ̃±σ(j),ε,±(W ) = Ξ̃±j,ε,±

(
W − 1

q

)
+ K̃±

j,ε,±

(
W − 1

q

)
.

3) For ε 6= 0 the Ξ̃+
j,ε,± are related to the Ξ̃−j,ε,± by means of

(8.29)


Ξ̃−j,ε,+ = Ξ̃+

j,ε,+ ◦ Lj,ε,+ = Ξ̃+
j,ε,+ ◦ Φ+

j,ε,+ ◦ T−qα ◦ (Φ−j,ε,+)−1

Ξ̃−j,ε,− = Ξ̃+
j+1,ε,− ◦ Lj,ε,−,

= Ξ̃+
j+1,ε,+ ◦ Φ+

j+1,ε,− ◦ T−qα ◦ (Φ−j,ε,−)−1,

where Lj,ε,± are the Lavaurs translations defined in (4.15) and (4.16).
4) The different functions Ξ̃±j,ε,− (resp. Ξ̃±j,ε,+) all have the same limit at

the upper end of the strip.

Proof. — For all the proof we remove the lower indices ±. For the first
part of the proof we also drop the upper indices ±. Let

(8.30) R̃j,ε(W ) =
q−1∑
i=0

K̃σi(j),ε

(
W +

i

q

)
.

Let Ĉ ⊂ Φj,ε(Qj,ε) be a closed strip of width 1 with boundary ` ∪
T1(`), where ` is a line with same direction as eiβ , β ∈ (δ, π − δ), and
T1(W ) = W + 1. By Lemma 8.5, the definition of pε and the limit be-
haviour of the Fatou coordinates in (3.30) we have that R̃j,ε(W ) → 0 as
Re(W e−iβ) → ±∞.
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Let U0 be an open neighborhood of Ĉ. Let s̃ of the form

(8.31) s̃(W ) = s
(
Re(W )− cotβ Im(W )

)
= s(− Im(W e−iβ)

sinβ
)

where s : R → R is C∞, monotone increasing and satisfies

(8.32) s(x) =

{
0 x 6 x1,

1 x > x2,

with x1 < x2. The values x1 and x2 are chosen so that s̃ ≡ 0 (resp. s̃ ≡ 1)
on a neighborhood V1 (resp. V2) of ` (resp. T1(`)). Let

Ξ̂j,ε(W ) = s̃(W )R̃j,ε(W − 1).

Then Ξ̂j,ε is a C∞-solution of (8.26).
The first derivatives of s̃ are bounded as Re(W e−iβ) → ±∞. Hence the

function Ξ̂j,ε satisfies

(8.33) lim
Re(W e−iβ)→±∞

Ξ̂j,ε(W ) = 0.

We must correct Ξ̂j,ε to an analytic function. As R̃j,ε is analytic in W

we have that

(8.34) ∂ Ξ̂j,ε(W + 1)− ∂ Ξ̂j,ε(W ) = ∂ R̃j,ε = 0,

where ∂ = ∂/∂W . Hence ∂ Ξ̂j,ε is periodic of period 1. Moreover

(8.35) lim
Re(W e−iβ)→±∞

∂ Ξ̂j,ε(W ) = 0,

as ∂ Ξ̂j,ε(W ) = ∂ s̃(W )R̃j,ε(W − 1). We look for a function Hε, periodic of
period 1, such that

(8.36) ∂ Ξ̂j,ε = ∂Hε.

Then an analytic solution to (8.26) will be given by

(8.37) Ξ̃j,ε = Ξ̂j,ε −Hε.

To find Hε we let

(8.38) mε(z) = Ξ̂j,ε

(
− 1

2πi
ln z

)
.

The function
∂mε

∂z
=
∂ Ξ̂j,ε

∂W
· ∂W
∂z

=
1

2πiz
· ∂ Ξ̂j,ε

∂W

is C∞ on C∗ and bounded in the neighborhood of 0 (resp. O(1/z2) in the
neighborhood of ∞) on CP1 because of (8.23). We will show the existence
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of a function nε defined on CP1 which will be C∞ on C∗ = CP1 \ {0,∞}
and C0 on CP1 and such that on C∗

(8.39)
∂mε

∂z
=
∂nε

∂z
·

The function Hε we are looking for is

(8.40) Hε(W ) = nε(e−2πiW ).

Indeed Hε is periodic of period 1 and satisfies (8.36) since

(8.41)
∂Hε

∂W
=
∂nε

∂z
· ∂z
∂W

+
∂nε

∂z
· ∂z
∂W

= 2πiz · ∂nε

∂z
=
∂Ξ̂j,ε

∂W
·

To construct nε we now consider a covering of CP1 by two connected
open sets U1 = {z; |z| < ρ1} and U2 = {z; |z| > ρ2} with 0 < ρ2 < ρ1. Let
U∗1 = U1 \ {0} and U∗2 = U2 \ {∞}. Moreover the closure U i of each Ui

can be identified to a compact set of C. On each Ui we will construct
in Lemma 8.7 functions ni,ε with are C0 on Ui and C∞ on U∗i and such
that ∂ni,ε = ∂mε on U∗i . The difference n12,ε = n1,ε − n2,ε is analytic on
U1 ∩U2 = {z; ρ2 < |z| < ρ1}, hence it can be expanded as a Laurent series:

(8.42) n12,ε =
∑
j∈Z

aj(ε)zj .

The holomorphic functions

(8.43)

{
r1,ε(z) =

∑∞
j=0 aj(ε)zj z ∈ U1,

r2,ε(z) = −
∑−1

j=−∞ aj(ε)zj z ∈ U2,

are analytic on their domain and satisfy n12,ε = r1,ε− r2,ε. The function nε

we are looking for is given by

(8.44) nε(z) = ni,ε(z)− ri,ε(z) for z ∈ Ui.

Any other solution differs from this one by a global holomorphic function
on CP1, i.e. a constant. In particular nε(z) is uniquely defined if we ask
that nε(0) = 0.

We then extend Ξ̃j,ε by iterating (8.26) on Φj,ε(Qj,ε). The function de-
fined here depends analytically on ε 6= 0 and continuously on ε near ε = 0:
this comes from the explicit construction of nj,ε and rj,ε.

For the proof of 2) we construct Ξ̃1,ε as in 1). The other Ξ̃j,ε are con-
structed from Ξ̃1,ε by means of (8.28) and yield solutions of (8.26). By
uniqueness of solutions of (8.26) they must be the solutions constructed
in 1).

The proof of 3) follows since Fε and Gε commute with Tqα, Kε is invariant
under Tqα and φ+

j,ε ◦ T−qα ◦ (φ−j,ε)
−1 commutes with T1.
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To prove 4) we first remark that limRe(W e−iβ)→+∞ Ξ̃±j,ε exists since

lim
Re(W e−iβ)→±∞

Ξ̂j,ε = 0,

from (3.30) and from

lim
Re(W e−iβ)→+∞

Hε(W ) = nε(∞) ∈ C.

The fact that it is the same for all Ξ̃±j,ε comes from (8.28) and (8.29). �

Lemma 8.7. — There exist functions ni,ε with are C0 on Ui and C∞

on U∗i , and such that on U∗i

(8.45)
∂ni,ε

∂z
=
∂mε

∂z
·

Proof. — We first construct n1,ε. Let δ1 > 0 be small and let U1,δ1 =
{z; δ1 < |z| < ρ1}. Let bε,δ1 be C∞ on U1 such that

(8.46) bε,δ1 =

{
∂mε/∂z z ∈ U1,δ1 ,

0 |z| < 1
2δ1.

Let

(8.47) uε,δ1(z) =
∫∫

C

bε,δ1(ζ)
ζ − z

dζ ∧ dζ.

By Theorem 1.2.2 of [9] the function uε,δ1 is C∞ on C and analytic outside
U1,δ1 . The function n1,ε we are looking for will be

(8.48) n1,ε = lim
δ1→0

uε,δ1 .

It will be C∞ on U∗1 and C0 at the origin provided we show that∫∫
|ζ|<δ1

∂mε/∂ζ(ζ)
ζ

dζ ∧ dζ(8.49)

= −2i
∫ 2π

0

e−iθ
( ∫ δ1

0

∂mε

∂z
(reiθ)dr

)
dθ

tends to 0 as δ1 tends to zero. This comes from the fact that ∂mε(z)/∂z is
bounded in the neighborhood of the origin.

The construction of n2,ε is similar. The result follows from the fact that
∂mε(z)/∂z is O(1/z2) in the neighborhood of ∞. �

Proposition 8.8. — The functions

(8.50)

M̃
0
j,ε,± = Ξ̃−j,ε,± − Ξ̃+

j+1,ε,± ◦ (Ψ0
j,ε,±)−1,

M̃∞
j,ε,± = Ξ̃−j,ε,± − Ξ̃+

j,ε,± ◦ (Ψ∞
j,ε,±)−1
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are periodic of period 1. They are defined on the same domains as the corre-
sponding Ψ0,∞

j,ε,±, namelyQ−j,ε,±∩Ψ0
j,ε,±(Q+

j+1,ε,±) (resp.Q−j,ε,±∩Ψ∞
j,ε,±(Q+

j,ε,±))
for M̃0

j,ε,± (resp. M̃∞
j,ε,±).

Moreover they are all determined by M̃0,∞
1,ε,± since

(8.51) M̃0
σ(j),ε,±(W ) = M̃0

j,ε,±

(
W − 1

q

)
, M̃∞

σ(j),ε,±(W ) = M̃∞
j,ε,±

(
W − 1

q

)
.

Let

(8.52) ζ0,∞
j,ε,± = M̃0,∞

j,ε,± ◦ E
−1.

The functions ζ0
j,ε,± (resp ζ∞j,ε,±) are germs of analytic functions defined

respectively in the neighborhood of 0 (resp. ∞) on CP1 and vanishing at 0
(resp. ∞) provided the different Ξ̃±j,ε,± have the same limit in the direction
Re(W e−iβ) → −∞ (resp. Re(W e−iβ) → ∞). This last fact follows from
the recurrence relations (8.28) and (8.29). The functions ζ0,∞

j,ε,± depend an-
alytically on ε ∈ Vδ,± for ε 6= 0 and continuously on ε near ε = 0.

Definition 8.9. — The families of 2-tuples (ζ0
1,ε,±, ζ

∞
1,ε,±)| ε∈Vδ,± is the

time-part of the modulus.

8.3. The modulus of analytic conjugacy for families

Definition 8.10. — Two germs of analytic families of vector fields,
Xε1(x1, y1) (resp. Xε2(x2, y2)) unfolding a resonant saddle at the origin for
ε1 = 0 (resp. ε2 = 0) are analytically conjugate if there exists a germ of
analytic diffeomorphism

(8.53) K = (h,H) : (ε1, x1, y1) 7→ (h(ε1),H(ε1, x1, y1))

fibered over the parameter space, where

i) h : ε1 7→ ε2 = h(ε1) is a germ of analytic diffeomorphism preserving
the origin;

ii) if we let Hε1(x1, y1) = H(ε1, x1, y1), the change of coordinates Hε1

is a conjugacy between Xε1(x1, y1) and Xh(ε1)(x2, y2) over a ball of
small radius r > 0:

(8.54) Xh(ε1)(Hε1(x1, y1)) = (Hε1)∗(Xε1(x1, y1)).

Definition 8.11. — 1) We consider the set

D = Diff0 ×Diff∞ ×H0
0 ×H∞

0 ,
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where Diff0 (resp. Diff∞) is the set of germs of analytic diffeomorphims
in the neighborhood of 0 (resp. ∞) on CP1 fixing 0 (resp. ∞) and H0

0

(resp.H∞
0 ) is the set of germs of holomorphic functions in the neighborhood

of 0 (resp. ∞) on CP1 sending 0 (resp. ∞) to 0.
2) We consider the following equivalence relation on D

(ψ0, ψ∞, ζ0, ζ∞) ≡ (ψ
0
, ψ

∞
, ζ0, ζ∞)(8.55)

⇐⇒ ∃C ∈ C∗
{
ψ0(Cw) = Cψ

0
(w), ψ∞(Cw) = Cψ

∞
(w),

ζ0(Cw) = ζ0(w), ζ∞(Cw) = ζ∞(w).

We note by [(ψ0, ψ∞, ζ0, ζ∞)] the equivalence class of an element of D.
3) We call N the set of equivalence classes of D.

Theorem 8.12. — We consider a germ of family of vector fields Xε =
λ1(ε)h1,εΘε as in (8.4) in prepared form. Then the families (Mε,±)|ε∈Vδ,± ,
with

(8.56) Mε,± =
[
(ψ0

1,ε,±, ψ
∞
1,ε,±, ζ

0
1,ε,±, ζ

∞
1,ε,±)

]
∈ N

together with the formal invariants a(0), t1(ε), t2(ε), is a complete modulus
of classification under analytic conjugacy. Moreover it is possible to choose
families of representatives (ψ0

1,ε,±, ψ
∞
1,ε,±, ζ

0
1,ε,±, ζ

∞
1,ε,±)|ε∈Vδ,± depending an-

alytically of ε for ε 6= 0 and continuously on ε near ε = 0.

Proof. — If two germs of families of vector fields are analytically con-
jugate it is already known that they have the same orbital part of the
modulus. Also they can both be brought through an analytic change of
coordinates to the respective forms Xε = h1,εΘε and Xε = h1,εΘε, with
same Θε. We know that there is a change of coordinates Hε transforming
Xε into Xε. This change of coordinates induces a conjugacy between the
holonomies (indeed Hε sends {x = 1} to a section Σ transversal to the flow
of Xε and we compose with a transition map for Xε from Σ to {x = 1}.)
We can apply a change of coordinates H1,ε = (x, βy + o(|x, y|)) to Xε as
in (6.13) so that the two vector fields X̂ε = (H1,ε)∗(Xε) and Xε have the
same holonomies on x = 1. Then H1,ε ◦Hε preserves the holonomy. Hence
it induces a symmetry of the holonomy. The symmetries of the holonomy
have been described in Proposition 4.18. A symmetry of the holonomy can
be extended to a symmetry H2,ε of the foliation described by Θε, by the
same method as in the proof of Theorem 6.5. Then H2,ε is a change of
coordinates preserving the foliation described by Θε and transforming Xε

into X̃ε. Hence X̃ε and X̂ε have the same holonomies and, moreover, the
conjugacy induced by H1,ε ◦ Hε ◦ (H2,ε)−1 between the holonomies is the
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identity. Then the map H1,ε◦Hε◦(H2,ε)−1 preserves the leaves and is hence
given by the flow X̃ξε

ε of X̃ε for some time function ξε. It follows that the
two families of vector fields have the same time part of the modulus.

The converse requires more work. We take two germs of analytic families
of vector fields which have the same modulus. We then know that they
are orbitally equivalent, so we can always suppose that they have the same
prepared orbital form with same canonical parameter ε: Xε = λ1(ε)h1,εΘε

and Xε = λ1(ε)h1,εΘε over each of the two sectors Vδ,±. For the rest of the
proof we drop the lower indices ± referring to the sectors.

We will look for a conjugacy of a certain type namely the flow of Xε

for a certain time χε(x, y). This flow map preserves the leaves over a fixed
neighborhood of the origin for sufficiently small ε. It is shown in [4], [25]
and [24] that Xε is mapped to Xε under the flow of Xε for some time
χε(x, y) if

(8.57) Xε(χε) =
h1,ε

h1,ε
− 1 = τε

(see [4]). Hence we must construct a solution of (8.57).
We first choose a function χ1,ε(y) defined on {x = 1} and satisfying

(8.58) χ1,ε(f(y))− χ1,ε(y) =
∫

γ(y)

τε dtXε ,

where we integrate over γ(y) which is the lifting of the curve x = exp(2πiθ),
θ ∈ [0, 2π] and dtXε

is the time form of Xε. We then extend it to a
neighborhood of (x, y) = (0, 0) except on x = 0 by considering trajecto-
ries (x(t), y(t)) of Xε through (1, y0). By passing to the Z-variable, where
Z = p−1

ε (y), it suffices to find a function χ̂1,ε(Z) such that

(8.59) χ̂1,ε(F (Z))− χ̂1,ε(Z) = Kε(Z)−Kε(Z).

To construct explicitly χ1,ε we first define functions

(8.60) Ξ±j,ε = Ξ̃±j,ε ◦ Φ±j,ε, Ξ
±
j,ε = Ξ̃

±
j,ε ◦ Φ±j,ε

on Qj,ε. (Note that Xε and Xε have the same Fatou coordinates Φ±j,ε.)
Let

(8.61) ξ±j,ε = Ξ±j,ε ◦ Φ±j,ε ◦ p
−1
ε .
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If q = 1 it is natural to take χ1,ε = ξ1,ε − ξ1,ε which is well defined
because the two vector fields have the same modulus. Then we would have

χ1,ε(f(y))− χ1,ε(y)(8.62)

=
∫

γ(y)

( h1,ε

1 + C(ε)u
− 1

)
dtXε

−
( h1,ε

1 + C(ε)u
− 1

)
dt

Xε

=
∫

γ(y)

( h1,ε

1 + C(ε)u
− 1

) dx
λ1(ε)xh1,ε

−
( h1,ε

1 + C(ε)u
− 1

) dx
λ1(ε)xh1,ε

=
∫

γ(y)

h1,ε − h1,ε

λ1(ε)x
dx

h1,εh1,ε

=
∫

γ(y)

(h1,ε

h1,ε

− 1
)
dtXε .

In the case q > 1 we need to be more subtle and adjust to the fact that
the functions ξ±j,ε are defined by integrating over a time corresponding to
the q-th iterate of the holonomy map. The details are as follows. We first
show that the function

(8.63) Nε(Z) = Ξ±j,ε(Z)− Ξ
±
j,ε(Z), Z ∈ Q±j,ε

is well defined. Indeed, let

(8.64) M0,∞
j,ε = M̃0,∞

j,ε ◦ Φ−j,ε, M0,∞
j,ε = M̃0,∞

j,ε ◦ Φ−j,ε.

Then M0,∞
j,ε = M0,∞

j,ε . Moreover

(8.65) M0
j,ε = Ξ−j,ε − Ξ+

j+1,ε, M∞
j,ε = Ξ−j,ε − Ξ+

j,ε.

All this together implies that Nε is well defined.
The function χ1,ε is given by

(8.66) χ1,ε(y) = χ̂1,ε ◦ p−1
ε

with

χ̂1,ε(Z) = Ξ±σ(j),ε(Fε(Z))− Ξ±j,ε(Z)(8.67)

−
[
Ξ
±
σ(j),ε(Fε(Z))− Ξ

±
j,ε(Z)

]
= Nε(Fε(Z))−Nε(Z),

for Z ∈ Qj,ε. Since Nε is well defined, so is χ̂1,ε, and hence χ1,ε. Moreover
(8.59) is satisfied since

Ξ±σ(j),ε(Fε(Z))− Ξ±j,ε(Z) = Ξ̃±σ(j),ε ◦ Φ±σ(j),ε ◦ F (Z)− Ξ̃±j,ε ◦ Φ±j,ε(Z)

= Ξ̃±j,ε ◦ T− 1
q
◦ Φ±σ(j),ε ◦ F (Z)− Ξ̃±j,ε ◦ Φ±j,ε(Z)

+ K̃j,ε ◦ T−1/q ◦ Φ±σ(j) ◦ F (Z)(8.68)

= Kε(Z),
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because of (4.7), and similarly

(8.69) Ξ
±
σ(j),ε

(
Fε(Z)

)
− Ξ

±
j,ε(Z) = Kε(Z),

yielding (8.59).
We must now extend χ1,ε(y) to a function χε(x, y). Indeed we consider

a solution curve (x(t), y(t)) of Tε with (x(0), y(0)) = (1, y0) and we let

(8.70) χε(x(t), y(t)) =
∫ t

0

τε
(
x(s), y(s)

)
ds.

We must show that χε is well defined outside of x = 0 and bounded in the
neighborhood of x = 0, thus having an analytic extension at x = 0. This is
done in Lemma 8.13 below.

The fact that χε is well defined comes from (8.58).
On each of the sectors Vε,± we have constructed a function χε,± de-

pending analytically of ε 6= 0 and continuously on ε near ε = 0. The last
step of the proof is to show that the two functions χε,± glue together in
a uniform function χε, which is therefore holomorphic. It suffices to show
that the two functions coincide on the intersection of the two sectors Vε,±.
Indeed on the intersection of the two sectors we have two functions χε,+

and χε,− such that the flow X
χε,±
ε of the vector field Xε for a time χε,±

is a conjugacy between Xε and Xε. Then the map X
χε,+
ε ◦ (Xχε,−

ε )−1 is a
conjugacy between Xε and itself, which is given by the flow of Xε for some
time βε; as we are composing conjugacies, each of them consisting in follow-
ing the trajectory of the point for some time, so the same should be true of
the composition. Moreover the time βε is constant. Indeed it is a solution
of (8.58) in the particular case τε ≡ 0. Constant functions are obviously
solutions of (8.58) when τε ≡ 0. To conclude that βε is constant we need
some form of unicity. This is obtained by applying Theorem 8.6 with the
particular function Kε ≡ 0. We know that the solutions Ξ̃j,ε of the equation
(8.26) are unique up to a constant, hence they are precisely the constant
functions. As moreover we have, from (8.70), that limy→0 χε,±(1, y) = 0,
then limy→0 βε(1, y) = 0 yielding βε ≡ 0. From this we get Xχε,+

ε = X
χε,−
ε

and finally χε,+ = χε,−. �

Lemma 8.13. — The function χε(x, y) defined in a neighborhood of the
origin minus the axis x = 0 is uniformly bounded.

Proof. — As a natural trajectory from a point (x0, y0) with x0 6= 0 to
(1, y(T (x0, y0))) we first take a trajectory γ1 with time t = t′λ1(ε) with
t′ real, t′ ∈ [0, T1(x0, y0)], until we reach a point (x1, y1) with |x1| = 1,
and we follow by a lifting γ2 of (eiθ, 0) with initial condition (x1, y1) until
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we reach (1, y(T (x0, y0))). The time from (x1, y1) to (1, y(T (x0, y0))) is
uniformly bounded. As the function τε is uniformly bounded this part of
the integral is bounded. We concentrate on the integral on the first path.
There we have that, for small η1 > 0, there exists η2 > 0 such that, for
|u| < η2,

(8.71) |x|(1− η1) 6
d|x|
dt′

6 |x|(1 + η1).

Hence

(8.72)
∣∣∣ ∫

γ1

τεdt
∣∣∣ 6 |λ1(ε)|

∫
γ1

τε
d|x|/dt′

d|x|.

The result follows as τε = O(u). �

Corollary 8.14. — We consider a germ of family of vector fields
Xε = λ1(ε)h1,εΘε as in (8.4), in prepared form, and its modulus given by

(8.73) Mε,± =
[
(ψ0

1,ε,±, ψ
∞
1,ε,±, ζ

0
1,ε,±, ζ

∞
1,ε,±)

]
together with the formal invariants a(0), t1(ε), t2(ε). Then the family is
normalizable if and only if ψ0,∞

1,ε,± are linear and ζ0,∞
1,ε,± vanish identically.

9. Directions for further research

We mention some natural directions for further research:
1) The first is to identify precisely the modulus space for germs of an-

alytic families of diffeomorphisms unfolding a germ of generic resonant
diffeomorphism. This is equivalent to give the set of families ψε of 2-tuples
of (Diff∞×Diff0) which can be realized as the modulus of a generic family
unfolding a resonant diffeormorphism. The difficulty in this problem comes
from the unknown behaviour in ε of the ψ0,∞

ε,j,± at ε = 0. We conjecture that
there is probably some form of 1-summability in ε, a stronger conclusion
than only continuity in ε near ε = 0.

2) The second is to generalize the previous results for higher codimen-
sions. The Fatou coordinates for individual vector fields have already been
constructed by Oudkerk (see [18] and more recent work).

3) Any resonant germ of diffeomorphism can be realized as the holo-
nomy map of a resonant saddle of a 2-dimensional vector field [20]. Can
any germ of family of diffeomorphisms unfolding a germ of resonant diffeo-
morphism be realized as the family of holonomy maps of a germ of family
of 2-dimensional vector fields unfolding a resonant saddle?
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4) Finally the last question is to identify the modulus space for germs
of generic families of vector fields unfolding a germ of vector field with a
generic resonant saddle.
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