
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Thierry DAUDÉ

Propagation estimates for Dirac operators and application to scattering
theory
Tome 54, no 6 (2004), p. 2021-2083.

<http://aif.cedram.org/item?id=AIF_2004__54_6_2021_0>

© Association des Annales de l’institut Fourier, 2004, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2004__54_6_2021_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


2021

PROPAGATION ESTIMATES FOR DIRAC OPERATORS

AND APPLICATION TO SCATTERING THEORY

by Thierry DAUDÉ

1. Introduction.

Time-dependent methods in scattering theory were introduced by
Enss twenty five years ago in [10] and [11]. They were originally developed
to solve the N-body problem in nonrelativistic quantum mechanics. This
was achieved thanks to subsequent improvements due, among others, to

Sigal and Soffer [30], Graf [18] and Derezinski [7] (in chronological order).
A detailed and complete presentation of these methods can be found in
the book by Derezifiski and Gérard [8]. In the framework of relativistic
quantum mechanics, such techniques provide an intuitive description of
scattering, based on the essential structure of relativity: the light cone. In
this work, we use such an approach to give a complete scattering theory
for massive Dirac operators with long-range potentials in flat spacetime.

Similar results have been obtained first by Enss and Thaller [12] and
Mutharamaligam and Sinha [26] using the Enss method and the RAGE
theorem. Recently, Gâtel and Yafaev [13] improved these results for a

large class of potentials by means of a stationary approach based on a
limiting absorption principle and radiation estimates for time-independent
observables. The novelty in our proof is the systematic use of time-

dependent observables as proposed in [8]. In particular, this leads to

Keywords: Partial differential equations - Spectral theory - Scattering theory - Dirac’s
equation - Propagation estimates - Mourre theory.
Math. classification: 35P25 - 35Q40 - 35B40 - 81U99.



2022

propagation estimates for the Dirac fields which, in turn, will greatly
simplify the construction of wave operators. The Mourre theory and
commutator methods will be the basic tools in our study. Let us point
out that these results can be used to develop scattering theories in General
Relativity. For instance, we have in mind the works by Hafner and Nicolas
[20], Melnyk [24] and Nicolas [27], on the scattering for Dirac fields on black
hole spacetimes. In the case of Kerr black holes, it has been shown in [20]
that a Mourre theory and time-dependent techniques are necessary.

We consider a massive Dirac hamiltonian denoted by H acting on
the Hilbert space of physical states H = ~L2(I1~3)~4. The hamiltonian H
is the sum of the usual free Dirac operator H° - r.p + m &#x3E; 0,
p = where h = (rl, r2, r3) are Dirac matrices and a potential Y(x)
of Coulombian type at infinity which is the sum of a scalar and a matrix-
valued multiplication operator. According to the Heisenberg description of
quantum mechanics, we shall focus our attention on the unitary evolution
e-itH and on the behaviour of (time-dependent) observables along this
evolution; that is to say, if At denotes a time-dependent function with
values in selfadjoint operators on ~L then we are interested in studying the
behaviour of operators of the following type

Note that for 1jJ such that the expectation value At (t) 0) is well-

defined, this quantity corresponds to the mean value of the results of many
measurements which are all performed on systems identically prepared to
be in the state 1jJ. Actually, our main objects of study will be asymptotic
observables defined by

when the limit exists. It was the essential idea of Enss [10], [11] to describe
the evolution of asymptotic observables such as position and momentum
and to use this information to obtain results in scattering theory. More
precisely, in the case of Dirac operators, Enss and Thaller [12] proved the
vanishing of the following limit

where H,C(H) denotes the continuous spectral subspace of H and f E
Coo (JR3), the space of smooth functions tending to 0 at infinity. Here x is the
standard position operator and V = pH6-1 is the classical velocity operator.
This result can be interpreted as follows: there exists a correlation between
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the localization of a scattering state at late times in a narrow cone (linearly
increasing with time t) and its velocity, that is to say this result describes
"propagation in phase space". One consequence of this is that "scattering
states have been incoming in the remote past and will be outgoing in the
far future, moving away from the region of significant interactions" (quoted
from [12]) which is already a weak version of scattering.

More recently, many authors turned their attention to the construc-
tion of such observables and their application to scattering. In particular,
Sigal and Soffer [30], [31], Graf [18] and Derezinski and Gérard [8] improved
the methods of Enss by using the method of positive commutator also called
method of positive Heisenberg derivative due mainly to Mourre in [25] and
refined, among others, by Amrein, Boutet-de-Monvel Berthier, Georgescu
in [1]. A motivation of their work was related to one of the main problems
in scattering theory: how to define wave operators when the interaction V
is long-range (that is to say when the potential falls off no faster than 
when lxl tends to infinity). In such a case, the classical wave operators

are no longer available. Instead it is necessary to replace the comparison
dynamics e-itHo by a more complicated one, usually in the form e-zs(t,v)
where the function ,5’ has to be well chosen. Unfortunately, this choice
has no reason to be unique and thus it would be interesting to find some
natural and uniquely defined objects that, in turn, entail a natural and
unambiguous definition of the wave operators.

One example of uniquely defined construction associated to the dy-
namics e-itH is the selfadjoint operator called asymptotic velocity denoted
by P+ and defined by

The notion of strong-Coo-limit is explained at the beginning of Section 5.
The asymptotic velocity admits the other characterization in terms of the
classical velocity operator V

and we see that (1.2) together with (1.3) imply (1.1). For instance,
Derezinski and Gérard succeeded in constructing wave operators of the
form SZ~ - eitH e-iS(t,V) satisfying in particular the intertwining relations
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Let us emphasize that it is the essence of wave operators to make the link
between the physical quantities associated to the system (here the energy
H and the asymptotic velocity P* ) and simpler physical quantities which
allow us to make some computations (here the energy of the free system
Ho and the classical velocity operator V).

Although it is not obligatory to introduce such an observable in the
case of Dirac operators, the asymptotic velocity turns out to be a relevant
construction at least for two reasons. First it exists under rather weak

conditions. It can be shown (see [8], Section 4.10) that for certain 2-body
hamiltonians for which the asymptotic velocity exists, the wave operators
fail to be complete. Thus, in this sense, it could serve to define a " weak"
notion of scattering theory. Secondly the asymptotic velocity can be used as
a very convenient tool to prove the existence and asymptotic completeness
of wave operators. For instance, an important feature of P+ is

that is to say the states of zero asymptotic velocity coincide with the bound
states of H. This property not only gives a first classification between the
states in H, which is the initial purpose of scattering, but will allow us to
use the standard Cook method in the proof of asymptotic completeness.

Let us now briefly describe the content of each sections.

In Section 2, we give an abstract framework for massive Dirac Hamil-
tonians and analyse some basic properties concerning their spectrum and
problems of domain invariance. Next we study in details the Zitterbewegung
phenomenon for the free Dirac operator Ho which arises when one tries to
define the velocity operator V. Recall that, in the case of Schrodinger oper-
ators, the velocity operator is defined as the time derivative of the position
operator and it turns out that it is independent of time. However, for Dirac
operators, the time derivative of the position operator is time-dependent
and oscillates around a mean value which is the classical velocity opera-
tor V. This phenomenon will be the source of technical problems in the
derivation of weak propagation estimates in Section 4. To overcome these
future difficulties, we must introduce a new position observable, called the

Newton-Wigner operator, whose time derivative is exactly V.

Section 3 is devoted to a short overview of Mourre theory as pre-
sented in the initial work of Mourre [25] but also revisited by Amrein,
Boutet de Monvel Berthier, Georgescu in [2] and Georgescu and Gérard
in [14]. In particular we define a new locally conjugate operator for Dirac
Hamiltonians which turns out to be convenient for our purpose.
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Section 4 establishes the weak propagation estimates. Large and min-
imal velocity estimates give an important information on the probability to
find the particle in certain cones in spacetime at late times. For instance,
the minimal velocity estimates asserts that a particle having an energy
strictly larger than its mass m has to escape from a narrow 
asymptotically in time. On the other hand, microlocal velocity estimates
are a slightly stronger version of ( 1.1 ) and indicate that we can approach the
position operator x by tV at late times. All these estimates rely entirely on
positive commutator methods and Mourre theory. In particular, we state
a result ([17] and [22]) which shows how the minimal velocity estimates
are intimately related to the existence of a locally conjugate operator. At
last we state two results due to Cook and Kato which allow to make the

link between weak propagation estimates and the existence of asymptotic
observables.

In Section 5, we prove that the asymptotic velocity Pl defined by
(1.2) exists and can also be characterized by (1.3). Then we study its

spectrum which, physically, corresponds to the asymptotic propagation
velocity of the fields and we prove that

B (o,1 ) being the closed ball in JR3 of center 0 and radius 1. Eventually,
using only the minimal velocity estimates, we also prove property (1.4).

Section 6 is devoted to the construction of wave operators SZ~ . In
our case where potentials of coulombian types are considered, a Dollard
modification is enough for the definition of these operators when combined
with an idea due to Thaller [12], that allows us to define properly this
modification and avoid problems caused by the matrix-valued potential.
We will then make a crucial use of the asymptotic velocity operator P*
and property (1.4) to transform the problem into a time-dependent one for
which Cook’s method can be applied. It could seem strange to introduce
such a time dependence in the proof but, in fact, one obtains an agreable
way of proving the existence and asymptotic completeness of the wave

operators by handling only time-dependent quantities which are integrable
along the evolution.

In Appendix A, we recall two well-known techniques used for the
manipulation of functions of selfadjoint operators: for integrable functions,
the Fourier transform can be used, but in the case of smooth and not

necessarily integrable functions, the correct tool is the Helffer-Sjostrand
formula [21]. In each case, we state a commutator expansion of [T, f (A)~
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in terms of the multiple commutators for two selfadjoint operators
A, T. In particular, the required assumptions on the operators A and T are
carefully detailed.

Eventually, in Appendix B, we establish weak propagation estimates
for time-dependent Dirac Hamiltonians and we construct the associated
asymptotic velocity used in Section 6 for the construction of the wave
operators.

2. Properties of Dirac operators.

2.1. Abstract framework.

In this paper, we shall denote by Ho the free massive Dirac Hamilto-
nian on flat spacetime acting on ~-C = [£2 (JR3)] 4 the Hilbert space of four
component square integrable functions. Precisely, we consider the differen-
tial operator

m being the mass of the field. We shall assume that the mass m is

strictly positive. Ho is a selfadjoint operator on D(Ho) == ~H1 (I~3)~ 4 where
HI (JR3) denotes the usual Sobolev space of order one in Here r"

correspond to the Dirac matrices satisfying the anti-commutation relations
2b~v for every JL, v = 0, .., 3 (6P’ stands for the Kronecker

symbol). We shall use the following usual representation for the Dirac
matrices.

/ -0 n B / n _k B

where the Pauli matrices ~i are given by

The free Hamiltonian Ho will be perturbed by some external field.
Let us consider two functions VI and V2 belonging to the space
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where (x~ denotes the multiplication operator by (1 -f- IxI2)! acting on
each component of H. The perturbation will be given by the matrix-
valued multiplication operator Y(x) = VI(x) + acting on ~. The
potential VI (resp. V21") is understood as an electric potential (resp. scalar
potential i.e. V2FO corresponds to an x-dependent rest mass). We refer to
[32], chapter 4, for a presentation of the usual external fields for Dirac

equation. Thus the interacting Dirac operator given by the sum of H° and
V,

is a self-adjoint operator on the domain D(H) = D(Ho) by the Kato-Rellich
theorem.

It is well known (see [32], chapter 1) that the spectrum of Ho has the
following structure

Moreover, the assumptions imposed on the interaction V imply that the
difference of the resolvents (H - z) -’ - (Ho - z) -’ - - (H - z) - 1 V (x) (Ho -

is a compact operator in x. Therefore by the Weyl theorem, the
essential spectrum of H is the same as the essential spectrum of Ho.

However the operator H may have non-empty pure point spectrum. It will
be crucial for the later analysis that the operator H be invertible. But

assuming that 0 E ~(H) , it is then possible to find a smooth positive
function e.g. f E the space of Schwartz functions such that the

operator H + f (x) be invertible. Thus, up to a smooth function, we can
always consider that 0 ~ cr(77). For more details we refer to [4].

2.2. Domain invariance.

In this section, we are interested in studying the invariance of the
domain D((.r)~), n C N under the action of the unitary one-parameter
group le-ilh 1,,R. As a consequence, we shall also obtain some information
on the invariance of D ( (x) n ) , n E N under the action of the resolvent
(H - z) -’, z ~ a (H) and of any operator x(H) with X E Co- (R) - We state
now the main result.
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THEOREM 2.1. - Let H be the Dirac operator (2.1). Let x be the
standard position observable. Then for any n E N,

and there exists a constant Cn such that
.... --- it u ... , ,

Proof. We proceed by induction on n. The result is trivial for

n = 0 and given n &#x3E; 0 assume that (2.2) is satisfied for n - 1. The key of
the proof is to approach (x)n by a bounded operator Xx for which estimate
(2.2) is true uniformly in A. We define

Clearly we have

and this operator is bounded as well as its derivative

Let us compute the Heisenberg derivative of Xa .

Integrating (2.4) between 0 and t, we obtain Vo E 

, the induction hypothesis implies
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The right-hand side of (2.7) is uniformly bounded in A, as A - 0. Therefore,
computing the last integral, we obtain

which concludes the proof. n

Theorem 2.1 has the following corollary, essential to derive the weak
propagation estimates in Section 4.

COROLLARY 2.1. - Let H a self-adjoint operator satisfying the
conclusions of Theorem 2.l. Let z C (C such that 0 and n E N.

Then

Proof. It is an easy consequence of (2.2) and the resolvent formula
foo

where E = sgn(Im z) and the integral converges in norm. As is closed,
we have Vqb E 

Let us denote In this last integral. An integration by part yields

We deduce by induction from (2.12) that

which is bounded for z fixed. This proves the corollary. 0

2.3. Zitterbewegung and velocity operator.

In this section, we give a short presentation of the Zitterbewegung
phenomenon which naturally arises when one tries to define the "velocity"
operator for the free Dirac operator Ho. For more details, we refer to [32].
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The velocity operator is usually defined as the time derivative of the
position operator. The most natural choice is to consider the operator of

multiplication by x acting on H. Then we define

the time translated position operator. Formally we have

According to classical relativistic kinematics, we would have expected to
obtain V = pHo 1 i.e. the classical velocity operator instead of r (t) . Let us
analyse the time dependence of r (t) .

An explicit short calculation shows that r - 2 (r - V). Thus

u~v

where F = r - V. The operator F is one aspect of the Zitterbewegung
phenomenon. One of its main features is that it anticommutes with Ho

We conclude from (2.16) that F(t) - e2itHo F and integrating (2.15)
between 0 and t, we see that

Thus we see that the standard velocity oscillates without damping around
the classical velocity operator V and this oscillation is called Zitterbewe-
gung. Integrating again, we obtain

All these formal results can be made rigorous and we have the following
theorem (Thaller [32], Theorem 1.3, p. 20):

THEOREM 2.2. - The domain D(x) of the multiplication operator
x is left invariant by the free evolution
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and on this domain, we have

The problem arising from the Dirac equation is that certain observ-
ables such as the position operator x(t), mix positive and negative energies.
To overcome this difficulty we can choose some other operators to be the
position observables of the theory. In particular we are interested in the so-
called NeuTton- Wigner observable. Let us first define the Foldy-Wouthuysen
transformation UFW . This transformation diagonalizes the Dirac operator
Ho in H. Denoting 0 the Fourier transform on ?-~ we have

and for each k E R , the right-hand side of (2.18) is a Hermitian 4 x 4 matrix
which has the two where A(k) = and

both eigenvalues have multiplicity 2. Let us call the unitary matrix
such that

where

and

We also have

We define the Foldy-Wouthuysen transformation i

acting from H to H. This transformation is clearly unitary on H and Ho
conjugated by UFyY can be written as

Whence Ho is unitarily equivalent to a pair of square root of Klein-Gordon
hamiltonians.
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Now we turn to the definition of the Newton-Wigner operator denoted
znw. We set

---l 1 ~ ~

This operator has the following properties (see [32])
o It leaves invariant positive and negative energy subspaces of Ho i.e.

o On the following equality holds

or equivalently

It is worth pointing out that the Zitterbewegung does not appear in the
formula (2.22). This important feature of the Newton-Wigner operator
will be helpful for the construction of the asymptotic velocity in the

next sections. However the results we need to prove involve the standard

position operator and so, we have to make the link between x and xnw *

Unfortunately we have the following complicated formula, see [32]

where ,S’ denotes the spin angular momentum and is defined by ,S’ _

= p2 + m2 . The symbol r A r denotes the three matrices
Ek,l Ejklrkrl where E is the totally antisymmetric tensor. Observe that
the spin angular momentum S’ is bounded, everywhere defined and self-
adjoint. Concisely, we shall denote by Z the bounded operator on x such
that znw = x -f- Z. As the expression of Z is difficult to handle, the Newton-

Wigner operator has not been used in previous works [5], [12] or [13] on
Dirac’s equation. However we shall need this operator for deriving the
microlocal velocity estimates in Section 4 especially the formula (2.23) will
be of great help to us. Eventually the only information on Z we shall need
is given by the following lemma.

LEMMA 2.1. - The commutator ~x, Z] between x and Z is a

bounded operator in H.

Proof. - This result follows from the definition (2.24) of Z. Ac-
cording to this definition, we can view the operator Z as a matrix-valued
function of p. Moreover we have
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Therefore using the Helffer-Sjostrand formula (A.29), we get for any

m = 1,2,3
o I o

where .

3. Locally conjugate operator.

The main idea of Mourre theory is to find an operator, usually denoted
by A, which increases along the evolution e-itH in a suitable sense. If we
denote A(t) = e itHAe -itH , this means that the time derivative of A(t)
must be essentially positive or equivalently, the commutator between H
and A has to be essentially positive. Precisely, can we find an open interval
A of R, a strictly positive constant c and a compact operator K on H such
that

In the case of the Schrodinger operator, the usual generator of dilation
D = 2 ~ x. p is a good candidate for a conjugate operator. It turns
out that the same operator also satisfies (3.1), when H is the Dirac operator
previously defined, for a suitable open interval A in R. However, there exist
many other possible choices for A which may be more adapted to the Dirac
equation and make the verification of the assumptions easier. For instance,
see [5], [15] and [23]. We shall use a locally conjugate operator which is
close to the choice made in [23].

Let us define the operator

Concisely, we write and commuting x and V, it is easy
to see that Ao = where Bo = 2 Ho l h. F is a bounded operator in
H. It is defined and essentially self-adjoint on D(x) (see [23], Lemma 3.1).
This operator has the important property
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where the commutator is computed on a suitable domain e.g. 
Therefore the commutator between Ao and Ho is positive which seems to
indicate that it could be another good candidate for being the operator A.

Unfortunately, the addition of a matrix-valued potential V to Ho prevents
us from proving the Mourre estimate (3.1 ) for (H, Ao).

Actually, it is better to consider the following operator

which is also defined and essentially self-adjoint on D(x) (see below). It
is easy to see that this operator is related to Ao by a bounded operator.
Precisely, using the resolvent identity, we have

1 ,

z z

and B is bounded. Thus the Heisenberg derivative of A will be essentially
V2 plus or minus some compact terms. Indeed,

The second term in the right-hand side of (3.4) is clearly compact in 1{ since
belongs to and thus the standard compactness criterion

applies.

To see that the first term in the right-hand side of (3.4) is essentially
equal to V2, observe that

where the operator L is compact in H by the standard compactness
criterion. Thus this term is equal to

"1 - , "1 - . 1 - ,

Now we write r = V + F and noting that ) (V.F + F.V~ = 0, we eventually
obtain

or concisely, A] = V2 + K where K is compact. We use this result to
prove the following lemma:

LEMMA 3.1. - Let A be an open interval of R such that A n

[-m, +m~ _ 0. Then there exists a strictly positive constant E depending
on A and a compact operator K such that (3.1) holds.
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Proof. Let X E Cü(JR) a function such that supp X C (201300, -m) U
(+m+oo) and x = 1 on A. Let us compute the commutator

. , - . - _

because x(H) - x(Ho) is compact. But if we diagonalize Ho via the Foldy-
Wouthuysen transformation, the first term can be written as

Now provided the support of X strictly avoids [-m, -f-m~ , there exists a
strictly positive constant E such that x(A(p)) = 0 for p2  E. Hence we get

or, if we set

which concludes the proof of the lemma. 0

Even though the Mourre estimate (3.1) is the crucial property of
the a locally conjugate operator, some extra assumptions are needed to
obtain a complete scattering theory. There exist several versions in the
litterature depending on the degree of refinement required by the problem.
A very complete account of the theory can be found in [1]. We shall
use for the definition of a locally conjugate operator a certain notion
of regularity between two self-adjoint operators introduced by Amrein,
Boutet de Monvel-Berthier, Georgescu [1]. Precisely,

DEFINITION 3.1. - For a selfadjoint operator A, 2 we say that an-
other selfadjoint operator H belongs to if and only if

for the strong topology of B(H).

We give now the definition of a locally conjugate operator A and the
main theorem we shall use.

DEFINITION 3.2. - Let H, A two self-adjoint operators on R. Let
A c R an open interval. We shall say that A is a locally conjugate operator
of H on A if it satisfies the following assumptions:
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(i) HE C~ (A) .
(ii) i[H, A] defined as a quadratic form on D(H) n D(A) extends to

an element of 13(D(H), H).

(iii) [A, [A, H]] well defined as a quadratic form on D(H) rl D(A) by
(ii), extends to an element of L3(D(H), D(H)*).

(iv) There exists a strictly positive constant c and a compact operator
K such that the Mourre estimate (3.1) holds.

THEOREM 3.1. - Let H, A two selfadjoint operators on H. Assume
that A is a locally conjugate operator of H on the interval A. Then H has
no singular continuous spectrum in A and the number of eigenvalues of H
in A is finite (counting multiplicity).

The assumptions on the commutators are rather straightforward to
check by a direct computation on a suitable dense domain e.g. CÜ(JR3).
On the other hand, the first assumption is somewhat more subtle. We have
the following equivalent definitions for 

Unfortunately, it is not easy to check (H - c D(A) in general
without a better knowledge of D(A). Therefore it is useful to consider

another operator N called a comparison operator whose domain has to be
well-known and that will allow to make the link between H and A. We

shall use the following lemmata [16].

LEMMA 3.2 (Nelson). - Let N &#x3E; 1 a self-adjoint operator on 11.
Let A a symmetric operator on H such that D(N) C D(A). Assume that

Then A is essentially self-adjoint on D (N) . Furthermore every core of N is
also a core for A.

LEMMA 3.3 (Gérard, Laba). - Let H, Ho and N three self-adjoint
operators on H satisfying N &#x3E; 1, D(H) = D(Ho) and (H - z) -’D (N) c
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D (N). Let A a symmetric operator on D (N) . Assume that Ho and A satisfy
the assumptions of Lemma 3.2 and

Then we have

~ D(N) is dense in D(A) n D(H) with the norm IIHul1 + + 

~ the quadratic form i[H, A] defined on D(A) n D(H) is the unique
extension of i [H, A] on D(N),

· 

We now prove the assumptions of Theorem 3.1 with H the Dirac

operator and A the operator defined above. Let us define N = p2 -~- x2 +1 ==
p2 ~- (~)2 as the comparison operator. This operator is essentially selfadjoint
on Theorem X.28 in [28], Vol 3. We also denote by N its
closure which is a selfadjoint operator on H with domain D (N) - ~u E
H, Nu E Moreover, it is easy to see that

from which it follows that the domain D(N) is characterized by ([28],
chapter X, problem 23)

_ A - A

Now, we check the assumptions of Nelson’s Lemma for Ho and A.

. D(N) C D(Ho), D(N) c D(A) are obvious.

9 For any u E D(N), we have
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where we used the fact that H-lpj and are bounded on H for

any j = 1,2,3.

~ It remains to see that for any u E CÜ(JR3),

We also have

A straightforward calculation leads to

Whence

The same estimate is true for the term (u, + ~]~). Thus
the assumptions of Nelson’s lemma are proved.

Moreover, the assumptions of the Gérard - Laba Lemma are entirely
fulfilled since (H - z) -1 D ( (x) 2 ) C D ( ~x) 2 ) by domain invariance properties
of Section 2 and since the commutator between H and A is bounded in x

by (3.5). Therefore, we have proved that H E as well as the second

assumption of theorem 3.1.

The hypothesis on the double commutator can easily be checked and
it turns out that it is a bounded operator in H. Recall that

-1 -1

As the operator A is equal to V.x + B where V, B are bounded and as

i[H, A] is also bounded, we actually just need show that the commutator
between x.V and i[H, A] remains bounded. We decompose the problem.
First, IX.V, V2] - [x, V2].V is clearly bounded. According to the definition
of L = 1.pH6-’V(x)H-’, we see after some commutations that both terms
in the following commutator
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are bounded since x.Y(x) C LOO(JR3). The fact that the remaining term
is bounded follows immediately by the same procedure since 
also belongs to L°° (II~3 ) .

We have thus proven the theorem:

THEOREM 3.2. - Let H be the dirac operator defined above.
Then the spectrum of H has no singular continuous spectrum. Moreover,
~a~ (H) - (201300, -m) U (+m, and in any compact interval contained
in (201300, -m) U (+m, the number of eigenvalues is finite.

We deduce from this theorem (201300, -m~ U ~~-m, -~-oo)
that C [-,m, +m].

Before we turn to the minimal velocity estimates, we make the
following remark. The assumptions required in Theorem 3.1 actually imply
that the operator H belongs to the class C2(A). From [11 (Theorem 6.3.1),
we know that if we assume the invariance of D(H) under the action of
the unitary one-parameter group , then the conditions and

[A, [A, H]] bounded on 7-í entail that H E C2(A). But the condition on
the invariance follows from the following Lemma quoted in [14].

LEMMA 3.4. - Let H and A two self-adjoint operators such that
H E and i[H, A] E L3(D(H), H) then e2SAD(H) C D(H) for all
SER

4. Weak propagation estimates.

The following weak propagation estimates denoted WPE are the
main ingredients for constructing the asymptotic velocity. They take the
general form

where B (t) is a time-dependent self-adjoint operator on H. These estimates
give a very weak fall-off with respect to t of the function under the integral.
We are mainly interested in the maximal and minimal velocity estimates

which, roughly speaking, assert that given a state o in ?~ with bounded

energy, there exist two constants cm and cm such that the "particle" can
neither escape faster than cM nor slower than The last type of estimates
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called microlocal estimates will help us to give another definition for the
asymptotic velocity in terms of the classical velocity operator that will
allow us to study its spectrum.

For the proof of the WPE, we shall use the following proposition
given in [8], (p. 384). We recall that D = d + Z*[H,.] is the Heisenberg
derivative and satisfies

PROPOSITION 4. l. - Let be a family of self-adjoint operators
belonging to B(H)) i.e. there exists B(t) E ,~3(~-iC)) such that

(i) Assume I

(ii) Assume is uniformly bounded and that there exists
Co &#x3E; 0 and some operator valued functions B(t) and Bi(t), i = 1, ..., n
such that

n

with

Then there exists a constant C such that
poo - -- - -

We stress the fact that the ideas of the proof are very simple, the
essential step being to find an observable W (t) called propagation observable
such that its Heisenberg derivative is essentially positive. Before we turn to
the proof of the estimates, we briefly indicate how to make the link with the
existence of asymptotic observables i.e. with observables taking the form

where is a self-adjoint operator valued function. For this we shall use
the following lemma given in [8] but which contains results initially due to
Cook and Kato.
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LEMMA 4.1 (Cook, Kato). - be a uniformly bounded
function with values in self-adjoint operators, belonging to 
Let D a dense subspace of1t.

(i) (Cook) Assume that Vqb E D,

then there exists

(ii) (Kato) Assume that

with

then the limit (4.2) exists.

4.1. Minimal velocity estimates.

It has been well-known since Ruelle’s theorem [29] that the states ’0
belonging to the continuous subspace HC of H tend to escape for large time
t in a mean ergodic sense, that is to say

for any finite R. Nevertheless this decay is not sufficient to prove precise
results of scattering theory. We need more subtle estimates on how fast
the states move away from the centre of the interaction. The following
minimal velocity estimates improve the previous result in a very weak
sense but which is enough for applications. These estimates ensure that
the probability to find the "particle" in a narrow cone lxl  Ot goes to
zero when t - oo for 0 small enough. The "particle" here simply refers
to the wave function O(t, x), i.e. the field. There is no second quantization
involved. Exactly, we shall prove the following proposition



2042

PROPOSITION 4.2. - Let x E Cü(lR) such that supp x n t -m, +m,
0. Then there exists a constant Eo (x) &#x3E; 0 depending on X such

that

Furthermore,,

Before we give the proof, we mention that these estimates first ap-
peared in the paper [31] by Sigal and Soffer and have been intensively used
to organize the proofs of asymptotic completeness for N-body problems
in quantum mechanics. It appears that there exists a strong link between
the notion of locally conjugate operator and minimal velocity estimates as
stated in the next proposition (our proof will follow the result obtained by
C. Gérard and F. Nier in [17]).

PROPOSITION 4.3 (Gerard, Nier). - Let H, A two self-adjoint oper-
ators on 1t. Assume that for E &#x3E; 0, H C C’+’(A), and the Mourre estimate

holds on an open interval A. Then

such that supp g C (-oo, co) and
supp x c A,

and

(ii) Furthermore assume that there exists another self-adjoint opera-
tor A1 which satisfies

then, ,, there exists Eo small enough such that
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and

Proof of Proposition 4.2. - We already know from the previous
section that the Dirac operator H belongs to the class C2 (A) . Since

a (H) n (-m, +m) C app (H), we can assume that supp X C (-00, -m) U
(+?7z, +00). Let A c (-oo, -m) U (+m, +00). We can find a closed interval
I containing A on which Mourre estimate (3.1 ) holds

Since A § app (H), we have

Now, the fact that K is compact implies that tends to 0 in norm

when tends to 0. Thus, if we consider I with A E I with |I| small enough,
there exists co a strictly positive constant such that

Therefore, for any X such that supp x C I, minimal velocity estimates
hold for the operator A according to (i) of Proposition 4.3. Now we apply
the second part of this proposition with Al = (x~ . We have to check the
following assumptions.

o D((~)) C D(A) has been seen in the previous section.

o For all u in D ( A) , we have

But the first term in (4.10) can be estimated as follows
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We can prove the same estimate for the second term in (4.10) and we
obtain

. Eventually ~A, (x~~ (x)-1 is clearly bounded. Indeed it suffices to

expand the commutator and use the fact that [p, (x~] and [H-1, (x)]
are bounded in H.

To conclude the proof, observe that for t large enough, 
2 t

therefore we can replace (x) by Ixi in the estimate. Thus

proposition 4.2 is proved for any X with sufficiently small support. Let us
prove the general case. Let X be any function in Cü(JR) which satisfies the
assumptions of proposition 4.2. We can write, by a compactness argument,

N

where are functions with sufficiently small supports, such that

I L 
- - --

By the Schwarz inequality, we have
. -1--i. .

Hence,

which concludes the proof of the Proposition. 0

4.2. Large velocity estimates.

This estimate says that the energy of the field in the region lxl &#x3E; t
tends to zero as t becomes large. Recall that the light velocity c is here
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taken to be 1, so this means that the particle does not travel faster than

light. Precisely, we prove

PROPOSITION 4.4. -

a constant C such that

Given any,

Remark 4.1. - We stress the fact that the cut-off function x could
be avoided in the previous proposition without any change, that is to say
that the constant C does not depend on the support Of X 1.

Therefore, whatever the energy of a state y, it cannot escape to infinity
faster than the light velocity.

which is clearly bounded and continuous on R. Let us define the propagation
observable

/IMIB ,

0(t) is a self-adjoint operator valued function uniformly bounded in t. We
compute the Heisenberg derivative.

Now

Thus
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Now using the facts that r’I~1 ~ 14 x 4 and f &#x3E; 0, we have

As (Oo - 1) &#x3E; 0 by assumption, the assertion (i) follows from Proposition 4.1.

Let us prove (ii). It is enough to assume g &#x3E; 0 and g = 1 for x &#x3E; Ro.
Let g E chosen such that supp g C and 9 == 1 on supp g’.
We define 

, ,

and

Using gg’ = get

where is uniformly bounded with respect
- - 

,- , 
-

to t. Now with (4.11) and (4.13), the existence of the limit

follows from Lemma 4.1. Assume first that g has a compact support
contained in ( 1, -f-oo) then (4.11 ) implies that

Hence the limit in (4.14) must be zero. Finally, to prove the general case,
let us consider gl E C°° (R) and g E such that supp gl C (~+00)
with 00 &#x3E; 1, 0, gl - 1 for lxl &#x3E; Ro and gl - g2. We define the
propagation observables by

and

i

where R is a positive real number. By the previous lemma, we know
that s - eitH OR (t)e-itH exists. Let us compute the Heisenberg
derivative.
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For 00 &#x3E; 1 and R &#x3E; 1, we see that (Bo - 1) is strictly positive and thus
is a positive operator. Now given some to E JR fixed, we can write

From the positivity of we deduce

Now according to the definition of 4J R (t), observe that for to fixed
-- I ’:.1. IT. , , ’:.1. -, -

Hence we obtain from (4.16) that
, ., ,,

We conclude observing that gl ( ~ t ~ ) - g1 ( Rt ) has a compact support. Thus
by the previous result (4.14), we get

Then if R tends to +00, we prove (ii) by (4.17). D

4.3. Microlocal velocity estimates.

In this section, we shall prove the following proposition:

PROPOSITION 4.5. - Let 0  01  02 and let x E such that
_ , --, , ..... ,...,,--

Proof. Let 0  00  81  82  03. Given two real numbers rl, r2
such that 0  rl  r2, we denote by C(rl, r2) the anulus C(ri,T2) === ~x E
JR3: ri  Ixl  Let J E such that supp J C C(~,293) and
J - 1 on C (01, 02). Let X E satisfying the above condition. We
choose 00 and 83 such that 80  Ex where 6~ is defined according to the
minimal velocity estimates and 83 &#x3E; l.
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We consider the following propagation observable

which is uniformly bounded for t &#x3E; 1. Indeed

I. This term is uniformly bounded since Z and J( t ) t
. , _ _ t t

is also uniformly bounded since pH-1 and H-1 p are bounded. Let us
compute its Heisenberg derivative. 

- -

v

Now we compute ; 1

But the first term is equal to 2Ao plus a bounded operator in H. And
the second term is also a bounded operator in ?oC by Lemma 2.1 and the
fact that V belongs to Furthermore, we have already seen that

i[H, A~ - V2 -~- .K and from the exact expression of K, it is easy to show

. Thus, we obtain

Using that A = Ao + B and xnw = x + Z again, we can replace the second
term by Moreover, we

v , (.I’ " v

have the following equality Therefore the

second term is equal to

v v (, / v tJ/ / B &#x26; /

Finally, if we introduce i C such that suppj- C ~ 2° , 283~ and
B7 J (x), then after some commutations the first term can be

written as 
_ I I I ,i i i
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where B(t) is a uniformly bounded operator in t. Hence this term is

integrable along the evolution by Propositions 4.2 and 4.4. Eventually, we
obtain 

/ , ,Y· , B. ,y· , ,Y· , B.

Commuting J(§) and (V - Í) and provided ), we

get

We conclude the proof of (i) by Proposition 4.1.

To prove (ii), let us consider the following propagation observable

v , /

and observe that it is equal to . In particular
it is a positive operator for any t. For technical reasons we shall approach

by another observable denoted 0(t) and given by

It is easy to see that 0(t) = 00 (t) + 0(t-’). Let us compute the Heisenberg
derivative of 0(t). As shown in the previous calculation, we obtain

But i [H, V2 ] - i~V (x), V2~ and from the exact expression of
this last term leads to 

" t""B p-" ""B t""B t""B -- I") p --I") - -, ,- I")

- v - " · ’-’

Therefore, after some commutations and since VV(x) belongs to S-2(JR3),
the second term in the Heisenberg derivative belongs to O (t-2 ) . Now
applying Lemma 4.1, we have proved that the following limit exists

., Tr . , TT

Clearly, we can replace 0(t) by Ço(t) in (4.20). But we also know by (i)
that

Hence the limit (4.20) must vanish which concludes the proof.
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5. Asymptotic velocity P~.

5.1. Construction of P~ .

In this section, we shall focus our attention on the construction of the

asymptotic velocity Pl defined by 
-

Here the convergence means that for any y C H and any J E the

limit

exists. If (5.1) holds then the operators P~ are uniquely defined as vectors
of (possibly non-densely defined) commuting self-adjoint operators. P* are
densely defined if, for some g E such that g (o) - 1 we have

s - 1 (see [8], Appendix B.2).
The main tools will be Lemma 4.1 and the weak propagation estimates
defined in the previous section. We only treat the case t - +00 and we
construct P+, the construction is identical for P- with t - -oo. Let us
prove the theorem.

THEOREM 5.1. - Let H be the Dirac operator (2.1). Let J E
Then there exists the limit

Moreover, if J = 1 on a neighbourhood of 0, then

If we define P+ by (5. 1) then P+ is a vector of commuting self-adjoint
operators on H defined on a dense subspace and commutes with

H.

Proof. - First, consider the case where 0 is an eigenvector of H.
Then, there exists E E R such that E1jJ. Let J E We have

By Lebesgue’s Theorem, it is immediate that,
= 0. Therefore
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and we conclude that limit (5.2) exists on HPP the pure point subspace
of H.

Now, let us assume that 0 E the continuous subspace of H. Our
first task is to find a good propagation observable 0(t) in order to apply
Lemma 4.1. Since 0 6 remark that by a density argument, the existence
of (5.2) is equivalent to the existence of

for any x C Cü(JR) satisfying supp x and any
J E such that J is constant on a neighbourhood of 0. Let us

. By Proposition 4.5, it is

enough to prove the existence of

tI’ 1 I-

Unfortunately, this propagation observable is not easy to work with. In

order to avoid problems due to the Zitterbewegung phenomenon and the
matrix-valued potential we need to approach 0(t) by another
propagation observable which we denote by and define as follows

where Va - 2 (pH-1 ~ H-lp) is a bounded selfadjoint operator on 7~.
Clearly we have Va = V -f- B where B is bounded on ?-~. The next lemma
will enable us to make the link between the operators f ( t ) and f (- )
and as a consequence give an estimate of (§(t) - Øa (t) ) .

Assume moreover that f = 0 on a neighbourhood of 0 and let g E S-p(JR3)
where p &#x3E; 0 is a real number. Then

Then it follows that and thus it is enough to

prove the existence of
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Let us compute its Heisenberg derivative.

To compute the remaining commutator, we use the following lemma which
we prove later

LEMMA 5.2. - Let f E such that f is constant on a

neighbourhood of 0. Then

Therefore, we get

But i

Lemma 5.2 and the fact that E O(t-2). Moreover, we
can replace Va by V as well as byx/ t and we eventually obtain (using
Lemma 5.1)

Then by Proposition 4.5 and by Lemma 4.1, (5.5) exists.

The proof of (5.3) is a direct consequence of Proposition 4.4, part (ii).
Indeed, (5.3) is equivalent to,

such that supp 

The fact that H commutes with P+ follows from [

Proof (of Lemma 5.1 ) . - The first assertion follows readily from the
Fourier transform. Indeed
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since Z is bounded in x.

By the definition of the Newton-Wigner observable, we have

B~/ L B L / J

Clearly the first term in (5.7) belongs to O(t-P). Now recall that UFyy =
with P~~ given by (2.21). Thus each component of the matrix-

valued function P~~ is in and we can use the Helffer-Sjostrand
formula (A.28) to estimate the commutator in the second term of (5.7).
Hence

N r7k r ~ .r, B

since bounded for To see this, we use once again
the Helffer-Sjöstrand formula and we have for any m = 1, 2, 3

where Rk = (Zk-pk) -1 Therefore the first commutator is bounded. Noting
that = the multiple commutators are also bounded

by induction. Finally, if we take N &#x3E; p, then the assertion (ii) follows

immediately from (5.7) and (5.8).

Now, using (i), we can write
Moreover, 

-

since

concludes the proof of the lemma.

Proof (of Lemma 5.2). - Using the Fourier transform, we have the
following formula (A.9).
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Since the term V + is bounded, the integral converges in the
norm of H. We then commute V+iV(x)Z with and -iZV(x) with

We obtain

Now we use the formula (A.1) to estimate these last commutators. We have
I

which clearly belongs to is bounded in H. We also

have

where

is bounded by Lemma (2.1). Therefore, this term also belongs to 
We thus obtain

Now using Lemma 5.1, it is easy to see that V(x)B7f(Xiw) E which

concludes the proof of Lemma 5.2. D

In order to analyse the spectrum of PI, we now give another
characterization of the asymptotic velocity. Precisely, we make the link
between P~ and the standard velocity operator V.

PROPOSITION 5.1. - Let J C Then
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and consequently,

where and 1~ (H) denote respectively the projection onto the pure
point subspace of H and onto the continuous subspace of H. Furthermore,
we have

Proof. The proof of (5.9) entirely relies on the minimal velocity
estimates. We successively show that and 

Let o such that = and J E We already saw
in (5.4) that

This shows that = 0 and proves Conversely, let
us consider a function x E Cü(JR) such that supp ;
0. Let J E such that J (0) = 1 and supp ~I C B (0, ex) where EX &#x3E; 0

is defined by the minimal velocity estimates.

Then Theorem 5.1 implies

But by Proposition 4.2, the strong limit in (5.12) vanishes. Thus we have
proved that

--- , ----1- ’B -- --- , ,

As the eigenvalues of H can only accumulate in f -M, I we have

and the result holds.

Now, let us prove (5.11 ) . We only treat the case t - +oo and

characterize P+. Using ( 5.10) , by a density argument, it is enough to show
/ /mv v /mv . --

for any J, f E such that f = 0 in a neighbourhood of 0 and

satisfying supp x 0. By the Helffer-

Sjostrand formula (A.32), we have
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where BI bounded and B2 (t) E 0 (t -’) since bounded for any 
Then we have to prove that the following limit vanishes

But this follows from Proposition 4.5. 0

5.2. Spectrum of P.

This section is devoted to the analysis of the spectrum of P~ which
corresponds to the physically relevant information given by the asymptotic
velocity. We have already seen that

which means that the states of zero asymptotic velocity coincide with the
bound states of H. Now we are interested in the scattering states that
is to say the states in = 1’(H)H and we would like to classify them
according to their asymptotic behaviours. We prove the proposition

PROPOSITION 5.2. - Let P~ be the asymptotic velocity defined in
Theorem 5.1. Then

Proof. As usual, we only give the proof for P+. Let us first prove
that

Let ~o E JR3 B B (o,1 ) and let X E CÜ(JR3) such that x - 1 in a

neighbourhood of ~o and supp x n B(o,1) = 0. We have to show that

But by Proposition 5.1, we have

Now it is easy to see that the spectrum of V is equal to B (o,1 ) . Hence,
x(V) - 0 and x(P+) - 0 which concludes the first part of the proof. Let
us prove the reverse inclusion.

I such that ~ 0. Here B (~o, ro ) denotes the ball
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centered at ~o wih radius ro. We want to show here that

). Clearly J and g satisfy the following relations

We define the propagation observable

and by Proposition 5.1 and Lemma 5.1, we

Let us compute its Heisenberg derivative.
1 , I - ., Xnw t

Now we commute the different terms in the last expression using the
following result we shall prove later

We obtain

Dcpa(t)

In the first two terms, we can replace Va by V by Lemma 5.1 again. Then
by (5.14) and (5.15), we get
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Moreover we claim and prove later that

This implies

where

We now conclude the proof. By (5.16) and (5.19), we have

and allowing to to tend to infinity, we can make the integral in (5.20) as
small as we want. We claim that

exists and is non-zero. Indeed first observe that using Lemma 5.1, we have

Then we have

) and the result holds.

It remains to prove (5.17) and (5.18). First observe that we can replace
f ( xnw/t ) by f ( t ) in (5.17) using Lemma 5.1. Now using the formula (A.2),t t

we have

and the commutator in the right-hand-side of (5.21) is equal t
- - / ..--, -- i .- 1 .....................J"""’I. /

which clearly belongs to 

Let us show (5.18). Since [H, Va~ is bounded and Va bounded, we
can use the Helffer-Sjostrand formula (A.29) to estimate If we
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denote , we obtain

where Rk = (Zk -= Va ) -1. Next we commute the operators J~o ( x~ ) with
z under the integral (5.22). Furthermore note that,

since [Rk, and I are bounded for any k, the Helffer-
Sjostrand formula (A.31) gives

and

Now using that belong to O (t-2 )
by Lemma 5.1, we conclude that (5.22) also belongs to O(t-2) which ends
the proof of the proposition. D

6. Wave operators.

We turn now to the construction of wave operators for the massive
Dirac operator H in order to describe precisely the asymptotic behaviour
of the field when t goes to infinity. As is well known, the presence of a long-
range potential Y(x) prevents us from taking e-itHo for the comparison
dynamics. In our case V E S-1 (JR3), we can use the ideas of Dollard and
Velo [9] and define the following comparison dynamics denoted by Uo(t)

where T denotes time ordering. In this definition of the Dollard modifi-
cation, we add a phase (formally) denoted e-2x (t) to This phase
must be chosen in such a way that the standard Cook method applies
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(see Lemma 4.1 ) . Thus it must satisfy two rules. First, it must commute

with e-itHo . Second, the operator H - Ho - X ~ (t) must be "short-range".
We see from this last assumption that a good candidate for X would be

X’(~) = V (x) but it does not fulfill the first assumption. As it is suggested
by the microlocal velocity estimates, we can approach (asymptotically) the
position operator x by tV which commutes with e-itHo and define

Unfortunately, the matrix Fo which appears in the potential also does not
commute with and this is why we replaced it in the definition of

Uo(t) by the operator mH0-1 using ideas of Thaller [32]. Precisely, we use
the following lemma

LEMMA 6.1. - Let Ho be the free Dirac operator. Let us denote
G = r° - 

Then E(t) is a bounded operator uniformly in t. As a consequence, we have
limt-",, t = 0.

Proof. First, remark that G anticommutes with Ho. Therefore,
we have

and we obtain by integration the following explicit form for E(t)

Thus, E(t) is uniformly bounded, in operator norm, with respect to t. D

Then we define X’(~) = VI (tV) + which leads to the

definition (6.1) of the Dollard modification. The main result of this part is
given by the theorem.

THEOREM 6.1. - The wave operators defined by

exist in Furthermore, we have
õ::i: and V and P+ satisfy the intertwining relation
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At last, uTe have

Note that in the definition of the wave operator (6.3), we make
a crucial use of the characterization (5.10) of the projection onto the
continuous spectrum of H i.e.

Proof. For the proof of this theorem, we shall follow the strategy
used in [8] and appeal to some results for time-dependent Dirac hamilto-
nians given in Appendix B. This fully time-dependent approach avoids the
use of a limiting absorption principle as well as a detailed study of the
resolvent (H - z)-’ and related estimates. Here, the central objects are
time-dependent observables such as J( t ) where J has a compact support,
and propagation estimates obtained in Section 4. Let us now explain this
strategy for the proof of (6.2). First, remark that by a density argument it
is enough to prove the existence of

where x E Co (JR) such that supp + m, and 0 denotes

a compact subset of R3 B fol such that the annulus C( 2 , ,1) is a subset

of 0 (remember that is defined by the minimal velocity estimates, see
Proposition 4.2). Now consider a function J E such that J = 1

on a neighbourhood of 6. Let us associate to any function f E 
the time-dependent function

defined for t &#x3E; 1. Such a function obviously satisfies the properties

~ For any y in a neighbourhood of O,

~ For any t &#x3E; 1 fixed, ~ and there is a constant
M such that

9 The following estimates hold
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We introduce now some notations. We call effective time-dependent
potential the potential VJ (t, x) - V2,J(t, x)T ° . We denote by

the time-dependent hamiltonian H° + and by the

associated dynamics (see [8], Appendix B.3, Proposition B.3.6). We also
denote by the following time-dependent Dollard modification

We rewrite (6.6) as follows

where we used the facts that

by (6.7) and that Ho commutes with Uo (t) . Now assume the existence of
the limits

__ /.- -’-.....- /_,

then the limit (6.6) will exist by the chain rule. Moreover, the situation is
completely symmetric for the proof of (6.3). Indeed by a density argument
it is enough to prove the existence of

for a compact subset 0 defined as above. But using the characterization

(5.11) of the asymptotic velocity P’, we see that

where we used t . Therefore if we prove- , , , , ,

the existence of the limits
c, - l;m 

then the limit (6.10) will exist by the chain rule.

If we summarize the previous discussion, we see that we can divide
the proof of Theorem 6.1 into three steps. First, for time-dependent
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Dirac operators of the following form HJ(t) - Ho + Y(t, x), we have to
define the asymptotic velocity V~. This is done in Appendix B where we
also obtain propagation estimates for time-dependent Hamiltonians (see
Propositions B.1 and B.2). Next, we prove the existence and asymptotic
completeness of wave operators for such hamiltonians. Exactly, we prove
the lemma

LEMMA 6.2. - The limits

exist.

For the last step of the proof, we have to make the link between
time-dependent and time-independent Hamiltonians. Precisely we show

LEMMA 6.3. - There exist the limits

Proof (of Lemma 6.2). - Since the proofs are identical, we only treat
the case t - +oo for (6.12). The basic tool to prove Lemma 6.2 will be
the Helffer-Sjostrand formula with several variables presented in Appendix
A and Cook’s method (Lemma 4.1). Let 0 E D where D is a dense subset
of ~L that we shall define precisely later. Let us compute the Heisenberg
derivative of the expression Uo, J (t) UJ (t, 0) 0. We obtain

Let us prove that

to L~ (dt) . Since the different commutators between the components of x
and V are bounded i.e.
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we can apply the Helffer-Sjostrand formula (A.33) and write Ii (t) as
-

where is a bounded operator satisfying Ct-2. Now observe
that if we prove

with 0  J1  1 then will belong to Here, we chose D = D ( (x) ) .
Unfortunately, for the same technical reasons as in the proof of microlocal
velocity estimates, it is not obvious to show (6.15) in such a form. Actually,
we shall prove 

-

with 0  p  1. Indeed, as x and xnw are equal up to a bounded operator
Z, we can replace x by rnw in the previous expression without any change.
Moreover, we also have to approach the classical velocity operator V by

Note that for t large enough, the operator
is always invertible and since

1

we can also replace V by Va (t) in the previous expression. Finally, to prove
(6.15), it is enough to show that

It remains to show that all the terms between brackets belong to 0(t-1)
for t ~ 1. It is obvious for (V - Va (t)) and [VJ (t, x), Z] since Z is bounded.
Furthermore,

-. -1
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since E O (t-2 ) by (6.9). This ends the proof for Ii (t) . The proof
for I2 (t) is identical.

Now let us treat the term 13 (t). Let us denote concisely
F’t .

by To apply Cook’s Lemma, it is enough to show that

v 5

tends to 0 when s, u - oo. From the definition of E(t), it is clear that it
anticommutes with Ho and with V. Thus we can write =

. =,, .,

By an integration by part in (6.19), we obtain

t/ s

Using V2, j(t, tV) E and Lemma 6.1, the first two terms tend to 0
as s, u - oo. If we compute the derivative in the last term, we find

All these terms belong to O (t-2 ) by (6.8) and (6.9). Since E(t) is bounded,
the last integral also tends to 0 which concludes the proof of the lemma.0

Proof (of Lemma 6.3). - Since the proofs are identical, we only
treat the case t - +oo. Let us consider a function g E Co (O) such that
g - 1 on the annulus 1). It is enough to prove the existence of

(6.13) replacing by Let us define two other functions g,
and g2 belonging to such that gig = g and 9291 - Then using
Proposition B.3, we have
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Now we introduce the operator I and using
Proposition B.4, we have

For technical reasons, we have to approach the operator i
- ,- - ,

) defined as in Lemma 6.2. Using the
Helffer-Sjostrand formula and (6.16), we have

Hence, by the same arguments as in the proof of Proposition 4.5, we obtain

Then we define the propagation observable
1.--..... , ,

and it is easy to see that

Let us compute the time derivative of this quantity. We obtain

Observing that , the terms (6.21) and (6.24) can
be written after commutation operations and using (6.20) as

where B(t) is a uniformly bounded operator in t and q E such

that and supp 77 n supp g = 0. Thus these terms
are integrable along the evolution using Propositions 4.2, 4.4 and B.3.
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Moreover, combining the Helffer-Sjostrand formula and using (6.17)
and (6.18), the following estimates hold

Therefore, the terms (6.23) and (6.26) belong to O (t-2 ) and are integrable
in norm.

Now note that . Hence we have

and using Lemma 5.2, the term (6.25) is equal to

Repeating the proof of Proposition 4.5, the sum of (6.22) and (6.25) is

equal to

Eventually, using (6.20) once again, we obtain

Thus using Propositions 4.5 and B.4, this term is integrable along the
evolution and we conclude the proof of (6.13) by Lemma 4.1.

The proof of (6.14) is essentially the same as the previous one. We
omit it. D

Therefore, we have constructed the Dollard-modified wave operators
n::!: and {2::!:. The fact that (n::!:)* == {2::!: follows from [8], Lemma B.5.1.
It remains to prove the intertwining relations (6.4) and (6.5). Using
Proposition 5.1, we see that
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which proves (6.4). Now (6.5) is equivalent to

But using Theorem 5.1, it is enough to show that

for any ,
result holds. 0

A. Functions of selfadjoint operators and applications.

In this appendix we give some useful formulae to study functions of

selfadjoint operators f (A) and commutators of the following form [T, f (A)~ .
Here, A and T denote two (possibly vectors of) commuting selfadjoint
operators acting on a Hilbert space We first consider the case of

a function in this case, the Fourier transform is enough
to obtain the formulae. For smooth functions f E which are

not necessarily integrable, we shall need the Helffer-Sjostrand formula
presented Section A.2.

A.1. Fourier transform.

General setting. - Let A a vector of commuting selfadjoint opera-
tors in H and let us denote by ~(~) = the induced unitary rep-
resentation of JR3 in H. We need the function space = ( f E

Equivalently we have

we consider a bounded operator T in ~oC and a function f E We

now define the class of regular bounded operators with respect
to A by

Then we have the following equivalence (see [1], Proposition 5.2)
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In particular, for T a bounded operator belonging to we can

write
1.1 1 1

« w

Now assume that f E Using the Fourier transform of f denoted
by f and (A.l), we have

where the right-hand-sides in the two equalities of (A.2) make sense on
B(7t) since / and V f E by hypothesis and [T, A] bounded
on H.

Now we consider the case of an unbounded operator T in H. Let us
introduce some definitions and basic results. Let H be another selfadjoint
operator in a Hilbert space H. Assume that the family of unitary operators

leaves invariant the domain D(H) of H. We denote by 91 this
domain and by g8, 0  s  1, the interpolation space between go - H and
~1 = D(H). We also denote by g-8 = (9’)* the dual Hilbert space of g8.
We make the usual identification H* = 7t and thus we have

At last we denote by B(9’, gt) the set of bounded operators between !9’
and gt. Then we have the following result (see [4], Proposition 1).

PROPOSITION A.1. - Let H, T two selfadjoint operators on H
satisfying T E Let A a vector of commuting selfadjoint
operators on H. Let -1 , t  s  1. Assume that eiçAgI c 91 and
[T, A] E Then one has

v V

where the right-hand-side is well defined as a strong integral on 
i. e. the integral is strongly convergent. As a direct application, vve have for
all f E FI,1 
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Application (Commutator expansion). - Commutator expansions
of two selfadjoint operators T, A are formulae which relate the commutator
[T, f(A)] with the successive commutators defined by recurrence

PROPOSITION A. 2. - Let H, T two selfadjoint operators on 1t such
that T C Z3(~1, ~-1). Let A a vector of commuting selfadjoint operators on

Assume that

Then we have

where . If uTe replace the operator A by A we
have the following useful consequence of (A.5)

Proof. In formula (A.4), we commute [T, A] with to obtain

Now we use formula (A.3) in this last integral. We repeat the procedure N
times to obtain (A.5). 0

The assumption on the stability of the domain D(H) under the
action of the unitary group is not easy to prove in general. We
already saw that, if ~H, A~ E B(D(H),H) then it suffices to show that

(H - z) - 1 D (A) C D (A) for z V a (H) (see Lemma 3.4). Actually, when the
commutator between [H, A] is bounded, we have the following equivalences

LEMMA A. l. - Let H, A two selfadjoint operators on H. Assume
that i[H, A] defined as a quadratic form on D(H) n D(A) extends to a
bounded operator on H. Then the following assertions are equivalent
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In particular, if H or A is bounded on H then the four assertions are
automatically satisfied.

Proof. According to Lemma 3.4, we only need to prove that (ii)
implies (iii) and (iv) implies (i). These two implications follow from the
same argument. Assume (ii) and [H, A] bounded. Let ~ E D(H). We have
to show  cxJ. For we use the resolvent formula

Then we commute H and e-ita under the integral and we use formula

(A.3). We obtain

Finally one has

since [H, A] is bounded. Both integrals converge then the result holds. 0

We now give some examples needed in the previous sections. H is the
massive Dirac operator defined in section 2. In this case, the domain g1 of
H is equal to 

Example 1. - Let T = H and A the locally conjugate operator
defined in section 3. Then the assumptions of Proposition A.1 are obviously
satisfied since C 91 and i[H, A] E B(H). Then we have

where K is compact on ’H - The right hand side is a bounded operator on H.

Example 2. - Let T = H and let A be
the approached classical velocity operator defined in section 6. Clearly the
commutator [H, = + is bounded. Then C
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~1 is satisfied by Lemma A.l since Va is also bounded. Thus we have

The right hand side is a bounded operator on H.

Example 3. - Let T - H and let A = rnw the Newton-Wigner
operator defined in Section 2. Again we have to check that C gl.
First observe that [H, rnw] = V + [V, Z] is bounded on H. Then it is

equivalent to show that
= D(x) and the result follows from the domain invariance property

proved in Section 2. Finally we have

I / 
-- -

The right hand side is a bounded operator on H.

A.2. Helffer-Sjostrand formula.

In this appendix, we give a brief review of the Helffer-Sjostrand
formula which first appeared in [21] and which is useful to estimate

functions of selfadjoint operators f(A) for functions f which are not
integrable. We follow the presentation given by Davies in [6] and we state
a version needed in Section 6.

First, consider a function f belonging to the class of smooth real-
functions

We call almost-analytic extension of f and we denote it by f the following
function

where n is an integer larger than 1 and T E Col(R) such that T(x) = 1
for 1 and T (x) - 0 for I x I &#x3E; 2. This function satisfies the properties
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(see [6])

Now, given a self-adjoint operator A in a Hilbert space ~, we can define
the operator f (A) as follows

where the integral converges in operator norm in ~ by (A.13) and since
p &#x3E; 0. Moreover, we stress the fact that the operator f (A) does not depend
of the choices of n &#x3E; 1 and T (see Lemma 2.2.4 in [6]).

For the applications, we use this formula for time-dependent po-
tentials of the following form. Let J E Co-(R B 101). Given a function
f E we denote by f (t, x) the time-dependent function defined by

, v ’

With respect to the variable x, this function belongs to C 

where Kt denotes a compact subset of R such that Kt C [-Mt, Mt], for M
large enough and independent of t. Thus we can define the almost-analytic
extension of f with respect to x by

This function satisfies the following properties

We can define time-dependent functions of self-adjoint operators A as
previously by

Now we are interested in extending this last formula to functions f of
several variables. Let us consider f belonging to the class of functions
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We can define the Helffer-Sjostrand formula for this function with respect
to the first variable. If x = (Xl, X2, X3), we have

Using (A.13), we see that the functions X2 - + iYI, X2, X3) (resp.
X3 2013~ /(ri + also belong to the class uniformly with
respect to the other variables. That is to say we have

and the constant C does not depend on the variables XI, YI, X2 (resp.
Thus by induction we define the complete almost-analytic

extension

B-- 1/ I B--VI

where a = (a1, a2, Q;s), 13 == (nl, n2, n3) 1, for all j = 1, 2, 3. This
function satisfies the properties.

Here, we denoted z = (Zl, Z2, Z3) - (Xl -f- iYI, X2 + iy2, X3 + ZY3). Moreover,
stands for and dz A dz for (dzl A dzl ) A (dz2 A dz2 ) n dz-3).

The formulae (A.22) and (A.23) follow from (A.13) and (A.14).

Eventually, if A denotes a vector of commuting self-adjoint operators
in ?-~, we can define f (A) as follows

Of course, we have a time dependent version of this last formula. Let us
consider a function J E Co (R~ ) ~0~). Define the time-dependent function

t ) as previously. Thus the almost-analytic extension
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satisfies the properties

Given A a vector of commuting selfadjoint operators on we define
i . --, ’B

,---/ 

Before to give commutator expansion formula, let us make the following
observation. The assumption f E with p &#x3E; 0 is only needed to
ensure the convergence of the integral in operator norm. Actually, formulae

(A.15), (A.20), (A.24), (A.28) hold if we assume p G R and the almost-
analytic extensions satisfy the same properties. When p  0, the integrals
converge for the strong convergence.

Application 1 (Commutator expansion). - Let A a vector of com-
muting selfadjoint operators on H and T selfadjoint on H. Let f E 
with p E R. Assume that

Then we have

where Rj - (zj - The assumption (H3) allows us to expand the
commutator under the integral and one obtains
/ A -,,B

Provided [T, Aj] bounded for l = 1, 2, 3, the integral in (A.29) converges in
operator norm for p  1 by (A.22). Now commuting [T, with ~~~‘l Rk2
and noting that
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Since bounded on H, this last integral converges in norm of operator
for p  2. Eventually we have proven that for any f E with p  2,

where B bounded on 1-í.

In many cases we have to deal with functions of time-dependent
Hamiltonians of the form f( 1-). Therefore under the same hypotheses on
f, T, A, we have

r- . ~ . ~ 1 , A ,

Application 2. - Given two vectors of selfadjoint operators A and
T on x and a function f belonging to the space we would like to

express the difference between f (A) and f (T) as the product of an operator
C and A - T. We apply formula (A.24)

. ,,

I 
I -

I which makes sense on B(H), one obtains
A I ~

Now we want to commute Al -71 with R:2 under the integral. Thus
we have to assume that A E C~(T). In this case, we get

is a bounded operator on ~-C if p  1 according to (A.22). Moreover if we
suppose [T, Aj] bounded then
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~ 

We end this application by giving a time-dependent version useful for
Section 6. Given two self-adjoint operators A and T in a Hilbert space ’H
and given two functions f E and J E GÜ(JR3), we want to express
the difference between the functions of operators f (t, A) and f (t, tT ) as
the product of one operator C(t) and A - tT. Moreover, we want to obtain
good estimates of C(t) with respect to t when t goes to infinity. Assume
that A E C (T) and [A, T] bounded on H then using formula (A.32), we
get

From the exact expressions of C(t) and B(t), by (A.26) and (A.25), if we
assume p  1, we obtain the following estimates

B. Time-dependent Dirac operator
and asymptotic velocity.

In this appendix, we study time-dependent Dirac operators of the
form 

,

where = + is the sum of a scalar and a matrix-

valued time-dependent potentials. The main assumptions on the time decay
of V (t, x) will be

For such Hamiltonians, it is possible to define an associated unitary
dynamics (see [8], appendix B.3, Proposition B.3.6) which we will denote
by U(t, s) and which satisfies .

~ The map (t, s) ---~ U(t, s) is strongly continuous with values in 
:

unitary operators in ?-~ such that
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~ If we denote B = 1) 2 , we have

We wish to define the asymptotic velocity and to describe some of its
properties. Let us first prove the proposition

PROPOSITION B.1. - Under the previous assumptions, the limit

exists.

Proof. By a density argument, it is enough to show that

~±00 ’ ’ ’ ’ ’ ’ 
/ " ’

exists for any y E 1í and any g E Coo0 (R3 ) . Let us introduce the operator
Va(t) = 2 (pH(t)-1 as in Lemma 6.2. Using (6.20), it is enough
to show the existence of But we have

By (6.27) and (6.28), this term is integrable in norm. Hence the result
follows from Proposition 4.1. D

As in the case of time-independent Hamiltonians, we can give an
alternative definition of V* in terms of the position observable. Exactly,
we prove the following proposition

PROPOSITION B.2. - The asymptotic velocity Vl is characterized
by

The first step is to obtain propagation estimates for solutions U(t, 
The next proposition summarizes the large and minimal velocity estimates
in this case as obtained for time-independent hamiltonians.

PROPOSITION B.3. - Suppose that
supp g = 0. Then
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F’urthermore, ifJ e such that J = 1 on a neighbourhood of supp g,
then

(x) .

Proof. Assume first that 0 ~ supp g. Since the intersection of the
supports of j and g is empty, by a covering argument we may assume that
there exists v E 0 such that

where 0  81  02. Let us choose a function J E such that

J’ E J’(x) = 0 when x &#x3E;, 01 and

Now we define := J( (v, x)) and the propagation observable
v

where ° ). We compute its Heisenberg derivative
using Lemma 5.2

1

The first two terms are integrable in norm by (6.27) and (6.28). Moreover,
we can replace the Newton-Wigner variable rnw by x by Lemma 5.1 and
also g(Va(t)) by g(V) thanks to (6.20). Now we claim that there exists a
constant Co strictly positive such that 

-

Indeed, observe that if we commute certain terms in this last expression,
we obtain, using (B.7), (B.8), (B.9) and the fact that ~V, f ( t )~ E O(t-1 )
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The constant Co is strictly positive since 82 &#x3E; Bl. Eventually we have

Thus we can conclude the proof of (B.5) using Proposition 4.1.

If 0 E supp g then one can find v E R~ such that

where 0  81  02. Now we make the same computations with to

get the result.

To show (B.6), we consider a function J E such that

VJ E and supp vJ n supp g = 0. We claim that the following
limit exists and is equal to 0

which proves (B.6). Let us denote
(6.28) and (6.20), we obtain

such that sup

jg - g. Thus the following limit

exists by Lemma 4.1 and (B.5). This implies that the limit (B.10) exists
by (6.20). Now, assume that J E and supp J n supp g = 0. Then
we also know that

So in this case the limit (B.10) is zero. To conclude the proof, we need show
that there is no propagation for large T’ But this follows by the same limit
procedure used in Proposition 4.4. We omit the details. 11

We prove now the "microlocal velocity estimate" .

PROPOSITION B.4. - Suppose that
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Moreover,

Proof. Let us define the following propagation observables
_ C")

and

where
......... _ .

which is well-defined for t large
enough. By the same arguments as in Proposition 4.5 and using (6.20), we
have = cpo(t) +-0(t-’). The Heisenberg derivative of 0,,(t) equals

rrhus (B.12) holds by Proposition 4.1. To show (B.13), first observe that it
is equivalent to prove that

1-o

But, by Lemma 4.1 and the previous computation of the Heisenberg
derivative of 0,,(t), we know that the limit

exists. Hence, since 4Ja (t) == 4Jo (t) + 0 (t-l ), this proves the existence of
the limit in (B.14). Moreover, ~o (t) &#x3E; 0 and thus

JI 
...... _ . I 

t

by (B.12). Therefore the limit (B.14) is zero. 0

We finally give the proof of Proposition B.2. It is enough to show that

v -- , , v , ’ , , v , ,

But we already saw in Proposition 5.1 that
imv /1 ’B

where B is a bounded operator. Thus we conclude the proof using Propo-
sition B.4. 0
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