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SYMBOLIC DISCREPANCY AND

SELF-SIMILAR DYNAMICS

by Boris ADAMCZEWSKI

1. Introduction.

In this paper, we introduce two functions of discrepancy, one asso-
ciated with symbolic sequences and the other with subshifts (respectively
defined in (1) and (2)). We mainly deal with the asymptotic behaviour
of these two functions, focusing on sequences obtained as fixed points
of primitive substitutions and on subshifts arising from them. Such se-
quences naturally appear as soon as one studies dynamical systems with a
self-similar structure (that is, the induced system on some subset is topo-
logically conjugate to the original one). This is in particular the case for
one-dimensional toral quadratic rotations (see for instance [1]) and interval
exchanges with parameters lying in the same quadratic field [3]. This work
is motivated by questions arising at once from Diophantine approximation
and ergodic theory and shares some links with [2], [22], [23], [8], [15].

We first recall the definition of discrepancy on a finite set. Let A
be a finite set. Endowed with the discrete topology, ,,4 is a compact set.
Let us consider a probability measure p on A. A sequence u = (Un)nEN
which takes its values in ,A is said uniformly distributed with respect to the
measure p if

where Xfal denotes the characteristic function of the set {a}. Then, we

Keywords: Discrepancy - Substitutions - Subshifts - Bouded remainder sets - Self-
similar dynamics.
Math. classification: llK38 - 37A30 - 37A45 - 37BlO - 68R15.
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define the discrepancy function AN (A, u) of the sequence u by

These definitions, given for a finite set, come directly from the more
classical notions of uniform distribution modulo 1 and discrepancy for real
sequences. Some generalizations to topological, compact or quasi-compact
groups could also be found in the literature. Two important references on
this subject are the books of L. Kuipers and H. Niederreiter [17] and of
M. Drmota and R.F. Tichy [7].

With any symbolic sequence u defined over a finite set, one can also
associate the dynamical system (O(u), T), where 0(u) is the closure of the
orbit of u under the classical shift transformation T. This leads us to ask

the following questions: what could be a (natural) version of discrepancy
on such a symbolic space? How far is such a system from having an ideal
distribution?

Let u be a symbolic sequence, x = (O(u), T) the subshift arising
from u, and p a shift invariant measure for u. Then, we define the

discrepancy function of the dynamical system x (with respect to p) by

where [w] denotes the cylinder associated with the word w. This definition
is really close to the classical one given in the case of the torus, since we
just have replaced intervals by cylinders. Moreover, if (X, T, A) denotes a
uniquely ergodic dynamical system and f a continuous function on X, then

uniformly. The discrepancy function introduced above measures the uniform
speed of convergence of Birkhoff ’sums with a restriction to a class of very
regular continuous functions (i.e., characteristic functions of cylinders).
Since cylinders form a natural basis of the topology for the space O( u), we
can interpret DN (x) as a measure of unique ergodicity for subshifts having
this property. Note that it can be easily deduced from a classical result

generally attributed to Curtis, Lyndon and Hedlund (see for instance [18]),
that the order of magnitude of the functions ON (u) and are
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topological invariants (i.e., preserved by a topological isomorphism between
two subshifts).

This article is organized as follows. In Section 2, we present our
results (mainly, Theorem 1 and Theorem 3). We discuss spectral properties
of primitive substitutive subshifts in Section 3. The main tool for proving
Theorem 1 is introduced in Section 4. Finally, Section 5 and Section 6 are
respectively devoted to the proof of Theorem 1 and Theorem 3.

2. Definitions and main results.

2.1. Symbolic sequences.

A finite and nonempty set is called alphabet. The length of a finite
word cJ, denoted by lwl, is the number of letters it is built from. The

empty word, E, is the unique word of length 0. We denote by ,A.* the set of
finite words on ,~4 and by A N the set of sequences on A. Let u = be

a symbolic sequence defined over the alphabet A. A factor of u is a finite
word of the form uj, 0  i  j. We denote by the set of all

the factors of the sequence u, is called the language of u. If w is a
finite word and a a letter, then Iwla is the number of occurrences of the

letter a in cJ.

2.2. Substitutions.

Endowed with concatenation, the set ,~4* is a free monoid with unit

element e. A map from A. to A* B f El can be extended by concatenation
to an endomorphism of the free monoid ,,4.* and then to a map from ,A.~
into itself. A substitution a on the alphabet .,4 is such a morphism satisfying

(i) there exists a E .A such that a is the first letter of a( a);

(ii) for all

Then, converges in endowed with the product of
the discrete topologies on A, to a sequence u. This sequence is a fixed point
of a, i.e., a (u) = u. Given a substitution a defined on A = f 1, 2,..., d},
the matrix M~ _ is called the incidence matrix associated

with a. A substitution is primitive if there exists a power of its incidence
matrix for which all the entries are positive. To a fixed point of a primitive
substitution u we associate a natural probability measure tc on A, the
measure of a letter a E A being given by the value of its frequency in u,
that is, p(a) = limn-o (the existence of frequencies is
for instance proved in [21]).
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2.3. Spectrum of a primitive substitution.

The Perron-Frobenius theorem implies that the incidence matrix of
a primitive substitution admits a simple real eigenvalue greater than the
modulus of all the others eigenvalues (see for instance [21]). This eigenvalue
is greater than one and is called the Perron eigenvalue of the substitution.
We order the spectrum SMa of the incidence matrix associated with a
primitive substitution o- as follows:

where 0 is the Perron eigenvalue of a, d’ is the number of distinct eigenvalues
and

where aj denotes the multiplicity of the eigenvalue 0j in the minimal

polynomial of Ma . Furthermore, if |0i| = |0k = 1, ai = ak , 01 is not a root
of unity and 0k is a root of unity, then i  k. With these conditions, the
quantities 0, ~82 ~ ] and a2 are well-defined (whereas several choice for the
value of 02 can sometimes be done).

Given a primitive substitution a, one can define its substitution of
order 2, denoted by a2 (see Section 6 for a precise construction). It is proved
in [21] that such a substitution is primitive too and shares the same Perron
eigenvalue. Following (3), we can thus define the quantities ~92,2 ~ and a2,2,
associated with the spectrum of 

2.4. Landau symbols.

Let f and g be two real positive functions. We recall the definition of
some Landau symbols:

o f = O(g) if exists C &#x3E; 0, such that f (x)  Cg(x), for all x E R+,

The following notation will be used in the most of our results. We will
write

if both and

Though such a relation does of course not imply that f - g, we will
consider, with a slight abuse of language, that the order of magnitude of
the function f is g, as soon as the relation f = (0 n Q) (g) is satisfied.
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2.5. Main results.

Following these definitions, a fixed point of a primitive substitution
is uniformly distributed with respect to its natural probability measure.
Our main result is a precise estimate of the discrepancy for such sequences.
We show how it is in part ruled by the spectrum of the incidence matrix
associated with the substitution. We prove that in most of cases (more
precisely for cases (i), (ii) and (iii) of Theorem 1) the order of magnitude
of the discrepancy just depends on the incidence matrix. In these cases,
the asymptotic behaviour of the discrepancy is thus not modified by any
permutation of the letters in the definition of the substitution. However,
Theorem 1 could not be reduced to a result on primitive matrices since
case (iv) really depends on the substitution. For instance, the two following
substitutions a and T respectively defined by:

and

share the same incidence matrix but have a different discrepancy. More

precisely, the fixed point of a (generated by the letter 1) has a bounded
discrepancy function, whereas the order of magnitude of the discrepancy
associated with the one of T is log N. Since we can associate to a primitive
substitition a natural probability measure p as in Section 2.2, we will write
in the following ON (u) instead of AN (A, u) for the discrepancy of a fixed
point u of a primitive substitution.

THEOREM 1. - Let u = be a fixed point of a primitive
substitution a defined over the alphabet A, 0, 02 and a2 defined as in
Section 2.3, ~ the natural probability measure associated with u (defined
as in Section 2.2) and

where denotes the characteristic function of the set fal. Then, the
following holds:

(i) if 1021  1, then is bounded;

(ii) if 1021 &#x3E; 1, then A N (u) = (o n 0) ((log N)a2 N(loge 1(21));

(iii) if (92 ~ = 1 not a root of unity, then
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(iv) if ~2! = 1 and 82 is a root of unity, then

either A,,.,, =,4 0 and

or and

where the complex number (which just depends on the pair (a, u)) is
defined in Section 5.4 and could explicitly be computed.

We derive from Theorem 1 the following characterization of fixed
points of primitive substitutions having an almost perfect distribution

(that is, with a bounded discrepancy).

COROLLARY 2. A fixed point u of a primitive substitution a has
a bounded discrepancy function ON (u) if and only if one of the following
holds:

(ii) ~82 = 1, ~x2 = 0, 02 is a root of unity and Aa,u = 0.

Next, we consider dynamical systems arising from primitive substitu-
tions, which are well-known to be uniquely ergodic subshifts (see [19]). We
prove an analogous of Theorem 1, for the discrepancy of these systems, with
respect to their unique invariant measure. The main interest of Theorem 3
is that it gives a uniform information with respect to all the factors, whereas
Theorem 1 just deals with letters. Theorem 3 is obtained via Theorem 1

together with the use of the notion of derived sequences introduced in [10].
However, Theorem 3 is far from being a simple by-product of Theorem 1.

THEOREM 3. Let u be a fixed point of a primitive substitution a,
0, 02,2 and a2,2 defined as in Section 2.3, X = (O(u),T,p) the dynamical
system arising from u, and

Then, the following holds:

(i) if 102,21  1, then DN(X) is bounded;

(ii) if ~82,2 ~ &#x3E; 1, then .

(iii) if ~2,2! = 1 and 02,2 is not a root of unity, then
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(iv) i£102,21 = 1 and O2,2 is a root of unity, then

and

In particular, it follows that such dynamical systems are uniformly
well distributed with respect to their unique ergodic measure, that is:

COROLLARY 4. Let u be a fixed point of a primitive substitution a,
x = (O(u),T,p) the dynamical system arising from u, then we have that

tends to 0 uniformly in

Our method provides explicit constants for all the bounds given in
Theorem 1 and 3. In case (iv) of Theorem 1, it is even possible to compute
the quantity

Most of the arguments to prove it are exposed in [2]. The quantities 02,2 and
a2,2 could probably be replaced respectively by 82 and a2 in Theorem 3, but
at this point this can just be proved in the case where 82 &#x3E; 1. Theorem 1

and 3 are respectively proved in Section 5 and 6.

3. An application to spectral theory.

We first discuss how our results can be used to obtain a spectral
information for primitive substitutive subshits and thus for their measure-
theoretic isomorphic dynamical systems.

Let x = (X, B, p, T) be an ergodic dynamical system. For any B E L3
and x E X, we consider

By Birkhoff’s ergodic theorem, for any B E ,~3 and almost all x E X ,
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when N tends to infinity. A set B is called a bounded remainder set for T
if is bounded on a set of measure one. For an irrational rotation

on the one-dimensional torus, H. Kesten (more precisely, the "if" part is
due to E. Hecke in 1922) gives the following characterization of bounded
remainder sets which are intervals.

THEOREM 5 (see Kesten [16]). - Let T be a translation on T by an
irrational a. Then, an interval I is a bounded remainder set for T if and
only if its length belongs to Za mod 1.

In 1973, H. Fiirstenberg, H. Keynes and L. Shapiro (see also K. Peter-
sen [20] and G. Halász [14]) proved the following strong generalisation of
Kesten’s theorem making relevant the notion of discrepancy in ergodic
theory.

THEOREM 6 (see Fiirstenberg and al. [13]). - Let (X,B,M,T) be an
ergodic dynamical system. If a subset B of B is a bounded remainder set
for the transformation T, then is an eigenvalue for T. Moreover, if
e21rir is an eigenvalue for T, there exists a bounded remainder set B E L3
such that = r.

In the symbolic framework, intervals could naturally be replaced by
cylinders. Therefore, we can translate the previous problematic by: given a
subshift, does there exist cylinders which are bounded remainder sets? Our
study answers partially this question in the case of primitive substitutive
subshifts. In particular, we obtain that, for a substitution satisfying the
condition 02,2  1 (for instance the Fibonacci or Tribonacci subshifts), all
the cylinders are bounded remainder sets. Theorem 3 proves even that in
this case there exists a uniform bound.

In view of Theorem 6, we can easily translate such results to provide
a simple condition of non-weak mixing for primitive substitutive subshifts.

THEOREM 7. Let u be a fixed point of a primitive substitution a
and x be the associated subshift. If AN (U) is bounded, that is, if one of
the following holds

is a root of unity and .

then, X is not ureakly mixing.
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In particular, we recover that the subshift arising from a Pisot
type substitution (that is, the Perron eigenvalue is a Pisot number and
the characteristic polynomial is irreducible) is never weakly mixing. This
result, mentioned in [24], derives from one of B. Solomyak [26] but we do
not require in Theorem 7 the irreducibility of the characteristic polynomial
of the incidence matrix, contrary to the assumption done in [26]. Moreover,
since the sets considered are cylinders, one expects to be able to compute
their measures. Corollary 2 and Theorem 3 provide thus a concrete way
to obtain eigenvalues for a primitive substitutive subshift. In the case of
the Fibonacci and Tribonacci subshifts, all the eigenvalues can be found
by proving that any cylinder corresponds to a bounded remainder set and
using the fact that the eigenvalues form an additive group. More precisely,
we can deduce from our study that the discrepancy function is

bounded for these two subshifts. Such a result is probably also true for
all Pisot type substitutions.

4. Notation and preliminary results.

In this section, we introduce the main tool that we will have to use
for our study together with some preliminary results.

4.1. The S( (N) functions.
In order to estimate the discrepancy of a symbolic sequence u, it is

useful to associate a "weight" with each letter of A. Then, the study of
the discrepancy takes the following formulation: what is the number of

occurences of each letter in a given prefix of u‘? We already used this idea
in [2] for particular sequences, and we propose now to give a more general
statement of this fact. The properties of (S£(N))NEN* were investigated,
in particular for some sequences related to the distribution of digits in
arithmetical sequences, in [4], [5], [6], [8], [9], [23].

DEFINITION 8. - Let u = ~ ’’’ be a symbolic sequence
defined over the alphabet A = {l,2,...,d}. If f = CCd
and N C N*, then we define
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Just as, if cJ E A*, we define

DEFINITION 9. Let u = be a sequence defined over

the alphabet .4= {1,2,...,~} and such that each letter a of ,A admits a
positive frequency p(a) in u. Let A = C (Cd denote the frequencies
vector of u. Then, for 1  i  d - l, vve introduce the vectors fi E C~,
defined by

PROPOSITION 10. - The two following assertions are equivalent:

In (i), the constant in the 0 just depends on z.c and in (ii), it depends on
u and f.

Proof. Since

the previous definition implies

and the fact that the fi form a basis of the vectorial space ends the

proof. D

PROPOSITION 11. The two following assertions are equivalent:

Proof. - It comes directly from (5).

For any word w E ~4*, let us introduce the vector

Then, for a substitution a devined over ,,4 we have
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where Met denotes the incidence matrix of a. For fixed i and j in A, the
sequence satisfies a linear reccurence whose coefficients are

those of the minimal polynomial of M~ . Following Section 2.3, there exist
complex numbers and Ai,j such that for every n E N,

Let us notice that Equations (6) and (7) imply that, for each letter j,
the vector (Ai,j)iEA is an eigenvector of M~ associated with its Perron

eigenvalue 8. There thus exists a complex number Ei such that Ai,j = ~~ ~(i) .
Then, for any vector f = (/(z))~=i,2,...,d ~ Cd lying in the orthogonal
vectorial space spanned by J1, it follows:

Since for k &#x3E; 2, 1021 2:: 

where the constant in the 0 just depends on j, if we assume f and a fixed.
Then, for every word cv E 

where the constant in the 0 just depends on if we assume f and a fixed.
In order to make the following more friendly readable, we introduce the
following notation

where w = úJlúJ2 ... cJm is a word defined over A and f a vector lying in the

orthogonal vectorial space spanned by p. It thus implies
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4.2. Numeration systems associated with substitutions.

We present now the key tool for proving Theorem 1. These generalized
numeration systems associated with substitutions have been introduced

simultaneously by J-M. Dumont and A. Thomas [8], and G. Rauzy [23].

DEFINITION 12. - Let a be a substitution and let us assume that

u is a fixed point for at generated by the letter 1. The subset of A*

composed by the proper prefixes of the image by a of the letters will be
denoted by Pref ~ . The pre fcx automaton associated with the pair 
is defined in the following way:

~ ,A is the set of states,

~ Pref ~ is the set of labels,

~ there is a transition from the state i to the state j labelled by the

(possibly empty) word m if m j is a prefix 

Figure 1. Example of a prefix automaton in the case of the
substitution 1 H 13, 2 - 13223, 3 H 1323.

DEFINITION 13. - An admissible labelled path C in the prefix
automaton associated with a pair (a,u) will be denoted by

with ii E for 0  j  n and Ei E Pref ~ for 0  j  n - 1. The positive
integer n is the length of the path. The set composed by the admissible
labelled paths of length n will be denoted by C~ .

The main theorem concerning the prefix automaton is the following.

THEOREM 14 (see Dumont and Thomas [8], Rauzy [23]). Let u be
, 
a fixed point generated by the letter 1 of a substitution a, then uje have:
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(i) for every positive integer N, there exists a unique admissible path
of length nN in the prefix automaton associated with the pair (a,u),
starting from 1 and labelled by the sequence (En, E1 , ... , E~,, ~, ), such that

where UN denotes the prefix of u of the
length N and such that Eo # E.

(ii) Conversely, to any such a path, there corresponds a unique prefix
of u, given by the above formula.

(iii) Moreover,

The remaining of the paper is now devoted to the proofs of the main
results.

5. Proof of Theorem 1.

This section is devoted to the proof of Theorem 1. Most of the

upper and lower bounds are respectively stated in Section 5.1 and 5.2.
The essential difficulties appear when ~92 ~ ] = 1 and this case is treated in
Section 5.3.

5.1. First upper bounds.

We apply Theorem 14 in order to obtain upper bounds for the

discrepancy of fixed point of primitive substitutions.

PROPOSITION 15. Let u be a fixed point of a primitive substitution,
then:

~ if 82 (  1, then is bounded,

. if ~82 ~ &#x3E; 1, then

. if ~2) = 1, then

where the constants in the 0 just depend on u.

Proof. Equality (9) together with the fact that the words Ei in
Theorem 14 lie in a finite set imply , and thus

where nN is defined as in Theorem 14. One can notice that assertion (iii)
of Theorem 14 implies in view of Equality (7) that



2214

We thus deduce

Then, we have to distinguish three cases, depending on the modulus of the
eigenvalue 82, and using (11), it follows that

then

then

then

where the constants in the 0 just depend on u and f. Proposition 10 allows
us to conclude. D

5.2. First lower bounds.

We want now to show the pertinency of Proposition 15. Hence, we
are going to construct a sequence of prefixes of u with the worst possible
distribution. Following Proposition 11, we know that it is sufficient to

exhibit a vector f E C~d, f 1 p, and an increasing sequence of integers,
such that the sequence takes "high" values, in a

sense that we will have, of course, to make clear.

Let us first recall the following classical result of linear algebra.

LEMMA 16. - Let M be a d x d complex matrix and let us denote
the spectrum of M, where mean the distinct

eigenvalues of M and the ai their multiplicity in the minimal polynomial
of M. Let r be a positive integer and 0 a non-zero eigenvalue of Mr, then
the multiplicity of 0 in the minimal polynomial of M~’ is equal to the
maximum of f ai such that 82 = 8, 1  i  d’ ~ .

If we apply the previous lemma to the incidence matrix associated
with the primitive substitution ~, we obtain the following.

COROLLARY 17. - Let k be a positive integer. Let us denote

by f 0’; 2  i  U the spectrum of ak, so that the 0’ are

ordered as in 2.3. Then, the following holds:

and

In view of Corollary 17, we can thus freely consider any power of a
whithout changing the conditions which appear in Theorem 1. We are now
ready to prove the following.
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PROPOSITION 18. - Let u be a fixed point of a primitive substitution,
then if 1021 &#x3E; 1, then

Proof. If j is a fixed element of ,~4 and 2  k  d’, then the
vectors defined in (7) are eigenvectors associated with the

eigenvalue 0k (or eventually zero vectors). That follows directly from

Equations (6) and (7), and from the fact that the sequences 
form a free familly of the vectorial space spanned by complex sequences.
Moreover, there exists at least one letter jo such that the vector (.À;’J2 )iE.a 0
is a non-zero vector, because otherwise this would provide a polynomial P
of degree less than the one of the minimal polynomial associated with M
and such that P(M) = 0. Let us consider the following vectorial subspace
of Cd:

Since (.À;’J2 is a non-zero vector, it is an eigenvector associated with 0
the eigenvalue 82 and it thus does not lie in E. Hence,

There thus exists a vector fo = E cd such that f o E and

f0 x (a2,x2) ieao ie .

Because of the primitivity of a and Corollary 17, we can assume
without restriction that all the entries of the incidence matrix associated

with a are greater or equal than two, which implies:

o the prefix automaton associated with a is strongly connected, that
is to say, for any pair (i, j ) E ,A.2, the path (i, j ) is admissible.

~ for any pair (i, j) E .A.2, the letter j has at least one occurence in a
proper prefix of 

In particular, there exists a proper prefix in which the letter jo
occurs. Let us denote by wlw2 ... · wr-lwr, wr - jo, such a proper prefix.
Then, we distinguish two cases:

o either

o or
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with wr = jo. In any case, there exists m E {r 2013 1, r} satisfying

We have

where the constant in the 0 just depends on w (for a fixed pair (a, f o ) ) . This
implies that = f~(?7~~~). Since u begins with 1, úJ is a prefix of
u and too. let Then,

and there exists a positive constant C such that:

It follows that which ends the proof
in view of Proposition 11. 0

5.3. The critical case.

Proposition 15 and 18 give the right order of magnitude of 

if ~2! ~ 1. When 1021 = 1, we just obtain that the extreme irregularities lie
between (log N)‘~2 and (log N) 12+1. In particular, we are a priori not able
to say if A N (u) is bounded or not when 82 ~ = 1 and a2 = 0. The following
section is precisely devoted to the understanding of these critical cases.
We will show that the knowledge of the incidence matrix associated with
the substitution is not always sufficient to solve this problem. However, we

provide an algorithmic way of answering it in the contentious cases.

5.3.1. Case (iii) of Theorem 1. - The following proposition states
that the discrepancy is maximal (in view of Proposition 15) when 02 is not
a root of unity.
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PROPOSITION 19. Let u be a fixed point of a primitive substitution.
If 1021 = 1 and 92 is not a root of unity, then

Proof. Let u be a fixed point of a primitive substitution a and let
us assume that 1021 ] = 1 and e2 is not a root of unity. There thus exists a
real q, q g Q, such that = 82.

We recall that the primitivity of a allows us to assume without
restriction that all the entries of M are greater than or equal to two (see
Corollary 17). As in the first part of the proof of Proposition 18, we can
prove the existence of:

9 a vector fo E cd and a letter jo such that fo c E1- and

where

o a proper prefix of w, such that Ffo,2,1"2 (W) y~- 0 (see (10) for a
definition of Ffo,2,a2 (w)).

This implies that

where the constant in the 0 just depends on w.

Let us consider a positive integer N. Following Theorem 14, there
exists a unique admissible path in the prefix automaton associated with
the pair (a, u), beginning with 1 and labelled by (Eo, E1, ... , EnN ), 
such that We thus have

The fact that the prefixes Ei lie in a finite set (Pref ~ ) implies

where the constant in the 0 just depend on u. There thus exists a positive
number C independent of N, such that:
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The next step consists in exhibiting a sequence (Cj)jEN of arbitrarily
large admissible paths in the prefix automaton associated with the pair
((1, u), starting from the state 1, labelled by (Eo, E1, ... , and

such that

where the integers Nj are given by

Then, Equation (13) and Proposition 11 will allow us to conclude that
= because the assertion (iii) in Theorem 14 ensures

that = 0(1).
Since w is a proper prefix of ~(1), there exists a letter jo such that

wjo is a prefix The labelled path is thus admissible.

Let us denote by the sequence of states defined as follows:

ji is the first letter and more generally let be the first

letter Hence, for every positive integer k, the labelled path
is admissible. The set A

being finite, we can find two positive integers l~o and 1~1 &#x3E; ko, such
that Then, we have to distinguish two cases:

~ either iko - 1,

1.

We first assume that 1, as it is represented on Figure 2.

Figure 2. Case 

Let us consider a real 6, 7r &#x3E; 6 &#x3E; 0 and V a subset of C defined by
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Then, there exists a positive number c such that for any positive integer N

Let a be an irrational number and I an interval of the one-dimensional

torus then there exists a positive integer m such that

as it is for instance proved in [25]. The irrationality of 1 ensures, in view
of (15), the existence of a sequence of integers (nk)kEN and of an integer m
satisfying

and,,

In particular, Inequality (14) implies

For any positive integer j, let us denote by Cj the labelled path of length nj
defined in the following way:

This labelled path is admissible in the prefix automaton associated with the
pair (a, u). Moreover (E) = 0 and we can deduce from Equation (13)
and assertion (ii) in Theorem 14 the existence of an integer Nj satisfying

Therefore, Inequality (16) implies that
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and since (iii) in Theorem 14 ensures that ]nj - 0 (1), we
have

where M is positive and does not depend on j. Hence, the sequence of
labelled paths provides an increasing sequence of integers 
such that

Since ON (2t) = has already been proved in Proposition 15,
this ends the proof in the case j~o = 1.

Figure 3. Case 1.

The case jko =I 1 (see Figure 3), is similar but a little bit more

technical. It can be dealt by using, instead of (15), the fact that for any
irrational a any interval I of T there exists a positive integer m satisfying

and

5.4. Case (iv) of Theorem 1.

We begin this section with a definition of the complex number A,,,,
used in Theorem 1 and Corollary 2. The meaning of is strongly
connected with the notion, introduced in [2], of elementary loops in the
prefix automaton.

DEFINITION 20. - Let a be a substitution and let us suppose that u

is a fixed point for a generated by the letter 1. We call elementary
loop any admissible labelled path ..., in the

prefix automaton associated with the pair (o,,u), satisfying the following
conditions:
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We will denote by the set composed by all the elementary loops in
the prefix automaton associated with the pair (a, u).

Remark 21. - Since and Prefa are finite sets, u) is finite too.

Let a be a primitive substitution defined over the alphabet
,,4. - ~ l, 2, ... , d~ and such that e2 is a root of unity. This implies (see
Section 2.3) that all the eigenvalues of M~ whose modulus equals one and
whose multiplicity equals a2 are roots of unity. Then, let no be the l.c.m.
of the orders of these eigenvalues (considered as roots of unity).

Let u be a fixed point for a generated by the letter 1. The sequence u is
thus also a fixed point generated by the letter 1 for ono. For any admissible
labelled path C = (( io, iI, Eo), ... , (in- i , in , En- i ) ) , in the prefix automaton
associated with the pair (ana, u), we introduce

where is defined following Equality (10). For any vector f E Cd,
we introduce the quantity

Then, we can define a complex number, denoted by just depending
on the pair (r, u), by

where vectors fi are defined as in (4).

We are now ready to state the following proposition.

PROPOSITION 22. - Let u be a fixed point of the primitive
substitution a. If 02 is a root of unity, then

9 either A,,,, 54 0 and 2

 or Aa,u = 0 and

In order to prove Proposition 22, we first need the two following
results.
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LEMMA 23. - Let C be a positive number. Then, for any sequence
of complexe numbers satisfying I 2:::=0 ak I  C for any positive
integer m, we have

the constant in the 0 just depending on C.

Proof. It comes directly from a classical Abel summation. D

LEMMA 24. Let u be a fixed point of a primitive substitution and f
be a vector in Cd such that f 1 ~. Then, there exists a constant C &#x3E; 0 such

that for any admissible labelled path C in the prefix automaton associated
with the pair ( ,u), one can find (B1,B2, ... possibly equal
to zero, satisfying

where defined following Equality (17).

Proof. Let us reason by induction on the length n of the path. Let
us consider C = maxf Ff 2,12 (C) means an admissible

path of length smaller than or equal to d, then by definition of C we have

which shows that the proposition is satisfied for n  d.

Now, let n E N, n &#x3E; d, and let us assume that the proposition is
satisfied for any admissible path of length k, k  n. If

is an admissible labelled path of length n, then there exists (.~, h)
in f 0, 1, 2,..., nl2, l  h, such that if = ih since the cardinality of is

equal to d. Let us denote by h’ the minimum of ~m ; m &#x3E; I, such
that = It follows that (~,...,z~) is an elementary loop and

is an admissible labelled

path of length smaller than or equal to n. Thus, the induction hypothesis
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implies that there exists (Bi, B2, ... , eventually equal to zero,
such that

But

and thus if , it follows that

concluding the proof. 0

Proof of Proposition 22. - We can assume 92 = 1 without restriction.

We first assume that 0. Let f be a vector in C~ such that
f L p and N be a positive integer. Following Theorem 14, there exists

such that

The fact that the Ei lie in the finite set Prefer implies that

where the constant in the 0 just depends on u. We thus have to show that

Lemma 24 implies the existence of a positive C and
in such that

since by definition But if
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then Ff,2,a2 (B) = 0 for any B E which gives

Since C does not depend on the path C and thus on the integer N, Lemma 23
implies that

where the constant in the 0 does not depend on the choice of N.

Following Proposition 18, we obtain that (o n O)((logN)01522)
because nN = log N + 0(1).

Now, let us assume 0. There thus exists a vector fj, defined as
in (4), such that 0. Let us denote by

an element satisfying ~F~2,c~(~)! = 

Since the prefix automaton is strongly connected, there exists an
admissible labelled path starting from the state 1 and ending in io.
Let Co = ..., (~-1~0~-1)) be such a path,
with and ao = 1. For every positive integer 1~, we introduce the

following labelled path

This path of length -I- kp is thus admissible, begins with 1 and

satisfies c. Following the proposition (ii) in Theorem 14, there

exists a positive integer N~ such that

Moreover, following Equality (12), we have kp - which

implies that

Finally, which ends the proof in view of

Proposition 11 and 18.
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Proof of Theorem 1. - It comes directly from Propositions 15, 18, 19
and 22. 0

6. Proof of Theorem 3.

The goal of this section is to prove Theorem 3. We proceed as follows;
we first generalize Theorem 1 (see Proposition 28) and next we have to
study the discrepancy of the derivative sequences associated with a fixed
point of a primitive substitution (see Lemma 31 and 32) in order to found
uniform bounds in Proposition 28. Then a finitude argument due to [12]
(Theorem 30) will allow us to conclude the proof.

Discrepancy functions associated with a symbolic sequence.

We give here a generalization of Theorem 1. The discrepancy function
associated with a symbolic sequence ic measures the speed of convergence
of the vector

towards the frequencies vector of the sequence u. We want now to introduce
a similar notion but with words playing the role of letters. Let u be a
symbolic sequence defined over the alphabet A. Then, we can define, for
any positive integer n, a discrepancy function of order n for u, in the

following way:

where lulw denotes the number of occurrences of the word w in the word u.
We obtain in particular ( u) = In view of the previous study,
it is quite natural to ask if we can estimate the growth order of these
discrepancy functions in the case of fixed points of primitive substitutions.
In particular, is it possible to obtain such an information in terms of the
incidence matrix associated with the substitution?

In order to answer this question, we recall now a useful construction
which can be found in [21]. Let a be a primitive substitution defined over the
alphabet ,,4 and u an associated fixed point. For any positive integer ~, A£
denotes the alphabet {1, 2,..., where Pu is the complexity function
of u. We can thus consider a map 8£ from to wich associates
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with each factor of length its order of occurrence in u. If i denotes a

letter of the alphabet At, we can conversely associate with i a unique
word = wow, ... E £i( u) since ei is one-to-one. If

then, we define the substitution of order I for a by

So defined, -

We recall now some results about the previous construction.

PROPOSITION 25 (see Queff6lec [21]). - For every positive integer .~,
the substitution of order f for a subtitution a admits the sequence

Ul = as a fixed point. Moreover, means 

then the sequence is composed by all the factors of length .~ of u
without repetition and in the same order as in u, that is to say,

We can already notice that if then

This implies in particular the following corollary.

COROLLARY 26. - The order of magnitude of the discrepancy function
of order f for u is the same as that of the discrepancy function (of order 1)
of Ut.

PROPOSITION 27 (see Queffélec [21]). - If a is a primitive substitution
then for every positive integer f, the substitution ag is primitive too and
its incidence matrix Mg has the same Perron eigenvalue as the one of a.
The eigenvalues &#x3E; 2, are those of M2 with perhaps in addition the

eigenvalue 0. Moreover, if P2 is the minimal polynomial of M2, then there
exists an integer m such that Pg - where Pg means the minimal

polynomial of ME.
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Following Equation (2.3), we can note

the spectrum of the incidence matrix associated with at. Proposition 27
implies that Of = 0, = 02,2 and af,2 = a2,2, where means the

multiplicity of in the minimal polynomial of Mg . In view of Corollary 26
and Proposition 27, we can state the following result.

PROPOSITION 28. Let u be a fixed point of a primitive substitu-
tion a. Then, for every integer 1 &#x3E; 2, we have:

(i) if 82, 2 ~  1, then is bounded;

(ii) if ( 82, 2 ~ &#x3E; 1, then A(’) (u) - (o n 182,21);
(iii) if I82,2I = 1 and 82,2 is not a root of unity, then

(iv) if 102,21 = 1 and 82,2 is a root of unity, then

and

Moreover, in the case where 02,2 is a root of unity, then:

9 either for all J

. or there exists an integer m &#x3E; 2 such that, for

, and for

For proving Proposition 28, we need the following lemma.

LEMMA 29. - be a positive integer, u an infinite sequence
defined over the alphabet A and suppose that there exists a function .f such
that Then, we have

Lemma 29 points out the fact that the order of magnitude of the
discrepancy functions (u) associated with a symbolic sequence u could
not decrease with respect to .~.

Proof of Proposition 28. - Equalities (i), (ii), (iii) and (iv) come
directly from Corollary 26, Proposition 27 and Theorem 1. Then, the last

point of Proposition 28 is a consequence of Lemma 29. 0
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Discrepancy for derivative sequences.

The different constants obtained for ON in Proposition 28 depend a
priori on .~. To state Theorem 3 the next step is to prove that one can found
uniform constants in Proposition 28. Our approach consists in exhibiting
some connections between the discrepancy of a linearly reccurent sequence
and the one of its derivative sequences and then to use a finitude argument
given in [12] (Theorem 30). Then, the last step will be to show that one can
deal with any sequence v E 0(u) insted of the sequence u itself.

We recall the main definitions and results that are given in [12]
concerning the notion of return words. Let u be a uniformly recurrent
sequence over the alphabet ,,4 and let u be a nonempty factor of u.
A return word to u of u is a factor (= UiUi+1 ... Uk-1) of u such
that i and are two consecutive occurrences of u. If j denotes the first
occurrence of u in u, the sequence can be written in a unique
way as a concatenation of return words to u. Let be the set of

return words to u in u. Then Ti (u) = Wi ..., where wi E 
The fact that u is uniformly recurrent implies that is a finite set.

We can therefore consider a bijective from to the finite

set ~1, 2, ... , Au,u, where, for definiteness, the return words
are ordered according to their first occurrence (i.e., q&#x3E;~~(1) is the first

return word LUO, P~,~(2) is the first Wi which is different from wo , and

so on). The derivative sequence of u on u is the sequence with values in the
alphabet given by

To such a sequence we can associate a morphism 8u,u from to A*
defined by

We obtain = The morphism 8u,u is called the return
morphism to u of u.

An important point is that one can characterize primitive substitutive

sequences in terms of derivative sequences.

THEOREM 30 (see Durand [12]). Let u be a uniformly recurrent
sequence. Then, the set Der(u) of its derivative sequences, is finite if and
only if u is a primitive substitutive sequence.
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Now, if WI, w2, ... , Wk denote some factors of u, we define the

quantities

Let u be a K-linearly reccurent sequence, w be a factor of u and v be
the derivative sequence of u on w. Then, the sequence v is also linearly
recurrent (with another constant) and this implies that any letter in v has a
frequency. It thus exists a natural probability measure v for v (in the sense
of Section 2.2). We will thus write instead of for the

discrepancy of the sequence v with respect to v.

Then, we can state the following.

LEMMA 31. Let u be a K-linearly reccurent sequence, w be a factor
of u and v be the derivative sequence of u on w. Then, there exists a
constant C such that

where wl , w2 , ... , wr denote the return words of u to w.

LEMMA 32. - Let v be a derivative sequence of a K-LR sequence u.

Then, there exists a constant Cv such that for any factor w of u satisfying
Dw (u) = v the following holds:

Proof of Lemma 31. - Let w be a factor of the sequence u and

v = Dw (u) be the derivative sequence of u on w. Let j denote the first
occurrence of W in u and r the cardinality of the set The invariant

measures associated with u and v are respectivly denoted by A and v
(we refer the reader to [11] for a proof of the unique ergodicity of a linearly
recurrent subshift). We will write 0 instead of 8u,w.

We thus obtain that 8(v) = where T denotes the usual shift.

With any integer m, we can associate an integer n such that
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Since u is K-LR, we have that j  Km. Moreover, we have by definition of
a return word Then

which implies for It thus

follows that for

Let us now consider the following d x d real matrix:

where It thus follows that

By a simple computation one can check that M is invertible if and only if

This implies the existence, for every 1  j  r, of coefficents

such that for any integer m there exists an

integer n  Km satisfying
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and therefore the existence of a positive number C satisfying

concluding the proof. 0

Proof of Lemma 32. - We keep here the notation of the previous
proof. Let us introduce the vector fw = defined by

By definition of a derivative sequence, we are allowed to claim that

where i denotes the first occurence of w in the sequence u and m and n are
defined as above (we recall in particular that m  n  Km) . By definition
of the measure u, we have nu ([w]) = o(n), and thus

In view of Equality (8), we obtain that f~, 1 ~C’, where it’ = (l/(~2~))i=1,...,r
is the frequencies vector of the sequence v. As we have already noticed,
the familly of vectors ( f ~ ), 1  k  r - l, defined by

if

else,

is a basis of the vectorial subspace (p’) ’. There thus exist coefficients
(~i,..., ~-1) E such that Since it is K-LR, one
has lwl - ~,(~wJ)  K (see [11]). It follows that 0 p([w])  K2 and

thus  K2. The fact that

implies I  Moreover, by linearity we have
and it thus follows

 K2 , there exists a constant Cv, which does not depend on
the choice of w, and such that  hence the proof. 0
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Proof of Theorem 3. - Let u be a fixed point of a primitive
substitution o- and JY = (0(t~),r,~) the dynamical system arising
from u. In order to fix the ideas, we assume that 102,21 &#x3E; 1 and we

note f (N) - (log N) a2,2 Nlogg 102,2 1. . Then, Proposition 28 implies that
DN(X) = and that for any word w E ,C(u), = O(f (N)).
It remains to prove that O ( f (N) ) . If wl , w2, ... , wd, denote the
return words of u to w, we thus deduce that there exists 01 &#x3E; 0 such that

Now let v be the derivative sequence of u on w. Lemma 31 thus implies the
existence of C2 &#x3E; 0 satisfying AN (V)  C2 f (N), because f is a sublinear
function (that is, for all x, y) and hence

with C3 &#x3E; 0 since, following Theorem 30, Der(u) is a finite set. Therefore,
Lemma 32 implies

for some C4 &#x3E; 0.

Let w _ and j be the first occurrence of the word
Wo ... in u (such an occurrence always exists by minimality). Since u
is linearly reccurent, there exists K &#x3E; 0 (just depending on u), such
that j  KN. Then, we have

where C5 neither depends on w nor on w, since f is increasing and sublinear.
Finally, we obtain that = O( f (N)), which achieves the proof since
the other cases could be dealt exactly in the same way. 0
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