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EQUIDISTRIBUTION OF SMALL POINTS, RATIONAL
DYNAMICS, AND POTENTIAL THEORY

by Matthew H. BAKER & Robert RUMELY (*)

Abstract. — Given a rational function ϕ(T ) on P1 of degree at least 2 with
coefficients in a number field k, we show that for each place v of k, there is a unique
probability measure µϕ,v on the Berkovich space P1

Berk,v/Cv such that if {zn} is a

sequence of points in P1(k) whose ϕ-canonical heights tend to zero, then the zn’s
and their Gal(k/k)-conjugates are equidistributed with respect to µϕ,v .

The proof uses a polynomial lift F (x, y) = (F1(x, y), F2(x, y)) of ϕ to construct
a two-variable Arakelov-Green’s function gϕ,v(x, y) for each v. The measure µϕ,v is
obtained by taking the Berkovich space Laplacian of gϕ,v(x, y). The main ingredi-
ents in the proof are an energy minimization principle for gϕ,v(x, y) and a formula
for the homogeneous transfinite diameter of the v-adic filled Julia set KF,v ⊂ C2

v
for each place v.

Résumé. — Étant donné une fonction rationnelle ϕ(T ) de degré au moins 2
défini sur un corps de nombres k, nous montrons que pour chaque place v de k, il
existe une seule mesure µϕ,v sur l’espace de Berkovich P1

Berk,v/Cv tel que si {zn}
est un suite de points de P1(k) dont les hauteurs ϕ-canoniques tendent vers zéro,
alors les points zn et leurs Gal(k/k)-conjugués sont équidistribués selon µϕ,v .

La preuve utilise un relèvement F (x, y) = (F1(x, y), F2(x, y)) de ϕ pour cons-
truire une fonction d’Arakelov-Green gϕ,v(x, y) de deux variables pour chaque v.
La mesure µϕ,v s’obtient comme le laplacien (au sens d’espace de Berkovich) de
gϕ,v(x, y). Les ingrédients principaux de la preuve sont un principe de minimisation
de l’énergie pour gϕ,v(x, y) et une formule pour le diamètre transfini homogène de
l’ensemble rempli de Julia v-adique KF,v ⊂ C2

v pour chaque place v.

Let k be a number field, and let ϕ(T ) ∈ k(T ) be a rational function of
degree d > 2. In this paper we investigate the equidistribution properties of
small points relative to the canonical dynamic height ĥϕ(z). We show that
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626 Matthew H. BAKER & Robert RUMELY

for each place v of k, there is a probability measure µϕ,v such that if {zn} is
a sequence of distinct points in P1(k) satisfying ĥϕ(zn) → 0, then the Galois
conjugates of the zn (regarded as embedded in P1(Cv)) are equidistributed
relative to µϕ,v. More precisely, if δn is the discrete probability measure
supported equally on the conjugates of zn, then the sequence δn converges
weakly to µϕ,v for each v. When v is archimedean, µϕ,v is the well-known
canonical measure on P1(C) supported on the Julia set of ϕ which was
constructed by Lyubich [21] and Freire-Lopes-Mañé [17]. (See [23, §4] for
the definition of the Julia set of a rational map.)

When v is nonarchimedean, µϕ,v is a measure on the Berkovich space
P1

Berk,v over Cv constructed by the authors in [33]. It has the same invari-
ance properties relative to ϕ as the canonical measure in the archimedean
case.

Conceptually, the proof is very simple. Its main ingredients are an energy-
minimization principle, established at each place v for the Arakelov Green’s
function gϕ,v(x, y) associated to µϕ,v, and two global inequalities, an up-
per bound coming from the assumption that ĥϕ(zn) → 0, and a lower
bound coming from the product formula. Combining these ingredients
yields equidistribution simultaneously at all places v.

At nonarchimedean places, the Arakelov Green’s function gϕ,v(x, y) is
new. We construct it by lifting ϕ to a polynomial map F : C2

v → C2
v, and

using the homogeneous local height associated to the filled Julia set KF,v of
this lift. This approach was inspired by DeMarco [12], who introduced the
homogeneous capacity c0(K) for sets K ⊂ C2, and proved for archimedean
v that

c0(KF,v) = |Res(F )|−1/d(d−1) .

Although the homogeneous capacity does not easily generalize to nonar-
chimedean places, for arbitrary v we introduce the closely related homo-
geneous transfinite diameter d0

∞(Kv) for sets Kv ⊂ C2
v. We generalize De-

Marco’s formula by showing that

(0.1) d0
∞(KF,v) = |Res(F )|−1/d(d−1)

v

for each v. This is proved by relating the homogeneous transfinite di-
ameter to the sectional capacity studied in [10] and [35]. The fact that∏

v d
0
∞(KF,v) = 1, which follows from the product formula applied to (0.1),

is the key to the global lower bound mentioned above.
A philosophical idea which we hope to promote is the use of Berkovich

spaces as a natural setting for nonarchimedean Arakelov theory and equidis-
tribution theorems. This point of view has been most strongly espoused by
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EQUIDISTRIBUTION AND POTENTIAL THEORY 627

A. Chambert-Loir [9]. The foundational results concerning potential the-
ory on the Berkovich projective line which are used in this paper can be
found in [33]. Many of these results are proved for Berkovich curves of ar-
bitrary genus in the doctoral thesis of A. Thuillier [38], a recent student of
Chambert-Loir.

P. Autissier [1] has proved the archimedean part of the dynamical equidis-
tribution theorem using Arakelov-theoretic methods. A proof of the nonar-
chimedean (Berkovich space) part of the theorem, also based on ideas from
Arakelov theory, has been announced by Chambert-Loir [9].

C. Favre and J. Rivera-Letelier have also announced a proof of the dy-
namical equidistribution theorem. Their preprints [16], [15] give a proof of
Theorem 2.3 together with another construction of the canonical measure
on P1

Berk,v attached to a rational map ϕ. They also prove a Berkovich space
analogue of Theorem 2.1 below. The technical foundation for their work can
be found in the monograph by Favre and Jonsson [14], in Rivera-Letelier’s
thesis [27], and in a manuscript of Rivera-Letelier [26]. As with our ap-
proach, Favre and Rivera-Letelier’s proof of of Theorem 2.3 is ultimately
based on the product formula and an adelic energy-minimization theorem.
However, there are also a number of differences between the two proofs.

Finally we note that in the nonarchimedean case, the construction of
J. Piniero, L. Szpiro and T. Tucker [24], which works scheme-theoretically
with blowups of models of P1/Spec(Ov) attached to iterates of ϕ(T ), yields
a sequence of discrete measures which can be shown to converge to the
canonical measure on P1

Berk,v.

1. Notation

We set the following notation and normalizations, which will be used
throughout the paper unless otherwise noted.

k a number field.
Ok the ring of integers of k.
Mk the set of places of k.
kv the completion of k at v.
Ov the ring of integers in kv.
qv the order of the residue field of kv. If v is archimedean, we put

qv = e if kv
∼= R, and qv = e2 if kv

∼= C.
Cv the completion of a fixed algebraic closure kv of kv. Throughout

the paper, we fix a choice of an embedding of k into Cv for each
v ∈ Mk (though all of our conclusions will be independent of the

TOME 56 (2006), FASCICULE 3



628 Matthew H. BAKER & Robert RUMELY

choices made). If v is nonarchimedean, we write Ôv for the ring of
integers of Cv.

|x|v the canonical absolute value on kv given by the modulus of additive
Haar measure. If |x|′v is the unique absolute value on k in the equiv-
alence class of v ∈Mk that extends the standard absolute value on
the completion Qv, then |x|v = (|x|′v)[kv :Qv ]. With this normaliza-
tion, the product formula holds in the form

∏
v |α|v = 1 for each

α 6= 0 in k. Each |x|v extends uniquely to an absolute value on Cv,
the completion of the algebraic closure of kv.

h the absolute logarithmic Weil height h : Pn(Q) → R, defined for
[x0 : · · · : xn] ∈ Pn(k) by

h
(
[x0 : · · · : xn]

)
=

1
[k : Q]

∑
v∈Mk

log max{|x0|v, . . . , |xn|v}.

ϕ A non-constant rational function on P1 defined over k.

2. Overview

2.1. An equidistribution result for rational functions on P1

Let ϕ : P1 → P1 be a finite morphism (i.e., a non-constant rational
function) of degree d > 2 defined over the number field k. Iterating ϕ gives
rise to a dynamical system on P1(Cv) for all places v of k. When v is
archimedean, this type of dynamical system has been extensively studied
since the pioneering work of Fatou and Julia in the early 20th century.
Just as one defines the Néron-Tate canonical height on an elliptic curve by
iteration, one can define the dynamical height

ĥϕ : P1(k) → R

attached to the rational function ϕ by the rule

ĥϕ(z) = lim
n→∞

1
dn
h(ϕ(n)(z)).

Here ϕ(n) denotes the n-fold iterate ϕ ◦ · · · ◦ ϕ. By a general result of Call
and Silverman [8], the hypothesis d > 2 guarantees that the above limit
exists.

The dynamical height ĥϕ is uniquely characterized by the following two
properties:

(1) The difference |ĥϕ − h| is bounded.
(2) ĥϕ ◦ ϕ = d · ĥϕ.

ANNALES DE L’INSTITUT FOURIER



EQUIDISTRIBUTION AND POTENTIAL THEORY 629

It follows from [8] that ĥϕ(z) > 0 for all z ∈ P1(k), and ĥϕ(z) = 0 if and
only if z is preperiodic for ϕ, meaning that the orbit {ϕ(n)(z) : n ∈ N} of
z under iteration of ϕ is a finite set. Additionally, we have ĥϕ(σz) = ĥϕ(z)
for all z ∈ P1(k) and all σ ∈ Gal(k/k).

If ϕ(z) = z2, then ĥϕ is the usual logarithmic Weil height h on P1(Q).
Another well-known height which can be defined by dynamical methods is
the Néron-Tate canonical height on an elliptic curve. If k is a number field
and E/k is an elliptic curve with Weierstrass equation y2 = f(x), let ϕ be
the degree 4 rational function on P1 given by x◦ [2]. Then for P ∈ E(k) we
have ĥ(P ) = ĥϕ(x(P )).

For any rational function ϕ on P1 of degree d > 2 defined over C, Lyubich
[21], and independently Freire, Lopes, and Mañé [17], constructed a natural
probability measure µϕ attached to the dynamical system {ϕ(n) : n ∈ N}.
We will refer to the measure µϕ as the canonical measure attached to
ϕ. In order to characterize µϕ, we recall the following definition. A point
z0 ∈ P1(C) is said to be exceptional if the set {ϕ(−n)(z0) : n ∈ N} of
backward iterates of z0 is finite. It is known (see [23]) that there are at
most 2 exceptional points for ϕ in P1(C). Proofs of the following theorem
can be found in [21], [17], and [18].

Theorem 2.1. — There exists a probability measure µϕ (independent
of z0) such that:

A) For any non-exceptional point z0 ∈ P1(C), let δn be the probability
measure

1
dn

∑
ϕ(n)(z)=z0

δz,

where the points in the sum are counted with multiplicities and δz denotes
the Dirac measure on P1(C) giving mass 1 to the point z. Then the sequence
of measures δn converges weakly to µϕ.

B) µϕ is the unique measure on P1(C) with no point masses such that
ϕ∗(µϕ) = d · µϕ as (1, 1)-currents.

When ϕ is a polynomial, Theorem 2.1 was originally proved by Brolin,
and the measure µϕ is known in that case as Brolin’s measure. Brolin’s
measure coincides with the equilibrium measure (in the sense of potential
theory) on the Julia set of ϕ. (Recall that the Julia set of a non-constant
rational map ϕ over C is the set of all points z ∈ P1(C) such that the
iterates of ϕ do not form a normal family in any open neighborhood U of
z; intuitively, this is the locus where iteration of ϕ behaves chaotically.)

TOME 56 (2006), FASCICULE 3



630 Matthew H. BAKER & Robert RUMELY

We will now briefly recall the construction of the Berkovich space P1
Berk,v

associated to the projective line over Cv, where v is a nonarchimedean place
of k.

The Berkovich unit disc B(0, 1) is the set of all continuous multiplicative
seminorms on the Tate algebra Cv〈T 〉 (see [4, §1.4], [33, §1]). Examples
of elements of B(0, 1) include the evaluation seminorms [f ]a = |f(a)|v for
a ∈ Cv with |a|v 6 1; sup norms [f ]B(a,r) = supz∈B(a,r) |f(z)|v for discs
B(a, r) = {z ∈ Cv : |z − a|v 6 r}; and limit norms associated to nested
sequences of discs B(a1, r1) ⊃ B(a2, r2) ⊃ · · · , defined by

[f ]x = lim
i→∞

[f ]B(ai,ri) .

A theorem of Berkovich says that all continuous multiplicative seminorms
on Cv〈T 〉 arise in this way. Following Chambert-Loir [9], we call the point
ζ0 ∈ B(0, 1) corresponding to the Gauss norm ‖f‖ = [f ]B(0,1) the Gauss
point. Given a point x ∈ B(0, 1) corresponding either to a disc B(a, r) or to
a point a = B(a, 0) (which can be thought of as a degenerate disc), there
is a path {[ ]B(a,t) : r 6 t 6 1} connecting x to the Gauss point. Given
a collection of discs, the union of the corresponding paths forms a subtree
of B(0, 1) rooted at ζ0. From this, one sees that B(0, 1) is an infinitely
branched real tree, with countably many branches emanating from each
point corresponding to a disc with radius r ∈ |C×v |v.

As a set, the Berkovich projective line P1
Berk,v over Cv is obtained by

gluing together two copies of B(0, 1). It is made into a topological space
by equipping it with the Gelfand topology, the weakest topology such that
each set of the form

Ua,b(f) = {x ∈ P1
Berk,v : a < [f ]x < b}

for a, b ∈ R and f ∈ Cv(T ) is open. The space P1
Berk,v is also equipped

with a sheaf of rings OX , constructed using localizations of Tate algebras;
see [4] for details. There is a natural inclusion P1(Cv) ⊂ P1

Berk,v (which
associates to a point of P1(Cv) the corresponding “evaluation seminorm”)
that induces the usual (ultrametric) topology on P1(Cv), and P1(Cv) is
dense in P1

Berk,v under this inclusion.
If ϕ(T ) ∈ Cv(T ) is a non-constant rational function, then ϕ acts on P1

Berk

by
[f ]ϕ(x) = [f ◦ ϕ]x

for all f ∈ Cv(T ). This coincides with the usual action of ϕ on P1(Cv) ⊂
P1

Berk,v.
As a topological space, P1

Berk,v is compact, Hausdorff and path-connected,
in contrast with P1(Cv), which is completely disconnected and not even

ANNALES DE L’INSTITUT FOURIER



EQUIDISTRIBUTION AND POTENTIAL THEORY 631

locally compact. Thus P1
Berk,v is a much more suitable space for doing

measure theory and potential theory than P1(Cv). The space P1
Berk,v is

also metrizable, although there is not a canonical metric on it.

Remark 2.2. — If v is archimedean, one can define P1
Berk,v over C in

a similar way using continuous multiplicative seminorms on C〈T 〉. By the
Gelfand-Mazur theorem, every such seminorm arises from evaluation at a
point. Thus P1

Berk,v/C is isomorphic to P1(C).

In Theorem 2.1, note that if zn ∈ ϕ(−n)(z0), then

ĥϕ(zn) =
1
dn
ĥϕ(z0) → 0

as n → ∞. Also, note that if ϕ is defined over the number field k and
z0 ∈ k, then the set ϕ(−n)(z0) is stable under Gal(k/k). We will prove the
following adelic equidistribution theorem, motivated by Theorem 2.1 and
by the archimedean equidistribution theorems of Bilu [5] and Szpiro-Ullmo-
Zhang [37].

Theorem 2.3 (Main Theorem). — For each place v ∈Mk, there exists
a canonical probability measure µϕ,v on the Berkovich space P1

Berk,v/Cv

such that the following holds: Suppose zn is a sequence of distinct points
of P1(k) with ĥϕ(zn) → 0. For v ∈ Mk, let δn be the discrete probability
measure on the Berkovich space P1

Berk,v/Cv supported equally on the Galois
conjugates of zn. Then the sequence of measures δn converges weakly to
µϕ,v for all v ∈Mk.

When ϕ is a polynomial, the archimedean part of Theorem 2.3 was proved
by Baker-Hsia in [2]. The present paper provides a conceptual simplifica-
tion of their method, and applies to arbitrary rational functions. We note
that the case of a rational function is more difficult than the polynomial
case, due to the absence of a fixed pole at infinity. A weaker version of
the nonarchimedean part of Theorem 2.3, formulated in terms of “pseudo-
equidistribution”, was also proved for the polynomial case in Baker-Hsia
in [2]. Here we clarify the meaning of pseudo-equidistribution by using
Arakelov Green’s functions and Berkovich spaces.

When ϕ(z) = z2, the archimedean part of Theorem 2.3 specializes to
(and was motivated by) the following well-known result of Bilu:

Theorem 2.4 (Bilu [5]). — Let zn be a sequence of distinct points in
P1(Q), and suppose that h(zn) → 0. Let δn be the discrete probability
measure on P1(C) = C ∪ {∞} which is supported with equal mass at each
Galois conjugate of zn. Then the sequence of measures δn converges weakly
to the uniform probability measure µS1 on the unit circle {|z| = 1}.

TOME 56 (2006), FASCICULE 3



632 Matthew H. BAKER & Robert RUMELY

For previous explorations of the relationship between Bilu’s theorem and
potential theory, see [6] and [32].

3. Adelic dynamics on P1

3.1. Dynamical heights associated to rational functions

Recall that ϕ : P1 → P1 is a rational function of degree d > 2 defined
over a number field k.

The map ϕ can be represented in homogeneous coordinates as

ϕ([z0 : z1]) = [F1(z0, z1) : F2(z0, z1)]

for some homogeneous polynomials F1, F2 ∈ k[x, y] of degree d with no
common linear factor over k. (Note that since F1 and F2 factor into linear
terms over k, F1 and F2 have a common factor over k if and only if they
have a common linear factor over k.) The polynomials F1, F2 are uniquely
determined by ϕ up to multiplication by a common scalar c ∈ k∗.

Dehomogenizing by setting z = z1/z0, we obtain

ϕ(z) =
f2(z)
f1(z)

with fi ∈ k[z] and max{deg(f1),deg(f2)} = d.
We will often want to work with the degree d homogeneous polynomials

F1 and F2, so we now fix a choice of F1, F2 ∈ k[X,Y ]. This allows us to
consider the mapping

F = (F1, F2) : A2(k) → A2(k)

as a global lifting of ϕ.
Let Res(F ) := Res(F1, F2) denote the homogeneous resultant of the poly-

nomials F1 and F2 (see e.g. [12, §6]). Since F1 and F2 have no common
linear factor over k, we have Res(F ) 6= 0, and F (z0, z1) = (0, 0) if and only
if (z0, z1) = (0, 0).

In the archimedean case, define ‖(z0, z1)‖v =
√
|z0|2 + |z1|2

[kv :R]
; in the

nonarchimedean case, put ‖(z0, z1)‖v := max{|z0|v, |z1|v}. We begin with
the following simple lemma.

Lemma 3.1. — For each place v of k, there are constants 0 < Cv 6 Dv

such that for all z ∈ C2
v,

(3.1) Cv(‖z‖v)d 6 ‖F (z)‖v 6 Dv(‖z‖v)d.

For all but finitely many v, we may take Cv = Dv = 1.

ANNALES DE L’INSTITUT FOURIER



EQUIDISTRIBUTION AND POTENTIAL THEORY 633

Proof. — First suppose v is archimedean. Identify Cv with C. Since
∂Bv(1) = {(x, y) ∈ C2 : max(|x|, |y|) = 1} is compact, and since the
only common zero of F1(z) and F2(z) is the origin, the constants

Cv = min
z∈∂Bv(1)

‖F (z)‖v, Dv = max
z∈∂Bv(1)

‖F (z)‖v

satisfy 0 < Cv 6 Dv. By homogeneity, (3.1) holds for all z ∈ C2.
Now let v be nonarchimedean. Write

∂Bv(1) = {(x, y) ∈ C2
v : max(|x|v, |y|v) = 1}.

Let C ′v := |Res(F )|v, and let Dv be an upper bound for the absolute values
of the coefficients of F1 and F2.

By a well-known property of the resultant of two homogeneous polyno-
mials of degree d [40, §5.8], there exist polynomials g1(x, y), g2(x, y), and
h1(x, y), h2(x, y), which are homogeneous of degree d − 1 in x and y and
whose coefficients lie in k, such that

g1(x, y)F1(x, y) + g2(x, y)F2(x, y) = Res(F )x2d−1,

h1(x, y)F1(x, y) + h2(x, y)F2(x, y) = Res(F )y2d−1.

For each (x, y) ∈ ∂Bv(1), all of |g1(x, y)|v, |g2(x, y)|v, |h1(x, y)|v and
|h2(x, y)|v are 6 C ′′v for some constant C ′′v > 0 independent of (x, y).
Furthermore, we may take C ′′v = 1 for almost all v. By the ultrametric
inequality,

C ′v|x|2d−1
v 6 C ′′v max(|F1(x, y)|v, |F2(x, y)|v),

C ′v|y|2d−1
v 6 C ′′v max(|F1(x, y)|v, |F2(x, y)|v).

Put Cv := C ′v/C
′′
v . Then for each z = (x, y) ∈ ∂Bv(1),

Cv ·max(|x|v, |y|v)2d−1 6 ‖F (z)‖v.

However, if z ∈ ∂Bv(1) then max(|x|v, |y|v) = ‖z‖v = 1, so Cv 6 ‖F (z)‖v

for all z ∈ ∂Bv(1). The first inequality in (3.1) follows by homogeneity. The
second follows trivially by the ultrametric inequality.

Finally, since the resultant and the coefficients of the Fi are elements of k,
independent of v, we can take Cv = Dv = 1 for all but finitely many v. �

Remark 3.2. — If v is nonarchimedean and F1, F2 have v-integral co-
efficients, then we may choose g1(x, y), g2(x, y), and h1(x, y), h2(x, y) to
have v-integral coefficients as well. In this case we can take Cv = |Res(F )|v
and Dv = 1.

TOME 56 (2006), FASCICULE 3



634 Matthew H. BAKER & Robert RUMELY

Corollary 3.3. — For each v, there are radii 0 < rv 6 Rv such that
for each z ∈ C2

v with ‖z‖v 6 rv, we have ‖F (z)‖v 6 ‖z‖v · (‖z‖v/rv)d−1,
and for each z with ‖z‖v > Rv, we have ‖F (z)‖v > ‖z‖v · (‖z‖v/Rv)d−1.
In particular,

F (Bv(rv)) ⊆ Bv(rv),

F (C2
v�Bv(Rv)) ⊆ C2

v�Bv(Rv).

For all but finitely many v, we can take rv = Rv = 1.

Proof. — Let Cv and Dv be as in Lemma 3.1, and put rv = D
−1/(d−1)
v ,

Rv = C
−1/(d−1)
v . If ‖z‖v 6 rv, then

‖F (z)‖v 6 Dv‖z‖d
v = r−(d−1)

v ‖z‖d
v

= ‖z‖v · (‖z‖v/rv)d−1.

Similarly if ‖z‖v > Rv, then

‖F (z)‖v > Cv‖z‖d
v = R−(d−1)

v ‖z‖d
v

= ‖z‖v · (‖z‖v/Rv)d−1.

For each v with Cv = Dv = 1, we have rv = Rv = 1. �

Recall that the global dynamical height ĥϕ : P1(k) → R is defined by

ĥϕ(z) = lim
n→∞

1
dn
h(ϕ(n)(z)).

The choice of a global lifting F of ϕ allows us to decompose the global
dynamical height into a sum of local heights as follows.

For v ∈ Mk and z = (z0, z1) ∈ C2
v�{0}, define the homogeneous local

dynamical height ĤF,v : C2
v�{0} → R by

ĤF,v(z) := lim
n→∞

1
dn

log ‖F (n)(z)‖v.

By convention, we define ĤF,v(0, 0) := −∞.

Lemma 3.4. — The limit lim
n→∞

1
dn

log‖F (n)(z)‖v exists for all z∈C2
v\{0},

and
1
dn

log ‖F (n)(z)‖v converges uniformly on C2
v\{0} to ĤF,v(z).

Proof. — The proof is by a standard telescoping series argument (see
e.g. [18]). Define

Tj(z) :=
1

dj+1
log ‖F (j+1)(z)‖v −

1
dj

log ‖F (j)(z)‖v

=
1
dj

(
1
d

log ‖F (j+1)(z)‖v − log ‖F (j)(z)‖v

)
.
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By (3.1) we see that

Cv(‖F (j)(z)‖v)d 6 ‖F (j+1)(z)‖v 6 Dv(‖F (j)(z)‖v)d

for all z ∈ C2
v. Applying these inequalities to the sequence Tj yields the

estimate
|Tj(z)| 6

C

dj+1
,

where C := max{logDv,− logCv}.
It follows easily that Hn :=

∑n
j=0 Tj is a Cauchy sequence, and that the

series defining ĤF,v(z) converges uniformly on C2
v\{0}. �

Remark 3.5. — The proof yields the explicit bound

|ĤF,v(z)− log ‖z‖v| 6
C

d− 1
,

valid for all z ∈ C2
v\{0}.

Note that by the definitions of the local and global canonical heights, if
x ∈ P1(k), then for any representation x = [x0 : x1] with x0, x1 ∈ k, we
have

ĥϕ(x) =
1

[k : Q]

∑
v∈Mk

ĤF,v(x0, x1).

By the product formula, the right side is independent of the choice of lifting.
Also, note that the definition of ĤF,v is independent of the norm used

to define it. This follows easily from the equivalence of norms on C2
v.

The homogeneous local dynamical height ĤF,v has the following proper-
ties, and in fact is uniquely characterized by them:
(LH1) The difference |ĤF,v(z)− log ‖z‖v| is bounded.
(LH2) ĤF,v(F (z)) = d · ĤF,v(z).
(LH3) ĤF,v scales logarithmically, i.e., for all c ∈ C∗v,

ĤF,v(cz) = ĤF,v(z) + log |c|v .

3.2. The filled Julia set

By definition, the filled Julia set KF,v of F in C2
v is the set of all z ∈ C2

v

for which the iterates F (n)(z) remain bounded. Clearly F−1(KF,v) = KF,v,
and the same is true for each F (−n). Since all norms on C2

v are equivalent,
the set KF,v is independent of which norm is used to define it.

By Corollary 3.3, we have Bv(rv) ⊆ KF,v, so KF,v cannot be too small.
Moreover:
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Lemma 3.6. — With Rv as in Corollary 3.3, we have

F (−1)(Bv(Rv)) ⊇ F (−2)(Bv(Rv)) ⊇ · · ·

and
KF,v = ∩∞n=1F

(−n)(Bv(Rv)).

Proof. — The assertion that F (−n)(Bv(Rv)) ⊇ F (−n−1)(Bv(Rv)) for all
n > 1 is equivalent to the statement that if F (n)(z) 6∈ Bv(Rv) then
F (n+1)(z) 6∈ Bv(Rv). This follows from Corollary 3.3, which shows that
F (C2

v�Bv(Rv)) ⊆ C2
v�Bv(Rv).

It also follows from Corollary 3.3 that if ‖z‖v > Rv, then

lim
n→∞

‖F (n)(z)‖v = ∞ .

Thus, KF,v ⊂ Bv(Rv). By iteration, KF,v ⊂ F (−n)(Bv(Rv)) for each n.
The fact that KF,v = ∩∞n=1F

(−n)(Bv(Rv)) now follows, since if z /∈ KF,v,
there is some n for which ‖F (n)(z)‖v > Rv, and so z /∈ F (−n)(Bv(Rv)). �

The filled Julia set KF,v can be thought of as the ‘unit ball’ with respect
to the dynamical local height ĤF,v:

Lemma 3.7. — For each place v of k,

KF,v = {z ∈ C2
v : ĤF,v(z) 6 0}.

Proof. — If z ∈ KF,v then there exists M > 0 such that ‖F (n)(z)‖v 6 M

for all n, and therefore ĤF,v(z) 6 lim
n→∞

1
dn

logM = 0.

Conversely, suppose z 6∈ KF,v. Then for n0 sufficiently large, β :=
‖F (n0)(z)‖v > Rv. Let α := β/Rv > 1. Then by Corollary 3.3 and in-
duction on n, it follows that

‖F (n+n0)(z)‖v > β · αdn−1

for all n > 0.
Therefore

ĤF,v(z) > lim
n→∞

1
dn+n0

((dn − 1) logα+ log β) =
1
dn0

logα > 0.

�

In general, it is difficult to describeKF,v explicitly. However, the following
lemma shows that it is ‘trivial’ for all but finitely many v.

Lemma 3.8. — Suppose F1, F2 ∈ Ok[x, y]. If v is a nonarchimedean
place of k such that |Res(F )|v = 1, then KF,v = B(0, 1)2 is the unit
polydisc in C2

v and ĤF,v(z) = log ‖z‖v for all z ∈ C2
v.
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Proof. — By Remark 3.2, it follows that ‖F (z)‖v = ‖z‖d
v, and therefore

‖F (n)(z)‖v = ‖z‖dn

v for all n > 1. The result follows immediately. �

3.3. The homogeneous transfinite diameter

Let v be a place of k, and let K ⊂ C2
v be a nonempty bounded set. For

z = (z0, z1), w = (w0, w1) ∈ C2
v, put

z ∧ w := z0w1 − z1w0.

By analogy with the classical transfinite diameter, for n > 2 we let

d0
n(K) := sup

z1,...,zn∈K

∏
i 6=j

|zi ∧ zj |v

 1
n(n−1)

.

Lemma 3.9. — The sequence of nonnegative real numbers d0
n(K) is non-

increasing. In particular, the quantity d0
∞(K) := limn→∞ d0

n(K) is well-
defined.

Proof. — We claim that d0
n(K) > d0

n+1(K) for all n. The proof is the
same as for the classical transfinite diameter: write

Pn(z1, . . . , zn) =
∏
i 6=j

(zi ∧ zj),

take ε > 0, and choose w1, . . . , wn+1 ∈ K with |Pn+1(w1, . . . , wn+1)|v >
(d0

n+1(K)− ε)n(n+1). For each ` = 1, . . . , n+ 1 write

ŵ` = (w1, . . . , w`−1, w`+1, . . . , wn+1).

By definition, d0
n(K)n(n−1) > |Pn(ŵ`)|v for each `. It follows that

d0
n(K)(n+1)n(n−1) >

n+1∏
`=1

|Pn(ŵ`)|v =
( n+1∏

i 6=j

|wi ∧ wj |v
)n−1

> (d0
n+1(K)− ε)(n+1)n(n−1).

This holds for each ε > 0, so d0
n(K) > d0

n+1(K). �

We call d0
∞(K) the homogeneous transfinite diameter of K.

We will now show that when v is archimedean and K ⊂ C2 is compact,
d0
∞(K) coincides with the homogeneous capacity introduced by DeMarco

[12]. We recall the definition.
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Definition 3.10. — If K ⊆ C2 is compact and nonempty, define c0(K)
by

− log c0(K) := inf
ν∈P(K)

I(ν),

where P(K) is the space of probability measures supported on K, and

I(ν) := −
∫∫

K×K

log |z ∧ w| dν(z)dν(w).

The quantity c0(K) is called the homogeneous capacity of K.

Lemma 3.11. — If v is archimedean and K ⊂ C2 is compact, then
d0
∞(K) = c0(K)[kv :R].

Proof. — Note that [kv : R] = 1 or 2, according as kv
∼= R or kv

∼= C.
The power [kv : R] arises because of our normalization of absolute values:
|x|v = |x|[kv :R] for all x ∈ C. If we replace |x|v with |x| in the definition of
d0
∞(K), it suffices to show that d0

∞(K) = c0(K).
By a general fact about measures proved in Lemma 3.26 below, if νn is a

probability measure supported equally on z1, . . . , zNn
∈ K, with zi∧zj 6= 0

for all i 6= j, and if νn → ν weakly on K, then

(3.2) lim inf
n→∞

∫∫
C2×C2\(Diag)

− log |z ∧ w| dνn(z)dνn(w)

>
∫∫

C2×C2
− log |z ∧ w|dν(z)dν(w).

Let n > 2, and define Dn = − log d0
n(K). Given any z1, . . . , zn ∈ K, we

have
1

n(n− 1)

∑
i 6=j

− log |zi ∧ zj | > Dn

by definition. Integrating this inequality against an arbitrary measure µ ∈
P(K), we obtain

1
n(n− 1)

∑
i 6=j

∫∫
− log |zi ∧ zj | dµ(zi)dµ(zj) > Dn

for all n, and therefore c0(K) 6 d0
∞(K).

For the other direction, choose w1, . . . , wn ∈ K such that

n(n− 1)Dn =
∑
i 6=j

− log |wi ∧ wj |.

Without loss of generality, we may assume that wi∧wj 6= 0 for all i 6= j.
Define the measure νn to be the discrete measure on K supported equally
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on each of the points wi, i.e.,

νn :=
1
n

∑
i

δwi
.

By passing to a subsequence if necessary, we may assume that νn converges
weakly to some probability measure ν on K. Noting that

n− 1
n

Dn =
1
n2

∑
i 6=j

− log |wi ∧wj |=
∫∫

C2×C2\(Diag)
− log |z ∧w| dνn(z)dνn(w),

it follows from (3.2) and the definition of c0(K) that

lim
n→∞

Dn > I(ν) > − log c0(K),

so that d0
∞(K) 6 c0(K) as desired. �

We have introduced the homogeneous transfinite diameter by analogy
with the relation between the classical transfinite diameter and logarith-
mic capacity over C. The integral defining the homogeneous capacity is
difficult to extend to nonarchimedean places. However, the transfinite di-
ameter generalizes directly.

We will now give a formula for d0
∞(KF,v) in terms of resultants, motivated

by the following result ([12, Theorem 1.5]):

Theorem 3.12 (DeMarco). — Suppose F = (F1, F2) : C2 → C2 for
some homogeneous polynomials F1, F2 ∈ C[x, y] of degree d with no com-
mon linear factor, and let KF be the filled Julia set of F in C2. Then

(3.3) c0(KF ) = |Res(F )|−1/d(d−1).

The proof given in [12], which involves both algebraic and analytic ingre-
dients, does not carry over easily to the nonarchimedean setting. One of our
main results is the following adelic generalization of DeMarco’s theorem:

Theorem 3.13. — Suppose F = (F1, F2) : A2(k) → A2(k) for some
homogeneous polynomials F1, F2 ∈ k[x, y] of degree d with no common
linear factor over k. For v ∈Mk, let KF,v be the filled Julia set of F in C2

v.
Then

(3.4) d0
∞(KF,v) = |Res(F )|−1/d(d−1)

v .

The proof, which is given in Section 6, requires the development of a
considerable amount of capacity-theoretic machinery. It is completely in-
dependent of DeMarco’s proof. The product formula yields the following
corollary, a key ingredient in our proof of Theorem 2.3:
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Corollary 3.14. ∑
v∈Mk

log d0
∞(KF,v) = 0.

Remark 3.15. — When ϕ(z) is a polynomial of degree d with leading
coefficient ad, and Kϕ,v ⊆ Cv is the v-adic filled Julia set of ϕ (as defined
in [2]), formula (3.4) specializes to the formula

c(Kϕ,v) = |ad|−1/(d−1)
v ,

which was first proved in [2].

3.4. The Arakelov Green’s function and local heights

In this subsection we will construct a two-variable Green’s function
gϕ,v(z, w) for the dynamical system associated to ϕ. It arises as a function
on C2

v which is invariant under scaling, and therefore descends to a function
on P1(Cv). We will see that the descended function gives a continuously
varying one-parameter family (indexed by w ∈ P1(Cv)) of Call-Silverman
local height functions.

For notational convenience, write cv(F ) := |Res(F )|−1/d(d−1)
v .

If v ∈Mk and z, w ∈ C2
v are linearly independent over Cv, define

(3.5) GF,v(z, w) := − log |z ∧ w|v + ĤF,v(z) + ĤF,v(w) + log cv(F ).

Recall that in the archimedean case, SU(2) = {θ ∈ SL(2,C) : tθθ = 1} is
the group preserving the both the norm ‖z‖v on C2 and the alternating
product z ∧w, while in the nonarchimedean case if Ôv denotes the ring of
integers of Cv, then SL(2, Ôv) is the group preserving ‖z‖v and z ∧ w on
C2

v. Write θ(F ) = θ ◦ F ◦ θ−1.
We note the following properties of GF,v.

Lemma 3.16.
A) GF,v is doubly scale-invariant, in the sense that if α, β ∈ C∗v, then

GF,v(αz, βw) = GF,v(z, w).

B) For γ ∈ C∗v, we have

GγF,v(z, w) = GF,v(z, w).

C) If v is archimedean, then for each θ ∈ SU(2),

Gθ(F ),v(θ(z), θ(w)) = GF,v(z, w).

ANNALES DE L’INSTITUT FOURIER



EQUIDISTRIBUTION AND POTENTIAL THEORY 641

If v is nonarchimedean, then for each θ ∈ SL(2, Ôv)

Gθ(F ),v(θ(z), θ(w)) = GF,v(z, w).

Proof. — Part A) follows immediately from the fact that

log |αz ∧ βw|v = log |z ∧ w|v + log |α|v + log |β|v
and from the fact that ĤF,v scales logarithmically.

Part B) follows from the following two easily verified facts:

(a) ĤγF,v(z) = ĤF,v(z) +
1

d− 1
log |α|v.

(b) |Res(γF )|v = |Res(F )|v|γ|2d
v .

Part C) follows from the fact that the group SU(2) (resp. SL(2, Ôv))
preserves z ∧ w, ‖z‖v, and |Res(F )|v. To see that Res(θ(F )) = Res(F ),
note first that manipulating the determinant defining Res(θ ◦ F ) shows
that Res(θ ◦F ) = Res(F ). On the other hand, if F1(z) =

∏d
i=1(z ∧ ai) and

F2(z) =
∏d

j=1(z∧bj), then Res(F ) = ±
∏

i,j(ai∧bj). A simple computation
shows that θ−1(z) ∧ ai = z ∧ θ(ai) and θ−1(z) ∧ bj = z ∧ θ(bj). Since
θ(ai) ∧ θ(bj) = ai ∧ bj , it follows that Res(F ◦ θ−1) = Res(F ). �

In particular, GF,v descends to a well-defined function gϕ,v(z, w) on
P1(Cv): for any z, w ∈ P1(Cv) and any lifts z̃, w̃ ∈ C2

v

(3.6) gϕ,v(z, w) = − log |z̃ ∧ w̃|v + ĤF,v(z̃) + ĤF,v(w̃) + log cv(F ).

If z 6= w then the right-hand side of (3.6) is finite; if z = w then we define
gϕ,v(z, z) := +∞.

We will now establish another fact needed for the proof of Theorem 2.3.
Define

(3.7) Γϕ,v = lim inf
n→∞

inf
z1,...,zn∈P1(Cv)

1
n(n− 1)

∑
i 6=j

gϕ,v(zi, zj).

Lemma 3.17 (Positivity). — For each v ∈Mk, we have Γϕ,v > 0.

Proof. — Let ε > 0. Choose the lifts of the points zi in the statement of
the Lemma so that

−ε < ĤF,v(z̃i) 6 0

for all i. This is possible because ĤF,v scales logarithmically and the set
{log |α|v : α ∈ C∗v} is dense in R.

In particular, z̃i ∈ KF,v for all i. By the definition of the homogeneous
transfinite diameter,

lim inf
n→∞

inf
z1,...,zn∈P1(Cv)

1
n(n− 1)

∑
i 6=j

− log |z̃i ∧ z̃j |v > − log d0
∞(KF,v).
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But d0
∞(KF,v) = cv(F ) by Theorem 3.13. Therefore we obtain the inequal-

ity

lim inf
n→∞

inf
z1,...,zn∈P1(Cv)

1
n(n− 1)

∑
i 6=j

gϕ,v(zi, zj) > −2ε.

Since ε > 0 was arbitrary, this gives the desired result. �

Remark 3.18. — Later, in Corollary 4.7, we will see via a global argu-
ment that Γϕ,v = 0 for each v.

Next we will show that gϕ,v(z, w) forms a one-parameter family of Call-
Silverman local heights (see [8],[7]). Recall that a function ĥϕ,v,D : P1(Cv)\
supp(D) → R is called a Call-Silverman canonical local height function for
ϕ, relative to the divisor D, if it is a Weil local height associated to D, and
if there exists a rational function f on P1 over Cv with div(f) = ϕ∗D−d ·D
such that

ĥϕ,v,D(ϕ(z)) = d · ĥϕ,v,D(z)− log |f |v
for all z ∈ P1(Cv) \ (supp(D) ∪ supp(ϕ∗(D))). It is proved in [8] that a
canonical local height function exists for every divisor D, and is unique up
to an additive constant.

Choose coordinates on P1(Cv) in such a way that ∞ corresponds to the
point [0 : 1] and 0 corresponds to [1 : 0]. Let V∞ = P1(Cv) \ {∞}, so that
every z = (z0 : z1) ∈ V∞ can be expressed uniquely as [1 : T (z)] with
T (z) = z1/z0 ∈ Cv.

Define ĥF,v,(∞) : V∞ → R by

ĥF,v,(∞)(z) = ĤF,v(1, T (z)),

and note that for z ∈ V∞, we have (1, T (z)) ∧ (0, 1) = 1, so

(3.8) gϕ,v(z, w) =


− log |T (z)− T (w)|+ ĥF,v,(∞)(z)+

ĥF,v,(∞)(w) + log cv(F )
w 6= ∞

ĥF,v,(∞)(z) + ĤF,v((0, 1)) + log cv(F ) w = ∞.

For z ∈ P1(Cv) \ ({∞} ∪ ϕ−1(∞)), we have the identity

(3.9) F (n−1)(1, T (ϕ(z))) = F (n−1)(1,
F2(1, T (z))
F1(1, T (z))

) =
F (n)(1, T (z))
F1(1, T (z))dn−1 .

Taking logarithms in (3.9) and letting n→∞ gives the functional equa-
tion

(3.10) ĥF,v,(∞)(ϕ(z)) = d · ĥF,v,(∞)(z)− log |F1(1, T (z))|v,

which is valid for all z ∈ P1(Cv) \ ({∞} ∪ ϕ−1(∞)).
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By Remark 3.5, there exists a constant C > 0 such that

(3.11) |ĥF,v,(∞)(z)− log max(1, |T (z)|v)| 6 C

for all z ∈ V∞.
Equations (3.10) and (3.11) show that ĥF,v,(∞) is a Call-Silverman canon-

ical local height function on P1(Cv) for ϕ relative to the divisor D = (∞).
By (3.8), the function gϕ,v(z,∞) is also a Call-Silverman canonical lo-
cal height for ϕ relative to (∞), since g(z,∞) and ĥF,v,(∞)(z) differ by
a constant. More generally, using the fact that SU(2) (resp. SL(2, Ôv))
acts transitively on P1(Cv), it follows that for each w ∈ P1(Cv), the func-
tion gϕ,v(z, w) is a Call-Silverman local height for ϕ relative to the divisor
D = (w). Thus gϕ,v(z, w) is a continuously varying one-parameter family
of local heights.

As a concrete example, take w = 0. In the affine patch V0 = P1(Cv)\{0},
every point z ∈ V2 can be represented uniquely as [U(z) : 1] with U(z) =
z0/z1 ∈ Cv.

Define ĥF,v,(0)(z) : V0 → R by

ĥF,v,(0)(z) = ĤF,v(U(z), 1),

so that for z ∈ V0, we have

(3.12) gϕ,v(z, w) =


− log |U(z)− U(w)|+ ĥF,v,(0)(z)+

ĥF,v,(0)(w) + log cv(F )
w 6= 0

ĥF,v,(0)(z) + ĤF,v((0, 1)) + log cv(F ) w = 0.

Then for z ∈ P1(Cv) \ ({0} ∪ ϕ−1(0)), the identity

F (n−1)(U(ϕ(z)), 1) = F (n−1)(
F1(U(z), 1)
F2(U(z), 1)

, 1) =
F (n)(U(z), 1)
F2(U(z), 1)dn−1 ,

gives the functional equation

(3.13) ĥF,v,(0)(ϕ(z)) = d · ĥF,v,(0)(z)− log |F2(U(z), 1)|v,

valid for all z ∈ P1(Cv) \ ({0} ∪ ϕ−1(0)). We also have

|ĥF,v,(0)(z)− log max(|U(z)|v, 1)| 6 C

for all z ∈ V0.
Finally, note that letting n tend to infinity in the identity

F (n)(U(z), 1) = F (n)(1, T (z))/T (z)dn

and taking logarithms gives

(3.14) ĥF,v,(0)(z) = ĥF,v,(∞)(z)− log |T (z)|v
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for all z ∈ V0 ∩ V∞ = P1(Cv) \ {0,∞}.

3.5. Arakelov Green’s functions and the canonical measure

In this subsection, we will show that 1
log(qv)gϕ,v(z, w) is in fact an

Arakelov Green’s function. This means showing that for each w, the Lapla-
cian of gϕ,v(z, w) satisfies

1
log(qv)

∆(gϕ,v(z, w)) = δw(z)− µϕ,v(z),

where µϕ,v is a probability measure, independent of w. As will be explained
below, in the nonarchimedean case the Laplacian is taken on the Berkovich
space P1

Berk,v. In the archimedean case, µϕ,v turns out to be the canonical
measure supported on the Julia set of ϕ (see §2.1). Thus “the canonical
measure is the minus Laplacian of the local height”.

The measures µϕ,v play a central role in our theory: they are the target
measures in our main equidistribution theorem, Theorem 2.3.

In the archimedean case, for any Riemann surface X/C, we define an
Arakelov Green’s function to be a function g(z, w) : X(C) × X(C) →
R ∪ {∞} which satisfies the following two conditions:
(RS1) (Continuity) The function g(z, w) is a continuous as a function from

X(C)×X(C) to the extended reals, and is finite off the diagonal.

(RS2) (Differential equation) There is a probability measure µ on X(C)
such that for each fixed w, g(z, w) satisfies the distributional iden-
tity

∆zg(z, w) = δw(z)− µ(z).

Conditions (RS1) and (RS2) imply that g(z, w) is symmetric and boun-
ded below, with a logarithmic singularity along the diagonal. These two
conditions determine the function g(z, w) up to an additive constant. There
is a canonical way to normalize it: if

(RS3) (Normalization)
∫∫

g(z, w) dµ(z)dµ(w) = 0,

we will say g(z, w) is a normalized Arakelov Green’s function. In any case,
a non-normalized Arakelov Green’s function still satisfies

(3.15)
∫∫

g(z, w) dµ(z)dµ(w) <∞.

As noted in [11] (see also Lemma 5.7 below), if g(z, w) satisfies (RS1) and
(RS2), then differentiating λ(z) :=

∫
g(z, w) dµ(w) under the integral sign
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shows that λ(z) is harmonic everywhere and therefore constant. Thus (RS3)
is equivalent to the following apparently stronger condition:

(RS3)′ (Strong Normalization)
∫
g(z, w) dµ(w) ≡ 0 .

Remark 3.19. — This definition of an Arakelov Green’s function, taken
from [30] (see also [31] and [22]), is slightly looser than the one commonly
used in the literature, where the measure µ is required to be a smooth
positive (1, 1)-form ω with total mass 1.

The operator ∆ = −ddc on X(C) is to be considered in the distributional
sense. In local coordinates, if f is C2 then in terms of the standard real
Laplacian we have

∆f = − 1
2π

(
∂2f

∂x2
+
∂2f

∂y2

)
dx ∧ dy.

The fact that the distributional Laplacian of g(z, w) is a negative mea-
sure on X(C)\{w} means that the restriction of g(z, w) to X(C)\{w} is
subharmonic. It should also be noted that the continuity of g(z, w) imposes
conditions on the measure µ; in particular, µ cannot have any point masses.
This follows from the Riesz Decomposition theorem ([39], Theorem II.24,
p. 45): on any local coordinate patch V ⊂ X(C)\{w}, there is a harmonic
function hV (z) such that for all z ∈ V

g(z, w) = hV (z) +
∫

V

log |z − x| dµ(x).

If µ had a point mass at some p ∈ V , then we would have g(p, w) = −∞,
a contradiction.

The continuity of g(z, w) also shows that uV (z) =
∫

V
log |z − x| dµ(x) is

a continuous function of z on V . Therefore µ must be log-continuous, in
the following sense:

Definition 3.20. — A bounded Borel measure µ is log-continuous if
for each p ∈ X(C) there is a neighborhood V of p such that

uV (z) :=
∫

V

log(|z − x|) dµ(x)

is continuous on V .

In [30] this concept was called log-finiteness. However, the terminology
log-continuous used here seems more appropriate.

In the nonarchimedean case, there is also a notion of an Arakelov Green’s
function. In theory, one could define Arakelov Green’s functions on an
arbitrary Berkovich curve over Cv, but we restrict ourselves here to the
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case X = P1
Berk,v. We only sketch the basic framework; for further details,

see [33, §4 –§7].
There is a class of functions on P1

Berk,v, called functions of bounded dif-
ferential variation, for which it is possible to define a measure-valued Lapla-
cian; this class is denoted BDV(P1

Berk,v) (see [33], §5.3). The Laplacian is
defined first for functions on finitely branched subgraphs of P1

Berk,v\P1(Cv)
via the construction in ([3], §4) which generalizes the approaches of [11]
and [41]. It is then extended by a limiting process to functions on open
subdomains of P1

Berk,v, using the Riesz Representation theorem. There are
analogues of harmonic functions and subharmonic functions on P1

Berk,v.
Harmonic functions satisfy a maximum principle ([33], Proposition 5.14),
a Poisson formula ([33], Proposition 5.18), and Harnack’s principle ([33],
Proposition 5.24). Subharmonic functions are functions which locally be-
long to BDV(P1

Berk,v) and have non-negative Laplacian ([33], Proposition
6.1). They have stability properties similar to classical subharmonic func-
tions ([33], Proposition 6.11) and satisfy a maximum principle ([33], Propo-
sition 6.15), a comparison theorem ([33], Proposition 6.16), and a Riesz
Decomposition Theorem ([33], Proposition 6.19). The pullback of a subhar-
monic function by a rational map is subharmonic ([33], Proposition 7.13).
In brief, [33] provides all the tools necessary carry through arguments of
classical potential theory on P1

Berk,v.
For a rational function ϕ acting on P1

Berk,v, there is a theory of multi-
plicities at points of P1

Berk,v, extending the usual algebraic multiplicities on
P1(Cv) (see [33], Proposition 7.2). Given a Borel measure µ on P1

Berk,v, this
makes it possible to define pushforward and pullback measures ϕ∗µ and
ϕ∗µ with the usual formal properties ([33], §7.3).

A (Berkovich) Arakelov Green’s function is a function g(z, w) : P1
Berk,v ×

P1
Berk,v → R ∪ {∞} such that

(B1) (Semicontinuity) The function g(z, w) is finite and continuous off
the diagonal, and is strongly lower-semicontinuous on the diagonal,
in the sense that for each z ∈ P1

Berk,v

g(z, z) = lim inf
(x,y)→(z,z)

x6=y

g(x, y).

(B2) (Differential equation) For each w ∈ P1
Berk, g(z, w) belongs to

BDV(P1
Berk,v). Furthermore, there is a probability measure µ on

P1
Berk,v such that for each w, g(z, w) satisfies the identity

∆zg(z, w) = δw(z)− µ(z).
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As in the archimedean case, conditions (B1) and (B2) imply that g(z, w)
is symmetric and bounded below. The semicontinuity along the diago-
nal is a technical condition which arises naturally from properties of the
space P1

Berk,v (see [33], Proposition 3.1). Together, (B1) and (B2) deter-
mine g(z, w) up to an additive constant by the maximum principle ([33],
Proposition 5.14). If in addition

(B3) (Normalization)
∫∫

g(z, w) dµ(z)dµ(w) = 0,

we will say g(z, w) is a normalized Berkovich Arakelov Green’s function.
Again, our assumption that g(z, w) is continuous off the diagonal means

that µ is log-continuous (the precise definition, and proof, are given in [33],
Proposition 7.15). And as in the archimedean case, log-continuity implies
that µ has no point masses on P1(Cv). However, it can have point masses
on P1

Berk,v\P1(Cv) (see Example 3.24 below).
The function gϕ,v(z, w) has a natural extension ‘by continuity’ to P1

Berk,v;
for details, see ([33], §7.5). We will write gϕ,v(z, w) for both the function
on P1(Cv) constructed above, and its extension to P1

Berk,v.
Recall that qv is the order of the residue field of kv. We will now show that

for each v, the function 1
log(qv)gϕ,v(z, w) is an Arakelov Green’s function.

The probability measure µϕ,v associated to gϕ,v(z, w) (i.e., the measure
occurring in (RS2) or (B2)) plays a key role in our theory. In the nonar-
chimedean case, µϕ,v is a measure on P1

Berk,v; in the archimedean case, it
is a measure on P1(C). As noted earlier, P1

Berk/C ∼= P1(C), so in fact we
can view µϕ,v as a measure on P1

Berk,v for all v.

Proposition 3.21. — A) For each v∈Mk, the function 1
log(qv)gϕ,v(z, w)

is an Arakelov Green’s function associated to a log-continuous probability
measure µϕ,v on P1

Berk,v. For each w ∈ P1(Cv), the measure µϕ,v is given
locally on Vw := P1

Berk,v\{w} by

(3.16) µϕ,v|Vw = − 1
log(qv)

∆gϕ,v(z, w).

Furthermore, ϕ∗µϕ,v = d · µϕ,v and ϕ∗µϕ,v = µϕ,v.
B) If v ∈ Mk is archimedean, then µϕ,v coincides with the canonical

measure on P1(C) associated to ϕ by Lyubich and Freire-Lopes-Mañé.

Proof. — For v nonarchimedean, this is [33, Theorem 7.14]. Henceforth
assume v is archimedean. For part A), note first that both ĥF,v,(0)(z) and
ĥF,v,(∞)(z) are uniform limits of subharmonic functions, and are therefore
subharmonic. Thus both −∆ĥF,v,(0)(z) and −∆ĥF,v,(∞)(z) are nonnegative
measures. Using the relation (3.14), we see that ĥF,v,(0)(z) and ĥF,v,(∞)(z)
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differ by a harmonic function on V0 ∩ V∞, and therefore ∆ĥF,v,(∞)(z) =
∆ĥF,v,(0)(z) on V0 ∩ V∞. It follows that there is a non-negative mea-
sure µϕ,v given locally by (3.16). By (3.8) and (3.12), for any w we have

1
log(qv)∆zgϕ,v(z, w) = δw(z) − µϕ,v on both V0 and V∞, and hence on
V0 ∪ V∞ = P1(C), as desired.

The fact that µϕ,v is a probability measure (i.e., that µϕ,v(P1(C)) = 1)
follows immediately from the identity 1

log(qv)∆zgϕ,v(z, w) = δw(z) − µϕ,v,
since the distributional Laplacian of a function on P1(C) always has total
mass zero.

To see that ϕ∗(µϕ,v) = d ·µϕ,v, combine (3.10) and (3.13), using the fact
that F1 and F2 have no common zeros in C2 by assumption. Finally, the
relation ϕ∗(µϕ,v) = µϕ,v follows formally from ϕ∗(µϕ,v) = d ·µϕ,v using the
fact that ϕ∗(ϕ∗(µ)) = d · µ for all measures µ on P1(C).

For part B), recall from Theorem 2.1 that the canonical measure is the
unique probability measure µ on P1(C) with no point masses such that
ϕ∗(µ) = d · µ. As noted above, the continuity of gϕ,v(z, w) off the diag-
onal implies that µϕ,v has no point masses, and the functional equation
ϕ∗(µϕ,v) = d · µϕ,v has been established in A). Hence µϕ,v coincides with
the canonical measure. �

Remark 3.22. — We will see in Corollary 4.7, as a consequence of
global considerations, that 1

log(qv)gϕ,v(z, w) is in fact a normalized Arakelov
Green’s function for each v.

Assuming Remark 3.22, we can establish the following invariance prop-
erty of gϕ,v(z, w):

Corollary 3.23. — Given w ∈ P1
Berk,v, write ϕ∗((w)) =

∑r
i=1mi(wi).

Then for all z ∈ P1
Berk,v,

gϕ,v(ϕ(z), w) =
r∑

i=1

mi gϕ,v(z, wi) .

Proof. — We will only give the proof in the archimedean case; in the
nonarchimedean case the proof is formally identical, using properties of
the Berkovich Laplacian.

Since SU(2) acts transitively on P1(C), we can assume without loss that
w = ∞. By formula (3.8), there is a constant C1 such that

(3.17) gϕ,v(ϕ(z),∞) = ĥF,v,(∞)(ϕ(z)) + C1.

By the functional equation (3.10) of the Call-Silverman local height ĥF,v,(∞),

(3.18) ĥF,v,(∞)(ϕ(z)) = d · ĥF,v,(∞)(z)− log |F1(1, T (z))|v.
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Here f(z) := F (1, T (z)) is a polynomial with divisor div(f) =
∑
mi(wi)−

d · (∞), where
∑
mi(wi) = ϕ∗(∞). We claim there is a constant C2 such

that

(3.19) − log(|f(z)|v) =
∑

migϕ,v(z, wi)− d · gϕ,v(z,∞) + C2.

To see this, note that both sides have Laplacian equal to log(qv) times∑
miδwi(z)−d·δ∞(z); hence their difference is a function which is harmonic

everywhere, thus constant. (In the nonarchimedean case this argument is
justified by [33], Proposition 5.14 and Lemma 5.12). Combining (3.17),
(3.18) and (3.19) shows that

gϕ,v(ϕ(z),∞) =
r∑

i=1

migϕ,v(z, wi) + C

for some constant C. Integrating the left-hand side against µϕ,v and using
the invariance property of µϕ,v, the fact that 1

log(qv)gϕ,v(z, w) is normalized,
and (RS3)′, we have∫

gϕ,v(ϕ(z),∞) dµϕ,v(z) =
∫
gϕ,v(z,∞) d(ϕ∗µϕ,v)(z)

=
∫
gϕ,v(z,∞) dµϕ,v(z)

= 0.

Computing the integral of the right-hand side, we get C. Therefore C = 0
as desired. �

Example 3.24. — Recall from [8] that ϕ is said to have good reduction
at a place v if it can be written as ϕ(T ) = G2(T )/G1(T ) where G1, G2 ∈
Ov(T ) are such that the reduced polynomials g1 = G1 mod (mv), g2 = G2

mod (mv) are nonzero and coprime, with max(deg(g1),deg(g2)) = d.
If ϕ has good reduction at v, then by Example 7.2 of [33], µϕ,v is the

discrete measure supported at the Gauss point ζ0 of P1
Berk,v, and

(3.20) gϕ,v(z, w) =


− log |z − w|v + log+ |z|v + log+ |w|v z, w 6= ∞

log+ |z|v w = ∞

log+ |w|v z = ∞.

3.6. The Energy Minimization Principle

If g(z, w) is an Arakelov Green’s function on P1
Berk,v associated to the

measure µ, we will often write gµ(z, w) instead of g(z, w). With this nota-
tion, 1

log(qv)gϕ,v(z, w) = gµϕ,v
(z, w).
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Arakelov Green’s functions on P1
Berk,v satisfy the following important

energy minimization principle:

Theorem 3.25. — Let v be a place of k, and let gµ(z, w) be an Arakelov
Green’s function on P1

Berk,v whose associated measure µ is log-continuous.
Define the “energy functional” Iµ(ν) on the space P of probability measures
on P1

Berk,v by the formula

Iµ(ν) :=
∫∫

P1
Berk,v

×P1
Berk,v

gµ(z, w) dν(z)dν(w).

Then Iµ(ν) > Iµ(µ) for all ν ∈ P, with equality if and only if ν = µ.

In the archimedean case, Theorem 3.25 will be proved in §5 as a conse-
quence of the more general Theorem 5.3; in the nonarchimedean case, it is
proved in [33, Theorem 7.20].

3.7. Discrete approximations to the energy integral

In this section, v denotes an arbitrary place of k, and we work on the
Berkovich space P1

Berk,v. Recall that if v is archimedean, the space P1
Berk,v

is just P1(C).
The following lemma enables us to apply the energy minimization prin-

ciple in a useful way to discrete measures. We state it abstractly because
it was also used in Lemma 3.11.

Lemma 3.26. — Let (X, ν) be a measure space, with ν a probability
measure. Let {Sn}n>1 be a sequence of finite subsets of X, and for each n
let δn be the discrete probability measure supported equally at all elements
of Sn. Suppose the measures δn converge weakly to ν. Let g : X × X →
R∪{∞} be a function which is finite, continuous, and bounded from below
on X ×X\(Diag). Then

lim inf
n→∞

∫∫
X×X\(Diag)

g(z, w) dδn(z)dδn(w) >
∫∫

X×X

g(z, w) dν(z)dν(w).

Proof. — Define Nn := #Sn. For any fixed real number M > 0, we have

(3.21)
∫∫

(Diag)

min{M, g(x, y)} dδn(x)dδn(y) =
1
Nn

·M
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by the definition of δn, and therefore

lim inf
n→∞

∫∫
X×X\(Diag)

g(x, y) dδn(x)dδn(y)

> lim
M→∞

lim inf
n→∞

∫∫
X×X\(Diag)

min{M, g(x, y)} dδn(x)dδn(y)

(since (∗) > min{M, (∗)})

= lim
M→∞

lim inf
n→∞

∫∫
X×X

min{M, g(x, y)} dδn(x)dδn(y) (by (3.21))

= lim
M→∞

∫∫
X×X

min{M, g(x, y)} dν(x)dν(y) (δn → ν weakly)

=
∫∫

X×X

g(x, y) dν(x)dν(y) (monotone convergence theorem).

�

Let gµ(z, w) be an Arakelov Green’s function on P1
Berk,v with associated

log-continuous measure µ. We now introduce a quantity D∞(µ) analogous
to the (negative logarithm of the) classical transfinite diameter. For n > 2,
define

Dn(µ) := inf
z1,...,zn∈P1(Cv)

1
n(n− 1)

∑
i 6=j

gµ(zi, zj).

Since gµ(z, w) is bounded below and is finite off the diagonal, each Dn(µ)
is a well-defined real number.

The proof of the following lemma is similar to that of Lemma 3.9.

Lemma 3.27. — The sequence Dn(µ) is non-decreasing.

Proof. — Take n > 2, fix ε > 0, and choose w1, . . . , wn+1 such that∑
i 6=j

gµ(wi, wj) 6 n(n+ 1)(Dn+1(µ) + ε).

By the definition of Dn(µ), we have (for each 1 6 m 6 n+ 1)

n(n− 1)Dn(µ) 6
∑

i,j 6=m
i 6=j

gµ(wi, wj).

Adding together these n+ 1 inequalities gives

(n+1)n(n−1)Dn(µ) 6 (n−1)
∑
i 6=j

g(wi, wj) 6 (n−1)n(n+1)(Dn+1(µ)+ε).

Since ε > 0 is arbitrary, Dn(µ) 6 Dn+1(µ) as desired. �
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Define
D∞(µ) = lim

n→∞
Dn(µ).

The following result is analogous to the equality of the transfinite diameter
and the capacity of a compact set in classical complex potential theory.

Theorem 3.28. — D∞(µ) = Iµ(µ).

Proof. — Let n > 2. We first claim that for all z1, . . . , zn ∈ P1
Berk,v,

(3.22)
1

n(n− 1)

∑
i 6=j

gµ(zi, zj) > Dn(µ) .

In the archimedean case this is immediate, since P1
Berk,v = P1(C). To see it

in the nonarchimedean case, first suppose the zi are distinct, and note that
by the continuity of gµ(z, w) off the diagonal and the fact that P1(Cv) is
dense in P1

Berk,v, for any ε > 0 there are points x1, . . . , xn ∈ P1(Cv) with

|gµ(zi, zj)− gµ(xi, xj)| < ε.

By definition we have 1
n(n−1)

∑
i 6=j gµ(xi, xj) > Dn(µ), so letting ε → 0

gives (3.22). The general case follows by the strong lower semicontinuity of
gµ(z, w) (see axiom (B1) for Berkovich Arakelov Green’s functions).

Integrating (3.22) against dµ(z1) · · · dµ(zn), we see that

1
n(n− 1)

∑
i 6=j

∫∫
gµ(zi, zj)dµ(zi)dµ(zj) > Dn(µ),

for all n, and therefore Iµ(µ) > D∞(µ).
For the other direction, for each n choose w1, . . . , wn ∈ P1(Cv) such that

1
n(n− 1)

∑
i 6=j

gµ(wi, wj) 6 Dn(µ) +
1
n

and let νn be the discrete measure supported equally on each of the points
wi, i.e.,

νn :=
1
n

∑
i

δwi
.

By passing to a subsequence if necessary, we may assume that the νn

converge weakly to some measure ν on P1
Berk,v. Noting that

n− 1
n

(
Dn(µ) +

1
n

)
>

1
n2

∑
i 6=j

gµ(wi, wj)

=
∫∫

P1
Berk,v

×P1
Berk,v

\(Diag)

gµ(w, z) dνndνn,
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it follows from Theorem 3.25 and Lemma 3.26 that

D∞(µ) = lim inf
n→∞

Dn(µ) > Iµ(ν) > Iµ(µ)

as desired. �

Remark 3.29. — By the exact same arguments, one sees that Lemma
3.27 and Theorem 3.28 remain true in the archimedean case for an arbitrary
Riemann surface, using Theorem 5.3 instead of Theorem 3.25.

4. Proof of the main equidistribution theorem

We now turn to the proof of Theorem 2.3. As will be seen, the theorem
follows rather formally from the machinery developed above. Before giving
the argument, we deal with some technical preliminaries.

4.1. Base change lemmas

In this subsection, we formulate a lemma which relates local Arakelov
Green’s functions over different base fields.

Let ϕ be a rational function of degree d > 2 defined over the number
field k. For v ∈ Mk, define gϕ,v(z, w) := GF,v(z, w) for some lift F of ϕ to
k[x, y] × k[x, y], i.e., given z, w ∈ P1(k), take lifts z̃, w̃ of z and w to k

2
;

then

gϕ,v(z, w) = − log |z̃ ∧ w̃|v + ĤF,v(z̃) + ĤF,v(w̃) + log cv(F ),

where cv(F ) = |Res(F )|−
1

d(d−1) as before. If k′/k is a finite extension, we
can in a similar way define gϕ,v′(z, w) for v′ ∈Mk′ . We have:

Lemma 4.1. — A) The expression

gϕ(z, w) :=
1

[k′ : Q]

∑
v′∈Mk′

gϕ,v′(z, w)

is independent of the choice of a number field k′ containing z and w, and
therefore gives a well-defined function on k × k\(Diag).

B) For all z, w ∈ k, z 6= w,

gϕ(z, w) = ĥϕ(z) + ĥϕ(w).

C) Let k′ be a finite extension of k. Take v ∈ Mk, and let v′ be a place
of k′ with v′ | v. If S is a finite Gal(k′/k)-invariant subset of k′, then for
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all z, w ∈ S, z 6= w, the expression
∑

z 6=w∈S gv′(z, w) is independent of the
place v′, and

1
[k : Q]

 ∑
z 6=w∈S

gϕ,v(z, w)

 =
1

[k′ : Q]

∑
v′|v

 ∑
z 6=w∈S

gϕ,v′(z, w)

 .

D) Let z1, . . . , zN be the Galois conjugates of an element z∈P1(Q)\P1(Q).
Then

(4.1)
1

[k : Q]

∑
v∈Mk

 1
N(N − 1)

∑
i 6=j

gϕ,v(zi, zj)

 = 2ĥϕ(z).

Proof. — The proofs of A) and C) are straightforward consequences of
our choice of normalizations for absolute values. B) follows from A) by the
product formula (applied twice): if k′/k is a finite extension such that the
lifts z̃ and w̃ are rational over k′, then

gϕ(z, w) =
1

[k′ : Q]

∑
v′∈Mk′

gϕ,v′(z, w)

=
1

[k′ :Q]

∑
v′∈Mk′

(
−log |z̃∧w̃|v′+ĤF,v′(z̃)+ĤF,v′(w̃)+log cv′(F )

)
= ĥϕ(z) + ĥϕ(w)

since z̃ ∧ w̃ = z̃0w̃1− z̃1w̃0 ∈ (k′)∗ and cv′(F ) = |Res(F )|−1/d(d−1)
v′ . Finally,

D) follows from C) by summing both sides over all places v of k. �

4.2. Lemmas on double sums

Before turning to Theorem 2.3 and its proof, we need two lemmas on
doubly-indexed sums. The first is a discrete analogue of Fatou’s lemma
from real analysis:

Lemma 4.2. — Suppose a(j)
n is a doubly-indexed sequence of real num-

bers which satisfy the following two properties:
(F1) For each n,

∑
j a

(j)
n converges.

(F2) There is a collection {Mj} of real numbers, almost all zero, such
that a(j)

n > −Mj for all j, n.
Then

(4.2)
∑

j

lim inf
n→∞

a(j)
n 6 lim inf

n→∞

∑
j

a(j)
n

as extended real numbers.
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Proof. — Replacing a(j)
n by a(j)

n +Mj if necessary, we may assume with-
out loss of generality that a(j)

n > 0 for all n, j. The result now follows
immediately from the usual version of Fatou’s lemma (see [28], Theorem
4.3.9) applied to the sequence fn of locally constant functions defined by
fn(x) = a

(j)
n if x ∈ [j, j + 1). �

The next lemma is a simple application of Lemma 4.2.

Lemma 4.3. — Suppose a(j)
n is a doubly-indexed sequence of real num-

bers which satisfy properties (F1) and (F2). Consider the following condi-
tions, where L,Lj ∈ R.

(L1) lim sup
n→∞

∑
j

a(j)
n 6 L ,

(L2)
∑

j

lim inf
n→∞

a(j)
n > L ,

(L2)’ lim inf
n→∞

a(j)
n > Lj .

Then:

A) If (L1) and (L2) hold for some L, then lim
n→∞

a(j)
n exists for all j.

B) If (L1) holds, and there are numbers Lj with with
∑

j Lj > L such
that (L2)′ holds for all j, then lim

n→∞
a(j)

n = Lj for all j.

Proof. — For any sequences an, bn of real numbers which are bounded
from below, it is easy to see that lim sup(an+bn) > lim sup(an)+lim inf(bn).

For any index i, one therefore sees from Lemma 4.2 that

L > lim sup
∑

j

a(j)
n > lim sup a(i)

n + lim inf
∑
j 6=i

a(j)
n

> lim sup a(i)
n +

∑
j 6=i

lim inf a(j)
n > lim sup a(i)

n − lim inf a(i)
n + L,

which implies that lim sup a(i)
n 6 lim inf a(i)

n . Therefore limn→∞ a
(i)
n exists

for all i, which proves A).
For B), note that

L > lim sup
∑

j

a(j)
n > lim inf

∑
j

a(j)
n

>
∑

j

lim inf a(j)
n >

∑
Lj > L.

Therefore equality holds everywhere, so lim inf a(j)
n = Lj for all j. By A),

we conclude that lim a
(j)
n = Lj for all j, which establishes B). �
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In applying Lemma 4.3, we will use the following easily verified properties
of the collection of functions gϕ,v(z, w):

(G1) For fixed z, w ∈ P1(k) with z 6= w, we have gϕ,v(z, w) = 0 for almost
all v.

(G2) For almost all v, we have gϕ,v(z, w) > 0 for all z, w ∈ P1(Cv).

4.3. Pseudo-equidistribution

Let v be a place of k. If S is a finite subset of P1(Cv) of cardinality N ,
we define a discrete probability measure δ(S) on P1(Cv) by

δ(S) :=
1
N

∑
z∈S

δz.

Note that if S is a subset of P1(k), we can consider S as a subset of P1(Cv)
for each v ∈ Mk, since we have fixed an embedding k ↪→ Cv for each v. If
S is Gal(k/k)-stable, the resulting subset of P1(Cv) is independent of the
choice of embedding.

Definition 4.4. — A sequence of finite subsets {Sn}n>1 of P1(Cv) is
pseudo-equidistributed with respect to gϕ,v if Nn = #(Sn) →∞

(4.3) lim
n→∞

1
Nn(Nn − 1)

∑
z,w∈Sn

z 6=w

gϕ,v(z, w) = 0.

Recall that by Lemma 3.17 the minimal possible value for the left-hand
side of (4.3) is 0. Thus, the sequence {Sn}n>1 is pseudo-equidistributed if
and only if it achieves this minimum value.

Remark 4.5. — This definition is a bit different from the definition of
pseudo-equidistribution in ([2]). It anticipates the fact, shown in Corollary
4.7 below, that 1

log(qv)gϕ,v(z, w) is a normalized Arakelov Green’s function.

We now prove the following adelic pseudo-equidistribution result:

Theorem 4.6. — Let zn be a sequence of distinct points of P1(k) such
that ĥϕ(zn) → 0. Let Sn denote the set of Galois conjugates (over k) of zn.
Then the sequence {Sn} is pseudo-equidistributed with respect to gϕ,v for
all v ∈Mk.

Proof. — Let Nn be the cardinality of Sn. By Northcott’s finiteness the-
orem, the hypothesis ĥϕ(zn) → 0 (and the fact that the points zn are all
distinct) implies that Nn →∞ as n→∞.
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For v ∈Mk and n > 1, set

gv,n :=
1

Nn(Nn − 1)

∑
z,w∈Sn

z 6=w

gϕ,v(z, w).

By (4.1), we have

(4.4)

gn :=
1

[k : Q]

∑
v∈Mk

gv,n

=
1

Nn(Nn − 1)
1

[k : Q]

∑
z,w∈Sn

z 6=w

( ∑
v∈Mk

gϕ,v(z, w)

)

= 2ĥϕ(zn) → 0.

In particular,

(4.5) lim sup
n→∞

∑
v∈Mk

gv,n 6 0.

Now let tv,N := inf
z1,...,zN∈P1(Cv)

1
N(N − 1)

∑
i 6=j

gϕ,v(zi, zj), so that Γϕ,v =

lim inf
N→∞

tv,N > 0 by Lemma 3.17. Note that gv,n > tv,Nn
and lim inf

n→∞
tv,Nn

>

lim inf
N→∞

tv,N . Thus

(4.6) lim inf
n→∞

gv,n > 0

for all v.
Finally, we apply Lemma 4.3 to a(v)

n := gv,n. The hypotheses (F1) and
(F2) in that lemma are satisfied because the functions gϕ,v satisfy (G1)
and (G2), and conditions (L1) and (L2)′ are satisfied because of (4.6) and
(4.5), respectively. We conclude that limn→∞ gv,n = 0 for each v ∈Mk, as
desired.

�

As a consequence of this result, and the fact that there are infinitely
many pre-periodic points, we obtain

Corollary 4.7. — Let ϕ ∈ k(T ) be a rational function of degree d > 2.
For each place v of k:

A) The constants Γϕ,v and Iµϕ,v (µϕ,v) are equal to zero.
B) The Arakelov Green’s function 1

log(qv)gϕ,v(z, w) is normalized.

Proof. — For A), choose an infinite sequence {xn} of distinct pre-periodic
points; then ĥϕ(xn) = 0 for each n. Let Sn be the set of Galois conjugates
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of xn, and put Nn = #(Sn). Applying Theorem 4.6, we see that

lim inf
1

Nn(Nn − 1)

∑
z,w∈Sn

z 6=w

gϕ,v(z, w) = 0.

Hence Γϕ,v, defined in (3.7), is 6 0. Combined with the inequality Γϕ,v >
0 proved in Lemma 3.17, this gives Γϕ,v = 0. Write µ = µϕ,v. Since
D∞(µ) = Γϕ,v by the definitions, it follows from Theorem 3.28 that Iµ(µ) =
0.

For B), it is only necessary to show that axiom (RS3) (resp (B3)) is
satisfied, i.e., we must show that

1
log(qv)

∫∫
gϕ,v(z, w) dµ(z)dµ(w) = 0.

However, this is exactly the assertion that Iµ(µ) = 0. �

4.4. The equidistribution theorem for dynamical
systems on P1

In this subsection we will show that pseudo-equidistribution, combined
with the energy minimization principle, implies equidistribution.

Definition 4.8. — If Sn is a finite subset of P1(Cv) for each n > 1,
we say that the sequence {Sn}n>1 is equidistributed with respect to a
probability measure µ on P1

Berk,v over Cv if the sequence of measures δn =
δ(Sn) converges weakly to µ on P1

Berk,v.

For each v ∈Mk, pseudo-equidistribution implies equidistribution, in the
following precise sense:

Theorem 4.9. — Let {Sn}n>1 be a sequence of finite subsets of P1(Cv)
which is pseudo-equidistributed with respect to gϕ,v. Then {Sn}n>1 is
equidistributed with respect to µϕ,v on P1

Berk,v.

Proof. — Write µ = µϕ,v. Since P1
Berk,v is compact, it follows from Pro-

horov’s theorem that δn has a weakly convergent subsequence. If ν is any
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weak limit of a subsequence of δn, then passing to that subsequence

0 = lim
n→∞

1
Nn(Nn − 1)

1
log(qv)

∑
z,w∈Sn

z 6=w

gϕ,v(z, w)
by pseudo-equidistribution

= lim
n→∞

∫∫
P1
Berk,v

×P1
Berk,v

\(Diag)

gµ(w, z) dδn(w)dδn(z)

>
∫∫

P1
Berk,v

×P1
Berk,v

gµ(w, z) dν(w)dν(z) by Lemma 3.26

= Iµ(ν) > Iµ(µ) by Theorem 3.25.

Since Iµ(µ) = 0 by Corollary 4.7, it follows that Iµ(ν) = Iµ(µ), so Theorem
3.25 gives ν = µ. �

Remark 4.10. — For archimedean places v one can give an alternative
proof of Theorem 4.9 using a theorem of DeMarco [12, Theorem 1.3] instead
of Theorem 3.25, and working on C2 rather than on P1(C).

Remark 4.11. — For archimedean v, the same proof shows that Theo-
rem 4.9 remains valid if we replace P1

Berk,v by an arbitrary compact Rie-
mann surface X/C and gϕ,v by any normalized Arakelov Green’s function
on X(C).

Combining Theorem 4.6 and Theorem 4.9, we have finally proved:

Theorem 2.3 (Main Theorem). — Let zn be a sequence of distinct
points of P1(k) such that ĥϕ(zn) → 0. Let Sn denote the set of Galois
conjugates (over k) of zn. Then the sequence {Sn}n>1 is equidistributed
with respect to µϕ,v on P1

Berk,v/Cv for all v ∈Mk.

5. Potential theory on Riemann surfaces

The goal of this section is to prove the Energy Minimization Principle
(Theorem 5.3) for Arakelov Green’s functions on a compact Riemann sur-
face. This result was used in §3, and is needed for the proof of our main
equidistribution theorem (Theorem 2.3).

5.1. Arakelov Green’s functions

Let X/C be a compact Riemann surface of genus g. Arakelov discovered
that by fixing a volume form ω on X(C), one could define an extension of

TOME 56 (2006), FASCICULE 3



660 Matthew H. BAKER & Robert RUMELY

Néron’s archimedean local height pairing from divisors of degree zero with
disjoint support to arbitrary divisors with disjoint support. When g > 1,
Arakelov defined a canonical volume form ωcan (the pullback of the flat
metric on the Jacobian of X under an Albanese embedding) which plays a
distinguished role in his theory.

The extension of Néron’s pairing arises via Arakelov Green’s functions.
We proceed slightly more generally than Arakelov did, using positive mea-
sures rather than smooth (1, 1)-forms.

Recall (Definition 3.20) that a measure µ onX(C) is called log-continuous
if in every coordinate patch U ⊂ X(C), the function

∫
U

log |z − w|dµ(w)
is finite and continuous for all z ∈ U . For example, any measure µ which
locally has the form µ = f(z)dx∧dy, where f(z) is continuous and dx∧dy
is Lebesgue measure, is log-continuous.

We have seen that given an Arakelov Green’s function gµ(z, w), the as-
sociated measure µ is log-continuous. Conversely, given a log-continuous
probability measure (i.e., a positive measure of total mass 1) µ on X(C), it
follows from [30, §2.3] or [31, §4.1] that there is a unique pairing ((z, w))µ on
X(C) ×X(C) and a corresponding normalized Arakelov Green’s function
gµ(z, w) : X(C) × X(C)\(Diag) → R defined by gµ(z, w) = − log((z, w))µ

such that axioms (RS1), (RS2) and (RS3) hold.
One way to prove the existence of an Arakelov Green’s function gµ(z, w)

attached to µ is by utilizing a continuously varying family of canonical
distance functions [z, w]ζ on X(C), whose existence is proved in [30, The-
orem 2.1.1]. It is shown in [30, Theorem 2.3.4] that the integral

(5.1)
∫

X(C)

− log[z, w]ζ dµ(ζ)

satisfies properties (RS1) and (RS2) above. Therefore gµ(z, w) :=∫
X(C)

− log[z, w]ζdµ(ζ) is an Arakelov Green’s function for µ. Furthermore,
there is a unique choice of B such that

∫
X(C)

− log[z, w]ζdµ(ζ)+B satisfies
condition (RS3) above and yields a normalized Arakelov Green’s function.

Conversely, given an Arakelov Green’s function − log((z, w))µ, it is shown
in [30, Theorem 2.3.3] that one can construct a continuously varying family
of canonical distance functions via

(5.2) [z, w]ζ :=
((z, w))µ

((z, ζ))µ((w, ζ))µ
.

One deduces formula (5.2) from the relation

(5.3) − log[z, w]ζ = − log[z, w]p + log[z, ζ]p + log[w, ζ]p + C(p),
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which is valid for all p, ζ, z, w ∈ X(C) with z 6= w (see [30, Corollary 2.1.5]).
Here C(p) is a constant depending only on p, and the right-hand side must
be suitably interpreted when z = p or w = p.

5.2. Examples of archimedean Arakelov Green’s functions

Example 5.1. — Arakelov Green’s functions on P1

Suppose X = P1 and µ = µS1 is the uniform probability measure on
the unit circle in C = P1(C)\{∞}. Then an Arakelov Green’s function
associated to µ is

(5.4) gµ(z, w) =


− log |z − w|+ log+ |z|+ log+ |w| z, w 6= ∞

log+ |z| w = ∞

log+ |w| z = ∞.

Note that the function gµ(z,∞) = log+ |z| is the Green’s function for the
unit circle in C relative to the point at infinity, and is also the archimedean
contribution to the logarithmic Weil height on Q = P1(Q)\{∞}.

If we write (5.4) in terms of a choice of homogeneous coordinates z =
(z1 : z2), w = (w1 : w2), we obtain

(5.5) gµ(z, w) = − log |z ∧ w|+ log ||z||+ log ||w||,

where z ∧ w = z1w2 − z2w1 and ||z|| = max{|z1|, |z2|}.

Example 5.2. — Arakelov Green’s functions on elliptic curves

If X = E is an elliptic curve over C and µ = µHaar is the normalized
Haar measure on E, then we can take gµ(z, w) = λ∞(z − w), where λ∞ is
a (suitably normalized) archimedean Néron local height function on E(C)
(see [13, Section 7]). One can explicitly describe the function λ∞ in terms
of the Weierstrass σ-function and the quasi-period homomorphism η (see
[36, Chapter VI]).

5.3. Statement and discussion of Theorem 5.3

The main result of this section is the following energy minimization prin-
ciple for Arakelov Green’s functions:
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Theorem 5.3. — Let X be a compact Riemann surface, let µ be a log-
continuous probability measure on X(C), and let gµ(z, w) be an Arakelov
Green’s function for µ. Define the “energy functional” Iµ on the space P of
probability measures on X(C) by the formula

Iµ(ν) :=
∫∫

X(C)×X(C)

gµ(z, w) dν(z)dν(w).

Then Iµ(ν) > Iµ(µ) for all probability measures ν ∈ P, with equality if and
only if ν = µ.

In other words, µ is the unique probability measure minimizing the en-
ergy functional Iµ. Note that by definition, gµ(z, w) is normalized if and
only if Iµ(µ) = 0.

The most important difference between Theorem 5.3 and previous energy
minimization results on Riemann surfaces (e.g. [30, Theorem 3.1.12]) is that
we consider the space P of probability measures supported on all of X(C),
whereas in classical potential theory, one restricts attention to probability
measures supported on a compact set E ⊂ X(C)\{ζ} for a fixed reference
point ζ. For the applications in the present paper, it is crucial to allow ν to
vary over all of P, since it is well-known that the canonical measure attached
to a rational map can have support equal to all of P1(C) (this happens, for
example, with the degree 4 Lattès maps associated to multiplication by 2
on an elliptic curve). For polynomial maps, where the filled Julia set stays
bounded away from the point at infinity, one can get by with more classical
results from potential theory (see [2]).

We recall that the capacity of a compact set F ⊂ C is defined as c(F ) =
e−V (F ), where V (F ) (the“Robin’s constant” of F ) is the infimum (which
may be a real number or +∞) over all probability measures ν supported on
F of expression (5.6) below. Theorem 5.3 can be viewed as a generalization
of the following fundamental result from capacity theory (see [25]):

Theorem 5.4. — Let F be a compact subset of C having positive ca-
pacity. Then there exists a unique probability measure µF supported on F
(called the equilibrium measure for F ) which minimizes the energy func-
tional

(5.6) I(ν) =
∫∫

F×F

− log |z − w| dν(z)dν(w).

We claim that Theorem 5.3 implies Theorem 5.4 for all compact sets F
such that each x ∈ F is regular for the Dirichlet problem. (For example, this
holds if each connected component of F is a continuum; see [39], Theorem
I.11, p. 7). Such a set necessarily has positive capacity ([39], Theorem
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III.5, p. 56). If gF (z) is a Green’s function for C\F relative to ∞, then
gF (z) is continuous ([39], Theorem III.36, p. 82). One verifies easily that if
µF = −∆gF (z), then the function

− log |z − w|+ gF (z) + gF (w)

satisfies conditions (RS1) and (RS2) above, and therefore the normalized
Arakelov Green’s function for µF is given for z, w ∈ C, z 6= w by

gµF
(z, w) = − log |z − w|+ gF (z) + gF (w)− C,

where the constant C is chosen so that (RS3) is satisfied. (Compare with
Example 5.1). Since µF is supported on F and gF ≡ 0 on F , we must in
fact have

C =
∫∫

F×F

− log |z − w| dµF (z)dµF (w).

Also, if ν is any probability measure supported on F , then Theorem 5.3
implies that

IµF
(ν) =

∫∫
F×F

− log |z − w| dν(z)dν(w)− C > 0.

Therefore µF is the unique probability measure supported on F which
minimizes the energy functional I (i.e., µF is the equilibrium measure for
F ). By the definition of capacity, we also see that the constant C is just
the Robin’s constant V (F ) of F , so that

gµF
(z, w) = − log |z − w|+ gF (z) + gF (w) + log c(F ).

Remark 5.5. — P. Autissier has obtained essentially the same result as
Theorem 5.3 in the case where µ is the equilibrium measure of a compact
set F ⊂ C.

We have already discussed the relationship between Theorem 5.3 and
classical potential theory in C. There is also a relationship between Theo-
rem 5.3 and a result which is used in Arakelov theory in order to establish
an analogue of the Riemann-Roch theorem for arithmetic surfaces (see
[20]). Indeed, when g > 1 and µ = ωcan, the nonnegativity of Iµ(ν) in The-
orem 5.3 is the continuous analogue of the following theorem of Faltings
[13], originally proved using the spectral theory of the Laplacian:

Theorem 5.6 (Faltings). — For each integer n > 1, choose an n-tuple
z1, . . . , zn of distinct points in X(C). Then

lim inf
n→∞

1
n(n− 1)

∑
i 6=j

gωcan(zi, zj) > 0.
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It is easy to see that Theorem 5.3 implies Theorem 5.6. Indeed, if δn is
the discrete probability measure supported equally at z1, . . . , zn and if ν is
any weak limit of a subsequence of δn, then

1
n(n− 1)

∑
i 6=j

gωcan(zi, zj) =
∫∫

X(C)×X(C)\(Diag)

gωcan(z, w) dδn(z)dδn(w),

and it follows from Lemma 3.26 that

lim inf
n→∞

∫∫
X(C)×X(C)\(Diag)

gωcan(z, w) dδn(z)dδn(w)

>
∫∫

X(C)×X(C)

gωcan(z, w) dν(z)dν(w).

This last quantity is nonnegative by Theorem 5.3, proving the claim.

5.4. Proof of Theorem 5.3

We now turn to the proof of Theorem 5.3. The proof uses the representa-
tion of gµ(z, w) in terms of the canonical distance function, and is similar to
the classical proof of Theorem 5.4. Namely, our plan is to prove analogues of
Maria’s theorem and Frostman’s theorem, and to deduce Theorem 5.3 from
those results. As discussed in §5.3, a key difference between Theorem 5.3
and Theorem 5.4 is the presence in Theorem 5.4 of a fixed reference point
at infinity. It is the assumption that µ is log-continuous which ultimately
allows us to apply techniques from classical potential theory to the present
situation.

We fix a (possibly non-normalized) Arakelov Green’s function gµ(z, w)
for µ, and for each ζ ∈ X(C) we define a canonical distance function [z, w]ζ
by (5.2).

Using formula (5.3), we see that if ζ ∈ X(C) then for all z, w 6= ζ

gµ(z, w) =
∫
− log[z, w]p dµ(p)

= − log[z, w]ζ − uµ(z, ζ)− uµ(w, ζ) + Cζ ,(5.7)

where

uµ(z, ζ) :=
∫

X(C)

− log[z, w]ζ dµ(w).

By Proposition 2.1.3 of [30], for fixed ζ ∈ X(C), the two-variable function
− log[z, w]ζ can be expressed locally on X(C)×X(C) as a linear combina-
tion of log |z − w|, log |z − ζ|, log |w − ζ|, and a continuous function which
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is harmonic in z and w separately. Since µ is log-continuous, it follows that
for fixed ζ, the function uµ(z, ζ) is continuous on X(C)\{ζ}.

If ν is any probability measure on X(C), we define the generalized po-
tential function uµ(z, ν) : X(C) → R ∪ {∞} to be

uµ(z, ν) :=
∫

X(C)

gµ(z, w) dν(w).

Lemma 5.7. — For any probability measure ν on X(C), we have
∆uν(z, µ) = ν − µ as distributions.

Proof. — For any test function ψ, we have∫
ψ(z)∆uν(z, µ) =

∫
uν(z, µ)∆ψ(z)

=
∫ (∫

gµ(z, w), dν(w)
)

∆ψ(z)

=
∫ (∫

gµ(z, w) ∆ψ(z)
)
dν(w) (Fubini’s theorem)

=
∫ (∫

ψ(z)∆gµ(z, w)
)
dν(w)

=
∫
ψ(w)−

(∫
ψ(z) dµ(z)

)
dν(w)

=
∫
ψ(w)dν(w)−

∫
ψ(z)dµ(z).

The use of Fubini’s theorem at the third step is justified by the fact
that the measure ∆ψ(z) locally has the form f(z) dx ∧ dy for a contin-
uous function f(z). It follows that positive and negative parts ∆ψ+ and
∆ψ− in the Jordan decomposition of ∆ψ are log-continuous. Now Fubini’s
theorem, in the form given in ([29], Theorem 7.8(b), p. 150), says that∫ (∫

gµ(z, w) ∆ψ±(z)
)
dν(w) =

∫ (∫
gµ(z, w) dν(w)

)
∆ψ±(z). �

Lemma 5.8. — For any probability measure ν on X(C),
A) uν(z, µ) is a lower semicontinuous function on X(C).
B) uν(z, µ) is continuous and subharmonic outside supp(ν).

Proof. — For each M ∈ R define g(M)
µ (z, w) := min{M, gµ(z, w)}, with

g
(M)
µ (z, z) := M for all z. Then g

(M)
µ (z, w) is a continuous function on

X(C)×X(C), and

uν(z, µ) = lim
M→∞

∫
X(C)

g(M)
µ (z, w)dν(w).
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Therefore uν(z, µ) is lower semicontinuous, being an increasing limit of
continuous functions. This proves part A) of the lemma.

To prove part B), note that if z0 6∈ supp(ν), then by definition there exists
an open neighborhood U of z0 whose closure is disjoint from supp(ν), such
that ν(U) = 0. For z ∈ U , we have

uν(z, µ) =
∫

X(C)

gµ(z, w)dν(w) =
∫

X(C)\U
gµ(z, w)dν(w).

Since gµ(z, w) is uniformly continuous on U × (X(C)\U), it follows that
uν(z, µ) is continuous on U , and in particular at z0.

The fact that uν(z, µ) is subharmonic outside supp(ν) follows from the
fact that ∆uν(z, µ) = ν−µ, and thus −∆uν(z, µ) = µ is a positive distribu-
tion on the complement of supp(ν). (See [19], Theorem 2.9.11, p. 67). �

The potential function uν(z, µ) has additional continuity properties be-
sides those given by Lemma 5.8. For example, we have the following (com-
pare with [25, Theorem 3.1.3]).

Proposition 5.9. — Let ν be a probability measure on X(C). Then
for every z0 ∈ K := supp(ν), we have

lim sup
z→z0

uν(z, µ) = lim sup
z→z0
z∈K

uν(z, µ).

Proof. — Let U be the complement in X(C) of K. Without loss of gen-
erality, we may assume that U 6= ∅ and that z0 ∈ ∂U . It is easy to see that
the desired result is then equivalent to

lim sup
z→z0
z 6∈K

uν(z, µ) 6 lim sup
z′→z0
z∈K

uν(z′, µ).

If uν(z0, µ) = ∞ then by lower semicontinuity we have limz→z0 uν(z, µ) =
∞ and the result is trivial. Therefore we may assume that uν(z0, µ) <∞,
in which case ν({z0}) = 0. It follows that given ε > 0, there exists a closed
disc D centered at z0 such that ν(D) < ε.

Let F := D ∩K (so that z0 ∈ F ), and fix z ∈ D\F .
Claim: There exists a constant C > 0 (independent of z) and a point

z′ ∈ F (depending on z) such that

(5.8) gµ(z, w) 6 gµ(z′, w) + C

for all w ∈ F .
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Before proving the claim, let’s see how it gives what we want. Integrating
both sides over F against ν, we get∫

F

gµ(z, w)dν(w) 6
∫

F

gµ(z′, w)dν(w) + C · ν(F )

6
∫

K

gµ(z′, w)dν(w)−
∫

K\F
gµ(z′, w)dν(w) + C · ε

= uν(z′, µ)−
∫

K\F
gµ(z′, w)dν(w) + C · ε.

Therefore

(5.9)
∫

F

gµ(z, w)dν(w) +
∫

K\F
gµ(z′, w)dν(w) 6 uν(z′, µ) + C · ε.

As z → z0 in D\F , we have z′ → z0 in F also (take w = z0 in (5.8)). By
the continuity of gµ(z, w) on D × (K\F ), as z′ → z0 and z → z0 we have∫

K\F
(gµ(z′, w)− gµ(z, w)) dν(w) → 0.

Therefore (5.9) gives

lim sup
z→z0
z 6∈K

∫
K

gµ(z, w) dν(w) 6 lim sup
z′→z0
z∈K

uν(z′, µ) + C · ε.

As ε > 0 was arbitrary, this gives the desired result.
It remains to prove the claim. Choose ζ ∈ X(C), a small disc Dζ around

ζ with Dζ ∩D = ∅, and a constant Mζ ∈ R so that |gµ(z, ζ)| 6 Mζ for all
z 6∈ Dζ . By [30, proof of Theorem 3.1.6], there is a constant C ′ (depending
only on ζ and D) such that

− log[z, w]ζ 6 − log[z′, w]ζ + C ′

for all z, z′ ∈ D with z 6= z′.
Using formula (5.2), we see that

gµ(z, w)− gµ(z′, w)− gµ(z, ζ) + gµ(z′, ζ) 6 C ′

and therefore
gµ(z, w)− gµ(z′, w) 6 C ′ + 2Mζ ,

which proves the claim. �

We thus obtain the following analogue of Maria’s theorem (see [30, The-
orem 3.1.6]):

Corollary 5.10. — If M is a real number such that uν(z, µ) 6 M on
supp(ν), then uν(z, µ) 6 M on all of X(C).
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Proof. — We may clearly assume that the complement U of supp(ν) is
non-empty. By Lemma 5.8, u is subharmonic on U , and by Proposition 5.9,
for each boundary point z0 of supp(ν) we have

lim sup
z→z0
z∈U

uν(z, µ) = lim sup
z→z0

z∈supp(ν)

uν(z, µ) 6 M.

The result now follows from the maximum principle for subharmonic func-
tions (applied to each connected component of U). �

Next we have the following result, proved by a standard argument:

Lemma 5.11. — There exists an energy-minimizing measure ν0 for the
functional Iµ.

Proof. — Let Vµ := infν∈P Iµ(ν), and choose a sequence of probability
measures µn in P such that limn→∞ Iµ(µn) = Vµ. Passing to a subsequence
if necessary, we may assume that µn converges weakly to some measure ν0.
We claim that

(5.10) Vµ = lim inf
n→∞

Iµ(µn) > Iµ(ν0).

Given this claim, we see that since Vµ = infν∈P Iµ(ν), we must have
Iµ(ν0) = Vµ.

To prove (5.10), we proceed as in the proof of Lemma 3.26:

lim inf
n→∞

∫∫
X(C)×X(C)

gµ(z, w) dµn(z)dµn(w)

> lim
M→∞

lim inf
n→∞

∫∫
min{M, gµ(z, w)} dµn(z)dµn(w)

(since (∗) > min{M, (∗)})

= lim
M→∞

∫∫
min{M, gµ(z, w)} dν0(z)dν0(w) (µn → ν0 weakly)

=
∫∫

gµ(z, w) dν0(z)dν0(w) (monotone convergence theorem).

�

Recall from [30, §3.1] that if E ⊂ X(C) is compact and ζ 6∈ E, then the
capacity γζ(E) of E (with respect to ζ) is defined to be γζ(E) := e−Vζ(E),
where

Vζ(E) := inf
ν∈P(E)

∫∫
− log[z, w]ζ dν(z)dν(w)

and P(E) is the set of probability measures supported on E.
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Similarly, for any compact E we define the µ-capacity of E by γµ(E) :=
e−Vµ(E), where

Vµ(E) := inf
ν∈P(E)

∫∫
gµ(z, w) dν(z)dν(w).

Note that if E = X(C) then Iµ(µ) = Vµ(E).

Lemma 5.12. — If E ⊂ X(C) is compact and ζ 6∈ E, then γµ(E) = 0 if
and only if γζ(E) = 0.

Proof. — This follows immediately from formula (5.2), which implies
that for each ν ∈ P(E),

Vζ(E) =
∫∫

− log[z, w]ζ dν(z)dν(w)

=
∫∫

(gµ(z, w)− gµ(z, ζ)− gµ(w, ζ)) dν(z)dν(w)

= Vµ(E)− 2
∫

E

gµ(z, ζ) dν(z).

Here
∫

E
gµ(z, ζ) dν(z) <∞, since supp(ν) ⊆ E and ζ 6∈ E. �

Remark 5.13. — If ζ, ζ ′ 6∈ E then it follows from Lemma 5.12 that
γζ(E) = 0 if and only if γζ′(E) = 0. In particular, it makes sense to speak
of a set of capacity zero on X(C) without reference to a particular base
point ζ.

Lemma 5.14. — Let ν be a probability measure on X(C) such that
Iµ(ν) < ∞. Then ν(A) = 0 for any Borel subset A ⊂ X(C) of capacity
zero.

Proof. — Suppose to the contrary that ν(A) > 0. Then for some compact
subset A′ ⊆ A we also have ν(A′) > 0, so without loss of generality we may
assume that A itself is compact. Recall that there exists M ∈ R such that
gµ(z, w) > −M for all z, w ∈ X(C). Then∫

A

∫
A

(gµ(z, w)+M) dν(z)dν(w) 6
∫

X(C)

∫
X(C)

(gµ(z, w)+M) dν(z)dν(w),

so that∫
A

∫
A

gµ(z, w) dν(z)dν(w) 6
∫

X(C)

∫
X(C)

gµ(z, w) dν(z)dν(w)+

M · (1− ν(A)2)
6 Iµ(ν) +M

< ∞.
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Define a probability measure ν′ on A by setting ν′ := 1
ν(A)ν|A. Then

Iµ(ν′) 6
1

ν(A)2
(M + Iµ(ν)) <∞,

so that γµ(A) > 0, a contradiction. �

The following result is an analogue of Frostman’s theorem (see [30, The-
orem 3.1.7]):

Theorem 5.15. — Let ν0 be any probability measure which minimizes
the functional Iµ, and let V := Iµ(ν0). Then the potential function u(z) :=
uν0(z, µ) on X(C) satisfies:

A) u(z) = V for all z ∈ X(C) outside a set of capacity zero.
B) u(z) 6 V for all z ∈ X(C).

Proof. — We first show that u(z) > V for all z ∈ X(C) outside a set of
capacity zero. For each n > 1, put An := {z ∈ X(C) : u(z) 6 V − 1

n}.
The lower semicontinuity of uν0(z) shows that each An is closed, and we
have ∪An = A := {z ∈ X(C) : u(z) < V }. Clearly A 6= X(C), since∫
u(z)dν0(z) = V and ν0 is a positive measure.
If ζ is any point in the complement of A, we claim that γζ(A) = 0. By

Lemma 5.12, it suffices to show that γµ(A) = 0. Suppose on the contrary
that γµ(A) > 0. To obtain a contradiction, we first construct disjoint closed
subsets E1, E2 of X(C) as follows.

By [30, Proposition 3.1.5], we must have γζ(An) > 0, and hence γµ(An) >
0, for some n. Thus for a suitable ε > 0 and n > 1, we have u(z) < V − 2ε
on E1 := An and γµ(E1) > 0.

As
∫
u(z)dν0(z) = V , there exists z0 ∈ supp(ν0) such that uν(z0, µ) >

V − ε. Lower semicontinuity implies that this inequality remains valid in a
closed disc D around z0, which we may assume to be disjoint from E1. Since
z0 ∈ supp(ν0), we have ν0(D) > 0. Let E2 := D, and let W := ν0(E2) > 0.

Since γµ(E1) > 0, there exists a probability measure ν′ supported on E1

such that Iµ(ν′) <∞. Define a new measure σ on X(C) by setting

σ :=


Wν′ on E1

−ν0 on E2

0 elsewhere

Then σ(E1) = W , σ(E2) = −W , and σ(X(C)) = 0. Note that for each
real number t ∈ [0, 1], ν0 + tσ is a probability measure on X(C). As in [30,
proof of Theorem 3.1.6], we calculate that Iµ(σ) <∞ and

(5.11) Iµ(ν0 + tσ)− Iµ(ν0) 6 (−2Wε) · t+ Iµ(σ) · t2.

ANNALES DE L’INSTITUT FOURIER



EQUIDISTRIBUTION AND POTENTIAL THEORY 671

For t sufficiently small, the right-hand side of (5.11) is negative, contradict-
ing the fact that Iµ(ν0) = V is the minimum possible energy of a probability
measure on X(C). This contradiction proves that A has capacity zero, and
by construction we have u(z) > V for all z ∈ X(C)\A.

Next, we show that u(z) 6 V on supp(ν0). To see this, suppose for the
sake of contradiction that uν(z0, µ) > V for some z0 ∈ supp(ν0). By the
lower semicontinuity of u, there exists ε > 0 and a closed disc D around z0
such that u(z) > V + ε on D.

As z0 ∈ supp(ν0), the number T := ν0(D) is positive.
We have already seen that u(z) > V for all z ∈ X(C), except on a set A

of capacity (and hence, by Lemma 5.14, of ν0-measure) zero. Therefore

V =
∫
u(z)dν0(z) > V (1− T ) + (V + ε)T > V,

a contradiction. It follows that u(z) 6 V on supp(ν0) as claimed.

Finally, Corollary 5.10 now shows that u(z) 6 V on all of X(C), which
proves both A) and B). �

We can now prove Theorem 5.3.

Proof. — As in the statement of Theorem 5.15, let ν0 be any probability
measure which minimizes the functional Iµ(ν), and let V = Iµ(ν0). Since
Iµ(µ) <∞ by (3.15), we must have V <∞ as well.

Integrating over X(C)×X(C) and applying Fubini’s theorem, we have

(5.12)
∫ (∫

gµ(z, w) dµ(z)
)
dν0(w) =

∫ (∫
gµ(z, w)dν0(w)

)
dµ(z).

The interchange of order of integration is justified by the same reasons as
in Lemma 5.7, because µ is log-continuous.

Here the left side equals Iµ(µ), since
∫
gµ(z, w)dµ(z) is constant by prop-

erty (RS3)′ of Arakelov Green’s functions.
On the other hand, Theorem 5.15 shows that u(z) :=

∫
gµ(z, w)dν0(w)

= V outside a set A with capacity zero. Since Iµ(µ) < ∞ by assumption,
Lemma 5.14 shows that µ(A) = 0. Hence the right side of (5.12) is V .

Combining these gives Iµ(µ) = V . Therefore µ is also energy-minimizing.
To see that µ = ν0, note first that sets of capacity zero have Lebesgue

measure zero in any coordinate patch on X(C). (This follows from Lemma
5.14). Hence u(z) = V almost everywhere with respect to Lebesgue mea-
sure, and consequently ∆u(z) = 0. On the other hand, Lemma 5.7 gives us
the distributional identity ∆u(z) = ν0−µ. Therefore µ = ν0 as desired. �
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6. Comparison and calculation of various capacities

As before, we let ϕ : P1 → P1 be a rational map of degree d > 2 defined
over a number field k, and let F = (F1, F2) : A2 → A2 be a lifting of ϕ,
where F1(x, y) and F2(x, y) are homogeneous polynomials of degree d with
coefficients in k having no common factors over k.

In this section we will prove Theorem 3.13, the resultant formula for the
homogeneous transfinite diameter of the filled Julia set KF,v :

(6.1) d0
∞(KF,v) = |Res(F )|−1/d(d−1)

v .

We do this by considering various notions of capacity: the local and global
sectional capacities and the Chebyshev constant studied in [34] and [35],
and the homogeneous sectional capacity and homogeneous transfinite di-
ameter, which are introduced here for the first time. The reason for this
proliferation of capacities is that we can compute the sectional capacity,
and there are standard methods for proving inequalities between various
other types of capacities. In outline, the plan is to first prove

local sectional capacity = |Res(F )|−1/d(d−1)
v

by proving an upper bound for the local sectional capacity and using the
fact that the global sectional capacity is the product of the local sectional
capacities, and then to show that for circled sets,

local sectional capacity = homogeneous sectional capacity

= homogenous transfinite diameter.

We prove more in this section than is strictly needed for our application
to dynamics. It is our hope that the ideas developed here will be useful in
other contexts as well. In particular, it would be interesting to know if the
resultant formula for the local sectional capacity of the pullback of a ball
(Proposition 6.2) generalizes to higher dimensions.

6.1. Sectional capacities of polynomial domains

We can view F as defining a finite map F̃ : P2 → P2 given in homo-
geneous coordinates by F̃ (X : Y : Z) = (F1(X,Y ) : F2(X,Y ) : Zd). Its
action on the affine patch A2 is given by F and it stabilizes hyperplane
H = {Z = 0}, which we identify with P1, where its action is given by ϕ.
The map F̃ has degree d2, and F̃ ∗(H) = d ·H.

The definition of the sectional capacity for sets in P2, relative to the
divisor H, is as follows.
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For each place v of k, let Ev ⊂ P2(Cv) be a nonempty set which is stable
under the group of continuous automorphisms Galc(Cv/kv) ∼= Gal(k̃v/kv)
and is bounded away from H(Cv) under the v-adic metric on P2(Cv). For
all but finitely many v we assume that Ev = B(0, 1) × B(0, 1) ⊂ A2(Cv),
the ‘trivial set’ for v with respect to H. We will call these assumptions the
Standard Hypotheses.

Put E =
∏

v Ev ⊂ Ak, where Ak is the adele ring of k.
For each n > 0, identify the space of sections Γ(n) := H0(P2,OP2(n))

with the set of homogeneous polynomials in k[X,Y, Z] of degree n. Consider
the basis for k[X,Y, Z] given by the monomials {XkY `Zm} ; equip it with
the term order ≺ given by the lexicographic order with Z ≺ X ≺ Y ,
graded by the degree. We call this structure the ‘monic basis’; it is the key
ingredient used in defining local sectional capacities. (Any other term order
graded by the degree would work; this one is most directly compatible with
dehomogenization.)

For each place v of k, let volv be additive Haar measure on kv (normal-
ized so that volv(Ov) = 1 if v is nonarchimedean, and given by Lebesgue
measure on R or C if v is archimedean). Let volA be the additive Haar
measure on the adele ring Ak given by the product of the measures volv.
For each n, by transport of structure using the monic basis we obtain Haar
measures volv on the vector spaces Γϕ,v(n) = kv ⊗k Γ(n) and volA on the
Ak-module ΓA(n) = Ak ⊗k Γ(n).

To define norms, we dehomogenize at Z, writing x = X/Z, y = Y/Z,
and identify Γ(n) with the space of polynomials in k[x, y] of total degree
6 n. We view these as functions on A2. Put

Fv(n) = {f ∈ Γϕ,v(n) : ‖f‖Ev
6 1},

FA(n) =

(∏
v

Fv(n)

)
∩ ΓA(n).

The local sectional capacity Sγ(Ev,H) is defined by

− log(Sγ(Ev,H)) = lim
n→∞

3!
n3

log(volv(Fv(n)))

and the global sectional capacity Sγ(E,H) by

− log(Sγ(E,H)) = lim
n→∞

3!
n3

log(volA(FA(n))).

In [34] it is shown that under the Standard Hypotheses, the limits defining
Sγ(Ev,H) and Sγ(E,H) exist, and that

Sγ(E,H) =
∏
v

Sγ(Ev,H).
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We now apply this to polydiscs in C2
v and their pullbacks by F . Given

z = (x, y) ∈ C2
v, write ‖z‖v = max(|x|v, |y|v). (For archimedean v, this is a

different definition of ‖z‖v than we used in §3.)
For each Rv > 0, put

Bv(Rv) := B(0, Rv)2 = {z ∈ C2
v : max(|x|v, |y|v) 6 Rv}.

Thus

F−1(Bv(Rv)) = {z ∈ Cv : max(|F1(z)|v, |F2(z)|v) 6 Rv}.

Given a collection of numbers ~R = {Rv} with Rv = 1 for all but finitely
many v, define the adelic sets

B(~R) =
∏
v

Bv(Rv),

F−1(B(~R)) =
∏
v

F−1(Bv(Rv)).

Proposition 6.1. — A) For each v, the local sectional capacity
Sγ(Bv(Rv),H) equals R2

v.
B) The global sectional capacity Sγ(B(~R),H) equals

∏
v R

2
v.

C) The global sectional capacity Sγ(F−1(B(~R)),H) equals (
∏

v R
2
v)1/d.

Proof. — Part A) follows from the fact that the logarithmic capacity of
a ball in P1 is γ∞(B(0, Rv)) = Rv (see, e.g. [30], Example 5.2.15, p. 352),
together with the formula for the the sectional capacity of a product set
Ev = Ev,1 × Ev,2 ⊂ C2

v:

(6.2) Sγ(Ev,H) = γ∞(Ev,1) · γ∞(Ev,2)

(see [34], Example 4.3, p. 558).
Part B) follows from part A) and ([34], Theorem 3.1, p. 552).
Part C) follows from part B) and functorial properties of the global sec-

tional capacity. By the the pullback formula for finite maps ([35], Theorem
10.1, p. 54), we have

Sγ(F−1(B(~R)), dH) = Sγ(B(~R),H)d2
,

since F̃−1(B(~R)) = F−1(B(~R)), F̃ ∗(H) = dH, and deg(F̃ ) = d2. Also,
by the homogeneity of the sectional capacity in its second variable ([35],
Theorem C (5), p. 9), Sγ(E, dH) = Sγ(E,H)d3

for any E in P2. Combining
these gives C). �

Determining the local sectional capacity Sγ(F−1(Bv(Rv)),H) is more
difficult. As before, let Res(F ) denote the resultant of F1 and F2.
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Proposition 6.2. — For each v,

Sγ(F−1(Bv(Rv)),H) = (R2
v)1/d · |Res(F )|−1/d2

v .

Before giving the proof, we will need a lemma. For each m, write Γ0
v(m)

for the space of homogeneous polynomials in kv[x, y] of degree m.
Take m = td + d − 1 and consider the collection of m + 1 = (t + 1)d

polynomials

{xiyjF1(x, y)kF2(x, y)` : i+ j = d− 1, k + ` = t} ⊂ Γ0
v(m).

Let Det(m) denote the determinant of the matrix expressing these polyno-
mials in terms of the standard monomials {xm, xm−1y, . . . , ym}.

Lemma 6.3. — For m = td+ d− 1, Det(m) = ±Res(F )t(t+1)/2 .

Proof. — We will first show that Det(m) vanishes if and only if Res(F )
vanishes. Indeed, Det(m) = 0 if and only if there is a nontrivial relation of
the form

(6.3)
t∑

i=0

hi(x, y)F1(x, y)t−iF2(x, y)i = 0

where each hi(x, y) is homogeneous of degree d− 1.
If (6.3) holds, let I be the least index for which hI(x, y) 6= 0; necessarily

I < t. Then F2(x, y) divides hI(x, y)F1(x, y)t−I . Since F2(x, y) has degree d,
it must have an irreducible factor in common with F1(x, y), so Res(F ) = 0.
Conversely, if Res(F ) = 0 then there is a nontrivial relation

h0(x, y)F1(x, y) + h1(x, y)F2(x, y) = 0

where h0 and h1 are homogeneous of degree d− 1. Multiplying through by
F1(x, y)t−1 gives a relation of the form (6.1).

Expand Det(m) and Res(F ) as polynomials in the coefficients of F1 and
F2. Comparing degrees and using the fact that Res(F ) is irreducible, we
see that

Det(m) = C · Res(F )t(t+1)/2

for some constant C. Taking F1 = xd, F2 = yd and evaluating both sides,
we find that C = 1 for an appropriate ordering of the terms. �

We now turn to the proof of Proposition 6.2.

Proof. — We give the proof only when Rv = 1. The general case reduces
to this by a scaling argument.
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It suffices to prove the upper bound Sγ(F−1(Bv(1)),H) 6 |Res(F )|−1/d2

v

for each v. If this is known, then by the global equalities∏
v

Sγ(F−1(Bv(1)),H) = 1,∏
v

|Res(F )|v = 1,

the local inequality must actually be an equality, for each v.
Write Ev = F−1(Bv(1)). Since Ev is bounded, there is a constant cv ∈ Cv

such that ‖cvxiyj‖Ev
6 1 for all i, j with i+ j 6 2d− 1.

We will study volv(Fv(n)) by making use of the decomposition Γv(n) =
⊕n

m=0Γ
0
v(m), which is compatible with the monomial bases. For eachm > 0,

put
F0

v (m) = {f ∈ Γ0
v(m) : ‖f‖Ev 6 1}.

If m > 2d − 1, we can uniquely write m = td + (d − 1) + r with integers
t > 1, 0 6 r 6 d− 1, and then

Γ0
v(m) = yr · Γ0

v(m− r)⊕

(
r−1⊕
i=0

kv · xm−iyi

)
.

By Lemma 6.3, the polynomials xiyjF k
1 F

`
2 with i+ j = d− 1, k + ` = t

form a basis for Γ0
v(m− r), so the corresponding polynomials xiyj+rF k

1 F
`
2 ,

together with the monomials xm−iyi for 0 6 i < r, form a basis for Γ0
v(m).

Again by Lemma 6.3, the transition matrix from the monomial basis for
Γ0

v(m) to this new basis has determinant ±Res(F )t(t+1)/2.
For each basis element of the first type, we have i+ j + r 6 2d− 1, so

cv · xiyj+rF k
1 F

`
2 ∈ F0

v (m).

For each basis element of the second type, xm−iyi = xtd · xd−1+r−iyi with
(d− 1 + r − i) + i 6 2d− 1, so

ct+1
v · xm−iyi ∈ F0

v (m).

Now suppose v is nonarchimedean. By the ultrametric inequality, we
have

(6.4)

( ⊕
i+j=d−1

k+`=t

Ov ·cvxiyj+rF k
1 F

`
2

)
⊕

( ⊕
06i<r

Ov ·ct+1
v xm−iyi

)
⊂ F0

v (m)

and it follows that

volv(F0
v (m)) > (|cv|v)(m−r+1)+r(t+1) · |Res(F )|t(t+1)/2

v .
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Noting that m/d > t > (m/d)− 1, we see that

(6.5) log(volv(F0
v (m)) >

m2

2d2
log(|Res(F )|v)−O(m).

By increasing the implied constant, we can assume this holds for m 6 2d−1
as well.

For each n > 0, the ultrametric inequality shows that

(6.6)
n⊕

m=0

F0
v (m) ⊂ Fv(n).

Using (6.5) and (6.6), it follows that

− log(Sγ(Ev,H)) = lim
n→∞

3!
n3

log(volv(Fv(n)))

> lim
n→∞

3!
n3

n∑
m=0

(
m2

2
· 1
d2

log(|Res(F )|v)−O(m)
)

=
1
d2

log(|Res(F )|v).(6.7)

Thus Sγ(Ev,H) 6 |Res(F )|−1/d2

v , as desired.
If v is archimedean and kv

∼= R, the triangle inequality gives a weaker
containment; it is better to formulate the result directly for Fv(n). Noting
that dimk(Γ(n)) = (n+ 1)(n+ 2)/2, we obtain( ⊕

i+j<2d−1

2
(n+1)(n+2)

· [−1, 1] · cvxiyj

)
⊕

n⊕
m=2d−1

[( ⊕
m=td+d−1+r

k+`=t
i+j=d−1

2
(n+1)(n+2)

· [−1, 1] · cvxiyj+rF k
1 F

`
2

)

⊕

( ⊕
06i<r

2
(n+1)(n+2)

· [−1, 1] · ct+1
v xm−iyi

)]
⊂ Fv(n).

>From this inclusion, we deduce that

(6.8) log(volv(Fv(n)) >
n3

6d2
log(|Res(F )|v)−O(n2 log(n)).

If v is archimedean and kv
∼= C there is a similar containment, with B(0, 1)

replacing [−1, 1]. In either case, a computation like the one in (6.7) now
shows that Sγ(Ev,H) 6 |Res(F )|−1/d2

v . �
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6.2. The sectional capacity of the filled Julia set

Let the numbers rv, Rv be as in Corollary 3.3. Put KF =
∏

v KF,v,
B(~r) =

∏
v Bv(rv), B(~R) =

∏
v Bv(Rv). Then for each n,

(F (n))−1(Bv(rv)) ⊆ KF,v ⊆ (F (n))−1(Bv(Rv)),(6.9)

(F (n))−1(B(~r)) ⊆ KF ⊆ (F (n))−1(B(~R)).(6.10)

Theorem 6.4. — A) The global sectional capacity Sγ(KF ,H) = 1.
Equivalently, ∏

v

Sγ(KF,v,H) = 1.

B) For each v, Sγ(KF,v,H) = |Res(F )|−1/(d(d−1))
v .

Proof. — Part (A) follows from Proposition 6.1 (C), using (6.10) and the
fact that F (n) is homogeneous of degree dn.

Part (B) comes out as follows. By [12, Corollary 6.4],

Res(F (n)) = Res(F )(d
2n−1−dn−1)/(d−1).

Hence Proposition 6.2, applied to both halves of (6.9), gives

Sγ(KF,v,H) = lim
n→∞

|Res(F (n))|−1/(dn)2

v

= lim
n→∞

|Res(F )|−(d2n−1−dn−1)/d2n(d−1)
v

= |Res(F )|−1/d(d−1)
v .

�

6.3. The homogeneous sectional capacity

Identify Γ(n) with the space of polynomials in k[x, y] of total degree 6 n.
Instead of considering the asymptotics for volumes related to Γ(n) in the
definition of the sectional capacity, one can can consider the corresponding
asymptotics for volumes concerning homogeneous polynomials alone. This
gives rise to the homogeneous sectional capacity.

Put

Γ0(n) = {f(x, y) ∈ k[x, y] : f is homogeneous of degree n}

and write Γ0
v(n) = kv ⊗k Γ0(n), Γ0

A(n) = Ak ⊗k Γ0(n). Put

F0
v (n) = {f ∈ Γ0

v(n) : ‖f‖Ev 6 1},

F0
A(n) =

∏
v

F0
v (n) ∩ Γ0

A(n).
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Equipping Γ0
v(n) and Γ0

A(n) with the bases given by the monomials xky`,
and giving those bases the term order ≺ given by the lexicographic order
with x ≺ y, graded by the degree, we have a situation analogous to that in
the definition of the sectional capacity. By transport of structure, the Haar
measure volv on kv induces a measure volv on each Γ0

v(n), and the Haar
measure volA =

∏
v volv on Ak induces a measure on each Γ0

A(n). Define
the local homogeneous sectional capacity S0

γ(Ev,H) by

(6.11) − log(S0
γ(Ev,H)) = lim

n→∞

2!
n2

log(volv(F0
v (n)))

and the global homogeneous sectional capacity S0
γ(E,H) by

(6.12) − log(S0
γ(Ev,H)) = lim

n→∞

2!
n2

log(volA(F0
A(n))).

The existence of these limits follows from the general existence theorem
for sectional capacities of line bundles with “adelically normed sections”
(see [35], Theorem A, p. 4), applied to the variety P1 rather than P2. The
details are as follows.

One can interpret the set of homogeneous polynomials Γ0(n) as the space
of global sections H0(P1,OP1(n)). The sup norms ‖f‖Ev on the spaces
Γ0

v(n) satisfy axioms (A1) and (A2) of ([35], p. 3), because they are implied
by Standard Hypotheses for sets ([35], Example 1.1, p. 13). Then ([35],
Theorem 6.2, p. 66) asserts that the limit (6.11) exists, and ([35], Theorem
7.1, p. 73) tells us that the limit (6.12) exists, and also that

S0
γ(E,H) =

∏
v

S0
γ(Ev,H).

For each place v (archimedean or nonarchimedean), given a set Ev ⊂ C2
v,

the circled set obtained from Ev is

E0
v = {wz : z ∈ Ev, w ∈ Cv, |w|v = 1}.

We will call Ev circled if Ev = E0
v . Trivially S0

γ(E0
v ,H) = S0

γ(Ev,H).

Proposition 6.5. — For each bounded, Galois-stable set Ev ⊂ C2
v, we

have Sγ(Ev,H) 6 S0
γ(Ev,H). If Ev = E0

v , then Sγ(Ev,H) = S0
γ(Ev,H).

Proof. — We first show that Sγ(Ev,H) 6 S0
γ(Ev,H). The proof breaks

into two cases, according as S0
γ(Ev,H) > 0 or S0

γ(Ev,H) = 0.
First suppose S0

γ(Ev,H)>0, and fix ε>0. By the definition of S0
γ(Ev,H),

for all sufficiently large k
(6.13)

− log(S0
γ(Ev,H))− ε 6

2!
k2

log(volv(F 0
v (n))) 6 − log(S0

γ(Ev,H)) + ε.
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Suppose v is nonarchimedean. By the ultrametric inequality, for each n

we have
n⊕

k=0

F0
v (k) ⊂ Fv(n).

Since the union of the monomial bases for the Γ0
v(k) is the monomial basis

for Γv(n), we have volv(Fv(n)) >
∏n

k=0 volv(Fv(n)). Hence

− log(Sγ(Ev,H)) = lim
n→∞

3!
n3

log(volv(Fv(n))

> lim
n→∞

3!
n3

n∑
k=0

log(volv(Fv(k))

> lim
n→∞

3!
n3

n∑
k=0

k2

2!
(− log(S0

γ(Ev,H))− ε)(6.14)

= − log(S0
γ(Ev,H))− ε.

Since ε > 0 is arbitrary, Sγ(Ev,H) 6 S0
γ(Ev,H).

If v is archimedean, then 1/(n+ 1)⊕n
k=0 F0

v (k) ⊂ Fv(n) by the triangle
inequality, so

3!
n3

log volv(Fv(n) >
3!
n3

n∑
k=0

log volv(Fv(k)− 3!
n3

· n(n+ 1)
2

log |n+ 1|v.

Thus the factor of 1/(n+ 1) washes out in the asymptotics as n→∞, and
the same computation as in (6.14) carries through.

If S0
γ(Ev,H) = 0, take M > 0; then for all sufficiently large k,

(6.15)
2!
k2

log(volv(F 0
v (n))) > M.

If v is nonarchimedean, using (6.15) in place of (6.13) in (6.14) shows
− log(Sγ(Ev,H)) > M . Since M is arbitrary, Sγ(Ev,H) = 0. A similar
argument, with minor modifications to deal with the triangle inequality,
applies in the archimedean case.

Now suppose Ev = E0
v . We claim that S0

γ(Ev,H) 6 Sγ(Ev,H).
We will give the proof under the assumption that S0

γ(Ev,H) > 0, leaving
the other case to the reader.

Fix n, and suppose f ∈ Fv(n). Thus f is a polynomial in kv[x, y] of total
degree at most n, with ‖f‖Ev

6 1. Decompose f =
∑

k fk as the sum of its
homogeneous parts of degree k. The fk can be recovered from f by finite
Fourier analysis: if ζ is a primitive (n+ 1)-st root of unity, then

fk(z) =
1

n+ 1

n∑
`=0

ζ−`kf(ζ`z).
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Since Ev is circled and ‖f‖Ev 6 1, for each ` we have ‖f(ζ`z)‖v 6 1.
If v is archimedean, then ‖fk‖Ev

6 1, and Fv(n) ⊂ ⊕n
k=0F0

v (k). If v is
nonarchimedean, then (n + 1)Fv(n) ⊂ ⊕n

k=0F0
v (k). The factor n + 1 has

no effect on the asymptotics of the volumes; in both the archimedean and
nonarchimedean case, for each ε > 0 we have

− log(Sγ(Ev,H)) = lim
n→∞

3!
n3

log(volv(Fv(n))

6 lim
n→∞

3!
n3

n∑
k=0

k2

2!
(− log(S0

γ(Ev,H)) + ε)

= − log(S0
γ(Ev,H)) + ε,

which yields S0
γ(Ev,H) 6 Sγ(Ev,H). �

Remark 6.6. — It can happen that Sγ(Ev,H) < S0
γ(Ev,H). For ex-

ample, let k = Q and let v be the archimedean place. Take Ev = [0, 1] ×
B(0, 1) ⊂ C2; then E0

v = B(0, 1)×B(0, 1). It is well known from the classical
theory of logarithmic capacities that γ∞([0, 1]) = 1/4 and γ∞(B(0, 1)) = 1.
By formula (6.2),

Sγ(Ev,H) = 1/4, Sγ(E0
v ,H) = 1.

But then Proposition 6.5 and the remarks preceding it imply that S0
γ(Ev,H)

= S0
γ(E0

v ,H) = Sγ(E0
v ,H) = 1. Similar examples can be given for nonar-

chimedean v.

6.4. The homogeneous Chebyshev constant

As before, let Ev ⊂ C2
v be bounded and stable under Galc(Cv/kv). It will

be useful to introduce another quantity equal to the homogeneous sectional
capacity: the homogeneous Chebyshev constant. Its chief virtue is that it
is independent of the ground field used to compute it.

For each field L with kv ⊂ L ⊂ Cv, put Γ0
L(n) = L ⊗kv

Γ0
v(n). (The

cases of greatest interest are L = kv and L = Cv.) The basis elements for
Γ0(n) are xn ≺ xn−1y ≺ · · · ≺ yn. For each k = 0, . . . , n, define the set of
“monic L-rational homogeneous polynomials of degree n with leading term
xn−kyk ” to be

Γ0
L(n, k) := {f ∈ L⊗k Γ0(n) : f(x, y) = xn−kyk +

∑
i<k

aix
n−iyi}

and put
ML(n, k) = inf

f∈Γ0
L
(n,k)

(‖f‖Ev
)1/n.
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By ([35], Theorem 6.1, p. 64), the number CH 0
L(Ev,H) defined by

log(CH0
L(Ev,H)) = lim

n→∞

2!
n

(
n∑

k=0

log(ML(n, k))

)
exists, and is independent of L. We will call it the homogeneous Chebyshev
constant. By ([35], Theorem 6.2, p. 66),

(6.16) S0
γ(Ev,H) = CH 0

kv
(Ev,H) = CH 0

Cv
(Ev,H).

6.5. The homogeneous transfinite diameter

We have already introduced the homogeneous transfinite diameter
d0
∞(Ev). The definition makes sense for an arbitrary set Ev ⊂ C2

v. Un-
der the assumptions that Ev is bounded and stable under Galc(Cv/kv), we
will show that it coincides with the homogeneous sectional capacity.

Note that since the kernel |zi∧zj |v is invariant when zi or zj is multiplied
by w ∈ Cv with |w|v = 1, we clearly have d0

∞(Ev) = d0
∞(E0

v).

Proposition 6.7. — Let Ev be bounded and stable under Galc(Cv/kv).
Then

S0
γ(Ev,H) = d0

∞(Ev).

Proof. — We claim that we can assume without loss that each dn(Ev) >
0 and that each Fv(n) ⊂ Γ0

v(n) is bounded.
If dn(Ev) = 0 for some n, then there would be a finite set of points

ξ1, . . . , ξn with
Ev ⊂ {wξi : 1 6 i 6 n, w ∈ Cv}.

This means d0
m(Ev) = 0 for each m > n, so d0

∞(Ev) = 0. Also, for each
m > n the polynomial fm(z) = (

∏n
i=1(z ∧ ξi)) ∧ (z ∧ ξ1)m−n ∈ Γ0

m(n)
vanishes on Ev, which means that volv(Fv(m)) = ∞ so S0

γ(Ev,H) = 0.
On the other hand, if Fv(n) is unbounded for some n, then (by the local

compactness of kv) there would be a nonzero polynomial f(z) ∈ Γ0
v(n) with

‖f‖Ev = 0. Factoring f(z) =
∏n

i=1(z ∧ ξi), we find that again

Ev ⊂ {wξi : 1 6 i 6 n, w ∈ Cv},

so d0
∞(Ev) = S0

γ(Ev,H) = 0.
Henceforth we will assume that each d0

n(Ev) > 0 and each Fv(n) is
bounded.

We will first show that d0
∞(Ev) 6 S0

γ(Ev).
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Fix n. Given ε > 0, choose ξ1, . . . , ξn+1 ∈ Ev so that

|Pn+1(ξ1, . . . , ξn+1)|v > (d0
n+1(Ev)− ε)(n+1)n/2.

Write ξ` = (x`, y`) and let D be the (n + 1) × (n + 1) matrix whose `-th
column is given by the xn−i

` yi
`, i = 0, . . . , n. Then det(D) = ±

∏
i<j(ξi∧ξj).

(To see this, first suppose each x` is nonzero. If xn
` is factored out from

each column, we obtain a Vandermonde determinant in the y`/x`. When
the xn

` are multiplied through in the formula for the Vandermonde, the
formula for det(D) results. The general case follows by continuity.) Thus
|det(D)|v > (d0

n+1(Ev)− ε)(n+1)n/2.
If v is nonarchimedean, the bounded Ov-module Fv(n) has an Ov-basis

{g0, . . . , gn}. Write g`(z) =
∑n

i=0 c`,ix
iyn−i for i = 0, . . . , n, and let C be

the (n+ 1)× (n+ 1) matrix with rows c`,i, 0 6 i 6 n. Then volv(Fv(n)) =
|det(C)|v.

For each g ∈ Fv(n) we have |g(ξi)|v 6 1. Identifying a polynomial with
its vector of coefficients, this says that Fv(n) ⊂ D−1Ôn+1

v . Passing to the
the Ôv-module Ôv ⊗Ov Fv(n) = CÔn+1

v generated by Fv(n), we conclude
that CÔn+1

v ⊂ D−1Ôn+1
v , so |det(C)|v 6 |det(D−1)|v. Thus

volv(Fv(n)) 6 (d0
n+1(Ev)− ε)−(n+1)n/2,

and hence

− log(S0
γ(Ev,H)) = lim

n→∞

2!
n2

log(volv(Fv(n)))(6.17)

6 lim
n→∞

−n+ 1
n

log(d0
n+1(Ev)− ε)

= − log(d0
∞(Ev)− ε).

Letting ε→ 0, we obtain d0
∞(Ev) 6 S0

γ(Ev,H).
If v is archimedean, then by the same argument as above we find

Fv(n) ⊂ D−1B(0, 1)n+1.

If kv
∼= C, this gives volv(Fv(n)) 6 |det(D)|−1

v · πn+1 (normalizing | |v so
that |w|v = |w|2 for w ∈ C). If kv

∼= R, then the triangle inequality shows
that

1
2
(Fv(n)⊕ i · Fv(n)) ⊂ D−1B(0, 1)n+1,

which gives volv(Fv(n)) 6 |det(D)|−1
v · (2

√
π)n+1. In either case a compu-

tation similar to that in (6.17) shows that d0
∞(Ev) 6 S0

γ(Ev,H).
Next we will show that S0

γ(Ev,H) 6 d0
∞(Ev).

Fixing n, we can choose ξ0, . . . , ξn ∈ Ev such that

(6.18)
1
2
d0

n+1(Ev)(n+1)n/2 6 |Pn+1(ξ0, . . . , ξn)|v 6 d0
n+1(Ev)(n+1)n/2.
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For each ` = 0, . . . , n, put

(6.19) f`(z) =

∏
i 6=`(z ∧ ξi)∏
i 6=`(ξ` ∧ ξi)

= ±Pn+1(ξ0, . . . , ξ`−1, z, ξ`+1, . . . , ξn)
Pn+1(ξ1, . . . , ξn+1)

.

Writing z = (x, y), we can also expand f`(z) as a polynomial

f`(z) =
n∑

i=0

a`,ix
n−iyi ∈ Cv[x, y].

By the definition of d0
n+1(Ev),

(6.20) sup
z∈Ev

|Pn+1(ξ0, . . . , ξ`−1, z, ξ`+1, . . . , ξn)|v 6 d0
n+1(Ev)(n+1)n/2.

Combining (6.18), (6.19), and (6.20) shows that ‖f`‖Ev 6 2.
If v is nonarchimedean, let Gv(n) ⊂ Cv ⊗kv Γ0

v(n) be the Ôv-module
generated by f0(z), . . . , fn(z). Let A be the (n+ 1)× (n+ 1) matrix with
entries a`,i, and let D be the (n + 1) × (n + 1) matrix defined above,
with columns obtained from ξ1, . . . , ξn+1. Since f`(ξi) = δ`,i it follows that
A ·D = I. Hence

(6.21) |det(A)|v = |det(D)|−1
v > dn+1(Ev)−(n+1)n/2.

The nonsingularity of A means that the f`(z) span Cv ⊗ Γ0
v(n). Using

elementary row operations, we can transform A to a lower triangular ma-
trix B with det(B) = det(A). Equivalently, we can find a new Ôv-basis
{g0(z), . . . , gn(z)} for Gv(n) having the form

g`(z) =
∑̀
i=0

b`,ix
n−iyi.

By the ultrametric inequality, ‖g`‖Ev 6 2 for each `. Dividing through by
b`,` we obtain a monic homogeneous polynomial

h`(z) = xn−`y` +
`−1∑
i=0

b`,i
b`,`

xn−iyi

with sup norm ‖h`‖Ev
6 2|b`,`|−1

v . >From the definition of MCv
(n, `), we

obtain

(6.22) MCv
(n, `)n 6 2|b`,`|−1

v .
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Using (6.22) and (6.21), together with |det(B)|v = |det(A)|v,

2!
n

n∑
`=0

logv(MCv
(n, `)) 6

2
n2

n∑
`=0

log(2/|b`,`|v)

=
2
n2

log(2)− 2
n2

log(|det(B)|v)

6
2
n2

log(2) +
n+ 1
n

log(d0
n+1(Ev)).

Passing to the limit as n→∞, we get

CH 0
Cv

(Ev) 6 d0
∞(Ev).

Since S0
γ(Ev,H) = CH 0

Cv
(Ev), we are done.

If v is archimedean, fix n and let the f`(z) ∈ C[x, y] be as above; each
f`(z) satisfies ‖f`‖Ev

6 2. If kv
∼= C, then by the triangle inequality

1
n+ 1

· 1
2
·

n⊕
`=1

B(0, 1)f` ⊂ Fv(n).

Introducing the matrices A and D as before, and identifying a polynomial
with its vector of coefficients, we have 1/(2(n+1)) ·A ·B(0, 1)n+1 ⊂ Fv(n).
If kv

∼= R, then

1
n+ 1

· 1
2
·

n⊕
`=1

B(0, 1)f` ⊂ Fv(n)⊕ iFv(n) ⊂ C⊗kv Γ0
v(n)

and 1/(2(n+ 1)) ·A ·B(0, 1)n+1 ⊂ Fv(n)⊕ iFv(n).
In either case,

volv(Fv(n)) > |2(n+ 1)|−(n+1)
v · |det(A)|v · πn+1

> |2(n+ 1)|−(n+1)
v · πn+1 · d0

n+1(Ev)−(n+1)n/2.

Thus

− log(S0
γ(Ev,H)) = lim

n→∞

2!
n2

log(volv(Fv(n)))

> lim
n→∞

n+ 1
n

(− log(d0
n+1(Ev))) = − log(d0

∞(Ev)),

or equivalently, S0
γ(Ev,H) 6 d0

∞(Ev). �

As we have noted before, the homogeneous transfinite diameter is defined
for arbitrary sets Ev ⊂ C2

v. When F = (F1, F2) is defined over a number
field, then Propositions 6.5, 6.7, and Theorem 6.4 tell us that the filled
Julia set KF,v satisfies

(6.23) Sγ(KF,v,H) = S0
γ(KF,v,H) = d0

∞(KF,v) = |Res(F )|−1/d(d−1)
v .

In particular, we have finally proved Theorem 3.13.
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Remark 6.8. — Note that Corollary 3.14 follows directly from Proposi-
tions 6.5, 6.7 and Theorem 6.4(A), and in particular Proposition 6.2 is not
needed for the proof.

Finally, we show that the last equality in (6.23) holds for arbitrary poly-
nomial maps defined over Cv (and not just for maps defined over k).

Corollary 6.9. — Let F1, F2 ∈ Cv[x, y] be homogeneous polynomials
of degree d > 2, having no common factor. Put F = (F1, F2) and let Rv > 0.
Then

A) d0
∞(F−1(Bv(Rv))) = (R2

v)1/d · |Res(F )|−1/d2

v ,
B) d0

∞(KF,v) = |Res(F )|−1/(d(d−1))
v .

Proof. — Part (B) follows from (A) by the proof of Theorem 6.4, so it
suffices to prove (A).

First suppose v is nonarchimedean. Since Q is dense in Cv, there are
polynomials F̃1, F̃2 defined over a number field k such that the map F̃ =
(F̃1, F̃2) satisfies F̃−1(Bv(Rv)) = F−1(Bv(Rv)), and such that |Res(F̃ )|v =
|Res(F )|v. Let w be the place of k induced by the given embedding k ↪→ Cv.
The normalized absolute value | |w on Cw

∼= Cv is a power of | |v, say
| |w = | |Dv . For each set E ⊂ Cw

∼= Cv, the homogeneous transfinite
diameters d0

∞(E)w and d0
∞(E)v computed relative to | |w and | |v, are

related by the same power D. Hence our assertion follows from (6.23) for F̃ .
If v is archimedean, choose a sequence {s1, s2, . . .} decreasing mono-

tonically to Rv from above, and another sequence {r1, r2, . . .} increasing
monotonically to Rv from below. By continuity, for each n we can choose
Q-rational polynomials F̃n,1, F̃n,2 close enough to F1 and F2 that the maps
F̃n = (F̃n,1, F̃n2) satisfy F̃−1

n (Bv(rn)) ⊂ F−1(Bv(Rv)) ⊂ F̃−1
n (Bv(sn)) and

lim
n→∞

Res(F̃n) = Res(F ).

If Kv
∼= R, we also require that the coefficients of the F̃n,i belong to R.

Applying (6.23) to the sets F̃−1
n (Bv(rn)), F̃−1

n (Bv(sn)) and taking a limit,
we obtain (A). �
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