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HOMOLOGY AND MODULAR CLASSES
OF LIE ALGEBROIDS

by Janusz GRABOWSKI,
Giuseppe MARMO & Peter W. MICHOR (*)

Abstract. — For a Lie algebroid, divergences chosen in a classical way lead
to a uniquely defined homology theory. They define also, in a natural way, mod-
ular classes of certain Lie algebroid morphisms. This approach, applied for the
anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and
A. Weinstein.

Résumé. — Pour un algébroïde de Lie, le choix des divergences à la mode
classique donne une théorie de l’homologie unique. Elles définissent aussi naturel-
lement les classes modulaires de quelques morphismes des algébroïdes de Lie. Cette
méthode, appliquée à l’application d’ancre, nous permet de retrouver la classe mo-
dulaire due à S. Evens, J.-H. Lu, et A. Weinstein.

1. Introduction

Homology of a Lie algebroid structure on a vector bundle E over M are
usually considered as homology of the corresponding Batalin-Vilkovisky
algebra associated with a chosen generating operator ∂ for the Schouten-
Nĳenhuis bracket on multisections of E. The generating operators that are
homology operators, i.e. ∂2 = 0, can be identified with flat E-connections
on

∧top
E (see [18]) or divergence operators (flat right E-connections on

M × R, see [8]). The problem is that the homology group depends on the
choice of the generating operator (flat connection, divergence) and no one
seems to be privileged. For instance, if a Lie algebroid on T ∗M associated
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with a Poisson tensor P on M is concerned, then the traditional Poisson
homology is defined in terms of the Koszul-Brylinski homology operator
∂P = [d, iP ]. However, the Poisson homology groups may differ from the
homology groups obtained by means of 1-densities on M . The celebrated
modular class of the Poisson structure [16] measures this difference. Anal-
ogous statement is valid for triangular Lie bialgebroids [10].

The concept of a Lie algebroid divergence, so a generating operator,
associated with a ‘volume form’, i.e. nowhere-vanishing section of

∧top
E∗,

is completely classical (see [10], [18]). Less-known seems to be the fact
that we can use ‘odd-forms’ instead of forms (cf. [2]) with same formulas
for divergence and that such nowhere-vanishing volume odd-forms always
exist. The point is that the homology groups obtained in this way are
all isomorphic, independently on the choice of the volume odd-form. This
makes the homology of a Lie algebroid a well-defined notion. From this
point of view the Poisson homology is not the homology of the associated
Lie algebroid T ∗M but a deformed version of the latter, exactly as the
exterior differential dφµ = dµ+φ∧µ of Witten [17] is a deformation of the
standard de Rham differential.

In this language, the modular class of a Lie algebroid morphism κ : E1 →
E2 covering the identity on M is defined as the class of the difference be-
tween the pull-back of a divergence on E2 and a divergence on E1, both
associated with volume odd-forms. In the case when κ : E → TM is the
anchor map, we recognize the standard modular class of a Lie algebroid [3]
but it is clear that other (canonical) morphisms will lead to other (canon-
ical) modular classes.

2. Divergences and generating operators

2.1. Lie algebroids and their cohomology

Let τ : E → M be a vector bundle. Let Ai(E) = Sec(
∧i

E) for i =
0, 1, 2, . . . , let Ai(E) = {0} for i < 0, and denote by A(E) =

⊕
i∈Z Ai(E)

the Grassmann algebra of multisections of E. It is a graded commutative
associative algebra with respect to the wedge product.

There are different ways to define a Lie algebroid structure on E. We
prefer to see it as a linear graded Poisson structure on A(E) (see [7]), i.e.,
a graded bilinear operation [·, ·] on A(E) of degree −1 with the following
properties:
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HOMOLOGY AND MODULAR CLASSES OF LIE ALGEBROIDS 71

(a) Graded anticommutativity:
[a, b] = −(−1)(|a|−1)(|b|−1) [b, a].

(b) The graded Jacobi identity:[
a, [b, c]

]
=

[
[a, b], c

]
+ (−1)(|a|−1)(|b|−1)

[
b, [a, c]

]
.

(c) The graded Leibniz rule:
[a, b ∧ c] = [a, b] ∧ c + (−1)(|a|−1)|b| b ∧ [a, c].

This bracket is just the Schouten bracket associated with the the standard
Lie algebroid bracket on sections of E. It is well known that such brack-
ets are in bĳective correspondence with de Rham differentials d on the
Grassmann algebra A(E∗) of multisections of the dual bundle E∗ which
are described by the formula

(2.1) dµ(X0, . . . , Xn) =
∑

i

(−1)i
[
Xi, µ(X0, . . . î . . . , Xn)

]
+

∑
k<l

(−1)k+lµ
(
[Xk, Xl], X0, . . . k̂ . . . l̂ . . . , Xn

)
where the Xi are sections of E. We will refer to elements of A(E∗) as forms.
Since d is a derivation on A(E∗) of degree 1 with d2 = 0, it defines the
corresponding de Rham cohomology H∗(E, d) of the Lie algebroid in the
obvious way.

2.2. Generating operators and divergences

The definition of the homology of a Lie algebroid is more delicate than
that of cohomology. The standard approach is via generating operators for
the Schouten bracket [·, ·]. By this we mean an operator ∂ of degree −1 on
A(E) which satisfies

(2.2) [a, b] = (−1)|a|
(
∂(a ∧ b)− ∂(a) ∧ b− (−1)|a|a ∧ ∂(b)

)
.

The idea of a generating operator goes back to the work by Koszul [13]. A
generating operator which is a homology operator, i.e. ∂2 = 0, gives rise
to the so called Batalin-Vilkovisky algebra. Remark that the leading sign
(−1)|a| serves to produce graded antisymmetry with respects to the degrees
shifted by −1 out of graded symmetry. One could equally well use (−1)|b|

instead of (−1)|a|, or one could use the obstruction for ∂ to be a graded
right derivation in the parentheses instead of a graded left one as we did.
We shall stick to the standard conventions.
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72 Janusz GRABOWSKI, Giuseppe MARMO & Peter W. MICHOR

It is clear from Eq. (2.2) and from the properties of the Schouten bracket
that ∂ is then a second order differential operator on the graded com-
mutative associative algebra A(E), which is completely determined by its
restriction to Sec(E). In fact, it is easy to see (cf. [8]) that

(2.3) ∂(X1 ∧ · · · ∧Xn) =
∑

i

(−1)i+1∂(Xi)X1 ∧ . . . î · · · ∧Xn

+
∑
k<l

(−1)k+l[Xk, Xl] ∧X1 ∧ . . . k̂ . . . l̂ · · · ∧Xn

for X1, . . . , Xn ∈ Sec(E), which looks completely dual to Eq. (2.1). From
Eq. (2.2) we get the following property of ∂:

(2.4) − ∂(fX) = −f∂(X) + [X, f ] for X ∈ Sec(E), f ∈ C∞(M).

Since [X, f ] = ρ(X)(f), where ρ : E → TM is the anchor map of the Lie
algebroid structure on E, the operator −∂ has the algebraic property of a
divergence. Conversely, Eq. (2.3) defines a generating operator for [·, ·] if
only Eq. (2.4) is satisfied, i.e., generating operators can be identified with
divergences. We may express this by div ↔ ∂div. But a true divergence
div : Sec(E) → C∞(M) satisfies besides Eq. (2.4) a cocycle condition

(2.5) div([X, Y ]) = [div(X), Y ] + [X, div(Y )], X, Y ∈ Sec(E),

which is equivalent (see [8]) to the fact that the corresponding generating
operator ∂div is a homology operator: (∂div)2 = 0. Note that divergences can
be used in construction of generating operators also in the supersymmetric
case (cf. [12]).

From now on we will fix the Lie algebroid structure on E, and we will
denote by Gen(E) the set of generating operators for [·, ·] which are homol-
ogy operators, and by Div(E) the canonically isomorphic (by Eq. (2.3))
set of divergences for the Lie algebroid satisfying Eq. (2.4) and Eq. (2.5).
The problem is that there does not exist a canonical divergence, thus no
canonical generating operator.

The set Div(E) can be identified with the set of all flat E-connections
on

∧top
E∗, i.e., operators ∇ : Sec(E) × Sec(

∧top(E∗)) → Sec(
∧top(E∗))

which satisfy

(i) ∇fXµ = f∇Xµ,
(ii) ∇X(fµ) = f∇Xµ + ρ(X)(f)µ,
(iii) [∇X ,∇Y ] = ∇[X,Y ].

The identification is via

(2.6) LXµ−∇Xµ = div(X)µ

ANNALES DE L’INSTITUT FOURIER
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(cf. [10, (50)]), where LX = d iX + iX d is the Lie derivative. Note that
Eq. (2.6) is independent of the choice of the section µ ∈ Sec(

∧top(E∗)). We
can use

∧top(E) instead of
∧top(E∗) and get the identification of Div(E)

with the set of flat E-connection on
∧top(E) by (see [18])

(2.7) LXΛ−∇XΛ = div(X)Λ.

Of course, additional structures on E as, e.g., a Riemannian metric
(smoothly arranged scalar products on fibers of E), may furnish a dis-
tinguished divergence on E. Fixing a metric we can distinguish a canoni-
cal torsionfree connection ∇ on E—the Levi-Civita connection for the Lie
algebroid—in the standard way. It satisfies the standard Bianchi and Ricci
identities (see [15]) and induces a connection on

∧top(E) for which the gen-
erating operator ∂∇ has the local form (see [18]) ∂∇(a) = −

∑
k i(αk)∇Xk

a,
where the Xk and αk are dual local frames for E and E∗, respectively. Since

∂2
∇ =

∑
k,j

i(αj)∇Xj i(α
k)∇Xk

=
∑
k,j

i(αj)i(αk)(∇Xj∇Xk
−∇∇Xj

Xk
),

∂2
∇ = 0 is equivalent to

(2.8)
∑
j,k

i(αj)i(αk)R(Xj , Xk) = 0,

where R is the curvature tensor of ∇. For a Levi-Civita connection ∇ the
generating operator ∂∇ is really a homology operator due to the following
lemma.

Lemma 2.1. — A torsionfree connection ∇ on E satisfies simultaneously
the Bianchi and the Ricci identity if and only if Eq. (2.8) holds for dual
local frames Xk and αk of E and E∗, respectively.

Proof. — Eq. (2.8) is equivalent to
∑

j,k R(Xj , Xk)∗(αk ∧ αj ∧ ω) = 0
for all forms ω. It suffices to check this for ω a function or a 1-form due to
the derivation property of contractions. For ω a function f we have∑

j,k

R(Xj , Xk)∗(fαk ∧ αj) =

=
∑
j,k

f
(
R(Xj , Xk)∗(αk) ∧ αj + αk ∧R(Xj , Xk)∗(αj)

)
= 2f

∑
s,j,k

Rk
jksα

s ∧ αj

TOME 56 (2006), FASCICULE 1



74 Janusz GRABOWSKI, Giuseppe MARMO & Peter W. MICHOR

and this vanishes for all f if and only if Rk
jks is symmetric in (j, s), i.e., if

the Ricci identity holds. For ω a 1-form, say αi, we have∑
j,k

R(Xj ,Xk)∗(αk ∧ αj ∧ αi) =

=
∑
j,k

(
R(Xj , Xk)∗(αk ∧ αj) ∧ αi + αk ∧ αj ∧R(Xj , Xk)∗(αi)

)
= 0 +

∑
j,k,s

Ri
jksα

k ∧ αj ∧ αs

and this vanishes for all i if and only if
∑

cycl(j,k,s) Ri
jks = 0, i.e., if the first

Bianchi identity holds.

Corollary 2.2. — Any Levi-Civita connection for a Riemannian met-
ric on a Lie algebroid E induces a flat connection on

∧top
E, thus also on∧top

E∗.

3. Homology of the Lie algebroid

3.1. Getting divergences from odd forms

There is no distinguished divergence for the Lie algebroid structure on E,
but there is a distinguished subset of divergences which we may obtain in a
classical way. Firstly, suppose that the line bundle

∧top
E∗ is trivializable.

So we can choose a vector volume, i.e., a nowhere vanishing section µ ∈
Sec(

∧top
E∗). Then the formula

(3.1) LXµ = divµ(X)µ, where X ∈ Sec(E),

defines a divergence divµ. We observe that div−µ = divµ. Thus for the
non-orientable case we look for sections of a bundle over M which locally
consists of non-ordered pairs {µα,−µα} for an open cover M =

⋃
α Uα

such that the sets {µα,−µα} and {µβ ,−µβ} coincide when restricted to
Uα ∩ Uβ . The fundamental observation is that such global sections always
exist and define global divergences. This is because they can be viewed
as sections of the bundle |Vol |E = (

∧top
E∗)0/Z2, where (

∧top
E∗)0/Z2

is the bundle
∧top

E∗ with the zero section removed and divided by the
obvious Z2-action of passing to the opposite vector. The bundle |Vol |E is
a 1-dimensional affine bundle modelled on the vector bundle M × R, and
also a principal R-bundle where t ∈ R acts by scalar multiplication with et.
Since it has a contractible fiber, sections always exist. Note that sections
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|µ| of |Vol |E are particular cases of odd forms, [2]: Let p : M̃ → M be
the two-fold covering of M on which p∗E is oriented, namely the set of
vectors of length 1 in the line bundle over M with cocycle of transition
functions sign det(φαβ), where φαβ : Uα ∩ Uβ → GL(V ) is the cocycle
of transition functions for the vector bundle E. Then the odd forms are
those forms on p∗E which are in the −1 eigenspace of the natural vector
bundle isomorphism which covers the decktransformation of M̃ . So odd
forms are certain sections of a line bundle over a two-fold covering of the
base manifold M . This is related but complementary to the construction of
the line bundle (over M) of densities which involve the cocycle of transition
functions |det(φαβ)|. For example, any Riemannian metric g on the vector
bundle E induces an odd volume form |µ|g ∈ Sec(|Vol |E) ' Sec(|Vol |E∗)
which locally is represented by the wedge product of any orthonormal basis
of local sections of E (thus E∗). Note that such product is independent on
the choice of the basis modulo sign, so our odd volume is well defined.

For the definition of a divergence div|µ| associated to |µ| ∈ Sec(|Vol |E)
we will write simply

(3.2) LX |µ| = div|µ|(X)|µ| for X ∈ Sec(E).

Note that the distinguished set Div0(E) of divergences obtained in this
way from sections of |Vol |E corresponds (in the sense of Eq. (2.6)) to the
set of those flat connections on

∧top
E∗ whose holonomy group equals Z2:

Associate the horizontal leaf |µ| to such a connection, and note that a
positive multiple of |µ| gives rise to the same divergence.

In the case of a vector bundle Riemannian metric g on E a natural
question arises about the relation between the divergence div|µ|g associated
with the odd volume |µ|g induced by the metric g and the divergence div∇g

induced by the flat Levi-Civita connection ∇g on
∧top

E∗ '
∧top

E.

Theorem 3.1. — For any vector bundle Riemannian metric g on E

div|µ|g = div∇g .

Proof. — Let X1, . . . , Xn be an orthonormal basis of local sections of E

and αk = g(Xk, ·) be the dual basis of local sections of E∗, so that |µ|g is
locally represented by α1 ∧ · · · ∧ αn.

TOME 56 (2006), FASCICULE 1
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For any local section X of E

div|µ|g (X) = −〈LX(α1 ∧ · · · ∧ αn), X1 ∧ · · · ∧Xn〉

= 〈α1 ∧ · · · ∧ αn,LX(X1 ∧ · · · ∧Xn)〉

=
∑

k

〈αk, [X, Xk]〉

=
∑

k

〈αk,∇XXk −∇Xk
X〉

=
∑

k

g(Xk,∇XXk)−
∑

k

i(αk)∇Xk
X.

But −
∑

k i(αk)∇Xk
X = div∇g (X) and

2
∑

k

g(Xk,∇XXk) =
∑

k

ρ(X)g(Xk, Xk)−
∑

k

∇X(g)(Xk, Xk) = 0,

where ρ : E → TM is the anchor of the Lie algebroid on E, since ∇ is
Levi-Civity (∇g = 0).

3.2. The generating operator for an odd form

The corresponding generating operator ∂|µ| for the divergence of a non-
vanishing odd form |µ| can be defined explicitly by

La|µ| = −i(∂|µ|(a))|µ|,

where La = ia d − (−1)|a|d ia is the Lie differential associated with a ∈
A|a|(E) so that

(3.3) i(∂|µ|(a))|µ| = (−1)|a|d ia|µ|.

In other words, locally over U we have

(3.4) ∂|µ|(a) = (−1)|a| ∗−1
µ d ∗µ (a),

where ∗µ is the isomorphism of A(E)|U and A(E∗)|U given by ∗µ(a) = iaµ,
for a representative µ of |µ|. Note that the right hand side of Eq. (3.4)
depends only on |µ| and not on the choice of the representative, since
∗µ d ∗µ = ∗−µ d ∗−µ. Formula Eq. (3.4) gives immediately ∂2

|µ| = 0,
which also follows from the remark on flat connections above. So ∂|µ| is a
homology operator.

Moreover, it is also a generating operator. Namely, using standard cal-
culus of Lie derivatives we get

La∧b = ib La − (−1)|a|i[a,b] + (−1)|a| |b|ia Lb

ANNALES DE L’INSTITUT FOURIER
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which can be rewritten in the form

(3.5) i[a,b] = (−1)|a|
(
−La∧b + ib La + (−1)|a|(|b|+1)ia Lb

)
.

When we apply Eq. (3.5) to |µ| we get

i[a,b]|µ| = (−1)|a|
(
i(∂|µ|(a ∧ b))− i(∂|µ|(a) ∧ b)− (−1)|a|i(a ∧ ∂|µ|(b))

)
|µ|

which proves Eq. (2.2). Thus we get:

Theorem 3.2. — For any |µ| ∈ Sec(|Vol |E) the formula

(3.6) La|µ| = −i(∂|µ|(a))|µ|

defines uniquely a generating operator ∂|µ| ∈ Gen(E).

We remark that formula Eq. (3.6) in the case of trivializable
∧top

E∗ has
been already found in [10]. In this sense the formula is well known. What
is stated in Theorem 3.2 is that Eq. (3.6) serves in general, as if the bundle∧top

E∗ were trivial, if we replace ordinary forms with odd volume forms.

3.3. Homology of the Lie algebroid

The homology operator of the form ∂|µ| will be called the homology
operator for the Lie algebroid E. The crucial point is that they all define
the same homology. This is due to the fact that ∂|µ1| and ∂|µ2| differ by
contraction with an exact 1-form.

In general, two divergences differ by contraction with a closed 1-form.
Indeed, (div1−div2)(fX) = f(div1−div2)(X), so (div1−div2)(X) = iφX

for a unique 1-form φ. Moreover, Eq. (2.5) implies that iφ[X, Y ] = [iφX, Y ]+
[X, iφY ], so φ is closed. Since both sides are derivations we have

(3.7) ∂div2 − ∂div1 = iφ.

But for any |µ1|, |µ2| ∈ Sec(|Vol |E) there exists a positive function F = ef

such that |µ2| = F |µ1|. Then

LX |µ2| = LX(F |µ1|) = LX(F ) |µ1|+ F LX(|µ1|)

so that
div|µ2|(X)|µ2| = LX(f) |µ2|+ div|µ1|(X)|µ2|,

i.e.,
div|µ2|−div|µ1| = i(df).

TOME 56 (2006), FASCICULE 1
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To see that the homology of ∂|µ1| and ∂|µ2| are the same, note first that
∂|µ2| = ∂|µ1|a + idfa. And then let us gauge A(E) by multiplication with
F = ef . This is an isomorphism of graded vector spaces and we have

ef ∂|µ1| e−f a = ∂|µ1|a + idfa = ∂|µ2|a,

so ∂|µ1| and ∂|µ2| are graded conjugate operators.
This is just the dual picture of the well-known gauging of the de Rham

differential by Witten [17], see also [7] for consequences in the theory of Lie
algebroids. Thus we have proved (cf. [10, p.120]):

Theorem 3.3. — All homology operators for a Lie algebroid generate
the the same homology: H∗(E, ∂|µ1|) = H∗(E, ∂|µ2|). In the case of trivial-
izable

∧top
E∗, Eq. (3.4) gives Poincaré duality

H∗(E, d) ∼= Htop-∗(E, ∂|µ|).

3.4. Remark

We got a well-defined Lie algebroid homology, in contrast with the stan-
dard approach when all generating operators are admitted. It is clear that
adding a term iφ with φ a closed 1-from which is not exact, as in Eq. (3.7),
will probably change the homology. But this could be understood as an a
priori deformation, like in the case of the deformed de Rham differential of
Witten [17]:

(3.8) dφη = dη + φ ∧ η.

Indeed, i(iφa)µ = −(−1)|a|φ ∧ iaµ implies ∗µ iφ(a) = −(−1)|a| eφ ∗µ (a),
where eφη = φ∧ η. Thus we get (−1)|a| ∗−1

µ (d+ eφ) ∗µ (a) = (∂|µ|− iφ)(a),
so, at least in the the trivializable case, there is the Poincaré duality

H∗(E, d + eφ) ∼= Htop−∗(E, ∂µ − iφ).

Note that the differentials dφ appear as part of the Cartan differential
calculus for Jacobi algebroids, see [9], [6], [7], so that there is a relation
between generating operators for a Lie algebroid and the Jacobi algebroid
structures associated with it.

4. Modular classes

4.1. The modular class of a morphism

As we have shown, every Lie algebroid E has a distinguished class
Div0(E) of divergences obtained from sections of |Vol |E . Such divergences
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differ by contraction with an exact 1-form. Let now κ : E1 → E2 be a
morphism of Lie algebroids.

There is the induced map κ∗ : Div(E2) → Div(E1) defined by

κ∗(div2)(X1) = div2(κ(X1)).

The fact that κ∗ maps divergences into divergences follows from κ(fX) =
fκ(X) and the fact that the Lie algebroid morphism respects the anchors,
ρ1 = ρ2 ◦ κ. The space κ∗(Div0(E2)) ⊂ Div(E1) consists of divergences
which differ by insertion of an exact 1-form. Therefore, the cohomology
class of the 1-form φ which is defined by the equation

(4.1) κ∗(divE2)− divE1 = iφ, for divEi
∈ Div0(Ei), i = 1, 2,

does not depend on the choice of divE1 and divE2 . We will call it the
modular class of κ and denote it by Mod(κ). Thus we have:

Theorem 4.1. — For every Lie algebroid morphism

E1
κ //

τ1

  B
BB

BB
BB

B E2

τ2

~~||
||

||
||

M

the cohomology class Mod(κ) = [φ] ∈ H1(E1, dE1) defined by φ in Eq. (4.1)
is well defined independently of the choice of divE1 ∈ Div0(E1) and divE2 ∈
Div0(E2).

4.2. The modular class of a Lie algebroid

In the case when the morphism κ = ρ : E → TM is the anchor map of a
Lie algebroid E, the modular class Mod(ρ) is called the modular class of the
Lie algebroid E and it is denoted by Mod(E). The idea that the modular
class is associated with the difference between the Lie derivative action on∧top(E∗) and on

∧top
T ∗M via the anchor map is, in fact, already present

in [3]. Also the interpretation of the modular class as certain secondary
characteristic class of a Lie algebroid, present in [4], is a quite similar. In
[4] the trace of the difference of some connections is used instead of the
difference of two divergences. We have

Theorem 4.2. — Mod(E) is the modular class ΘE in the sense of [3].
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Proof. — The modular class ΘE in the sense of [3] is defined as the class
[φ] where φ is given by

(4.2) LX(a)⊗ µ + a⊗ Lρ(X)µ = 〈X, φ〉a⊗ µ

for all sections a of
∧top(E) and µ of

∧top(T ∗M), respectively. Let us
take |a∗| ∈ Sec(|Vol |E) and |µ| ∈ Sec(|Vol |TM ), locally represented by
a∗ ∈ Sec(

∧top(E∗|U )) and µ ∈ Sec(
∧top(T ∗M |U )). Let a be a local sec-

tion of
∧top

E dual to a∗. Then LX(a) = −div|a∗|(X) a and LX(µ) =
ρ∗(div|µ|)(X) µ so that Eq. (4.2) yields iφ = ρ∗(div|µ|)− div|a∗|.

Note that in our approach the modular class Mod(TM) of the canonical
Lie algebroid TM is trivial by definition. It is easy to see that the modu-
lar class of a base preserving morphism can be expressed in terms of the
modular classes of the corresponding Lie algebroids.

Theorem 4.3. — For a base preserving morphism κ : E1 → E2 of Lie
algebroids

Mod(κ) = Mod(E1)− κ∗(Mod(E2)).

Proof. — Let ρl : El → TM be the anchor of El, l = 1, 2. Take divEl
∈

Div0(El), l = 1, 2, and divTM ∈ Div0(TM). Since Mod(El) is represented
by ηl, iηl

= divEl
−ρ∗l (divTM ) and ρ1 = ρ2 ◦ κ, we can write

iη1 = divE1 −ρ∗1(divTM )

= divE1 −κ∗(divE2) + κ∗(divE2 −ρ∗2(divTM ))

= iηκ + iκ∗(η2),

where ηκ represents Mod(κ). Thus η1 = ηκ + η2.

4.3. The universal Lie algebroid

For any vector bundle τ : E → M there exists a universal Lie alge-
broid QD(E) whose sections are the quasi-derivations on E, i.e., map-
pings D : Sec(E) → Sec(E) such that D(fX) = f D(X) + D̂(f) X for
f ∈ C∞(M) and X ∈ Sec(E), where D̂ is a vector field on M ; see the sur-
vey article [5]. Quasi-derivations are known in the literature under various
names: covariant differential operators [14], module derivations [15], deriva-
tive endomorphisms [11], etc. The Lie algebroid QD(E) can be described as
the Atiyah algebroid associated with the principal GL(n, R)-bundle Fr(E)
of frames in E, and quasi-derivations can be identified with the GL(n, R)-
invariant vector fields on Fr(E). The corresponding short exact Atiyah
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sequence in this case is

0 → End(E) → QD(E) → TM → 0.

This observation shows that there is a modular class associated to every
vector bundle E, namely the modular class Mod(QD(E)), which is a vector
bundle invariant.

It is also obvious that, viewing a flat E0-connection (representation) in
a vector bundle E over M for a Lie algebroid E0 over M as a Lie algebroid
morphism ∇ : E0 → QD(E), one can define the modular class Mod(∇).

Question. — How is Mod(QD(E)) related to other invariants of E (e.g.
characteristic classes)?

4.4. Remark

One can interpret the modular class Mod(E) of the Lie algebroid E as
a “trace” of the adjoint representation. Indeed, if we fix local coordinates
ua on U ⊂ M a local frame Xi of local sections of E over U , and the
dual frame αi of E∗, then the Lie algebroid structure is encoded in the
“structure functions”

[Xi, Xj ] =
∑

k

ck
ij Xk, ρ(Xi) =

∑
a

ρa
i ∂ua .

Proposition. — The modular class Mod(E) is locally represented by
the closed 1-form

(4.3) φ =
∑

i

(∑
k

ck
ik +

∑
a

∂ρa
i

∂ua

)
αi.

Proof. — We insert into Eq. (4.2) the elements a = X1 ∧ · · · ∧ Xn and
µ = du1 ∧ · · · ∧ dum. Since

LXi
a =

∑
k

ck
ika and LXi

µ =
∑

a

∂ρa
i

∂ua
µ,

we get

〈Xi, φ〉a⊗ µ =
(∑

k

ck
ik +

∑
a

∂ρa
i

∂ua

)
a⊗ µ.

One could say that representing cohomology locally does not make much
sense, e.g. the modular class Mod(TM) is trivial so locally trivial. However,
remember that for a general Lie algebroid the Poincaré lemma does not
hold: closed forms need not be locally exact. In particular, for a Lie algebra
(with structure constants), Eq. (4.3) says that the modular class is just the
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trace of the adjoint representation. In any case, Eq. (4.3) gives us a closed
form, which is not obvious on first sight. If E is a trivial bundle, Eq. (4.3)
gives us a globally defined modular class in local coordinates.

4.5. Remark

As we have already mentioned, the modular class of a Lie algebroid is the
first characteristic class of R. L. Fernandes [4]. There are also higher classes,
shown in [1] to be characteristic classes of the anchor map, interpreted as
a representation “up to homotopy”. It is interesting if our idea can be
adapted to describe these higher characteristic classes as well.

Acknowledgement. The authors are grateful to Marius Crainic and
Yvette Kosmann-Schwarzbach for providing helpful comments on the first
version of this note.
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