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HOLOMORPHIC SUBMERSIONS
FROM STEIN MANIFOLDS

by Franc FORSTNERI010D

1. Introduction.

A Stein manifold is a complex manifold biholomorphic to a closed
complex submanifold of a complex Euclidean space (~N [GR, p. 226]. A
holomorphic map f:X ---+ Y whose differential is

surjective for every x E X is said to be a submersion of X to Y. The

following was proved in [F 1] (Theorem II); for n = q = 1 see also [GN] :
A Stein manifold X admits a holomorphic submersion to (Cq for some

q  dim X if and only if its tangent bundle TX admits a surjective complex
vector bundle map onto the trivial rank q bundle X x C~.

The necessity of the latter condition is clear since the tangent map of
a submersion X - C~ induces a surjective vector bundle map TX --~ TX.
The corresponding problem for n = q &#x3E; 1 remains open ~F 1~ .

In this paper we consider the analogous problem when the target
is a more general complex manifold. The following result in the smooth
category was proved by A. Phillips [P] and M. Gromov [Gr1, Gr3]:

A continuous map fo: X ---&#x3E; Y from a smooth open manifold X to
a smooth manifold Y is homotopic to a smooth submersion fl: X - Y if

Keywords: Stein manifolds - holomorphic submersions - Oka principle.
Math. classification: 32EI0 - 32E30 - 32H02
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and only if there exists a surjective vector bundle map fo TY
over X, i.e., the pull-back fo TY is a quotient bundle of TX. The regular
homotopy classes of submersions X - Y are in bijective correspondence
with the homotopy classes of their tangent maps.

In the holomorphic category the topological condition on the existence
of to does not suffice. For example, a Kobayashi hyperbolic manifold Y
admits no nonconstant holomorphic images of C’ but the topological
condition trivially holds for the constant map Y. This suggests
that we restrict the attention to manifolds which admit sufficiently many
holomorphic submersions C" - Y for a given n &#x3E; dim Y. It turns out

that a suitably precise form of this condition suffices for an analogue of the
Gromov-Phillips theorem, thus justifying the following heuristic principle
(a form of the Oka principle):

If a complex manifold Y admits sufhciently many holomorphic sub-
mersions C~ 2013~ Y for a given integer n &#x3E; dim Y then the existence of

holomorphic submersions X --+ Y from any n-dimensional Stein manifold
X to Y reduces to a homotopy problem.

We say that a complex manifold Y satisfies Property Sn for some
integer n &#x3E; dim Y if any holomorphic submersion 0 2013~ Y from a compact
convex set 0 C C’ of a certain special type can be approximated uniformly
on 0 by holomorphic submersions C~ 2013~ Y (Definition 2.1 in Sect. 2). The
following is a special case of our main result, Theorem 2.2:

THEOREM 1.1. - Assume that X is an n-dimensional Stein manifold

and Y is a complex manifold satisfying Property Sn. A continuous map
f : X - Y is homotopic to a holomorphic submersion of X to Y if and only
if there exists a surjective complex vector bundle map t: f *TY.

Furthermore, we show that Property Sn is both necessary and suf-

ficient for a stronger version of the above theorem with approximation
on compact holomorphically convex subsets of the source manifold X

(Theorem 2.2 (b)). If Y also satisfies the analogous Property HSn concer-
ning the approximation of homotopies of holomorphic submersions O - Y
from any special compact convex set 0 C Cn by homotopies of holomor-

phic submersions Cn ---+ Y then for any n-dimensional Stein manifold X the

regular homotopy classes of holomorphic submersions X - Y are classified

by the homotopy classes of their tangent maps (Corollary 2.5).
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If n = dim X &#x3E; 2 dim Y - I then f *TY is always a quotient of TX by
topological reasons and hence every continuous map X - Y is homotopic
to a holomorphic submersion (Corollary 2.4).

One cannot use Property Sn directly since a general submersion
X - Y does not factor as X --~ C~n -~ Y. Instead such decompositions
are used on small subsets of X and the resulting local submersions of X
to Y are pieced together into a global submersion by the analytic tools
developed in [F1] and in this paper.

Properties Sn and H Sn are equivalent to apparently weaker condi-
tions on uniform approximability of submersions O - Y on special compact
convex sets 0 C (Cn by submersions Y, where A C C" is an al-

gebraic subvariety of codimension at least two which does not intersect 0;
the reduction relies upon the theory of holomorphic automorphisms of 
In Sect. 5 we establish Properties ,S’n and HSn when n &#x3E; dim Y = q (or
n = q = 1) and Y is any of the following: C , a complex Grassmanian,
a Zariski open set with thin complement (containing no hypersurfaces) in
any of the above, or a holomorphic quotient of any of the above (this class
contains all complex tori and Hopf manifolds).

For Riemann surfaces we obtain a complete answer by proving that
the following are equivalent (Corollary 2.9):

(a) Y is one of the Riemann surfaces C, CC* _ CB101, or a
complex torus (the quotient by a rank two lattice 1, C C);

(b) any continuous map from a Stein manifold X to Y is homotopic
to a holomorphic submersion.

The Riemann surfaces listed in (a) are precisely those which are not
Kobayashi hyperbolic. When Y is C* or a torus our result is new even when
X is an open Riemann surface.

The heuristic principle behind our main result is reminiscent of

Gromov’s extension of the Oka-Grauert principle [Gr4]: The existence of
many dominating holomorphic maps cn ----t Y implies the existence of
many holomorphic maps X - Y from any Stein manifold X. Recently this
analogy has been elucidated in [F4]. For the Oka-Grauert-Gromov theory
we refer to [G3, Gr4, HL2, FP1, FP2, FP3, F3, W].

An important ingredient in our construction of submersions is a

holomorphic approximation theorem on certain handlebodies in arbitrary
complex manifolds; Theorem 3.2 in Sect. 3. This result, together with
a geometric lemma from ~F 1~ , gives an approximate extension of the
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submersion across a critical level of a strongly plurisubharmonic exhaustion
function in the source manifold. In Sect. 6 we use the same method to give
a simple proof of the Oka-Grauert principle for sections of holomorphic
fiber bundles over Stein manifolds whose fiber admits a finite dominating
family of sprays.

2. The main results.

We denote by O(X) the algebra of all holomorphic functions on a
complex manifold X. A function (or map) is holomorphic on a closed subset
K in X if it is holomorphic in some open neighborhood of .K; the set of
all such functions (with identification of pairs of functions which agree in
a neighborhood of K) will be denoted O(K). Any statement concerning a
holomorphic map on a closed set should be understood in the sense that
it holds in some unspecified open neighborhood; for homotopies of maps
the neighborhood is the same for all maps in the homotopy. A compact set
K C X is O(X)-convex if for every p C XBK there exists f E O(X) such
that 

A homotopy of holomorphic submersions X ~ Y is a family of
holomorphic submersions f t : X ~ Y (t E ~0,1~ ) depending continuously
on t. It follows that the tangent maps T f t : T*X 2013~ TY are also continuous
in t.

Let z = (Zl, ... , zn) be the coordinates on en, with zj = xj + iyj. Set

A special convex set in en is a compact convex subset of the form

where h is a smooth (weakly) concave function with values in (-1,1).

DEFINITION 2.1. - Let d be a distance function induced by a smooth
Riemannian metric on complex manifold Y.

(a) Y satisfies Property Sn if for any holomorphic submersion

f : O - Y on a special convex set 0 C en and any E &#x3E; 0 there is a

holomorphic submersions f : Q -~ Y satisfying supxco d(f (x), f (x))  E.
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(b) Y satisfies Property H Sn if for any homotopy of holomorphic
submersions Y (t E [0, 1]) such that fo and fi extend to

holomorphic submersions Q_ --~ Y there exists for any E &#x3E; 0_ a homotopy of
holomorphic submersions ft: 0 ~~ Y (t E [0,1]) satisfying fo = fo, f 1 = f l,
and sup.,Eo, d(ft(x), .ft (x) )  E.

An obvious induction shows that Property ,S’n of Y implies the
following: Any holomorphic submersion f : 0 ---+ Y on a special convex set
O C en can be approximated uniformly on 0 by holomorphic submersions
Cn ---&#x3E; Y. The analogous remark holds for Property H Sn.

Let X and Y be complex manifolds. Denote by S(X, Y) the set of
all pairs (f , t) where f : X ---&#x3E; Y is a continuous map and TY

is a fiberwise surjective complex vector bundle map making the following
diagram commute:

T L 

Figure 1. The set S(X, Y)

Such t is the composition of a surjective complex vector bundle

map TX --~ f*TY with the natural map f * TY --~ TY. Let Sholo(X, Y)
consist of all pairs ( f , T f ) E S(X, Y) where f : X --+ Y is a holomorphic
submersion and T f its tangent map. We equip S(X, Y) with the compact-
open topology.

The following is our main theorem.

THEOREM 2.2. - Assume that X is a Stein manifold of dimension n

and Y is a complex manifold satisfying Property ,S’n .

(a) (Existence of submersions) Every (fo, to) C S(X, Y) can be
connected by a path
Sholo(X, Y).

(b~ (Approximation) compact O(X)-convex subset,
is a holomorphic submersion and ¿o I K = then the path (ft, tt)

in (a) can be chosen such that for every t E [0, ], is a holomorphic
submersion which is uniformly close to and = TftlK.
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(c) (Regular homotopies of submersions) If Y satisfies Property
HSn then any path ~t - (ft, tt) E S(X, Y) (t E [0,1]) urith ~o, 
Shoto (X, Y) can be deformed with fixed ends to a path in Sholo (X, Y).

Theorem 2.2 is proved in Section 4. In the special case Y = C , with
n &#x3E; q or n == q - 1, parts (a) and (b) were proved in [F1] (for n = q = 1
see also [GN]), but part (c) is new even in this case. The relevant Property
H Sn holds for (Cq whenever n &#x3E; q (Proposition 2.6 below).

Remark. - 1. If the conclusion of part (b) in Theorem 2.2 holds for a
given complex manifold Y and with any compact convex set K in X = C"
then (by definition) Y satisfies Property Sn. Hence both the topological
condition (the existence of t) and the analytic condition (Property ,S’n of

Y) are necessary for parts (a) and (b) in Theorem 2.2.

2. Clearly HSn =~ Sn. We don’t know whether the converse always
holds, but in all examples for which we prove we also prove H Sn.

Part (a) of Theorem 2.2 implies the following.

COROLLARY 2.3. - If X is an n-dimensional Stein manifold and Y

satisfies Property then for any ( f , t) E S(X, Y) there is a nonsingular
holomorphic foliation of X whose normal bundle is isomorphic to f *TY
(as a topological complex vector bundle over X).

Such a foliation is given by the level sets of a subrnersion X - Y
furnished by Theorem 2.2 (a). The corresponding result for foliations with
trivial normal bundle (and Y = was obtained in [Fl] .

If dim X _&#x3E; 2dim Y - 1 then every map f : X ---+ Y can be covered by
a map t: TX - TY such that (f, t) E S(X, Y). This follows by standard
topological methods from the fact that an n-dimensional Stein manifold is
homotopic to an n-dimensional CW-complex; it will also be clear from our
proof of Theorem 2.2. Hence Theorem 2.2 implies

COROLLARY 2.4. - If Y satisfies Property Sn for some n &#x3E; 2 dim Y -1
then any map /:X 2013~ Y from an n-dimensional Stein manifold X is

homotopic to a holomorphic submersion of X to Y.

Combining parts (a) and (c) in Theorem 2.2 we also obtain

COROLLARY 2.5. - If a complex manifold Y satisfies Property HSn
then for every n-dimensional Stein manifold X the natural inclusion
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induces a bijective correspondence of the path-connected components of
the two spaces.

Comparing with the Oka-Grauert principle [G3, Gr4, FP 1~ one might
expect that the above inclusion is a weak homotopy equivalence; unfortu-
nately we have not been able to prove this.

In the remainder of this section we discuss the question which
manifolds satisfy Properties ,S’n and H Sn. For Riemann surfaces both
properties hold precisely on the non-hyperbolic ones (Corollary 2.9). For
manifolds of dimension &#x3E; 1 a complete answer seems out of reach even in
the class of projective algebraic surfaces. The following result gives some
nontrivial examples.

PROPOSITION 2.6. - The following manifolds yq satisfy Properties
S’n and HSn for any n &#x3E; q, as well as for n = q = 1:

(a) eq, Cpq, or a complex Grassmanian;

(b) a Zariski open subset in any of the manifolds from (a) whose
complement contains no complex hypersurfaces.

For a proof see Sect. 5. The following observation will be useful.

PROPOSITION 2.7. - Let 7r: Y - Y be a holomorphic covering. If one
of the manifolds Y, Y satisfies Property Sn (resp. Hsn) then so does the
other.

Proof - Assume that Y satisfies Sn. Given a holomorphic submer-
sion f : 0 ---+ Y from a special compact convex set 0 C C’, there is a holo-
morphic lifting g: 0 ---+ Y (satisfying 7r o g = f ) which is also a submersion
since 7r is locally biholomorphic. By the assumed Property ,S’n of Y we can
approximate g by an entire submersion g: (~n -~ Y ; then f = (~n -~ Y

is a submersion such that approximates f. This proves that Y also
satisfies Sun.

Conversely, assume that Y satisfies Given a submersion g : O - Y,

we approximate the submersion f = 7r o g: O - Y by a submersion
f : (C’~ ~ Y (using Property Sn of Y) and then lift f to a (unique) map
g: en ---+ Y satisfying g (zo ) = g(zo) for some point zo E O. Then 9 is a
holomorphic submersion which approximates 9 on O.

The same arguments hold for homotopies of submersions which gives
the corresponding statement for Property HS’n . This proves Proposi-
tion 2.7. 0
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Combining Propositions 2.6 and 2.7 we obtain

COROLLARY 2.8. - A complex manifold Y whose universal covering
space is biholomorphic to Cq, or to (CqBA for an algebraic subvariety of
codimension at least two, satisfies Properties Sn and Hsn when n &#x3E; q or

n&#x3E;q=1.

Recall that every Hopf manifold is a holomorphic quotient of 
[B, p. 172] and hence Theorem 2.2 applies.

The following result, which follows from Proposition 2.6 and Corollary
2.8, is a complete solution to the submersion problem if Y is a Riemann
surface.

COROLLARY 2.9. - If Y is any of the Riemann surfaces C,
C*, or a complex torus then any continuous map fo: X ---+ Y from
a Stein manifold X is homotopic to a holomorphic submersion 
Y. Furthermore, if K -~ Y is a holomorphic submersion for a

compact O(X)-convex subset K c X then the homotopy can be chosen to
appoximate fo uniformly on K. Conversely, if a Riemann surface Y admits
a nonconstant holomorphic Y then Y belongs to the above list.

Indeed, the universal covering of any Riemann surface is either CP ,
C or the disc, and only the first two admit a nonconstant holomorphic
image of C; their holomorphic quotients are listed in Corollary 2.9.

The manifolds for which we prove Property Sn in this paper are all
subelliptic in the sense of [F3], i.e., they admit a finite dominating family of
holomorphic sprays; hence by the main result in [F3] any continuous map
X -~ Y is homotopic to a holomorphic map (the Oka-Grauert principle).

Problem l. Does every subelliptic manifold Y satisfy Property Sn for
alln&#x3E;dimY?

A good test case may be complex Lie groups G; a dominating
holomorphic spray on G is given by s(g, v) = exp(v)g where g E G and v
is a vector in the Lie algebra of G.

Problem 2. Does a manifold Y which satisfies Sn for some n &#x3E; dim Y
also satisfy for k &#x3E; n ?

Problem 3. Is the Property ,S’n invariant with respect to proper
modifications such as blow-ups and blow-downs ?
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3. Holomorphic approximation on handlebodies.

The main result of this section, Theorem 3.2, concerns holomorphic
approximation of mappings between complex manifolds or, more generally,
of sections of holomorphic submersions on certain compact subsets obtained
by attaching a totally real submanifold to a compact holomorphically
convex subset. Theorem 3.2, which generalizes a result of of Hormander
and Wermer [HW, Theorem 4.1], will be used in the proof of Theorem 2.2
in Sect. 4. The proof uses Hormander’s L2-solution to the a-equation [H61,
H62] on special Stein neighborhoods of S furnished by Theorem 3.1 below.
For X = C’ Theorem 3.1 is due to Hormander and Wermer [HW, Theorem
3.1]; here we extend it to arbitrary complex manifolds.

In this section a compact set K in a complex manifold X is said

to be holomorphically convex if K has an open Stein neighborhood 0
in X such that K is By the classical theory (see e.g.

Chapter 2 in [Ho2]) holomorphic convexity of K is equivalent to the

existence of a Stein neighborhood Q of K and a continuous (or smooth)
plurisubharmonic function p &#x3E; 0 on Q such that p-1 (o) - K and p is
strongly plurisubharmonic on We may take Q = {p  for some

ci &#x3E; 0; for any c E (0, ci) the sublevel set {p  c} CC Q is then Stein and
Runge in Q (Sect. 4.3 in [Ho2]).

A Cl submanifold M of a complex manifold X is totally real in X if
for each p E M the tangent space TpM C TpX contains no complex line of
TpX.

THEOREM 3.1. Let X be a complex manifold. Assume that S ==

Ko U M is a closed subset of an open set in X such that Ko is compact
holomorphically convex and M is a cl totally real submanifold attached
to Ko. If there exists a compact holomorphically convex set K, C S which
is a relative neighborhood of Ko in S then every compact set K with
Ko C K C S is holomorphically convex. Fix any such K. Let d be a
distance function on X induced by a smooth Riemannian metric. Fix a

neighborhood N of Ko in X. There are a constant C &#x3E; 1 and for any

sufficiently small E &#x3E; 0 a Stein domain WE C X such that

(i) WE contains all points of distance  E from K,

(ii) all points x E have distance  CE from M.
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For X = (Cn this is Theorem 3.1 in [HW] where the result is proved
with C = 2. In our application (Sect. 4) Ko is the closure of a strongly
pseudoconvex domain and M is attached to Ko along a submanifold
bM C bKo =: £ which is complex tangential in E, i.e., TpbM C 
TpE n JTPE for every p E bM, where J is the almost complex structure
operator on TX. For such Ko and M, and with X - (Cn, results on

holomorphic convexity of Ko U M can be found in [E] (Lemmas 3.3.1. and
3.4.3.), [Ro, Lemma 2], [FK] and other papers.

Proof of Theorem 3.1. - By the assumption on Ko there is a smooth
plurisubharmonic function po &#x3E; 0 in an open Stein neighborhood Uo C X
of Ko such that po 1 (o) = Ko. We may assume that the neighborhood N of
Ko in Theorem 3.1 is chosen such that N C Uo and N n S C Choose a

sufficiently small c2 &#x3E; 0 such that IPO  c2 ~ CC N. Also choose constants
0cococl  c~ c2.

Theorem 3.1 only concerns compact subsets of ,S’ and hence we may
assume that ,S’ is compact. Since M is totally real, there is a C2 strongly
plurisubharmonic function T &#x3E; 0 in an open set Vo D M which vanishes

quadratically on M [HW]. Replacing T by CT for a suitable c &#x3E; 0 and

shrinking Vo around M if necessary we may assume that

Since T vanishes quadratically on M, there is a C &#x3E; 0 such that

Since K, is holomorphically convex, there is a smooth plurisubharmonic
function pi j 0 in an open set Ui D Kl such that pi 1 (o) = K1 and pi is

strongly plurisubharmonic on Since pi vanishes at least to second

order at each point x C Kl , we may assume (after rescaling pi if necessary)
that

where C is the constant from (3.2). Choose a smooth cut-off function x &#x3E; 0
on X which equals one on (po x and satisfies supp x CC (po  
For a sufficiently small 6 &#x3E; 0 the function T5 = T - 6X is strongly
plurisubharmonic on Yo (we may need to shrink % around M). Clearly
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T6 - T on Vo n (po # c’ 0 1. Fix such a 6. Choose an open neighborhood
V C Ul U Yo of S and define p: V - R+ by

It is easily verified that these choices are compatible provided that the
neighborhood V of ,S’ is chosen sufficiently small. (When checking the
compatibility near M n f po - c~} the reader should observe that, by (3.2)
and (3.3), we have pi  T and hence p = T there. Near M n ~po - Co}
we have 0 while T5  0, hence p - pi.) The function p &#x3E; 0 is

plurisubharmonic, strongly plurisubharmonic on V n (po # c~} (where it
equals T), and p~~(O) = S. For every sufficiently small E &#x3E; 0 the set

is a pseudoconvex open neighborhood of S’ satisfying

The first inclusion follows from p(x)  d(x, S)2 which is a consequence of
( 3 .1 ) and (3.3). The second inclusion is a consequence of (3.2) and the fact
that p = T on VBN.

It remains to show that the sets WE are Stein. Fix E and choose an

increasing convex function hE: (-oo, E2) - R with limt-&#x3E;E2 h(t) - +00.
Then hE o p is a plurisubharmonic exhaustion function on We can obtain

a strongly plurisubharmonic exhaustion function on WE as follows. Choose a
smooth strongly plurisubharmonic function ~: Uo - R (such ~ exists since
Uo is Stein). Choose a smooth cut-off function x &#x3E; 0 on X such that x = 1
on (po z ci) and supp x CC ~po  c’l. For a sufficiently small 6 &#x3E; 0

the function ji = p + 6xg is strongly plurisubharmonic on V. Indeed, on
we have p = p + 6g which is strongly plurisubharmonic for

every 6 &#x3E; 0; on V n {po &#x3E; cl I the function p is strongly plurisubharmonic
and hence so is p provided that 6 is sufficiently small. For such 6 the function
hE o p -t- p is a strongly plurisubharmonic exhaustion on WE and hence w, is
Stein.

This gives a desired Stein neighborhood basis WE of ,S’ satisfying
Theorem 3.1. The same proof applies to any compact subset K C S

containing Ko. Alternatively one can apply the above proof with p replaced
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by p + TK where TK &#x3E; 0 is a smooth function which vanishes to order &#x3E; 2
on K. This completes the proof of Theorem 3.1.

Remark. - Since the function p constructed above is plurisubhar-
monic on the Stein manifold wEO - {p  Eo I for some small co &#x3E; 0, its

sublevel sets wE = {/?  61 for E e (0, Eo) are Runge in 

THEOREM 3.2. - Let Ko and S = Ko U M be compact holomorphi-
cally convex subsets in a complex manifold X such that M = SBKo is a
totally real m-dimensional submanifold of class C’’. Assume that r &#x3E;- m/2-I-1
and let k be an integer satisfying 0 x k x r - m/2 - 1. Given an open set
U C X containing Ko and a map f : U U M -* Y to a complex manifold
Y such that flu is holomorphic and there exist open sets

Vj C X containing Sand holomorphic maps fj : Vj - Y ( j - l, 2, 3, ... )
such that, as j ~ oo, the sequence fi converges to f uniformly on Ko and
in the Ck-sense on M. If in addition Xo is a closed complex subvariety of
X which does not intersect M and s E 1~ then ule can choose the approx-

imating sequence such that fj agrees to order s with f along Xo n Vj for
all j = 1, 2, 3,.... The analogous result holds for sections f : X - Z of any
holomorphic submersion h: Z - X.

The domains of fj in Theorem 3.2 may shrink to ,5’ as j --~ oo.

Although none of the manifolds X, Y, Z in Theorem 3.2 is assumed to be
Stein we shall reduce the proof to that case. In our applications Ko will be
a sublevel set {p ~ c} of a smooth strongly plurisubharmonic function on
X and M will be a smooth totally real handle attached to the hypersurface
bKo = f p = c} along a legendrian (complex tangential) sphere.

Proof - When X = en, Y - C (i.e., f is a function) and k = 0,
Theorem 3.2 coincides with Theorem 4.1 in [HW, p. 11]. For later purposes
we recall the sketch of proof which uses the Stein neighborhood basis
wE C X of S furnished by Theorem 3.1 in [HW] (compare with Theorem
3.1 above). One first obtains a CT extension u of f in a neighborhood of M
such that O(dr;:¡l-S), where dM denotes the distance to M and
Ds is the total derivative of order s  r -1 (Lemma 4.3 in [HW]). Then one
solves with L2 estimate on w, Ho2~ . By the interior elliptic
regularity of 9 this implies the uniform estimate lWEI == o(Er-m/2-1) = 0(,E k)
on WCE for any fixed c C (o, 1 ) (the second display on p. 16 in [HW]). If
0 we also have I = O(Ek-S) on for a fixed c’ E (0,c)
(see e.g. Lemma 3.2 and the proof of Proposition 2.3 in [FL]). The function
f, = u - wE is holomorphic on wE ; as E -~ 0, f, converges to f uniformly
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on Ko and in the ck-sense on M. Since WE is Runge in V := (see the
Remark preceding Theorem 3.2), we can approximate f, by FE : V - C and
obtain the desired approximating sequence on a fixed open set V C en.
This proves the special case of Theorem 3.2.

For Y = CN the result follows immediately by applying it compo-
nentwise. The case when X is a Stein manifold (and Y = eN) reduces to
the special case by embedding X as a closed complex submanifold in some
C~, or by applying the proof in [HW] with the Stein neighborhood basis
furnished by Theorem 3.1 above. To prove the general case of Theorem 3.2
we need the following.

LEMMA 3.3. - Let h: Z - X be a holomorphic submersion of a
complex manifold Z to a complex manifold X. Assume that S = Ko U M C
X satisfies the hypotheses of Theorem 3.2. Let U be an open set in X
containing Ko and let f : U U M - Z be a section which is holomorphic
on U and smooth of class C~ on M. Then f (S) has a Stein neighborhood
basis in Z.

Proof - We may assume that U is Stein and Ko is O(U)-convex.
The submanifold f (M) C Z is projected by h bijectively onto the totally
real submanifold M C X and hence f (M) is totally real in Z. Since flu
is holomorphic, f (U) is a closed complex submanifold of 
and hence by [De, S] it has an open Stein neighborhood U C For

any compact subset K CC U the set f(K) is holomorphically
convex in f (U) and hence (since f (U) is a closed complex submanifold of
U) also in U. Applying this with K = Ko, and also with K = (Ko U ,S’) n N
for some compact neighborhood N C U of Ko, we see that f(S) C Z
satisfies the hypothesis of Theorem 3.1 and hence it has a basis of Stein
neighborhoods. This proves Lemma 3.3. D

We continue with the proof of Theorem 3.2. Assume that f : U U M -
Z is a section of h: Z - X which is holomorphic in U and of class Cr on
M for some r &#x3E; 1. Fix a Stein neighborhood Q C Z of f(S) furnished by
Lemma 3.3 and ernbed Q as a closed complex submanifold of a Euclidean
space CN . There is an open neighborhood n C (CN of Q and a holomorphic
retraction cjJ: n ---+ [2 [DG]. We consider f as a map into CCN via the
embedding The special case of Theorem 3.2 gives a sequence
of holomorphic maps gj : V - CCN ( j E N) in an open neighborhood V C X
of ,S’ such that Is = (the convergence is uniform on Ko and
in the ck-sense on M). Let Vj = ~~ E V: gj (x) this is a neighborhood
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of ,S’ for sufficiently large j The sequence of gj: V3 
then satisfies the conclusion of Theorem 3.2 except that fj need not be a
section of h. This is corrected by projecting the point to the fiber

Zx = h-1 (x) by the holomorphic retraction provided by the following

LEMMA 3.4. - Let Q be a Stein manifold and V a holomor-

phic submersion onto a complex manifold V. There are an open Stein set
W C V x Q containing r := f (x, z) E V x Q: h(z) = .r} and a holomorphic
retraction 7r: W - r such that 7r(x, z) _ (x, ~r2 (x, z) ) for every (x, z) E W.

It follows that h (7r2 (X, z) ) = x, i.e., 7r2(X,. ) is a holomorphic retrac-
tion of an open neighborhood of the fiber h-1 (x) in Q onto h-’(x) for every
fixed x E V. Assuming Lemma 3.4 for a moment we set fj (x) = 7r2 (x, fj (x) )
for j = 1, 2, ...; these are holomorphic sections of h in small open neigh-
borhoods Vj C X of ,S’ satisfying Theorem 3.2.

The version of Theorem 3.2 with jet interpolation on a subvariety Xo
not intersecting M = ,S’BKo is obtained by using an embedding Q - C~
and writing f = fo + higi in a neighborhood V C X of ,S’ where

the functions hl, ... , hlo E O(V) vanish to order s on Xo and satisfy
Xo n V = {.r E V : hi (x) = 0, 1 ~ lo ~, fo and gl are maps V - C N
such that fo is holomorphic in V and every gi C cr(v) is holomorphic in
a neighborhood of Ko. (See Lemma 8.1 in [FP2, p. 660] for the details.)
Applying Theorem 3.2 with Y = (CN we approximate each gi on ,S’ by a
sequence of sections gi,j ( j = l, 2, 3, ... ) holomorphic in a neighborhood of
,5’ in X. This gives a holomorphic sequence fj = fo + higi,j whose
restriction to S’ converges to f as j -~ oo (in the sense of Theorem 3.2).
It remains to compose fj with the two retractions as above (first by the
retraction § onto Q and then by the retraction furnished by Lemma 3.4)
to get a sequence of holomorphic sections fj : Vj - Z ( j = 1, 2,...) which
agree with f to order s on Xo and satisfy fls oo. This

completes the proof of Theorem 3.2 granted that Lemma 3.4 holds.

Proof of Lemma 3.4. - Clearly r is a closed complex submanifold of
V x S2. Let pi : V x Q - denote the respective projections.
Observe that p2!ri r - Q is bijective with the inverse z ~ (h(z), z) ; hence
r is Stein and consequently it has an open Stein neighborhood in V x Q.

Consider the holomorphic vector subbundle E C T(V x Q) whose fiber
over (x, z) consists of all vectors (0, ~), ~ C TzQ. The restricted bundle E I r
can be decomposed as Elr = Eo EB N where Eo = n Th and N is some

complementary subbundle. Observe that N is the normal bundle of r in
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V x S2 (here we use the hypothesis that V is a submersion). Let No
denote the zero section of N. By the Docquier-Grauert theorem [DG] there
is a biholomorphic map 4D from an open neighborhood U C N of No onto an
open neighborhood W C V x Q of r which maps No onto r and maps the
fiber n U to ~x~ x Q = for any (x, z) E r. (We can obtain such
lll by composing local flows of holomorphic vector fields which are tangent
to N.) Choosing U to have convex fibers it follows that 41) conjugates the
base projection U - No to a holomorphic retraction 7r: W - r satisfying
the conclusion of Lemma 3.4. 0

Remark. - The loss of smoothness in Theorem 3.2 is due to the

method. When Ko = 0 and S’ is a totally real submanifold of X of
class Cr the optimal approximation was proved by Range and
Siu [RS], following the work of many authors. The kernel approach devel-
oped in gives precise approximation of smooth diffeomorphisms by
biholomorphisms in tubular neighborhoods. Both approaches can likely be
adapted to the situation considered here, but we do not need such sharp
approximation results.

4. Proof of Theorem 2.2.

We first state parts (a) and (b) of Theorem 2.2 in a precise quantita-
tive form; part (c) will be considered later.

THEOREM 4.1. Let X be a Stein manifold, K C X a compact
O(X)-convex subset and Y a complex manifold with dimx.

Choose a distance function d on Y induced by a complete Riemannian
metric. Assume that S(X, Y) is such that Y is a

holomorphic submersion and lo K = T f o I K. If Y satisfies Property S’n with
n = dim X then for every c &#x3E; 0 there is a homotopy (ft, tt) E 
(t E [0,1]) from ( f o, to) to some ( f 1, Tfl) E Sholo (X, Y) such that for every
t E [0, 1], Y is a holomorphic submersion, T ft I K = tt and

SUP. C K d (ft (x), fo (x) )  E.

Proof. We shall follow the construction of holomorphic submer-
sions X ~ (Cq in [Fl], indicating the necessary changes and additional
arguments.

Assume that U C X is an open set containing K such that 
Y is a holomorphic submersion and Choose a smooth
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strongly plurisubharmonic Morse exhaustion function p on X such that
K C {p  0} CC U and 0 is a regular value of p. We may assume
furthermore that in some local holomorphic coordinates at each of its
critical points the function p is a quadratic normal form given by (6.1)
in [Fl] .

The construction of the homotopy (ft,tt) E S(X, Y) is done in a

countable sequence of stages, and every stage consists of finitely many
steps. We use two different types of steps, one for crossing the noncritical
levels of p and the other one for crossing a critical level. The selection of
sets involved in stages and steps is done in advance and depends only on
the exhaustion function p. On the other hand, some of the constants in the

approximation at each stage (or step) are chosen inductively and depend
on the partial solution obtained in the previous stages. The construction is

quite similar to the proof of the Oka-Grauert principle in [HL2] and [FP1].
We first explain the global scheme; compare with Sect. 6 in [Fl].

Let Pl, P2, p3, ... be the critical points of p in f p &#x3E; 01 c X ordered
so that 0  p(p1 )  p(p2)  p(p3 )  .... Choose a sequence 0 = co 

Cl  C2  ... with cj - +00 such that   

for every j - 1, 2,... and the numbers C2j are close to p(pj) ; the
desired closeness will be specified below when crossing the critical level

{p == If there are only finitely many pj’s, we choose the remainder
of the sequence cj arbitrarily with +00. We subdivide the

parameter interval of the homotopy into subintervals h = with

t~=1-2-~ (j=0,1,2,...).
In the j-th stage of the construction we assume inductively that we

have a partial solution ( ft, tt) E S(X, Y) for t E [0, tj] satisfying

for some ej x E ( 1 - 2-i-1), such that - Y is a holomorphic
submersion and tt, = T ft~ on (p x For j = 0 these conditions are
satisfied with Eo = c/2.

Choose a nurnber 6j E (0, such that any holomorphic map
from {p cj to Y which is uniformly dj-close to ftj (measured by the
metric d on Y) is a submersion on {p ~ (For j - 0 we choose
c_ 1  0 sufficiently close to 0 such that K C {p  c_ 1 ~ . ) We also insure
that 6j  bj-1/2 where is the analogous number from the previous
stage; this condition is vacuous for j = 0. The goal of the j-th stage is
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to extend the solution S(X, Y) to the interval t E Ij = tj+-
(keeping it unchanged for t E [0, tj]) such that

T ft = tt on {p ~ for every t E Ij, and 1 on {p ~ 
Then ft,+, satisfies the inductive hypothesis on the set (p x cj+ll with

1 thus completing the j-th stage.

Assume for a moment that this process can be worked out. For

every t C [tj, 1) the map f t is holomorphic on (p x and - T f t
there. By (4.2) the limits fi = Y and ti - limt-&#x3E;1 tt =

limt-, T ft: TX --~ TY exist uniformly on compacts in X. It follows that
f l : X - Y is holomorphic and t, = T/i on X. By the construction we also
have

The choice of 6j implies that fi is a holomorphic submersion on ( p x 
Since this holds for every j E N, fi is a holomorphic submersion of
X to Y and hence (fl, Tfl) E Sholo (X, Y). From (4.1 ) we also get
d( f1(x), fo(x))  E for x E K. This will complete the proof of Theorem
4.1 provided that we prove the inductive stage. D

We first consider the noncritical stages, i.e., those for which p has no
critical values on [cj, (In our notation this happens for even values of
j.) We solve the problem in finitely many steps of the following kind. We
have compact subsets A, B of X satisfying

(i) A, B, C := A n B, and A := A U B are (the closures of) strongly
pseudoconvex domains in X,

(ii) ABB n BBA = 0 (the separation property), and

(iii) there is an open set U in X containing B and a biholomorphic
map 1/J: U --+ U’ onto an open subset U’ C en containing the cube Q (2.1)
such that is a convex subset of Q and 0 n U) r1 Q is a special
convex set of the form (2.2).

PROPOSITION 4.2. - Let A, B C X satisfy the properties (i)-(iii)
above. Assume that f : A ~ Y is a holomorpllic submersion. If Y satisfies
Property ,S’n with n = dim X then for any 6 &#x3E; 0 there is a homotopy
of holomorphic submersions ft: A - Y (t E [0, 1]), uritll fo - f, such
that SUPxEA f (x))  6 for every t E ~0, 1~ and fi extends to a
h ol om orph i c s u bm ersi on A U B --~ Y.
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For Y = C~ with q  dimX this is Lemma 6.3 in ~F1~. Its proof also
applies in our situation if we replace the use of Proposition 3.3 in [Fl] by
the assumed Property Sn of Y. We include a sketch of proof.

By hypothesis the map Y is a holomorphic submersion
on 0 - O(A n U) n Q C By Property Sn of Y we can approximate
it uniformly on some fixed neighborhood of 0 as close as desired by
a holomorphic submersion g: Q - Y. (We actually apply S’n with the
pair (rO, rQ) of dilated sets for some r &#x3E; 1 close to 1 in order to

get approximation on a neighborhood of 0.) Since C Q, the map
g = g o 1jJ: B --t Y is a holomorphic submersion which approximates f
uniformly in a neighborhood of A n B as close as desired. By Lemma 5.1
in [Fl] we have f = g o q for a biholomorphic rnap q defined in an open
neighborhood of A n B in X and uniformly very close to identity map. (Its
distance from the identity only depends on the distance of f and g on the
given neighborhood of A n B. The proof of Lemma 5.1 in [F1] holds for
arbitrary target manifold Y.) If the approximations are sufficiently close,
Theorem 4.1 in [F1] provides a decomposition -y = in a neighborhood
of A n B, where a is a biholomorphic map close to the identity in a
neighborhood of A in X and (3 is a biholomorhic map close to the identity
in a neighborhood of B. Thus neighborhood of A n B
and the two sides define a holomorphic submersion f : A U B - Y which
approximates f on A. Furthermore, there is a homotopy at (t E [0, 1])
of biholomorphic maps close to the identity in some fixed neighborhood
of A such that ao is the identity and c~l = a. (It suffices to embed X
as a complex submanifold in some Euclidean space, take the convex linear
combinations of a with the identity map, and project this homotopy back to
the submanifold X by a holomorphic retraction.) Then ft := A --t Y

is a homotopy of holomorphic submersions from fo = f to fi = f satisfying
Proposition 4.2. This completes the proof.

It remains to explain how Proposition 4.2 is used in the j-th stage
of the construction. Since p is assumed to have no critical values in

we can obtain the set from by finite
number of attachings of ’convex bumps’ of the type introduced just before
Proposition 4.2. We begin with Ao = ~ p  and attach a bump Bo
to get A1 = Ao U Bo ; then we attach a new bump BI to A1 to obtain
A2 = Al U Bi, etc., until reaching (see Lemma 12.3
in [HL1]). The required number of steps kj depends only on p. We also
subdivide the parameter interval h = into adjacent subintervals

I (k = 1, 2, ... kj ) of equal length, one for every step.
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Assume inductively that for some  kj a solution E

S(X, Y) has already been defined for t E [0, tj,k-11 such that f :== ft3,k-1
is a holomorphic submersion from to Y T f on
this set. Applying Proposition 4.2 on A = we extend the family of
solutions to the next subinterval t C Ij,k such that

(compare with (4.2)). We can also define lt for t E Ij,k such that = T ft on
¿tJ,k = on Ak, tt is homotopic to to and agrees with to outside

of some small neighborhood of Ak. In kj steps we extend the family of
solutions ( f t , tt) to t E h and thus complete the j-th stage.

It remains to consider the critical stages, i.e., those for which p has
a critical point p with cj  p(p)  For Y = eq this is explained in
sections 6.2-6.4 in [Fl]. Since the proof needs a few modifications, we shall
go through it step by step.

Write c = cj . We may assume that c has been chosen as close to p(p)
as will be needed in the sequel. Near p we use local holomorphic coordinates
on X in which p = 0 and p is a quadratic normal form (see (6.1) in [Fl]).
In particular, the stable manifold of p = 0 for the gradient flow of p is
R" C en (the subspace spanned by the real parts of the first v variables),
where v is the Morse index of p at p. To cross the critical level p = p(p) we
perform the following three steps.

Step 1: Extension to a handle. We attach to (p x c} the disc

M c JRv c C’ (in the local coordinates) such that the attaching sphere
bM C {p = c} is complex tangential in the latter hypersurface (Subsect.
6.2 in [F1]). Let ( f , t) be the partial solution obtained after the first j - 1
stages, so f is a holomorphic submersion from a neighborhood of (p x c}
to Y and t = T f there.

LEMMA 4.3. - There is a neighborhood U of S :== c} U M in
X and a smooth map g: U - Y which agrees with f in a neighborhood
of = f p - c} such that for every x E M the differential dgx : TxX -7

is a surjective C-linear map. Furthermore, ( f, t) can be connected to
(g, Tg) by a path (homotopy) in S(U, Y) which is fixed in a neighborhood
of Ko.

Proof. The main point is the extension of f and its 1-jet to the
handle M such that the above properties are satisfied. One uses Gromov’s
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convex integration lemma ([Gr2] ; Section 2.4 of [Gr3], especially (D) and
(E) in [Gr3, 2.4.1.]; Sect. 18.2 in [EM], especially Corollary 18.2.3.). The
details given in [Fl] (Lemmas 6.4 and 6.5) for the case Y = C~ remain
valid for arbitrary target manifold Y. The differential relation controlling
the problem is ample in the coordinate directions and hence Gromov’s
lemma applies.

It is (only) at this point of the proof that we need the hypothesis on
the existence of a fiberwise surjective map t: TX - TY with base map

f. When q - dimy [n!l] such t exists by Thorn’s jet transversality
theorem. D

Step 2: Holomorphic approximation on a handlebody. We denote the
result of Step 1 again by ( f , t); thus f is a holomorphic submersion from
a neighborhood of the strongly pseudoconvex domain I~o = (p x c} C X
to Y, it is smooth in a neighborhood of the handle M, 
is surjective and C-linear at each point x C M, and tx = dfx for every

By [Fl, Subsect. 6.3] the pair satisfies the hypothesis of
Theorem 3.2 above, and hence there is a holomorphic map f from a
neighborhood of S’ to Y which approximates f uniformly on Ko and in the
C’-sense on M as close as desired. If the approximations are sufficiently
close then f is a holomorphic submersion from some open neighborhood of
,S’ to Y. We patch the new map with the old one outside of a neighborhood
of S.

Step 3: Crossing the critical level of p. We denote the result of Step
2 again by f and set l = T f in a neighborhood of S = {p  c} U M. We
patch t with to outside of a neighborhood of ,5’ by using a cut-off function
in the parameter of the homotopy connecting t to to.

By the scheme explained in [Fl, Subsect. 6.4] we can approximately
extend f across the critical level of p at p by performing a noncritical stage
with another strongly plurisubharmonic function T furnished by Lemma
6.7 in ~F1~. Afterwards we revert back to the original exhaustion function p
and proceed to the next noncritical stage associated with p. When changing
the domain of the solution (first from a neighborhood of the handlebody S
to a suitable sublevel set of T, and later from a higher sublevel set of T to
a supercritical sublevel set of p) we sacrifice a part of the domain, but the
loss is compensated in the next stage. The approximation conditions for
the given stage can be satisfied with the appropriate choices of constants
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at every step. No further changes from [Fl] are needed apart from those
already explained for a noncritical stage. This completes the proof of
Theorem 4.1 and hence of (a), (b) in Theorem 2.2.

To prove part (c) of Theorem 2.2 we perform the same construction
for homotopies of submersions connecting a given pair fo, fl: X - Y.
Property H,S’n is needed to obtain the analogue of Proposition 4.2 for such
homotopies. The remaining steps in the proof, including the crossing of a
critical level of p, require only inessential modifications.

Remark. - 1. It is possible to prove a stronger version of Theorem
4.1 with interpolation of a given holomorphic submersion along a closed
complex subvariety Xo C X; compare with Theorem 2.5 in [Fl].
2. Our proof also applies in the equidimensional case dim X = dim Y = n
as long as Y satisfies Property Sn. Unfortunately we don’t know any such
example; the main case to be solved is Y = Cn (see Problems 1-3 in [F1]).

5. Approximation of submersions on subsets of Cn.

In this section we prove Property Sn and HSn for certain algebraic
manifolds, in particular for those listed in Proposition 2.6. A complex
algebraic subvariety A in an algebraic manifold V will be called thin if

it does not contain any complex hypersurfaces, i.e., if A has complex
codimension at least two in V. The following is a key lemma.

LEMMA 5.1. Assume that 0 C Q C (Cn are as in (2.1), (2.2).
If A is a thin algebraic subvariety of Cn urith A n O = 0 then any
holomorphic submersion h: Y to a complex manifold Y can be
approximated uniformly on 0 by holomorphic submersions Q ~ Y (and
hence by submersions en -+ Y).

Proof - Let z = (z’, z") be the coordinates on en with z’ -

(ZI ... I zn-2) and z" _ After a small linear change of co-
ordinates the projection : Cn --&#x3E;, Cn-2, 7F(Z" z") = z’, is proper when

restricted to A. In this situation Lemma 3.4 from [F1] gives for any 6 &#x3E; 0 a

holomorphic autornorphism 9 of C" of the form 9(z’, z") = (z’,,Q(z’, z"))
satisfying supzEo ~~(z) - zl  6 and 9(Q) Then is

a holomorphic submersion whose restriction to 0 is uniformly close to h.
This proves Lemma 5.1. D
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Suppose now that Y is a projective algebraic manifold of dimension
q. Given a holomorphic submersion f : 0 ~ Y from a special convex set
O C C’ for some n &#x3E; q, our goal is to approximate f uniformly on 0 by
a rational map h: C~ 2013~ Y which is a holomorphic submersion outside of a
thin algebraic subvariety A C C’ not intersecting O. If such approximations
exist then by Lemma 5.1 we can approximate h (and hence f ) uniformly
on 0 by submersions g: Q - Y, thus proving that Y satisfies Property Sn.
In a similar way we establish H Sn.

The possibility of approximating f by h is of course a nontrivial

condition on Y which fails for example on Kobayashi-Eisenman hyperbolic
manifolds. We shall first establish Property Sn of the projective spaces 
when n &#x3E; q; the proof for Grassmanians and their Zariski open subsets with
thin complements will follow the same pattern. (For Y = C~ see Proposition
3.3 in [F1].)

The quotient projection 7r: = (~q+ 1 ~ ~ 0 ~ ~ Cpq is a holomorphic
fiber bundle with fiber C*, and by adding the zero section we obtain the
universal line bundle L - CP . Assume that f : 0 ~ Cpq is a holomorphic
map on a compact convex set 0 C cn. Since 0 is contractible, the bundle

f * L ~ 0 is topologically trivial and hence holomorphically trivial [0,
G3]. Therefore f * L admits a nowhere vanishing holomorphic section which
can be viewed as a holomorphic map ¡ 0 ~ satisfying f = 7r o f
(a holomorphic lifting of f). We approximate f uniformly on 0 by a
polynomial map P : C" - and take h = 7r o P : CnBP-1 (0) - CP ; by
construction hlo approximates f.

It remains to show that for a generic choice of P the map h is a
submersion outside of a thin subvariety in We say that P is transverse

to 7r at a point z E (Cn if P(z) # 0 and dPz is transverse to the fiber of

1f through P(z). Note that h = 7r o P is a submersion in a neighborhood
of z E Cn if and only if P is transverse to 7r at z. Since f : 0 ~ Cpq is

a submersion and hence f is transverse to 7r on 0, we may assume (by
choosing P sufficiently uniformly close to f on a neighborhood of 0) that
P is also transverse to 1f on O. To complete the proof it suffices to show
that for a generic choice of P the ’singularity set’

is a thin algebraic subset of en provided n &#x3E; q.

Before proceeding we consider also the case when Y = is the

Grassman manifold consisting of k-dimensional complex subspaces of 
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We apply the above proof with the fibration 7r: where is the

Stiefel variety of all k-frames in acted upon by the group GLk(C), We
can identify Vk,m with a Zariski open subset in Ck, with thin complement
B (which consists of k x m matrices with rank less than k), and 7r defines
an algebraic foliation F of cekm which is nonsingular on Vk,m and has
homogeneous leaves biholomorphic to GLk (C). By Grauert’s main theorem
from [G3] we can lift any holomorphic map f : 0 ~ Y from a compact
convex set 0 C C’ to a holomorphic map f : 0 ~ Vk,m such that f = 7r o f
(the argument is essentially the same as above). Next we approximate f by
a polynomial map P: We define the ’singularity C C"

of P as above, except that we replace the origin in the target space by
B = Fsing. To complete the proof it remains to show that, for n &#x3E; dim Y,
the set ~p is thin in cen for a generic choice of P. The same proof applies
to Zariski open sets SZ with thin complements in Gk,m ; it suffices to add to
B the (thin) 7r-preimage of the complement of Q.

To complete the proof of Proposition 2.6 (at least the part concerning
the Property Sn ) we need the following. Fix a positive integer N E N
and denote by V = P (n, m, N) the vector space of all polynomial maps
P : of degree at most N; note that V may be identified with a
Euclidean space.

LEMMA 5.2. - be an algebraic foliation of codimension q on Cm
with thin singular locus Ting C Cm. Given a polynomial map P: cern

consist of all points z E (Cn such that P(z) E or dPz is not

transverse to the through P(z). If n &#x3E; q then the is thin

for all P outside of a proper algebraic subvariety of P (n, m, N).
The analogous result holds for any algebraic subsheaf ~" (not neces-

sarily integrable) of the tangent sheaf of Cm for which (the locus
of points where ,~’ is not locally free) is thin. The proof is a standard

application of transversality arguments [A, Fo] and is included only for

completeness.

Proof of Lemma 5.2. - Let J £r denote the manifold

of one-jets of holomorphic maps cern. For each holomorphic map
f: U C the associated one-jet extension is

where i Denote by j i
. J ,

(resp. p2: ~.I --~ the source point

(resp. the image point) projection.
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Given an algebraic foliation F on em of codimension q with singu-
larity set let EjF C J denote the subset consisting of 

together with all one-jets over points w E = which are not

transverse to T,.F (the tangent space to the leaf of F at w). We claim that
ET is a thin algebraic subset of J provided that is thin and n &#x3E; q.

Clearly p2 1 is thin. Furthermore, each point w E is contained

in a Zariski open set U C em such that the restricted foliation Flu is de-
fined by one-forms (Ji,... Wq on em with polynomial coefficients which are
pointwise independent at w. A one-jet with f (z) = w fails to be trans-
verse to if and only if the q x n matrix with entries 

has rank less than q. A simple count shows that
the subvariety consisting of all such matrices has codimension In - q + 1
which is &#x3E; 2 when n &#x3E; q. This gives over each point w E 0reg at least two
independent algebraic equations for EjF, thus proving our claim.

We identify V = P(n, m, N) with the Euclidean space whose elements
are collections c = ~ (ca ) : where ca E for each multiindex

a = (a 1, ... , an); the correspondence is given by

Let ~y: ~’~ x V- J associate to every pair (z, P) the one-jet E J.

Clearly 7 is polynomial in z and linear in the coefficients of P. Furthermore,
fixing z E C’ and the coefficients ca with 2 x N, q gives a linear
map of maximal rank (a linear submersion) from the space of coefficients

1 } of order  1 onto the fiber C J. It follows that M 1 ==

ly - 1 is a thin algebraic subvariety of C’ x V. Hence for every P outside
a proper algebraic subvariety of V the set Ep - f z E ( z, P) is

a thin subvariety of By construction, ~p is the set of point z E C"
at which dPz fails to be transverse to the foliation .F (or P(z) belongs to

This proves Lemma 5.2. D

This establishes Property Sn of any complex manifold Y in Proposi-
tion 2.6 for all n &#x3E; dim Y. The proof that CP~ also satisfies Property Si
requires a slightly different argument as follows. Let f : O - = CU{oo}
be a holomorphic submersion from a convex set 0 C C to the Riemann

sphere. Then C 0 is a finite subset of 0 which we may assume

to be contained in the interior of O. Let B C C be a convex set such that

0, B U O is also convex, and BBOnOBB == 0. Let C = BnO.
By Theorem 3.1 in we can approximate CC = by
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entire noncritical functions g : C - C. Proceeding as in the proof of Propo-
sition 4.2 above we find a biholomorphic transition map ~ between f and
g on a neighborhood of C, decompose 7 = /3 o a  and thus patch f and g
into a submersion 1: B U 0 ---+ CP1 which approximates f on O. Further-
more we can arrange that f -1 ( oo ) = f -1 ( oo ) . In finitely many steps of this
kind we approximate f by a submersion Q - as desired.

We now show that every manifold Y as above also satisfies Property
Hsn for all n &#x3E; q = dim Y. Recall that we have a submersion 7r: emBB ---+
Y onto Y where B is thin in and contains Ting. Let 0 C Q C (Cn be
as in (2.1), (2.2). Assume that ft: O C (~n ~ Y (t E [0,1]) is a homotopy
of holomorphic submersions such that f o and f l extend to submersions
Q - Y. By the same argument as in the proof of Property we can lift

to a homotopy of maps f t : O -~ em (t G [0, 1]) which are transverse to
the foliation ,~ defined by 7r and such that fo, fl are defined and transverse

on Q. We approxirnate ( ft) by a homotopy of polynomial maps
Pt: en ---+ em which also depends polynomially on a parameter t c C

(the approximation of f by Pt takes place on 0 for t E (o,1 ) and on Q for

Let N be the maximal degree of the maps Pt in the above family,
considered as polynomials both in tEe and z C Denote by pen, m, N)
the space of all polynomial maps (t, z) C C x C~ 2013~ em of degree ~ N. For
every P E pen, m, N) and tEe we have Pt = pet, . ) E pen, m, N). The
proof of Lemma 5.2 shows that for a generic choice of P E N) the
‘singularity set’ ~ p C Cl+n, consisting of all (t, z) for which the one-jet

is not transverse to .~’ (or Pt (z) E B), is a thin algebraic subvariety of
Hence for all but finitely many tEe the singularity set Et C C" of

the map Pt is also thin. By a small deformation of the segment [0,1] C R
inside C we may can avoid this finite exceptional set of t’s, thus obtaining
a homotopy Pt : (~n --~ of polynomial maps approximating ft (t E [0,1])
such that Et is thin for all t E ~0, l~ . Hence ht = 7r o Y

is a homotopy of submersions which approximates the original homotopy
ft: 0 2013~ Y uniformly on 0, and uniformly with respect to the parameter t.

We can now conclude the proof as in Lemma 5.1. Applying [Fl,
Lemma 3.4] with the additional parameter t C ~0, 1~ we obtain a family of
holomorphic automorphisms 7/Jt (z’ , z") = (z’, /3t (z’ , z")) depending
smoothly on t E ~0,1~, such that for every t we have 7/Jt(Q) n £t = 0,
ot 10 is close to the identity map on 0, and the maps 90 and 91 are close
to the identity map on Q. The homotopy of holomorphic submersions
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ht o ~:Q 2013~ Y satisfy all the required properties, except perhaps the
interpolation condition at the endpoints t = 0, 1 which is easily fixed.

When proving the Property S‘n or H Sn for C~ (or a Zariski open
subset with thin complement in we proceed as above but skip the
first step, i.e, we can directly deal with polynomial maps This

completes the proof of Proposition 2.6.

Remark. - Our proof of Property H Sn breaks down for multi-para-
meter families of submersions: we still prove that for a generic choice of the
polynomial map P : C~ x C" - C’ its singularity set Ep C ef x C,
(with t C (C~ being the parameter) is thin; hence for all t outside of

a proper algebraic subvariety Z C ~’~ the singularity set Et C ~n of
Pt = P(t, .): C" - em is thin in However, when k &#x3E; 1 we may not be

able to avoid the exceptional set Z by a small deformation of the parameter
cube [0, C in Such a multi-parameter analogue of Property HSn
would be needed to obtain the complete parametric homotopy principle for
submersions X - Y.

6. A simple proof of the Oka-Grauert-Gromov theorem.

We give a simple proof of the following result from [F3].

THEOREM 6.1. - Let h: Z - X be a holomorphic fiber bundle over
a Stein manifold X. If the fiber Y = (x E X) admits a finite domi-
nating collection of sprays then the inclusion Holo(X, Z) - Cont(X, Z) of
the space of holomorphic sections into the space of continuous sections is
a weak homotopy equivalence.

The spaces of sections are equipped with the compact-open topology.
For the definition of ’dominating families of sprays’ see [F3]. The classical
case when Z is a principal holomorphic bundle (with fiber a complex Lie
group or homogeneous space) is due to Grauert [G3]. The case when the
fiber Y admits a dominating spray is due to Gromov [Gr4, Sec. 2.8], and a
detailed proof can be found in [FP1].

Proof. - We use the scheme of proof of Theorem 2.2 in Sect. 4 (which
is similar to the one in [FP1]). We may assume that the fiber Y is connected.

At a noncriticial step we have a continuous section f: X - Z which
is holomorphic in an open neighborhood of a smoothly bounded, compact,
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strongly pseudoconvex domain A C X. We attach a small ’convex bump’
B satisfying

(i) ABB n BBA = 0 and the union A U B is again smoothly bounded
strongly pseudoconvex,

(ii) in some local holomorphic coordinates in a neighborhood U C X
of B the sets B and C = A n B are compact convex subsets of C’

(n = dim X), and

(iii) the restricted bundle is trivial, U x Y.

The set B can be a ’special convex set’ of the form (2.2) in some local
coordinates on X. The goal is to approximate f uniformly on A as close
as desired by a continuous section f : X - Z which is holomorphic in a
neighborhood of A U B. This is accomplished by the ’noncritical case’ in

[Gr4] or [FP1, Sect. 6] and here we do not propose any changes. We recall
the main steps for the sake of the reader.

Let U x Y be any holomorphic section (for instance,
a constant section). Since C is convex and hence holomorphically con-
tractible, there is a of holomorphic sections over a
neighborhood V C U of C connecting f o : - f IV to fllv. Since Y admits a
finite dominating family of sprays, the homotopy version of the Oka-Weil
theorem [F3, Theorem 3.1~ gives a uniform approximation of the homotopy
Ud on a smaller neighborhood of C by a homotopy of sections {ft}e[o,i]
which are holomorphic over a neighborhood of B, with fi = fi and g : f o
very close to f on a neighborhood of C. (This approximation result is

essentially due to Grauert [G1, G2]; see also [Gr4] and [FP1].) Applying
Theorem 4.1 in [F3] (or Theorem 5.1 in [FP1] when Y admits a dominating
spray) we glue the pair of sections f, g into a section f which is holomor-
phic in an open neighborhood of A U B and extends to a continuous section
over X. This completes the noncritical step.

A complication in this process arises when crossing a critical level

p = col of the given strongly plurisubharmonic exhaustion function
p: ~ 2013~ R. In that case we have ~4 = {~ ~ c} for some c  co close to

co (such that p has no critical values on [c, co)). The set B is a ’handle’
attached to A such that the attaching set C - A n B is no longer
contractible. (The union A U B is diffeomorphic to the sublevel c~}
for some c’ &#x3E; co . ) In this case we cannot find the desired homotopy ifti as
above. In [FP1] the difficulty was avoided by applying the noncritical case
with an additional parameter to construct {ft}, beginning at the ’core’
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of C (which is a totally real torus) and performing ’approximation and
gluing’ until reaching C in finitely many steps (Theorem 4.5 in [FP1]). An
alternative method, proposed by Gromov [Gr4] and developed in [FP2],
uses a more complicated induction scheme and remains applicable even
if the submersion Z -&#x3E; X is not locally trivial, as long it admits fiber-

dominating sprays over small open subsets of X.

Here we propose a simple alternative way to pass the critical level of
p by applying Theorem 3.2. Assume that A and f are as above. We attach
to A a smooth totally real handle M passing through the critical point p,
with dim M equal the Morse index of p (see Sect. 4, Step l: extension to a

handle). By Theorem 3.2 we can approximate f uniformly on A U M by a
section f which is holomorphic in a neighborhood of A U M and continuous
on X (compare with Step 2 in Sect. 4). The proof is completed by Step
3 in Sect. 4 without any changes (i.e., we use the noncritical case with a
different strongly plurisubharmonic function T in order to pass the critical
level of p at p, then we revert back to p and proceed by the noncritical
case to the next critical level of p.) All steps adapt easily to the parametric
case and hence we obtain the lull statement of Theorem 1.4 in [FP1] under
the weaker assumption that the fiber admits a dominating family of sprays
(instead of a dominating spray). This completes the proof. D

Comparing with the proof of Theorem 2.2 we see that the only
essential difference lies in the method of local approximation and gluing of
pairs of sections. In the proof of Theorem 6.1 we use a dominating family
of sprays on the fiber to linearize the problem. On the other hand, in
Theorem 2.2 we patch a pair of submersions by decomposing the transition
map between them in the source manifold X without using any properties
of the target manifold (these are only used for the approximation). The
method of passing a critical level is identical in both proofs, except that
the construction of submersions requires a maximal rank extension of the

one-jet across the handle.

The above may be conceptually the simplest available proof of the
Oka-Grauert-Gromov principle, even in Grauert’s classical case concerning
principal bundles with homogeneous fibers. Unlike in the earlier papers,
holomorphic sections are constructed without using the intermediate tech-
nical devices for multi-parameter homotopies of sections.
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