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SEMI-SIMPLE CARROUSELS AND THE MONODROMY

by David B. MASSEY

Abstract. — Let U be an open neighborhood of the origin in Cn+1 and let f :
(U ,0) → (C, 0) be complex analytic. Let z0 be a generic linear form on Cn+1. If the
relative polar curve Γ1

f,z0
at the origin is irreducible and the intersection number(

Γ1
f,z0

· V (f))0 is prime, then there are severe restrictions on the possible degree
n cohomology of the Milnor fiber at the origin. We also obtain some interesting,
weaker, results when

(
Γ1

f,z0
· V (f))0 is not prime.

Résumé. — Soit U un voisinage ouvert de l’origine dans Cn+1 et soit f :
(U ,0) → (C, 0) une fonction analytique complexe. Soit z0 une forme linéaire géné-
rale sur Cn+1. Si la courbe polaire relative Γ1

f,z0
à l’origine est irréductible et le

nombre d’intersection est premier, alors cela impose des contraintes très fortes sur
la valeur du rang de la n-ième cohomologie de la fibre de Milnor à l’origine. Nous
obtenons aussi des résultats intéressants, mais plus faibles quand

(
Γ1

f,z0
· V (f))0

n’est pas premier.

0. Introduction

In [5] and [4], Lê introduces his carrousel as a tool for analyzing the rela-
tive monodromy of the Milnor fiber of a function, f , modulo a hyperplane
slice. In [16] and [15], Tibăr gives a careful presentation of Lê’s carrousel
and uses it to obtain interesting results. Outside of the work of Lê and
Tibăr, the carrousel seems to be a largely unused device. This is due in
part to the complicated nature of the carrousel description.

In this short paper, we look at some interesting special cases that occur
and, in particular, look at the case where the relative polar curve, Γ1

f,z0
,

has a single component such that the intersection number
(
Γ1

f,z0
·V (f)

)
0

is
prime. In this case, we show, in Theorem 2.3, how Lê’s carrousel tells one

Keywords: Carrousel, polar curve, monodromy, Milnor fiber.
Math. classification: 32B15, 32C35, 32C18, 32B10.



86 David B. MASSEY

a great deal about the middle-dimensional homology/cohomology groups
of the Milnor fiber of f , regardless of the dimension of the critical locus.

1. Lê’s Playground

Let U be an open neighborhood of the origin in Cn+1 and let f : (U ,0) →
(C, 0) be a complex analytic function which has a critical point at the origin.

Recall that a good stratification for f is a stratification S of V (f) which
contains V (f) − Σf , and such that, for all S ∈ S, the pair (U − V (f), S)
satisfies the af condition. After a linear change of coordinates, we may
assume that the first coordinate, z0, is a prepolar form (or coordinate) for
f at 0 (see [9], Definition 1.26); this means that there exists a neighborhood,
W ⊆ U , of 0 such that, inside W−{0}, V (z0) transversely intersects all of
the strata of a good stratification of V (f) (we do not need the condition
of the frontier here – we could simply use a good partition). Then, at the
origin, the relative polar curve Γ1

f,z0
(see [9], Definition 1.3) is purely one-

dimensional (or empty), and Γ1
f,z0

properly intersects both V (f) and V (z0)
([9], Proposition 1.23 and Theorem 1.28). We always consider Γ1

f,z0
with its

cycle structure (see [9], Definition 1.3). We assume that U is small enough
so that every component of Γ1

f,z0
passes through the origin.

Let D be a component of the cycle Γ1
f,z0

(with either its reduced structure
or its cycle structure). We have the following well-known formula, originally
due to Teissier ([14], p. 318-319),(

D · V (f)
)
0

=
(
D · V (z0)

)
0

+
(
D · V

( ∂f
∂z0

))
0
.

As 0 is a critical point of f , it follows that
(
D · V

(
∂f
∂z0

))
0
> 0, and so

(†) nD :=
(
D · V (f)

)
0
>

(
D · V (z0)

)
0

=: mD.

Lê’s Attaching Theorem

Let Bε (resp., Dδ) denote a closed ball of radius ε (resp., δ) centered at
the origin in Cn (resp., C). Assume that 0 < η � δ � ε� 1. Let ξ ∈ C be
such that 0 < |ξ| 6 η. Then,

Ff :=
(
Dδ ×Bε

)
∩ f−1(ξ)

is (up to homotopy) the Milnor fiber of f at 0, and Ff0 := V (z0) ∩ Ff,0 is
the Milnor fiber of f0 := f|V (z0)

at the origin. The main theorem of [3] (see,
also, [9], Proposition 3.1) is:

ANNALES DE L’INSTITUT FOURIER



SEMI-SIMPLE CARROUSELS 87

Theorem 1.1 (Lê). — The Milnor fiber Ff is obtained from Ff0 by
attaching τf,z0 :=

(
Γ1

f,z0
· V (f)

)
0
n-handles (n-cells, up to homotopy).

Thus, Hk(Ff , Ff0) = 0 if k 6= n, there is an isomorphism

ωf,z0 : Hn(Ff , Ff0)
∼=−→

⊕
D

ZnD ∼= Zτf,z0 ,

where D ranges over the (possibly non-reduced) components of Γ1
f,z0

, and
the coboundary map on reduced, integral cohomology

H̃n−1(Ff0)
∂f,z0−−−−→ Hn(Ff , Ff0)

is such that ker ∂f,z0
∼= H̃n−1(Ff ) and coker ∂f,z0

∼= H̃n(Ff ).

We refer to the above result as Lê’s Attaching Theorem.

Remark 1.2. — By the naturality of the Milnor monodromy, the map
∂f,z0 commutes with the respect Milnor monodromies on H̃n−1(Ff0) and
Hn(Ff , Ff0). In particular, the image of ∂f,z0 , im ∂f,z0 , is a free Abelian
submodule which is invariant under the monodromy.

In addition, the main theorem of A’Campo in [1] tells us that the trace
of the monodromy action on Hn(Ff , Ff0) is 0. Therefore, the trace of the
monodromy action on im ∂f,z0 is negative the trace of the monodromy
action on the free part of H̃n(Ff ).

For all k, we denote the rank of H̃k(Ff ) (i.e., the k-th reduced Betti
number) by b̃k(f). Thus, the rank of im ∂f,z0 is ef,z0 := τf,z0 − b̃n(f).
We denote the characteristic polynomials of the monodromy action on
im ∂f,z0 , on Hn(Ff , Ff0), and on the free part of H̃n(Ff ) (or on H̃n(Ff ))
by charim ∂f,z0

(λ), charrelf,z0
(λ), and charn

f (λ), respectively. Of course, we
have the equality

charrelf,z0
(λ) = charim ∂f,z0

(λ) · charn
f (λ).

The Swing

In [8], Lê and Perron use the “swing” or “tilting up in the Cerf diagram”
to more carefully analyze the image of the attaching map ∂f,z0 above. They
do this in the case where dim0 Σf = 1. However, in [9], Proposition 3.1,
we showed that their argument works regardless of the dimension of the
critical locus. In a more general context, the swing is analyzed carefully in
Section 2 of [2].

What the swing shows is:

TOME 56 (2006), FASCICULE 1



88 David B. MASSEY

Theorem 1.3 (Lê and Perron). — The rank of the free Abelian module
im ∂f,z0 is at least γ1

f,z0
:=

(
Γ1

f,z0
·V (z0)

)
0
. Thus, the rank of H̃n(Ff ) is at

most

λ0
f,z0

:= τf,z0 − γ1
f,z0

=
(
Γ1

f,z0
· V

( ∂f
∂z0

))
0
.

In fact, for each component D of Γ1
f,z0

, there is a submodule ED ⊆
ZnD which is generated by mD of the basis elements of ZnD such that,
if π denotes the projection from

⊕
D ZnD onto

⊕
D ED

∼= Zγ1
f,z0 , then

π◦ωf,z0 ◦∂f,z0 is a surjection (where ∂f,z0 and ωf,z0 are defined in Theorem
1.1).

The number λ0
f,z0

defined above is the 0-th Lê number of f (at the origin
with respect to z0) (see [9], Definition 1.11).

Lê’s Monodromy Carrousel

Lê’s Carrousel (see [5] and [15]) gives a geometric description of the
monodromy action on Hn(Ff , Ff0). Let us briefly recall the set-up and
some features of Lê’s Carrousel.

Let Θ denote the map (z0, f) from
(
Dδ × Bε

)
∩ f−1(Dη) onto Dδ × Dη,

and use (u, v) for coordinates on the codomain. Then, Cf,z0 := Θ
(
Γ1

f,z0

)
is the Cerf diagram of f with respect to z0. Each component of Cf,z0 is
tangent to the u-axis at the origin (this follows from (†) above). The map
Θ|Γ1

f,z0

is finite, and we endow Cf,z0 with a cycle structure via the proper

push-forward. It follows that

τf,z0 =
(
Γ1

f,z0
· V (f)

)
0

=
(
Cf,z0 · V (v)

)
0

and
γ1

f,z0
=

(
Γ1

f,z0
· V (z0)

)
0

=
(
Cf,z0 · V (u)

)
0
.

However, Lê’s Carrousel description requires that Γ1
f,z0

be reduced and
that Θ|Γ1

f,z0

be one-to-one, i.e., that the cycle Cf,z0 is reduced, and we have

not assumed that z0 is generic enough to make this happen.

Definition 1.4. — The linear form z0 is a carrousel form (for f at 0)
if and only if z0 is a prepolar form for f at 0 and, at the origin, the cycle
Cf,z0 is reduced.

We assume throughout the remainder of this section that z0 is a carrousel
form.

ANNALES DE L’INSTITUT FOURIER



SEMI-SIMPLE CARROUSELS 89

Suppose, again, that D is an irreducible component of Γ1
f,z0

. Then, C :=
Θ(D) is an irreducible component of Cf,z0 , and every component of Cf,z0

is obtained in this manner. Moreover,

mC :=
(
C · V (u)

)
0

=
(
D · V (z0)

)
0

= mD,

and
nC :=

(
C · V (v)

)
0

=
(
D · V (f)

)
0

= nD.

Let gC := gcd(mC , nC), let pC := mC/gC , and let qC := nC/gC . The curve
C has a local parameterization of the form

v = t
nC
, u = α

C
t

mC + higher order terms .

The carrousel approximation of C is the curve given by

v = t
qC
, u = α

C
t

pC
,

i.e., the curve Ĉ := V (u
qC −αqC

C
v

pC ). We refer to β
C

:= α
qC

C
as the carrousel

coefficient of C.

Definition 1.5. — We say that carrousel of f with respect to (the
carrousel form) z0 is semi-simple provided that:

i) for all components C of Cf,z0 , mC and nC are relatively prime (and
so, (mC , nC) = (pC , qC));

ii) distinct components of Cf,z0 have distinct carrousel approximations,
i.e., if C1 6= C2, then (pC1 , qC1 , βC1) 6= (pC2 , qC2 , βC2).

Before we state the next theorem, we need to give one more piece of ter-
minology. We refer to the automorphism of Zk given by (a1, a2, . . . , ak) 7→
(−ak, a1, a2, . . . , ak−1) as cyclic anti-permutation. The characteristic poly-
nomial of cyclic anti-permutation is λk +1. Cyclic anti-permutation has −1
as an eigenvalue if and only if k is odd and, in this case, the anti-diagonal
∆̂ := Z(1,−1, 1,−1, . . . ,−1, 1) is the eigenspace of −1. One shows easily
that Zk/∆̂ ∼= Zk−1.

We use the terminology semi-simple because Lê’s carrousel study in [5]
immediately implies:

Theorem 1.6 (Lê). — If the carrousel of f with respect to z0 is semi-
simple, then the isomorphism of Theorem 1.1,

ωf,z0 : Hn(Ff , Ff0)
∼=−→

⊕
D

ZnD ,

can be chosen so that each direct summand is invariant under the Mil-
nor monodromy (i.e., the monodromy breaks up into blocks), and the ac-
tion on each block is either cyclic permutation or cyclic anti-permutation.

TOME 56 (2006), FASCICULE 1



90 David B. MASSEY

In particular, the characteristic polynomial of the monodromy action on
Hn(Ff , Ff0) is

charrel(λ) =
∏
D

(λnD ± 1).

Proof. — One refers to the proofs in [5].
Condition i) of being semi-simple implies, for a given component C of

Cf,z0 , that each carrousel disk contains at most one point of C; this implies
that in one “turn of the carrousel” there is no interaction between different
points on C.

Condition ii) of being semi-simple says that distinct components of Cf,z0

have distinct carrousel approximations and, hence, the carrousel points of
distinct components do not interact as the carrousel turns.

Now, the carrousel disks are permuted cyclically by the monodromy, and
each carrousel disk centered at a point of a Cerf component C contributes
one copy of Z as a direct summand in ZnC = ZnD . However, after a car-
rousel disk returns to itself after nC = nD iterations, the corresponding
copy of Z may be mapped to itself by either plus or minus the identity.
Hence, the induced map on cohomology is either cyclic permutation or
anti-permutation, and the conclusion follows immediately. �

2. Prime Polar Curves

In this section, we continue with our notation from Section 1, and we
continue to assume that z0 is prepolar for f at 0, but we no longer assume
that z0 is a carrousel form.

Definition 2.1. — Let D be a (possibly non-reduced) component of
the cycle Γ1

f,z0
.

D is called relatively prime provided that (D · V (z0))0 and (D · V (f))0
are relatively prime.
D is called unitary provided that (D · V (z0))0 = 1, i.e., D is reduced, D

is smooth, and D is transversely intersected at 0 by V (z0).
D is called prime of order p provided that p := (D · V (f))0 is a prime

number.

Note that, as (D ·V (z0))0 < (D ·V (f))0, unitary and prime components
are also relatively prime.

The cycle Γ1
f,z0

is itself said to be relatively prime (resp., unitary, resp.,
prime of order p) provided that Γ1

f,z0
has one irreducible component and

ANNALES DE L’INSTITUT FOURIER



SEMI-SIMPLE CARROUSELS 91

that component is relatively prime (resp., unitary, resp., prime of order p).
Note that if Γ1

f,z0
is unitary or prime, then it is relatively prime.

Proposition 2.2. — Suppose that every component of Γ1
f,z0

is rela-
tively prime. Then, z0 is a carrousel form. In particular, Γ1

f,z0
is reduced.

If Γ1
f,z0

is itself relatively prime, then the carrousel of f with respect to
z0 is semi-simple.

Proof. — Suppose that D is an irreducible component of Γ1
f,z0

, which has
a possibly non-reduced cycle structure. Let C be the proper push-forward
of D by Θ, i.e., C := Θ∗(D). Then,

(
C · V (u)

)
0

=
(
D · V (z0)

)
0
, and(

C · V (v)
)
0

=
(
D · V (f)

)
0
. We must show that C is reduced.

Suppose that, as cycles, C = kC ′, where C ′ is reduced. Then k must
divide both

(
C ·V (u)

)
0

and
(
C ·V (v)

)
0
, which are relatively prime. Thus,

k = 1, and z0 is a carrousel form.
The remaining claim follows immediately from the definition of a semi-

simple carrousel. �

We wish to recall now the notion of the suspension of f (see, for instance,
[9], Chapter 8, and [10]). Suppose that f = f(z). Suppose that w is a
variable disjoint from z. Then, the function f + w2 on U × C is called the
suspension of f .

It is trivial to show that Σ(f +w2) = Σf ×{0}, that Γ1
f+w2,z0

= Γ1
f,z0

×
{0}, and that if z0 is prepolar for f at 0, then z0 is prepolar for f + w2

at 0. See [9], Proposition 8.3. It follows easily that γ1
f,z0

= γ1
f+w2,z0

and
τf,z0 = τf+w2,z0 . Therefore, Γ1

f,z0
is prime of order p if and only if Γ1

f+w2,z0

is prime of order p.
By the Sebastiani-Thom result (for references to this result, in many

various cases, see [9], Chapter 8 and [10]), for all k, H̃k+1(Ff+w2) ∼=
H̃k(Ff ) and, under this isomorphism, the Milnor monodromy action on
H̃k+1(Ff+w2) is negative the monodromy action on H̃k(Ff ). One then re-
covers (as we saw above) the isomorphism

H̃n+1(Ff+w2 , Ff0+w2) ∼= H̃n(Ff , Ff0)

and finds that, under this isomorphism, the Milnor monodromy action on
H̃n+1(Ff+w2 , Ff0+w2) is negative the monodromy action on H̃n(Ff , Ff0).
Thus, we have the following relationships between characteristic polynomi-
als of the Milnor monodromy actions:

charim ∂f+w2,z0
(λ) = (−1)ef,z0 · charim ∂f,z0

(−λ)

charrelf+w2,z0
(λ) = (−1)τf,z0 · charrelf,z0

(−λ),

TOME 56 (2006), FASCICULE 1



92 David B. MASSEY

and
charn+1

f+w2(λ) = (−1)b̃n(f) · charn
f (−λ).

Below, we state a result in terms of the homology of Ff , instead of
cohomology. While, in general, we prefer to think in cohomological terms,
discussions of the monodromy action on H̃n(Ff ) are more complicated by
the possible presence of torsion. However, H̃n(Ff ) is free Abelian and is
thus isomorphic to the free part of H̃n(Ff ).

Theorem 2.3. — Suppose that Γ1
f,z0

is prime of order p. Then, we are
in one of the following non-overlapping cases:

Case 0: H̃n(Ff ) = 0, rank H̃n−1(Ff0) > p, and dim0 Σf > 1;
Case 1: H̃n(Ff ) ∼= Z, and the monodromy action on H̃n(Ff ) is either a)

the identity or b) negative the identity;
Case 2: p 6= 2, H̃n(Ff ) ∼= Zp−1, H̃n−1(Ff ) is free Abelian, Γ1

f,z0
is unitary,

and the characteristic polynomial of the monodromy action on H̃n(Ff ) is
either a) (λp − 1)/(λ− 1) or b) (λp + 1)/(λ+ 1).

Moreover, if p = 2 and H̃n(Ff ) ∼= Z, then H̃n−1(Ff ) is free Abelian, and
Γ1

f,z0
is unitary.

In addition, suspending f (and using the “same” coordinate z0) leaves
one in the same case, but interchanges the subcases a) and b) in Cases 1
and 2.

Proof. — By Proposition 2.2, z0 is a carrousel form and the carrousel
of f with respect to z0 is semi-simple. Therefore, by Theorem 1.6, either
charrelf,z0

(λ) = λp − 1 or charrelf,z0
(λ) = λp + 1.

By 1.3, im ∂f,z0 is non-zero. Therefore, Remark 1.2 implies that H̃n(Ff ) =
0, or that charn

f (λ) is λ − 1, λ + 1, (λp − 1)/(λ − 1), or (λp + 1)/(λ + 1),
where this last characteristic polynomial cannot occur if p = 2.

Case 0: Suppose that H̃n(Ff ) = 0; this is equivalent to rank(im ∂f,z0) =
p. This certainly implies that rank H̃n−1(Ff0) > p. We claim that it follows
that f cannot have an isolated critical point at the origin. Suppose to the
contrary that dim0 Σf = 0. Then, by the formula of Lê and Greuel [6],
µ0(f) + µ0(f0) = p, where µ denotes the Milnor number. As µ0(f) > 0,
µ0(f0) = rank H̃n−1(Ff0) < p, and we are finished.

Case 1: charn
f (λ) = λ± 1. The claims follow immediately.

Case 2: charn
f (λ) is (λp−1)/(λ−1) or (λp+1)/(λ+1). Then, charim ∂f,z0

(λ)
is λ ± 1; thus, under the isomorphism ωf,z0 , im ∂f,z0 is contained in the
diagonal or anti-diagonal of Zp. By the first statement of Theorem 1.3, it
follows that

(
Γ1

f,z0
· V (z0)

)
0

= 1 and so Γ1
f,z0

is unitary. Now, the last

ANNALES DE L’INSTITUT FOURIER



SEMI-SIMPLE CARROUSELS 93

statement of Theorem 1.3 implies that im ∂f,z0 must be the entire diagonal
or anti-diagonal. It follows that coker ∂f,z0

∼= H̃n(Ff ) is free Abelian, which
is equivalent to H̃n−1(Ff ) being free Abelian.

The suspension claim is immediate from the properties discussed prior
to the theorem. �

Example 2.4. — We will show here that all of the cases of Theorem 2.3
can occur.

Note that, if dim0 Σf 6 1, then z0 is prepolar if and only if dim0 Σf0 6 0.
First, consider f = z2

0 +z2
1 + · · ·+z2

n. Then, we know that H̃n−1(Ff0) ∼= Z
and H̃n(Ff ) ∼= Z. By A’Campo’s main theorem in [1], the trace of the
monodromy action on H̃n(Ff ) is (−1)n+1.

Now, as a cycle,

Γ1
f,z0

= V

(
∂f

∂z1
, . . . ,

∂f

∂zn

)
= V (z1, . . . , zn).

Therefore, Γ1
f,z0

has a single component and τf,z0 = 2 is prime, and so we
can apply Theorem 2.3. By looking at the trace, we conclude that we are
in Case 1a if n is odd, and in Case 1b if n is even.

Now, we will give examples of Case 2. Suppose that dim0 Σf = 0,
dim0 Σf0 = 0, and that Γ1

f,z0
is prime of order p > 3. Then, H̃n(Ff ) ∼=

Zµ0(f)
. Therefore, if µ0(f) > 2, then we must be in Case 2, and the trace

distinguishes subcases a) and b).
To give a specific example, let f = y2 − x3, where we use x in place

of z0. Then, µ0(f) = 2, Γ1
f,x = V (y), and τf,x = 3 = p. By A’Campo’s

Lefschetz number result, we must be in Case 2b. By suspending, we find
that g := w2 + y2 − x3 (again, using z0 = x) would be an example of Case
2a.

The example that we use for Case 0 was first shown to us by Dirk Siersma.
Consider f = (x2 + y2 − z2)(y − z). We use the coordinate z for z0. The
critical locus of f is the line V (x, y − z). As cycles, we find

V

(
∂f

∂x
,
∂f

∂y

)
= V (2x(y − z), 2y(y − z) + x2 + y2 − z2)

= 3V (x, y − z) + V (x, 3y + z).

Therefore, Γ1
f,z = V (x, 3y+z) and τf,z0 = 3. One also finds that µ0(f0) = 4.

Thus, it is at least possible that we are in Case 1, but we must show this.
After an analytic coordinate change, f = (x2+st)t. As f is homogeneous,

Ff is diffeomorphic to f−1(1) ([12], Lemma 9.4). Now we observe that
f−1(1) is the set of points where t 6= 0 and s = (1 − tx2)/t2. Thus, Ff is

TOME 56 (2006), FASCICULE 1



94 David B. MASSEY

diffeomorphic to C × C∗, and so is homotopy-equivalent to S1. It follows
that H̃2(Ff ) = 0.

We would like to show that Case 2 of Theorem 2.3 rarely occurs. For
this, we will need the result below.

Proposition 2.5. — Suppose that the rank of H̃n(Ff ) equals λ0
f,z0

.
Then, the trace of the monodromy action on H̃n(Ff ) is

(−1)n+1
(
1− χ(LΣf,z0)

)
,

where χ denotes the Euler characteristic and LΣf,z0 is the “complex link
of Σf at the origin with respect to z0”, i.e.,

LΣf,z0 :=
◦
Bε ∩ Σf ∩ V (z0 − δ),

where 0 � |δ| � ε� 1 and
◦
Bε is an open ball of radius ε centered at 0.

In particular, if Σf itself is smooth and transversely intersected by V (z0)
at the origin, then the trace of the monodromy action on H̃n(Ff ) is 0.

Proof. — Recall from Remark 1.2 that the trace of the monodromy ac-
tion on im ∂f,z0 is negative the trace of the monodromy action on H̃n(Ff ).

Suppose that rank H̃n(Ff ) = λ0
f,z0

. In the case where dim0 Σf 6 1, the
analysis of the “nexus diagram” in Application 2 of [11] tells us that the
trace of the monodromy action on im ∂f,z0 is

(−1)n+1
(
(|Σf | · V (z0))0 − 1

)
= (−1)n

(
1− χ(LΣf,z0)

)
.

As we commented at the end of [11], when the dimension of Σf is ar-
bitrary, the nexus diagram still exists in the Abelian category of perverse
sheaves, and the exact proof that we used when dim0 Σf 6 1 tells us that
there is an equality of Lefschetz numbers of the respective monodromy
actions at the origin given by

L0{im ∂f,z0} = L0{φf0 [−1]Z•
V (z0)

[n]} − L0{ψẑ0 [−1]φf [−1]Z•
U [n+ 1]},

where L0{A•} denotes the Lefschetz number at the origin of the Milnor
monodromy action on the complex A•, and ẑ0 is the restriction of z0
to V (f). Now, im ∂f,z0 is a sub-perverse sheaf of a perverse sheaf which
is supported on a point; hence, L0{im ∂f,z0} is simply the trace of the
monodromy action on im ∂f,z0 . In addition, as we are assuming that f
has a critical point at the origin, A’Campo’s result in [1] implies that
L0{φf0 [−1]Z•

V (z0)
[n]} = (−1)n. It remains for us to show that

(††) L0{ψẑ0 [−1]φf [−1]Z•
U [n+ 1]} = (−1)nχ(LΣf,z0).
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Consider the fundamental short exact sequence of perverse sheaves:

0 → ZV (f)[n] → ψf [−1]Z•
U [n+ 1] → φf [−1]Z•

U [n+ 1] → 0.

Let ž0 be the restriction of z0 to Σf . If we restrict this sequence to
Σf , then apply ψž0 [−1], and use that locally Σf ⊆ V (f), we obtain a
distinguished triangle

ψž0 [−1]
(
ZΣf [n]

)
→ ψž0 [−1]

(
(ψf [−1]Z•

U [n+ 1])|Σf

)
→ ψž0 [−1]

(
(φf [−1]Z•

U [n+ 1])|Σf

) [1]−→,

on which the monodromy acts compatibly. Using A’Campo’s result again,
we obtain that

L0

(
ψž0 [−1]

(
(ψf [−1]Z•

U [n+ 1])|Σf

))
= 0.

Thus, by additivity, we obtain that

L0

(
ψž0 [−1]

(
(φf [−1]Z•

U [n+ 1])|Σf

))
= −L0

(
ψž0 [−1]

(
ZΣf [n]

))
.

As the support of φf [−1]Z•
U [n+ 1] already lies in Σf , we obtain (††). �

Corollary 2.6. — Suppose that Γ1
f,z0

is prime of order p, and
χ(LΣf,z0) does not equal 0 or 2. Then, Case 2 of Theorem 2.3 does not
occur, nor does Case 1 if p = 2.

In particular, if Γ1
f,z0

is prime and Σf is itself smooth and transversely
intersected by V (z0) at 0, then the rank of H̃n(Ff ) is 0 or 1.

Proof. — In Case 2 of Theorem 2.3, or in Case 1 if p = 2, the rank of
H̃n(Ff ) equals τf,z0 − 1 = λ0

f,z0
, while the trace of the monodromy is ±1.

The Corollary follows at once from Proposition 2.5. �

In Example 2.4, we gave an example of a hypersurface with a line sin-
gularity which is a Case 0 example of Theorem 2.3. We also gave Case 1
examples which had isolated singularities. Corollary 2.6 tells us that we
cannot produce a Case 2 example with a line singularity. Below, we give
an example of a hypersurface with a line singularity which is Case 1.

Example 2.7. — Consider the classic presentation of the Whitney um-
brella as a family of nodes degenerating to a cusp: f = y2−x3− tx2, where
we use t for our prepolar coordinate. Then, µ0(f) = 2, Γ1

f,t = V (y, 3x+2t),
τf,t = 3 = p, and λ0

f,t = 2. Thus, up to isomorphism, ∂f,t is a map
from Z2 to Z3. Therefore, rank H̃2(Ff ) > 1. However, as our critical lo-
cus is a line, we may apply the last statement of Corollary 2.6 to find that
rank H̃2(Ff ) < 2. We conclude the well-known: H̃2(Ff ) ∼= Z, i.e., this is an
example of Case 1 of Theorem 2.3.
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3. More Complicated Examples

In this section, we shall consider two examples in which the polar curves
are relatively prime (recall Definition 2.1), but are not prime. Example 3.1
is actually an entire family of examples, while Example 3.2 is a specific
example in which the polar curve is, in fact, unitary.

Example 3.1. — Consider the family of examples g(t, x, y) := y2−xa−
tcxb, where a, b, c > 2, and a and b are relatively prime. If a 6 b, then
g = y2 − xa(1 + tcxb−a), which after an analytic change of coordinates at
the origin becomes y2−xa; this is simply a cross-product of an isolated hy-
persurface singularity. So, assume that a > b > 2. We also assume that a−b
and c are relatively prime. Note that this example subsumes Example 2.7.

One easily shows that Σg = V (x, y), and g0 := g|V (t)
has an isolated

critical point at the origin. Hence, t is a prepolar coordinate for g.
Now, the Milnor number of g0 at the origin is a−1 and, hence, the reduced

cohomology of Fg0 is 0 in degree 0 and is isomorphic to Za−1 in degree 1.
We would like to calculate char1g0

(λ), the characteristic polynomial of the
monodromy action on H̃1(Fg0).

The function g0 is the suspension of the function −xa on C. The Mil-
nor fiber of −xa is a points, which are permuted cyclically by the Milnor
monodromy. Thus, the characteristic polynomial of the monodromy on the
reduced cohomology H̃0(F−xa) is (λa − 1)/(λ− 1) and so,

char1g0
(λ) = (λa − (−1)a)/(λ+ 1).

Now select a small t0 6= 0. In the main theorem of [11], we proved that,
if H̃1(Fg) 6= 0, then char1g(λ) not only divides char1g0

(λ), but also divides
char1gt0

(λ), where gt0 denotes g|V (t−t0)
.

Now, after an analytic change of coordinates at the origin (in V (t− t0)),
gt0 = y2−xb(xa−b + tc0) becomes y2−xb. As this is the suspension of −xb,
we may use an analysis like that above to conclude that char1gt0

(λ) equals
(λb − (−1)b)/(λ+ 1).

As a and b are relatively prime, it follows that char1g0
(λ) and char1gt0

(λ)

have no common divisors. Therefore, we conclude that H̃1(Fg) = 0.
As V

(
∂g
∂x ,

∂g
∂y

)
= V (axa−1 + btcxb−1, y), we find that Γ1

g,t = V (axa−b +

btc, y). Hence, γ1
g,t =

(
Γ1

g,t · V (t)
)
0

= a− b, and

λ0
g,t =

(
Γ1

g,t · V
(∂g
∂t

))
0

=
(
Γ1

g,t · V (tc−1xb)
)
0

= (c− 1)(a− b) + bc = ac− (a− b).
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Thus, τg,t = γ1
g,t + λ0

g,t = ac. As a and b are relatively prime, so are a− b

and a. Therefore, as a− b and c are also relatively prime, we find that γ1
g,t

and τg,t are relatively prime. In addition, since a − b and c are relatively
prime, the polar curve Γ1

g,t = V (axa−b + btc, y) has a single irreducible
component.

We conclude that Γ1
g,t is relatively prime and, hence, the carrousel of g

with respect to t is semi-simple. Thus, charrelg,t(λ) = λac ± 1.
So, we have the map ∂g,t : H̃1(Fg0) → H2(Fg, Fg0), where H̃1(Fg0) ∼=

Za−1, H2(Fg, Fg0) ∼= Zac, char1g0
(λ) = (λa− (−1)a)/(λ+1), charrelg,t(λ) =

λac ± 1, and H̃1(Fg) = 0. It follows that H̃2(Fg) ∼= Zac−a+1 and that

char2g(λ) = (λac ± 1)(λ+ 1)/(λa − (−1)a).

Note that, if b = 2, this example is an isolated line singularity, as studied
by Siersma in [13]. In this case, Siersma’s work tells us a bit more: it says
that Fg has the homotopy-type of a bouquet of (ac− a+ 1) 2-spheres.

Example 3.2. — In this example, we will look at f(s, t, x, y) = y2 −
x4 + (s3 − t2)x3. One easily checks that Σf = V (x, y), and so f has a
2-dimensional critical locus. Note also that f0 := f|V (s)

is a function of the
form of g from Example 3.1, with a = 4, b = 3, and c = 2.

We wish to see what our results can tell us about the cohomology and
the monodromy of the Milnor fiber.

Our first problem is to verify that s is a prepolar coordinate for f at
the origin. This means that we must first produce a good stratification.
For this, we use the Lê cycles and numbers, and apply Corollary 6.6. and
Remark 6.7 of [9]. We fix the coordinate system (s, t, x, y) and will suppress
any further reference to the coordinates.

We proceed with the calculation of the polar and Lê cycles (see [9]):

Γ3
f = V

(
∂f

∂y

)
= V (y);

Γ3
f · V

(
∂f

∂x

)
= V (y) · V

(
− 4x3 + 3(s3 − t2)x2

)
= V (y) ·

(
V

(
− 4x+ 3(s3 − t2)

)
+ 2V (x)

)
= V (−4x+ 3(s3 − t2), y) + 2V (x, y) = Γ2

f + Λ2
f ;
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Γ2
f · V

(
∂f

∂t

)
= V (−4x+ 3(s3 − t2), y) · V (−2tx3)

= V (−4x+ 3(s3 − t2), y) ·
(
V (t) + 3V (x)

)
= V (−4x+ 3s3, y, t) + 3V (s3 − t2, x, y) = Γ1

f + Λ1
f ;

and, finally,

Γ1
f · V

(
∂f

∂s

)
= V (−4x+ 3s3, y, t) · V (3s2x3)

= 2[0] + 3 · 3[0] = 11[0] = Λ0
f .

Thus, we have Λ2
f = 2V (x, y), Λ1

f = 3V (s3 − t2, x, y), and Λ0
f = 11[0].

One easily calculates the Lê numbers at a point p := (s0, t0, x0, y0)
near 0:

• λ0
f (p) equals 11 at the origin, and equals 0 elsewhere;

• λ1
f (p) =

(
3V (s3− t2, x, y) ·V (s−s0)

)
p

equals 3 ·2 = 6 at the origin,
3 at other points of V (s3 − t2, x, y), and equals 0 elsewhere;

• λ2
f (p) equals 2 at all points of V (x, y), and equals 0 elsewhere.

Therefore, Corollary 6.6. of [9] tells us that V (f) has a good stratification
at the origin:

{V (f)− V (x, y), V (x, y)− V (s3 − t2, x, y), V (s3 − t2, x, y)− {0}, {0}}.

Now, f0 = y2 − x4 − t2x3 has a critical locus consisting of just the t-axis,
i.e., V (x, y) inside V (s). We see then that V (s) transversely intersects all
of the good strata, except {0}, in a neighborhood of the origin, i.e., s is
prepolar for f at 0.

We continue to calculate (and continue to suppress the coordinates in
the notation):

γ1
f =

(
Γ1

f · V (s)
)
0

=
(
V (−4x+ 3s3, y, t) · V (s)

)
0

= 1;

and
τf = γ1

f + λ0
f = 1 + 11 = 12.

As γ1
f = 1, Γ1

f is unitary. Proposition 2.2 tells us that s is a carrousel
coordinate and that the carrousel of f with respect to s is semi-simple.

Putting all of the above work together, including our result in Example
3.1, we find that the map ∂f,s : H̃2(Ff0) → H3(Ff , Ff0) is a map from
a Z-module of rank 5 to a copy of Z12, and the respective characteristic
polynomials of the monodromy, acting on the free parts, are char2f0

(λ) =
(λ8 ± 1)(λ+ 1)/(λ4 − 1) and charrelf,s

(λ) = λ12 ± 1.
Thus, in char2f0

(λ), we must choose the minus sign, and so char2f0
(λ) =

(λ+ 1)(λ4 + 1). By Theorem 1.3 and Proposition 2.5, the rank of im(∂f,s)
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cannot be 0 or 1. Hence, the rank of ker(∂f,s) cannot be 4 or 5, and so the
irreducibility (over Z) of the factor λ4+1 of char2f0

(λ) tells us that the rank
of ker(∂f,s) must be 0 or 1. Therefore, we are left with two possible cases:

i) H̃0(Ff ) = 0, H̃1(Ff ) = 0, rank H̃2(Ff ) = 1, rank H̃3(Ff ) = 12−4 = 8,
char2f (λ) = λ+ 1, and char3f (λ) = (λ12 + 1)/(λ4 + 1);
or

ii) H̃0(Ff ) = 0, H̃1(Ff ) = 0, rank H̃2(Ff ) = 0, rank H̃3(Ff ) = 12−5 = 7,
and

char3f (λ) = (λ12 + 1)/[(λ+ 1)(λ4 + 1)].

We do not, in fact, know which of these cases is the correct one.

4. Concluding Remarks

The main point of this paper is that the single number
τf,z0 = (Γ1

f,z0
· V (f))0 can tell one a great deal about H̃n(Ff ), at least

when τf,z0 is prime.
However, the calculation of τf,z0 is not a simple algebra exercise for

complicated f . If one wants to use Theorem 2.3, one must first “calculate”
the polar curve, see that it has only one component, and then see that τf,z0

is prime. Moreover, as we saw in Example 3.2, if dim0 Σf > 2, then it is
nontrivial to verify that z0 is a prepolar coordinate.

Nonetheless, the case where Γ1
f,z0

is prime occurs in enough examples
that we find Theorem 2.3 to be interesting.

Together with Lê Dũng Tráng, in [7], we have recently obtained a signif-
icant improvement of Proposition 2.5. This improved result says that if f
has a smooth 1-dimensional critical locus, and z0 is a carrousel form, then
either Γ1

f,z0
= ∅ or rank H̃n(Ff ) < λ0

f,z0
.
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