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MATRIX VALUED ORTHOGONAL POLYNOMIALS

OF JACOBI TYPE: THE ROLE OF GROUP

REPRESENTATION THEORY

by F. Alberto GRÜNBAUM, Inés PACHARONI
& Juan TIRAO (*)

1. Introduction.

Starting with the work of M. G. Krein, [K1] and [K2], as well as
more recent contributions, including for instance [D1], [D2], [D3], [D4],
[DP], [DvA], [Ge], and [SvA], there is a nice and general theory of matrix
valued orthogonal polynomials. These are bound to play an important part
in many areas of mathematics and its applications, just as their scalar
counterparts. This should be particularly true for those matrix valued
orthogonal polynomials that have some extra property, such as the one
singled out for further study in [DG] and generally known under the label
the bispectral property. The search for concrete instances enjoying these
two properties has received a certain amount of recent attention, following
earlier work started in [D1]. The collection of known examples enjoying this
extra property is still very small. For a family of examples (in arbitrary
dimension), not reducible to the scalar case, see [GPT1], [GPT2] and the
closing paragraph in [GPT4]. For recent progress in this area, including a
general method to attack this problem and a relevant hierarchy of examples,

(*) This paper is partially supported by NSF Grant # DMS 0204682, by AFOSR under
Contract F41 624-02-1-7000, by CONICET grants PIP 655 and PEI 6150, by ANPCyT
grant PICT 03-10646 and by the ICTP Associate Scheme.
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see [DG1] and [DG2]. For a different source of examples one can consult
[G] and [GPT5].

In this paper we restrict our attention to examples that are of the
Jacobi type, meaning that the differential operator is given by the Gauss
hypergeometric one, see [T2].

Even a cursory look at the emerging family of examples reveals
two distinct tools: either one poses and solves a certain set of matrix
valued differential equations (along with certain boundary conditions) as
in [DG1] and [GPT5], or one ignores these equations altogether, starts
with a symmetric space G/K, as in [GPT1], [GPT2],[ GPT3], [GPT4] and
eventually arrives at explicit examples. No one familiar with the history
of these developments in the scalar case should be surprised with the
useful role played by these symmetric spaces. For a good general reference
see [VK]. None of the two routes mentioned above gives an easy path to
examples. For this reason alone we consider it very important, at this early
stage of this search for examples, to exploit all possible avenues. For the
examples obtained in [GPT1] one starts with the theory of matrix valued
spherical functions, see [T1] and [GV]. Specifically one takes G = SU(3) and
K = S(U(2)×U(1)) � U(2). The corresponding symmetric space is then
the complex projective plane. As noticed in [GPT1], see page 355, when
talking about properly packaged matrix valued spherical functions one is
not quite dealing with matrix valued orthogonal polynomials. The step
needed to make this connection is given in the last section of [GPT4]. To
better understand the point of view of this paper it is important to review
in more detail some of the developments discussed above. The results in
[GPT1] give instances of matrix valued classical pairs {W,D} of arbitrary

size, the only restriction is that the value of the parameter β needs to be 1.
The classical scalar valued case corresponds to the further specialization
� = 0. Since the value of α in [GPT1] is only restricted to be an integer,
it is not hard to see how to extend this beyond group values. The issue
of extending beyond the case of β = 1 is a completely different game.
This was achieved in [G] for square matrices of size 2 by postulating a
certain structure for the weight matrix which was consistent with all the
examples known up to that point. Later in [GPT5] three one parameter
families of classical pairs of the same size were constructed, one of which
extends the example in [G]. The extension of this search of classical pairs
to larger size is not an easy matter. In this paper we use some preliminaries
results from [PT] where the complex projective plane considered in [GPT1]
is replaced by the n-dimensional complex projective space. This gives us
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a group theoretical framework which provides enough integers parameters
m and n. Extending the resulting classical pairs to arbitrary values of the
parameters α and β is then completely straightforward.

2. Matrix valued orthogonal polynomials
and symmetric differential operators.

Here we recall some standard facts. Given a self adjoint positive
definite matrix valued smooth weight function W (t) with finite moments
we can consider the skew symmetric bilinear form defined for any pair of
matrix valued polynomial functions P (t) and Q(t) by the numerical matrix

(P,Q) = (P,Q)W =
∫
R

P (t)W (t)Q∗(t)dt,

where Q∗(t) denotes the conjugate transpose of Q(t). By the usual construc-
tion this leads to the existence of a sequence of matrix valued orthogonal
polynomials with non singular leading coefficient. The skew symmetric bi-
linear form introduced above is not the only possible such choice, as noticed
for instance in [SvA]. In this section we will also consider the form

〈P,Q〉 = (P ∗, Q∗)∗.

The reason for considering this form can be traced back to [GPT1] as
will be noticed below. Observe that a sequence {Pn}n�0 of matrix valued
polynomials is orthogonal with respect to (·, ·) if and only if the sequence
{P ∗n}n�0 is orthogonal with respect to 〈·, ·〉. Given an orthonormal sequence
{Pn(t)}n�0 one gets by the usual argument a three term recursion relation

(1) tPn(t) = An+1Pn+1(t) + BnPn(t) + Cn−1Pn−1(t),

where An+1 is nonsingular, B∗n = Bn and Cn−1 = A∗n. We now turn our
attention to an important class of orthogonal polynomials which we will
call classical matrix valued orthogonal polynomials. As in [GPT5] we say
that the weight function is classical if there exists a second order ordinary
differential operator D with matrix valued polynomial coefficients Aj(t) of
degree less or equal to j of the form

(2) D = A2(t)
d2

dt2
+ A1(t)

d

dt
+ A0(t),

such that

(3) 〈DP,Q〉 = 〈P,DQ〉

TOME 55 (2005), FASCICULE 6
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for all matrix valued polynomial functions P and Q. We refer to such
a pair {W,D} as a classical pair. If {W,D} is a classical pair then there
exists an orthonormal sequence {Pn}, with respect to (·, ·), of matrix valued
polynomials such that

(4) DP ∗n = P ∗nΛn,

where Λn is a real valued diagonal matrix. This form of the eigenvalue
equation (4) appears naturally in [GPT1] and corresponds to the fact that
the rows of Pn are eigenfunctions of D. One could avoid the introduction
of the inner product 〈 , 〉 in (3) by introducing right handed differential
operators as in [D1]. Either choice has its own drawbacks. This is a
consequence of the fact that in the matrix valued case D and the difference
operator in the right hand side of (1) do not commute. Assume that the
weight function W = W (t) is supported in the interval (a, b). We recall
that in [GPT5] and in [DG1] (except for a change due to the fact that
the differential operator there is acting on the right hand side) we have
proved that the condition of symmetry (3) is equivalent to the following
three differential equations

A∗2W = WA2,

A∗1W = −WA1 + 2
d

dt
(WA2),(5)

A∗0W = WA0 −
d

dt
(WA1) +

d2

dt2
(WA2),

with the boundary conditions

lim
t→x

W (t)A2(t) = 0 = lim
t→x

(
W (t)A1(t)−A∗1(t)W (t)

)
,

for x = a, b.

The second condition can be replaced by

(6) lim
t→x

(
W (t)A1(t)−

d

dt

(
W (t)A2(t)

))
= 0.

These equations are quite general and do not depend on the assump-
tions that the matrix valued coefficients of D are polynomials nor on the
fact that the interval (a, b) is finite. Finding explicit solutions of these equa-
tions is a highly non trivial task. As noted before, in [GPT1] we computed
explicitly the matrix valued spherical functions of any K-type associated
to the complex projective plane. These results were connected in [GPT4]
with the established theory of matrix valued orthogonal polynomials. We
will see later that by using just the first few steps of the analysis in [GPT1]
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and [PT] one gets solutions of equations (5) and (6). More explicitly the
Casimir of G is symmetric with respect to the L2-inner product between
matrix valued functions on G. The method of [GPT1] allows one to replace
this differential operator by a second order differential operator in the vari-
able t ∈ (0, 1). By an appropriate conjugation as in [GPT4] one converts
this operator into a matrix valued differential operator D of the hypergeo-
metric type. Similarly the L2-inner product on G leads to a matrix valued
weight function W on (0, 1). The symmetry of the Casimir mentioned above
makes D symmetric with respect to W , hence we obtain a classical pair
{W,D}. This program will be carried out in the next sections.

3. Some background material from representation theory.

In the forthcoming paper [PT] one tackles the problem of determining
the matrix valued spherical functions associated to the n-dimensional com-
plex projective space Pn(C). This space can be realized as the homogeneous
space G/K, where G = SU(n + 1) and K = S(U(n) × U(1)) � U(n). By
going from the complex projective plane as in [GPT1] to the n-dimensional
complex projective space one gets a plethora of new phenomena. Here we
recall a few facts from [PT] obtained in a similar way as those corresponding
to the case n = 2 given in [GPT1]. Let (Vπ, π) be any irreducible repre-
sentation of K. An irreducible spherical function can be characterized as a
function Φ : G −→ End(Vπ) such that

i) Φ is analytic.

ii) Φ(k1gk2) = π(k1)Φ(g)π(k2), for all k1, k2 ∈ K, g ∈ G, and Φ(e) = I.

iii) [∆Φ](g) = Φ(g)[∆Φ](e), for all g ∈ G and ∆ ∈ D(G)G

where D(G)G denotes the algebra of all left and right invariant differential
operators on G. We observe that the Casimir operator ∆2 of G belongs
to D(G)G. For our purposes it is convenient to consider a larger class of
functions, namely the vector space of all functions Φ that satisfy

i) Φ is analytic.

ii) Φ(k1gk2) = π(k1)Φ(g)π(k2), for all k1, k2 ∈ K, g ∈ G.

iii) [∆2Φ](g) = Φ(g)[∆2Φ](e), for all g ∈ G.

The study of these spaces of functions is carried out in [PT] by using the
approach of [GPT1]. This naturally lead us to a very rich collection of
classical pairs {W,D}.

TOME 55 (2005), FASCICULE 6
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For any g ∈ SU(n + 1) we denote by A(g) the left upper n× n block
of g, and we consider the open dense subset A = {g ∈ G : det(A(g)) �= 0}.
Then A is left and right invariant under K. We introduce the following
function defined on A:

Φπ(g) = π(A(g)),

where π above denotes the unique holomorphic representation of GL(n,C)
which extends the given representation of U(n). For any function Φ in our
class we associate to it a function H : A −→ End(Vπ) defined by

H(g) = Φ(g)Φπ(g)−1.

Then H satisfies that H(e) = I and

i) H(gk) = H(g), for all g ∈ A, k ∈ K.

ii) H(kg) = π(k)H(g)π(k−1), for all g ∈ A, k ∈ K.

The canonical projection p : G −→ Pn(C) maps the open dense subset
A onto the affine space Cn of those points in Pn(C) whose last homogeneous
coordinate is not zero. Thus, property i) says that H may be considered as a
function on Cn. The fact that Φ is an eigenfunction of ∆2 makes H into an
eigenfunction of a differential operator D on Cn. The explicit computation
of D is carried out in [PT]: For H ∈ C∞(Cn)⊗ End(Vπ) we have

D(H)(z1, . . . , zn) =
(
1 +

∑
1�j�n

|zj |2
)( ∑

1�i�n

(
∂2H
∂x2
i

+ ∂2H
∂y2
i

)
(1 + |zi|)2

+ 2
∑

1�i�n

∑
j>i

(
∂2H
∂xi∂xj

+ ∂2H
∂yi∂yj

)
Re(zizj)

− 2
∑

1�i�n

∑
j>i

(
∂2H
∂xi∂yj

− ∂2H
∂xj∂yi

)
Im (zizj)

)

− 2
∑

1�i�n

(
∂H
∂xi
− ∂H

∂yi

)
π̇(Pi),

where zj = xj + iyj and Pj is the n × n matrix whose (r, s) element is
(Pj)rs = zr(δjs+zjzs). Here π̇ denotes the representation of the Lie algebra
of K obtained by taking the derivative at the identity of the representation
π. By property ii), H is determined by its restriction H = H(r) to the cross
section {(r, 0, . . . , 0) : r � 0} of the K-orbits in Cn, which are the spheres
of radius r � 0. Then H = H(r) becomes an eigenfunction of the following
differential operator

ANNALES DE L’INSTITUT FOURIER
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DH(r) = (1 + r2)2
d2H

dr2
+

(1 + r2)
r

dH

dr

(
2n−1 + r2 − 2r2π̇(E11)

)
+

4
r2

( ∑
2�j�n

π̇(Ej1)H(r)π̇(E1j)−H(r)
∑

2�j�n
π̇(Ej1)π̇(E1j)

)
(7)

+
4(1+r2)

r2

( ∑
2�j�n

π̇(E1j)H(r)π̇(Ej1)−H(r)
∑

2�j�n
π̇(E1j)π̇(Ej1)

)
,

where Eij denotes the n × n matrix with entry (i, j) equal to 1 and 0
elsewhere.

The irreducible representations of U(n) are restrictions of irreducible
holomorphic representations of GL(n,C), which are parameterized, up to
equivalence, by n-tuples of integers

π = (m1,m2, . . . ,mn) such that m1 � m2 � · · · � mn.

As GL(n−1,C)-module, Vπ decomposes as a direct sum of irreducible
representations, each one with multiplicity one, namely

Vπ =
⊕

µ interlace π

Vµ,

where the sum is over all (n−1)-tuples that satisfy

µ = (mµ
1 , . . . ,m

µ
n−1) ∈ Zn−1, with mi � mµ

i � mi+1, i = 1, . . . , n−1.

The above facts are well known and can be found in [VK].

The subgroup M of all matrices in K of the form
(
a 0
0 A

)
, with

A ∈ U(n−1) fixes all points (r, 0, . . . , 0) ∈ Cn. Then since H satisfies
property ii) above, it follows that the linear transformation H(r) commutes
with π(M), for all r � 0. Thus H(r) is a scalar hµ(r) on each Vµ. Therefore,
after a choice of an ordering of the interlacing µ′s, we can identify the
function H(r) with the vector valued function (hµ(r))µ ∈ CL, where L is
the number of all (n−1)-tuples µ which interlace π.

We observe that the linear transformations∑
2�j�n

π̇(Ej1)H(r)π̇(E1j),
∑

2�j�n
π̇(Ej1)π̇(E1j),

∑
2�j�n

π̇(E1j)H(r)π̇(Ej1) and
∑

2�j�n
π̇(E1j)π̇(Ej1),

which appear in (7) commute with π(M). Therefore they are scalar
multiples of the identity on each Vµ. These scalars are computed in [PT] by
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2058 F. Alberto GRÜNBAUM, Inés PACHARONI & Juan TIRAO

looking at the fine structure of the representation π going along a Gelfand-
Cetlin basis of Vπ. In the next section we will carry out this computation
in the particular case L = 3.

The fact that H = H(r) is an eigenfunction of the differential operator
(7), and after the change of variable t = (1 + r2)−1, implies that the
function H(t) = (hµ(t))µ associated to the spherical function Φ satisfies
the following system of differential equations

t(1− t)h′′µ(t) +
(
sπ − sµ + 1− t(sπ − sµ + n + 1)

)
h′µ(t)

+
1

1− t

(n−1∑
j=1

tj,µ
(
hµ+ej (t)− hµ(t)

))
(8)

+
t

1− t

(n−1∑
j=1

sj,µ
(
hµ−ej (t)− hµ(t)

))
= λhµ(t),

where ej denotes the j-th canonical basis vector in Rn−1, sπ =
∑n
i=1 mi,

sµ =
∑n−1
i=1 mµ

i ,

tj,µ =

∏n
i=1 |mi −mµ

j − i + j|∏
1�i�n−1,

i �=j
|mµ

i −mµ
j − i + j|

and

sj,µ =

∏n
i=1 |mi −mµ

j − i + j + 1|∏
1�i�n−1,

i �=j
|mµ

i −mµ
j − i + j| .

As mentioned in Section 2 the group representation theory recalled
above has given us in (8) a differential operator in the variable t which is
symmetric with respect to the inner product given below.

The L2-inner product for matrix valued functions Φ and Ψ in the
class introduced above gives rise to the following inner product of the
corresponding functions H and K on (0, 1),

(9) 〈H,K〉 =
∑

µ interlace π

2n dim(Vµ)
∫ 1

0

(1− t)n−1tsπ−sµ hµ(t)kµ(t) dt.

Explicitly the dimension of Vµ can be computed by using the Weyl’s formula

dimVµ =
∏

1�i<k�n−1

mµ
i −mµ

k + k − i

k − i
.
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4. The new Jacobi type examples.

In this section we continue with the program advertised at the end of
Section 2, i.e. we will give explicit classical pairs {W̃ , D̃} with

(10) W̃ (t) = tα(1− t)βF (t) α, β > −1

and

(11) D̃ = t(1− t)
d2

dt2
+ (X − tU)

d

dt
+ V,

where F (t) is a polynomial function and X,U, V are constant matrices.

The important step involved in going from (8) to (11) and from the
weight implicit in (9) to the one in (10) will be carried out for two special
kinds of representations π in Sections 4.1 and 4.2 below.

4.1. Examples of size 3× 3.

We consider representations π of GL(n,C) that correspond to n-tuples
of the form

π = (m + 2, . . . ,m + 2︸ ︷︷ ︸
k

, m, . . . ,m︸ ︷︷ ︸
n−k

),

with 1 � k � n−1. We have

dimVπ =
k−1∏
j=0

(n−j)(n−j + 1)
(k − j)(k − j + 1)

.

As GL(n−1,C)-modules one has the decomposition

Vπ = Vµ1 ⊕ Vµ2 ⊕ Vµ3 ,

where
µ1 = (m + 2, . . . ,m + 2︸ ︷︷ ︸

k−1

, m, m, . . . ,m︸ ︷︷ ︸
n−k−1

),

µ2 = (m + 2, . . . ,m + 2︸ ︷︷ ︸
k−1

, m + 1, m, . . . ,m︸ ︷︷ ︸
n−k−1

),

µ3 = (m + 2, . . . ,m + 2︸ ︷︷ ︸
k−1

, m + 2, m, . . . ,m︸ ︷︷ ︸
n−k−1

).

It is important to note that

TOME 55 (2005), FASCICULE 6
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dimVµ1 =
k−2∏
j=0

(n−j − 1)(n−j)
(k − j − 1)(k − j)

,

dimVµ2 = k(n−k)
k−2∏
j=0

(n−j − 1)(n−j)
(k − j)(k − j + 1)

,

dimVµ3 =
k−1∏
j=0

(n−j − 1)(n−j)
(k − j)(k − j + 1)

.

In this particular case the derivation of (8) from (7) is much simpler than in
the general case. Next we give an idea of what is involved in this process.
We recall that we need to compute in each Vµi (i = 1, 2, 3) the linear
transformations∑

2�j�n
π̇(Ej1)H(r)π̇(E1j),

∑
2�j�n

π̇(Ej1)π̇(E1j),

∑
2�j�n

π̇(E1j)H(r)π̇(Ej1) and
∑

2�j�n
π̇(E1j)π̇(Ej1).

The highest weight of Vµi is

µi = (m+3−i)x1+(m+2)(x2+· · ·+xk)+(m+i−1)xk+1+m(xk+2+· · ·+xn).

Therefore all weights in Vµi are of the form µ = µi −
∑n−1
r=2 nrαr with

αr = xr −xr+1, thus µ = (m+3− i)x1 + · · · . Now we observe that for the
representations π considered here, for all j = 2, . . . , n we have

π̇(E1j)(Vµi) ⊂ Vµi−1 and π̇(Ej1)(Vµi) ⊂ Vµi+1 .

In fact, if v ∈ Vµi is a vector of weight µ then π̇(E1j)v is a vector of weight
µ + x1 − xj = (m + 3 − (i − 1))x1 + · · ·. Similarly π̇(Ej1)v is a vector of
weight µ + xj − x1 = (m + 3− (i + 1))x1 + · · ·. Therefore∑

2�j�n
π̇(Ej1)H(r)π̇(E1j)v = hµi−1(r)

∑
2�j�n

π̇(Ej1)π̇(E1j)v

and ∑
2�j�n

π̇(E1j)H(r)π̇(Ej1)v = hµi+1(r)
∑

2�j�n
π̇(E1j)π̇(Ej1)v.

The Casimir element of GL(n,C) is

∆(n)
2 =

∑
1�i,j�n

EijEji =
∑

1�i�n
E2
ii +

∑
1�i<j�n

(Eii − Ejj) + 2
∑

1�i<j�n
EjiEij .

ANNALES DE L’INSTITUT FOURIER
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Similarly the Casimir operator of GL(n−1,C) ⊂ GL(n,C) is

∆(n−1)
2 =

∑
2�i�n

E2
ii +

∑
2�i<j�n

(Eii − Ejj) + 2
∑

2�i<j�n
EjiEij .

Hence

(12)
∑

2�j�n
Ej1E1j =

1
2

(
∆(n)

2 −∆(n−1)
2 − E2

11 −
∑

2�j�n
(E11 − Ejj)

)
.

To compute the scalar linear transformation
∑

2�j�n π̇(Ej1)π̇(E1j) on Vµi
it is enough to apply it to a highest weight vector vi of Vµi . The highest
weight of Vπ is (m+2)(x1+ · · ·+xk)+m(xk+1+ · · ·+xn), and the weight of
vi is (m+3−i)x1+(m+2)(x2+· · ·+xk)+(m+i−1)xk+1+m(xk+2+· · ·+xn).
Then we have that, π̇(∆(n−1)

2 ) acting on Vµi is the scalar

π̇(∆(n)
2 )vi =

(
k(m + 2)2 + (n−k)m2 + 2k(n−k)

)
vi,

π̇(∆(n−1)
2 )vi =

(
(k − 1)(m + 2)2 + (m + i− 1)2

+ (n−k − 1)m2 + (3− i)(k − 1)

+ (i− 1)(n−k − 1) + 2(k − 1)(n−k − 1)
)
vi,

π̇(E11)vi = (m + 3− i)vi,

π̇
( ∑
2�j�n

(E11 − Ejj)
)
vi =

(
2(n−k)− n(i− 1)

)
vi.

Therefore, by using (12), we obtain for all v ∈ Vµi∑
2�j�n

π̇(Ej1)π̇(E1j)v = π̇
( ∑

2�j�n
Ej1E1j

)
v = (i− 1)(3 + k − i)v.

Similarly for all v ∈ Vµi we have∑
2�j�n

π̇(E1j)π̇(Ej1)v = π̇
( ∑

2�j�n
E1jEj1

)
v = (3− i)(n + i− 1− k)v.

Hence, the differential operator D in (7) becomes, for i = 1, 2, 3

(DH)i(r) =(1 + r2)2h′′i (r) +
1 + r2

r

(
2n−1 + r2 − 2(m + 3− i)r2

)
h′i(r)

+
4
r2

(i− 1)(3 + k − i)
(
hi−1(r)− hi(r)

)
+

4(1 + r2)
r2

(3− i)(n + i− 1− k)
(
hi+1(r)− hi(r)

)
.

After the change of variable t = (1+r2)−1, one gets the matrix valued
differential operator
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D = t(1−t) d
2

dt2
+





 3 + m 0 0

0 2 + m 0
0 0 1 + m




−t


 3 + m + n 0 0

0 2 + m + n 0
0 0 1 + m + n





 d

dt

+
1

1−t


−2(n−k) 2(n−k) 0

0 −n + k−1 n−k + 1
0 0 0




+
t

1−t


 0 0 0

k + 1 −k−1 0
0 2k −2k




and the corresponding weight function

W (t) = tm(1− t)n−1


w1t

2 0 0
0 w2t 0
0 0 w3


 ,

with w1 = dimVµ1 , w2 = dimVµ2 y w3 = dimVµ3 .

To put this in the framework of matrix valued orthogonal polynomials
we proceed as in [GPT4] by finding an appropriate conjugation of the
differential operator and of the corresponding weight function. We take

Ψ∗(t) =


 1 0 0

1 1 0
1 2 1





 1 0 0

0 1− t 0
0 0 (1− t)2


 .

Then we get
W̃ (t) = Ψ(t)W (t)Ψ∗(t)

for the new weight function, and the new differential operator D̃F =
(Ψ∗)−1D(Ψ∗F ) is

D̃ = Ã2(t)
d2

dt2
+ Ã1(t)

d

dt
+ Ã0(t),

with Ã2, Ã1, Ã0 given by

Ã2(t) = t(1− t),
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Ã1(t) =




m + 3 0 0
−1 m + 2 0

0 −2 m + 1




− t


 (n + m + 3) 0 0

0 (n + m + 4) 0
0 0 (m + n + 5)


 ,

Ã0(t) =


 0 2(n−k) 0

0 −(n + m + 1− k) n + 1− k

0 0 −2(n + m + 2− k)


 .

From the program outlined at the end of Section 2 it follows that for
any m ∈ N0 and n = 2, 3, . . . the following equations are satisfied

Ã∗0W̃ − W̃ Ã0 + (W̃ Ã1)′ − (W̃ Ã2)′′ = 0,

Ã∗1W̃ + W̃ Ã1 − 2(W̃ Ã2)′ = 0,

W̃ Ã2|t=0 = W̃ Ã2|t=1 = 0,

(W̃ Ã1 − Ã∗1W̃ )|
t=0 = (W̃ Ã1 − Ã∗1W̃ )|

t=1 = 0.

A look at the dependence of Ã2, Ã1, Ã0 and W̃ on the parameters m and
n makes it clear that these equations are satisfied if one replaces m by any
α ∈ R and n−1 by any β ∈ R. In conclusion for any α, β > −1 we have
exhibited a classical pair {W̃ , D̃}.

4.2. Examples of size 4× 4.

We consider representations of GL(n,C) that correspond to n-tuples
of the form

π = (m + 2, . . . ,m + 2︸ ︷︷ ︸
k1

, m + 1, . . . ,m + 1︸ ︷︷ ︸
k2−k1

, m, . . . ,m︸ ︷︷ ︸
n−k2

)

with 1 � k1 < k2 � n−1. We have

dimVπ =
k2 − k1 + 1

k2 + 1

(
n

k2

)(
n + 1
k1

)
.

As GL(n−1,C)-modules one has the decomposition

Vπ = Vµ1 ⊕ Vµ2 ⊕ Vµ3 ⊕ Vµ4 ,
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where
µ1 = (m + 2, . . . ,m + 2︸ ︷︷ ︸

k1−1

, m + 1, m + 1, . . . ,m + 1︸ ︷︷ ︸
k2−k1−1

, m, m, . . . ,m︸ ︷︷ ︸
n−k2−1

),

µ2 = (m + 2, . . . ,m + 2︸ ︷︷ ︸
k1−1

, m + 1, m + 1, . . . ,m + 1︸ ︷︷ ︸
k2−k1−1

, m + 1, m, . . . ,m︸ ︷︷ ︸
n−k2−1

),

µ3 = (m + 2, . . . ,m + 2︸ ︷︷ ︸
k1−1

, m + 2, m + 1, . . . ,m + 1︸ ︷︷ ︸
k2−k1−1

, m, m, . . . ,m︸ ︷︷ ︸
n−k2−1

),

µ4 = (m + 2, . . . ,m + 2︸ ︷︷ ︸
k1−1

, m + 2, m + 1, . . . ,m + 1︸ ︷︷ ︸
k2−k1−1

, m + 1, m, . . . ,m︸ ︷︷ ︸
n−k2−1

),

It is important to note that

dimVµ1 =
k2 − k1 + 1

k2

(
n−1
k2 − 1

)(
n

k1 − 1

)
,

dimVµ2 =
k2 − k1 + 2

k2 + 1

(
n−1
k2

)(
n

k1 − 1

)
,

dimVµ3 =
k2 − k1

k2

(
n−1
k2 − 1

)(
n

k1

)
,

dimVµ4 =
k2 − k1 + 1

k2 + 1

(
n−1
k2

)(
n

k1

)
.

By using (8) and choosing the order µ1, µ2, µ3, µ4 of the subrepresentations
µ’s one gets the matrix valued differential operator

D = t(1− t)
d2

dt2
+







3 + m 0 0 0
0 2 + m 0 0
0 0 2 + m 0
0 0 0 1 + m




−t




3 + m + n 0 0 0
0 2 + m + n 0 0
0 0 2 + m + n 0
0 0 0 1 + n + m





 d

dt

+
1

1− t




k2 + k1 − 2n (k2−k1+2)(n−k2)
k2−k1+1

(k2−k1)(n−k1+1)
k2−k1+1 0

0 −n + k1 − 1 0 n−k1 + 1
0 0 −n + k2 n−k2

0 0 0 0




+
t

1− t




0 0 0 0
k2 + 1 −k2 − 1 0 0
k1 0 −k1 0
0 k1(k2−k1+2)

k2−k1+1
(k2−k1)(k2+1)
k2−k1+1 −k1 − k2



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and the corresponding weight

W (t) = tm(1− t)n−1




w1t
2 0 0 0

0 w2t 0 0
0 0 w3t 0
0 0 0 w4


 ,

with w1 = dimVµ1 , w2 = dimVµ2 , w3 = dimVµ3 and w4 = dimVµ4 . To
obtain out of this a classical pair {W̃ , D̃} we use the conjugating function

Ψ∗(t) =




1 0 0 0
1 1 0 0
1 0 1 0
1 k2−k1+2

k2−k1+1
k2−k1
k2−k1+1 1







1 0 0 0
0 1− t 0 0
0 0 1− t 0
0 0 0 (1− t)2


 .

Then we get
W̃ (t) = Ψ(t)W (t)Ψ∗(t)

for the new weight function, and the new differential operator D̃F =
(Ψ∗)−1D(Ψ∗F ) is

D̃ = Ã2(t)
d2

dt2
+ Ã1(t)

d

dt
+ Ã0(t),

with Ã2, Ã1, Ã0 given by

Ã2(t) = t(1−t)

Ã1(t) =


m+ 3 0 0 0
−1 m+ 2 0 0
−1 0 m+ 2 0
0 − k2−k1+2

k2−k1+1
− k2−k1
k2−k1+1

m+ 1




− t


 (n+m+ 3) 0 0 0

0 (n+m+ 4) 0 0
0 0 (n+m+ 4)
0 0 0 (n+m+ 5)




Ã0(t) =


 0

(k2−k1+2)(n−k2)
k2−k1+1

(k2−k1)(n−k1+1)
k2−k1+1

0

0 −(n+m+ 1) + k2 0 n+ 1−k1
0 0 −(n+m+ 2) + k1 n−k2
0 0 0 −2(n+m+ 2) + k1 + k2


 .

A look at the dependence of Ã2, Ã1, Ã0 and W̃ on the parameters m and
n makes it clear that {W̃ , D̃} remains a classical pair if one replaces m by
any α ∈ R and n−1 by any β ∈ R. In conclusion for any α, β > −1 {W̃ , D̃}
is a classical pair.
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4.3. Closing remarks.

We close with a few remarks pertaining to all examples discussed so
far that arise from a group theoretical situation. For concreteness we limit
ourselves to Example 4.2. First we note that W̃ (t) has the factorization

W̃ (t) =
ρ(t)

ρ(1/2)
T (t)W̃ (1/2)T ∗(t)

with T (1/2) = I and ρ(t) = tα(1 − t)β . The matrix T (t), introduced in
[DG1], solves the equation

T ′(t) =
(
A∗

t
+

B∗

t− 1

)
T (t)

with

A =




1 0 0 0
− 1

2
1
2 0 0

− 1
2 0 1

2 0
0 k1−k2−2

2(k2−k1+1)
k1−k2

2(k2−k1+1) 0


 ,

B =




0 0 0 0
1
2 1 0 0
1
2 0 1 0
0 k2−k1+2

2(k2−k1+1)
k2−k−1

2(k2−k1+1) 2


 .

The matrices A,B do not depend on α nor β and satisfy

[A,B] = I −A−B/2

independently of the others free parameters k1, k2. A deeper understanding
of commutation relations of the type given above for all the examples in
[GPT1], [GPT2], [GPT3], [GPT4], [GPT5] remains an interesting challenge.
Finally we turn to some monodromy type considerations. The operator T (t)
in Example 4.2 has a nice expression

T (t) = I +
4∑
i=1

(√
t− 1√

2

)i
Ti

with very simple upper triangular Ti’s. The appropriate operator χ(t), also
introduced in [DG1], has in this instance a nice expression

χ(t) = P +
Q

t
+

R√
t− 1

+
S√
t + 1

with simple constant and symmetric matrices P , Q, R, S. It would be of
interest to find some group representation interpretation for the matrices
Ti as well as the matrices P , Q, R, S.
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