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, 1877-

COFINAL TYPES

OF TOPOLOGICAL DIRECTED ORDERS

by S0142awomir SOLECKI &#x26; Stevo TODORCEVIC

1. Introduction.

Let D and E be directed partial orders. A function f : D ~ E is
called Tukey if the preimage of each bounded subset of E is bounded in
D. A function g : E ~ D is called convergent if it maps cofinal subsets
of E to cofinal subsets of D. The existence of a Tukey map from D to
E is equivalent to the existence of a convergent map from E to D. If this
relation holds between D and E, we write D ,T E and say that D is Tukey
reducible to E or D is Tukey below E. We write D =T E if D T E and
E T D. The relation D =T E is equivalent to the existence of a directed
partial order into which both D and E embed as cofinal subsets. We say
then that D and E realize the same cofinal type [14].

Tukey ordering was introduced by Tukey [14] in an attempt to

illuminate the Moore-Smith theory of net convergence. It was then realized
that the relation T can be useful in calibrating complexities of various
directed sets or, more generally, partially ordered sets, see [5], [10], [11],
[14]. As demonstrated by Fremlin in [3], Tukey reducibility is central to

The first author was partially supported by NSF grant DMS-0102254. A large part of this
work was done when the first author visited Paris during June and July 2003. The visit
was supported by the CNRS-University of Illinois collaboration funds and by University
of Paris VI.

Keywords: Tukey order - Analytic ideals - or-ideals of compact sets.
Math. classification: 03E05 - 06A07 - 03E15 - 03E17 - 22A26.



1878

understanding the results of Bartoszynski and Raisonnier-Stern saying in
effect that the a-ideal of meager subsets of [0, 1] is more additive than the
ideal of Lebesgue measure zero subsets of [0, 1]. Christensen in [1] Chapter 3
used Tukey reducibility to study the space of compact subsets of metric
separable spaces. Through the work above and an earlier paper by Isbell

[5], it became apparent that the relation T is particularly interesting when
restricted to partially ordered sets occurring in analysis and topology. In
the present paper, we continue this line of research.

On closer inspection, it turns out that examples of partial orders
studied in this context come from two major classes. The first one is the
class of analytic P-ideals of subsets of N with inclusion, see for example [3],
[5], [8], [9], [12], [13]. (By an analytic P-ideal we mean an ideal I of subsets
of N which is analytic as a subspace of 2N and is such that for any xn E I,
n E N, there is x E I with xn B x finite for each n. ) The second class consists
of a-ideals of compact sets with inclusion, see for example [1], [3], [4], [7].
(By a a-ideal of compact sets we mean a family I of compact subsets of
a metric separable space such that if L C K E I and L is compact, then
L E I, and if I~n E I, n E N, and Un Kn is compact, then Un Kn E I.) An
important element of the first class is the Fa P-ideal II/n defined by

It is, in fact, a maximal element with respect to the Tukey ordering among
analytic P-ideals. It is known (see [3]) that II/n captures all combinatorial
properties related to additivity and cofinality of the ideal of Lebesgue
measure zero subsets of ~0, 1~ with inclusion. For this reason, one may
call the family of all analytic P-ideals the measure leaf of the Tukey
ordering. The second one of these classes, a-ideals of compact subsets
of separable metric spaces, contains an important partial order NWD of
compact nowhere dense subsets of ~0,1~ . It is not Tukey maximal among a-
ideals of compact subsets of metric separable spaces but it is possible that it
is maximal among analytic such a-ideals, however, this is still open. Again,
it is known (see [3]) that NWD captures all combinatorial properties related
to additivity and cofinality of the a-ideal of meager subsets of ~0,1~ . One
may call the family of all a-ideals of compact subsets of metric separable
spaces or similar directed orders the category leaf of the Tukey ordering.

We investigate the structure of the Tukey order among partial orders

belonging to these two classes. In fact, we define a natural family of partial
orders, we call basic orders, containing both these classes, as well as other

interesting examples, and establish our results in this greater generality. It
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is somewhat unexpected that conditions defining this family and allowing
our proofs to go through involve only simple interaction between topology
and order (each convergent (bounded) sequence has a bounded (convergent)
subsequence) and the existence of a continuous maximum operation. We
hope that our results provide partial evidence that basic orders form the
right framework for investigating the Tukey reduction among directed
orders coming from topology and analysis. Here is a summary of the main
results.

We show that if the topology on a basic order is analytic, then it is
Polish. This generalizes results of Christensen [1] and Kechris, Louveau,
and Woodin [7]. As a consequence of it, we prove that analytic P-ideals
are the only ideals of subsets of N which can be made into analytic basic
orders by strengthening the topology on them. We prove that functions
witnessing Tukey reducibility between basic orders can always be chosen
to be definable (Borel or measurable with respect to the smallest a-algebra
generated by analytic sets). This is new even for analytic P-ideals and a-
ideals of compact sets and confirms the empirical fact noticed by several
people that whenever there was a Tukey reduction or a convergent map
between pairs of such directed orders one was able to find an effective such

map. Next, we define a general type of property of basic orders which is
invariant under Tukey reducibility. Using these general invariants, we are
able to establish results on Tukey non-reducibility between concrete partial
orders. One of these results concerns the relation between the measure and

the category leaves. In a sense the first one dominates the second one. The
first indication of this is given by NWD T (see [3]) which summarizes
several known results of Bartoszynski, Raisonnier-Stern, Pawlikowski, and
others mentioned earlier in the introduction. We enrich this theme further

by showing that this relation is strict and, in fact, no member of the measure
leaf, except those Tukey equivalent with 1, N, and is Tukey below a
member of the category leaf. The second non-reducibility result concerns
partial orders in the measure leaf, that is, analytic P-ideals. The top element
there, is an F~ P-ideal. We show that all F~ P-ideals are high in the
Tukey ordering in this leaf. For example, no such ideal, except those Tukey
equivalent to 1 or N, is Tukey below the analytic P-ideal

of all subsets of N of asymptotic density 0. These results strengthen
theorems of Fremlin [3] and Louveau and Velickovic [8]. We define and study
a functor I - D(I) from the measure leaf into the category leaf. We show
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that D respects the Tukey order, that is, I #T J implies D(I) T D(J)
for analytic P-ideals I, J with J containing at least one infinite set, we
prove that D(I) T I for all analytic P-ideals and establish upper and
lower Tukey bounds for D(I). We also show that the Tukey top
element among D(I) for analytic P-ideals I, is high in the Tukey order.
Finally, sharpening a result of Zafrany [15], we prove that each analytic
ideal of subsets of N has a cofinal subset which is G6.

2. Standard notation and definitions.

We recall now definitions of some of the relevant notions. By a Polish
space we understand a metric separable complete space. A metric separable
space is called analytic if it is the continuous image of a Polish space. If X
is a separable metric space, by /C(X) we denote the space of all compact
subsets of X (including the empty set) with the Vietoris topology, that is,
the topology generated by sets of the form {7~ E K n U # 0} and

open.

The introduction contains definitions and some examples of a-ideals
of compact sets and of analytic P-ideals. a-ideals of compact sets will be
considered with the Vietoris topology. It was proved in [91 that each analytic
P-ideal I is of the form I = Exh(~) where 0 : P(N) - [0, oo] is a lower

semicontinuous (lsc) submeasure and where

For example for TI/n and .~o the lsc submeasures are 0
n E x~ and ~2(x) - sUPnlx rl + 1), respectively. If

I = Exh(~) for a lsc submeasure 0, then d(x, y) = cp(x6y) is a metric on 1.
It was proved in [9] that the topology on I induced by this metric is Polish
and does not depend on the choice of 0. We will call it the submeasure

topology. The topology inherited by I from the inclusion I C 2N contains
the submeasure topology. It follows easily from (2.1) that each analytic
P-ideal is in fact as a subset of 2~. The ideal LI/n is a P-ideal which
is Fa and the ideal of asymptotically density zero sets .~o is an example of
an P-ideal which is not G6,. We consider the improper ideal P(N) of
all subsets of N to be an analytic P-ideal. The simplest non-trivial analytic
P-ideal is the ideal of finite subsets of N denoted by Fin. We call an ideal I
a trivial modification of Fin if, for some a C N, I = (x c N : x n a is finite}.
Our convention is that each ideal of subsets of N contains all singletons of
natural numbers.
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If D is a partial order, we frequently denote the partial order relation
on D by  D . A subset A C D is called cofinal if for any x E D there is y E A
with x  D y. For partial orders D and E, we call a function f : D - E
monotone if, for all xl , x2 E D, x, ~D x2 implies f (x1 ) ~E 

For two partial orders D and E, we write D T E if D T E and
E~TD.

3. Basic definitions and lemmas.

We present here a general definition of a family of partial orders. It
will turn out that this family includes all relevant to us partial orders. Here
and in the sequel when we say that a set is bounded, we mean bounded
from above; when we say an element is a bound for a set, we mean it is an
upper bound.

DEFINITION. - Let D be a separable metric space and let  be a
partial order on D. We say that (D, ) is basic if

( 1 ) each pair of elements of D has the least upper bound with respect
to  and the binary operation of least upper bound from D x D to D is
continuous;

(2) each bounded sequence has a converging subsequence;

(3) each converging sequence has a bounded subsequence.

Note that (1) implies that each finite subset F of a basic order D has
the least upper bound which we will denote by max F.

The following classes are the main groups of examples of basic orders.

Examples. - 1. Analytic P-ideals. Let I be an analytic P-ideal. Let
~ be a lsc submeasure with I = Then (I, C) with the submeasure
topology is a basic order. Condition (1) is easily checked from the definition
of the topology on I. Condition (2) also follows since, as is easily verified,
for any x E I, on the set C x~ the submeasure topology and the
topology inherited from 2M coincide and the latter topology is compact.
To see (3), let a sequence (xn) of elements of I converge to x E I. Then

= 0. Thus, we can pick a subsequence (Xnk) of (xn ) so that
Ek  00. But then one easily checks that Uk Xnk E I

and this set is a bound of the subsequence (xnk)’
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2. a-ideals of compact sets. Let I be a a-ideal of compact subsets of a

separable metric space with the Vietoris topology and with inclusion as the
partial order. Then (I, C ) is a basic order. Condition (1) is checked from

the definition of the Vietoris topology. Condition (2) follows from the well-
known fact, that for a compact L, J’C(L) is compact. If (Kn) is a sequence
of elements of I converging to K E I, then Un Kn U K is compact and,
therefore, belongs to I and is a bound for the whole sequence (Kn). Thus,
(3) follows.

3. Relative a-ideals of compact sets. The class of examples from
point 2 can be widened to include some basic orders we will come across
in this paper (Section 7). Let XJ be a closed family of compact subsets of
a separable metric space. Let I C J’C be such that if L C K E I, L E IC,
then L e f and if Kn E I, n E N, and Un Kn E )C, then Un Kn E 1. In
this situation, by the same arguments as in point 2, (1, C ) is a basic order.
(Closedness of IC is used in checking (2).) We call families I of compact
sets as above relative a-ideals of compact sets.

Note that we could have defined the objects of our study to be
topological Abelian semigroups with metric separable topology and with
each element idempotent. (The semigroup operation + would correspond
to taking the least upper bound.) Then we could define the partial order in
the usual way by setting and assume conditions (2) and
(3) about so defined x. One of the reasons we prefer to use a partial order
as our primitive operation is the fact that the role the least upper bound,
with property (1), plays in our proofs is auxiliary-it is used to establish,
in the two lemmas below, stronger versions of conditions (2) and (3) and
only these strengthened conditions are used directly in all our proofs except
one (Theorem 5.1).

LEMMA 3.1. - Let D be a basic order. Then, for each x E D,
is compact.

Proof. It is obvious from (1) that ~D is closed. Thus, for each
closed and the conclusion follows immediately

from (2). 0

LEMMA 3.2. - Let D be a basic order. Let x E D, and let x’ E D,
k, n E N, be such that, for each n, limk x~ exists and is bounded by x.
Then any open set U 3 x contains an element z such that for each n the

~} is infinite.
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Proof. Claim. Given a sequence (xn ) of elements of D converging
to x E D and an open set U 3 x, there exists z E U which bounds a

subsequence of (xn ) .
Proof of claim. By condition (3), there exists ayE D which bounds

a subsequence of (xn ) . To make our notation simpler, we assume that y
bounds all the elements of (xn ) . Let V be an open set containing x and
whose closure is included in U. Now continuity of the maximum operation,
i.e., (1), allows us to pick a subsequence (xnk) of (xn) so that, for each m,

= E V. Obviously, for each m and, therefore,
by (2), (xm) contains a subsequence which converges to a z E V C U. Note
that continuity of the maximum operation implies that  is closed from
which it follows that z bounds all the elements of which finishes the

proof of the claim.

Define now

By the assumption on the sequences n E N, and continuity of the
maximum operation, we get that, for each m, limk y~ = x. The claim
implies now that there exist E D, rn e N, such that x and for

each m

Applying the claim once again, to the sequence (ym) converging to x this
time, we get a z E U such that {m : 2~} is infinite. This, in combination
with (3.1), makes it possible to chose strictly increasing sequences (ml) and
(ki) so that, for each l, 

-

This inequality in conjunction with the definition of the immediately
imply that z fulfills the conclusion of the lemma. D

As we already mentioned, in most of our results we only need that
the involved partial orders fulfill conclusions of Lemma 3.1 or Lemma 3.2.
In fact, frequently one can get by with even slightly weaker assumptions.
However, we will usually state simply that the partial orders are basic
and leave it to the reader to find out precisely what is used. We make

an exception to this rule when it suffices to assume the conclusion of

Lemma 3.1, that is, that the set of predecessors of each element is compact.
We do this since there are many examples of partial orders of some interest

fulfilling this condition without necessarily satisfying the conclusion of
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Lemma 3.2, for instance, all ideals of subsets of N and all ideals of compact
subsets of metric separable spaces.

4. Analytic basic orders.

A basic order (D, ) is called analytic if the metric space D is analytic
(i.e., D is a continuous image of a Polish space). Most of the classically
studied P-ideals and a-ideals of compact sets are analytic. First, we have
a theorem on topologies on analytic basic orders.

THEOREM 4.1. - If D is an analytic basic order, then the topology
on D is Polish.

Proof. Let D be a an analytic basic order. Let X be a metric

compactification of D. Fix a continuous surjection f : NN -4 D and a
countable topological basis U of X with X E U. Let be the set of all

finite sequences of natural numbers. For s E let s stand for the length
of s. For s, t E we write s o t if Isl _ It and s(i)  t(i) for all i  Isl.
We call a pair (W, s) good if W E U, s E and

Note that there are only countably many good pairs.

For s E and let be the sequence s followed by m.
We claim that for d E X the following equivalence holds:

V(W, s) good (d V W or 3m E N3U (U, sAm) good, U C W, d E U).
Note that this equivalence defines D as a G6 subset of X which will prove
the theorem. It remains, therefore, to establish the above equivalence.

We prove first the implication from right to left. Fix d E X fulfilling
the condition on the right. After noting that (X, 0) is good, this condition
implies that we can find y E N‘ ~ and a descending sequence ( Un ) of elements
of Ll with X = Uo such that, for each n, d C Un and (Un, yln) is good. Now,
the definition of goodness and density of D in X give sequences Yn E NN
and dn E D, n E N, such that Ynln  o y I n, dn ~D and dn -~ d.
The first one of these conditions implies that, after going to a subsequence,
we can assume that (yn ) converges which, by continuity of f, gives as
a consequence convergence of the sequence to an element of D.

This, along with condition (3) from the definition of basic orders, produces
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with f(Yn) ~D for infinitely many n, which obviously implies
that dn ~D for infinitely many n. Combining this last consequence with
(2) from the definition of basic orders, we obtain a subsequence of (dn)
converging to an element of D. But (dn) converges to d, whence d E D.

To prove the implication from left to right fix a d E D. We will show
the condition on the right. In order to do this, fix (W, s) good with d E W .
Now suppose, towards contradiction, that for no U and no rn e N
we have d E U C W and (U, sAm) good. By considering elements U of U
containing d and of smaller and smaller diameter, this allows us to construct
a sequence dn E D, n E N, converging to d and such that

Since (dn) converges to d, by Lemma 3.2, we can find d’ E such that

Since (W, s) is good, there exists a yo E I~~ such that d’ D f (yo) and
Yo lis s. Find now no in the infinite set in (4.2) with no. Then,

xD d’ x D f ( yo ) and + which directly contradicts
(4.1). a

We note that for the conclusion of the theorem above to hold, it is

enough to suppose only that any bounded sequence in D has a convergent
subsequence (i.e., condition (2) of the definition of basic orders) and that
for any sequence (xn ) of elements of D converging to x E D and any open
set U 3 x there is a subsequence of (xn) bounded by an element of U.

In connection with Theorem 4.1, one should mention that analyticity
among a-ideals of compact sets was first studied by Christensen. In [1]
Theorem 3.3, he proved in effect that the following conditions are equivalent
for a separable metric space X : T is analytic, and 
is Polish. The equivalence of the last two conditions in this theorem was
generalized by Kechris, Louveau, and Woodin who proved in [7] that each
analytic a-ideal of compact subsets is Polish. On the side of analytic P-
ideals, a related fact can be read off the results in [9]. The submeasure
topology defined in this paper on an analytic P-ideal which makes the ideal
into a basic order is always Polish. Thus, Theorem 4.1 above generalizes
these results and puts them in a wider context. The basic idea of the proof
of this theorem is still reminiscent of that of Christensen’s.

As an application of the above general Theorem 4.1, we show that

analytic P-ideals are the only ideals of subsets of N which can be made
into basic orders by strengthening the topology on them inherited from 2~.
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COROLLARY 4.2. - Let I be an ideal of subsets of N. Let T be a

topology on I such that

(i) T contains the topology I inherits from the inclusion I C 2~;
(ii) (I, C) with T is an analytic basic order.

Then I is an analytic P-ideal and T is the submeasure topology.

Proof. Let T be a topology on I with (i) and (ii). We show that
the symmetric difference on I is continuous with respect to T. In order
to accomplish this, it will be enough to prove that for any two sequences
(xn), (yn) of elements of I converging to x and y, respectively, there exists a
subsequence of (xn6.Yn) converging to (x£Ny) . Since (I, C ) with T is basic,
by applying condition (2) twice, we can find an increasing sequence (nk)
and x’, y’ E I such that x’ bounds all elements of (xnk ) and y’ bounds all
elements of Note that P(x’Uy’) is included in I. Again, since T makes
(I, C ) basic, by Lemma 3.1, is compact with the restriction of T to
it. Thus, there is a further subsequence of which is convergent.
We denote this subsequence again by (xnk6Ynk)’ Since xnk6.Ynk converges
to x0y in the topology on 2M and T contains this topology, we see that it
follows that xnk Ayllk ~ x6.y with respect to 00, and we have

proved that 0 is a continuous operation with respect to T.

Now, by Theorem 4.1, 1 with T is Polish. It was proved in [9] that if
T is a Polish topology on an ideal I fulfilling (i) and making 0 continuous
(that is, I with T and 0 is a Polishable group), then I is an analytic P-ideal
and the topology T is the submeasure topology. 0

The following proposition concerns the bottom part of the Tukey
ordering among analytic basic orders. It should be compared with [4],
Theorem 15 parts of which it generalizes.

PROPOSITION 4.3. - Let D be a non-empty basic order.

(i) D is compact if, and only if, D -T 1.

(ii) If D is analytic and not locally compact, then NN T D.

LEMMA 4.4. - Let D be basic. Assume there exists a compact set
L C D such that each finite subset of A has an upper bound in L. Then A

is bounded.

Proof. Let n C be a dense subset of A. Let ym E L be an
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upper bound of f xn : n , m}. Since L is compact, (Ym) has a converging
subsequence which, by condition (3) of the definition of basic orders, has a
further subsequence which is bounded by, say, z E D. Then clearly z is an
upper bound of the whole sequence (xn ) . Since the set {.r 2;} is
compact by Lemma 3.1, z is a bound for.

Proof of Proposition 4.3. - The implication « in (i) is a conse-

quence of Lemma 3.1. The other implication follows immediately from
Lemma 4.4 by taking A = L = D.

Now, we prove (ii). Let X be a metric compactification of D and let d
be a metric on X. Since D is not locally compact, X B D is not closed. Pick
Yn E X B D with yn - z G D as n -&#x3E; oo. Pick sequences N, with

xg E D, Xn Yn as k - oo, and d(Xn, Yn)  1/(n -~ 1) for each kEN.
Define f : D -~ by letting

with the convention that max0 - 0. Note that for each x E D, for

each n, ~1~ xk D xl is finite since otherwise, by compactness of

{~/ E D : y D XI, Yn would be an element of D. Thus, f is well-defined.
The function f is clearly monotone.

If D is analytic, it follows from it that the range f (D) is a directed

subset of Further, for each x E D, f (x) is an increasing element of N"4.
Thus, to see that f (D) is Tukey equivalent to it will suffice to show

that f (D) contains the branches of a superperfect tree which, since f (D)
is analytic, follows from the fact that for any in I~~ there is an x E D
with f(x)(n) &#x3E; k,, for infinitely many n. Fix (kn). The sequence (xkn)
converges in D to z. Therefore, by condition (3), there is an x E D which
bounds a subsequence of The definition of f immediately implies
that, for infinitely many n, f (x) (n) &#x3E; 0

5. Effective cofinal, convergent, and Tukey maps.

Let D and E be directed partial orders. A function f : D - E is
called cofinal if it is monotone and has cofinal range. Note that a cofinal

function is convergent.

A curious "empirical" fact about maps witnessing Tukey reducibility
between pairs of analytic P-ideals or a-ideals of compact sets was that
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if they existed at all, there always was one such map which was simply
definable. We show here that there is a theorem behind this fact: Tukey
reducibility between basic orders is always witnessed by Borel cofinal maps.
(For an analogous result concering Tukey maps, see Theorem 5.3). Thus,
two points are made by this result. First, that a map witnessing Tukey
reducibility, which in general is arbitrary, can be found definable if the

partial orders involved are basic. Second, that a map witnessing Tukey
reducibility can be found to be cofinal. The existence of a cofinal map
between two (not necessarily basic) partial orders implies the existence
of a convergent and the existence of a Tukey map but, in general, these
implications cannot be reversed.

THEOREM 5.1. - Let D and E be basic orders. Assume D £T E.
Then there exists a cofinal map from E to D which is Borel.

We start with a lemma. Recall that a function f : X --+ IC(Y), X,
Y topological spaces, is called upper semicontinuous if (~K E K(Y) :
K C Ul) is open in X for any open U C Y.

LEMMA 5.2. - Let D be a metric separable space with a partial
order in which the set of predecessors of each element is compact. Let E
be a basic order. If D T E, then there exists an upper semicontinuous
function h : E - J’C(D) such that

(i) h(z) is bounded in D for any z E E;

(iii) U h [E] = D.

Proof - Let f : D - E be a Tukey map. Define

Claim. For any z E E, bounded.

Proof of claim. Pick a sequence ~xn : n E N} C dense in

The definition of R allows us to pick, for each n, a sequence

where y E E is such that y E z, and are such that
for each k. By Lemma 3.2 applied to the double sequence (y~ ) (n,~~ , we
can find, for each n, an increasing sequence (ki)l to guarantee that the set
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: n, l E N} is bounded in E. Since f is Tukey and for
k,n k k

all k, n, we see that (xgn : n, l E N} is bounded in D by some x. Since
i

{x’ E D : x’ D XI is compact, it follows that, for each n, xn D x. Using
again compactness of ~x’ E D : x’ D x~ and the way n E N} was
chosen, we get that bounded by x, and the claim is proved.

Now note that for any z E E the set E E : z’ x E z~ is compact.
Since R is closed, it follows that, for each z E E, is closed

and, therefore, being bounded by the claim, it is compact. It follows that

is a function from E to the subspace of IC(D) consisting of all compact
bounded subsets of D. Moreover, we clearly have for all ZI, z2 E E

Note also that x E h( f (x)). Thus, conditions (i)-(iii) hold.

It remains to check that h is upper semicontinuous. Fix F C D closed.

We need to check that the set Iz E E : 0} is closed in E. Let
(zn) be a sequence of elements of this set converging to z. We then can
find Yn  E Zn and xn E F with (xn, yn ) E R. Since  E and R are closed,
it will suffice to find an increasing sequence (nk) such that converges
to and converges to an x E D. (Then x E F, y E z, and
( x, y ) E R, so x E F n h(z).) Since is convergent, there is a z’ E E of
which we can assume, by going to a subsequence of (zn), that Zn E z’ for
all n and so, by (ii), h(zn) C h(z’). But then the entries of the sequence

are contained in the compact set ~ y E E : y ~E z’ ~ and the entries of
(xn) are contained in the compact set h(z’). Thus, the sequence (nk) can
be found. 0

Proof of Theorem 5. l. - Let ICb (D) stand for the subspace of IC (D)
consisting of all non-empty compact bounded subsets of D. Let h be a
function as in Lemma 5.2. By modifying h to the function E 3 z -~

h(z) U fxol, for some fixed xo E D, we can assume that the values of
h are non-empty. (We use directedness of D here to make sure that the
values of the modified function are still bounded.) Thus, we have a Borel
map h : E --~ J’Cb(D) which is monotone (when compact bounded subsets
of D are considered with the partial order of inclusion) and such that each
element of D is included in a compact set in the range of h.

By the Kuratowski-Ryll Nardzewski theorem (see [6]), there exist
Borel functions fn : {0} ~ D, n E N, such that for each
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Fix now K E Since each subsequence of the sequence 
i ~ has union which is dense in .K and since  D is closed, it follows
that each limit point of the sequence (Fn (K) ) is a bound of K and so a

bound of the whole sequence (Fn (K) ) . On the other hand, the sequence
(Fn(K)) is bounded and, hence, included in a compact set and, therefore,
each of its subsequences has a limit point. It follows that (Fn(K)) converges
in D to a bound of K.

Based on the argument in the paragraph above, we can define f :
E - D by letting

Since h is Borel, so is f. Since each bound of .K is above each Fn(h(z)),
for each n E N, we see that f (z) is the least upper bound of h(z). Thus, it
follows from Lemma 5.2(ii) that f is monotone, and from Lemma 5.2(iii)
that it is cofinal. 0

The following theorem complements Theorem 5.1. The partial order
D in it and in the corollary following it come from a class of orders wider
than basic. For example, D can be an arbitrary ideal of subsets of N or of
compact subsets of a metric separable space. On the other hand, E has to
be assumed analytic.

THEOREM 5.3. - Let D be a metric separable space with a partial
order in which the set of predecessors of each element is compact. Let E
be an analytic basic order. If D T E, then

(i) there exists a Tukey map from D to E measurable with respect
to the a-algebra generated by analytic sets and

(ii) there exists a convergent map from E to D measurable with

respect to the a-algebra generated by analytic sets.

Proof. In this proof, when we say that a function is E-measurable,
we mean that it is measurable with respect to the a-algebra generated by
analytic sets.

Let h be a Borel function from E to compact bounded subsets of D

as in Lemma 5.2.
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(i) Since h is Borel, the set

- " . ,- , ,

is Borel as well. Now, the properties of h imply that for each x E D there is
y E E with (x, y) E P. The Jankov-von Neumann theorem (see [6]) gives a
E-measurable uniformization of P, that is, we get a E-measurable function
g : D - E such that

We claim that g is a Tukey map. Indeed, fix y E E. We only need to see
that the set

is bounded in D. But g(x) E y implies by the properties of h that
h(g(x)) C h(y). Thus, by (5.1), the set above is included in h(y) which
is bounded.

(ii) Consider the set

By the Kuratowski-Ryll Nardzewski theorem (see [6]) there is a sequence
of Borel functions fn : J’C(D) B {0} --+ D, n E N, such that for each

n C N} is dense in K. Since for
each x E D, the set (z e D : z x D x) is compact, it follows that

Thus, Q is Borel. Note also that since, for each y E E, h(y) is bounded,
for any y E E there is an x E D with (y, x) E Q. By the von Neumann-
Jankov theorem there exists a E-measurable uniformization g of Q, that is,
a function g : E - D such that

We claim that g is a convergent function. Let A C E be cofinal. We need
to see that g(A) is cofinal in D. Pick x E D. By the properties of h, there
is a yl C E with x E h(yl). Let Y2 E A be such that yl E y2. Then, since
h(yi) C h(Y2), we have x c h(Y2). Now, (5.2) implies x D h(Y2) and we
are done. 0

We record now a corollary to Lemma 5.2 showing that the property
of being analytic is an invariant for Tukey reducibility. It can be viewed

as sharpening of the result of Christensen mentioned after the proof of
Theorem 4.1 that /C(X) T implies that K(X) is analytic.
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COROLLARY 5.4. - Let D be a metric separable space with a
partial order in which the set of predecessors of each element is compact.
Let E be a basic order. If D ,T E and E is analytic, then D is analytic as
well.

Proof. Let h : E ---&#x3E; IC (D) be a function as in Lemma 5.2, and let
X be a metric compactification of D. By upper semicontinuity of h, the

Y) E X x E : x E is closed in X x E and, therefore, analytic
since E is analytic. Now D is the projection of this set along E whereby it
is also analytic. D

6. Invariants of Tukey reducibility.

We define in this section a general type of property of basic orders
which is preserved downwards with respect to Tukey order. We deduce from
it concrete non-Tukey reducibility results concerning analytic P-ideals and
a-ideals of compact sets.

Let D be a metric separable space and let H be a family of subsets
of N. We say that x E D is an H-accumulation point of a sequence (xn ) if
for each U open containing x, {7Z xn E ~7} C H.

Let D be a metric separable space with a partial order. Let H

and I be families of subsets of N with H closed under taking supersets
and subtracting finite sets. We say that D is (H, I)-calibrated if for each
sequence (xn ) of elements of D which has an H-accumulation point there
is A E H such that for any B E I, ~xn : n E A n 73} is bounded.

We will apply the general Theorem 6.1 to obtain results on Tukey
non-reducibility among analytic P-ideals and a-ideals of compact sets. The
following definitions will be relevant. By 0 we denote the empty family of
subsets of N. If I is a downwards closed family of subsets of N, stand

for the family of subsets of N not in I, and let I* stand for the family of
all complements in N of sets in I. Let us fix a bijection (~, .) : N x N ~ N.
If I and J are downwards closed families of subsets of N, let I x J be the

family of all A C N with

Since the bijection (., .) is fixed, we will think of I x J as a family of subsets
of N x N.
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Note that, with the above notation, condition (3) in the definition of
basic orders is simply 

THEOREM 6.1. - Let D be basic and let E be a metric separable
space with a partial order. Let H and I be families of subsets of N urith H
closed under taking supersets and subtracting finite sets. If D T E and
E is (H, I)-calibrated, then D is (H, I)-calibrated.

We start with a lemma.

LEMMA 6.2. - Let D be basic and let E be a separable metric
space. Let f : D -~ E. Then for any sequence (xn) in D having an H-
accumulation point there exists a sequence (y,) in D such that xn D Yn,
for each n, and has an H-accumulation point in E.

Proof. - First, we prove a claim.

Claim. ~~ E E VU 3 y open aA E H Vn E E D(xn D pn and
f(Pn) E U).

Proof of claim. Assume that the claim fails, that is, for each y E E
we have an open set Uy C E containing y with the following property:

where

separable, we can pick yi E E, i E N, so that

If x is an H-accumulation point of (xn), then it follows from (6.1) that for
each i, we can pick an increasing sequence such that n1 E for

all k and xn2 
k 

follows now from Lemma 3.2 that there

are ki with i C N} bounded, that is, for each i we can choose an

ni E Ay2 such that fXn, : i C is bounded. Let p E D be its bound. By
the definition of the Ay’s (6.1), for all i E N, f(p) g Uy2 which contradicts
(6.2), which finishes the proof of the claim.

Fix E as in the claim. Let m e N, be a decreasing open
basis with Uo = E. Let Am C N be such that Am E H and there are

pn , n E Am’ with xn D pn and f (pm) E Um. Since Uo = E, without loss
of generality, we can assume that Ao = N. Define

/ ,
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Note that, for all n E N, yn is defined, xn and that y is an H-

accumulation point of (f(Yn)). This last condition follows from the facts
that, for each m,

and that H is closed under taking supersets and subtracting finite sets. 0

Proof of Theorem 6.1. - Let f : D - E be a Tukey reduction. Let
Xn E D, n E N, be a sequence having an H-accumulation point. We will
show that there is A E H such that for any jB e 7, ~xn : n E A n B~
is bounded. By Lemma 6.2, there exists a sequence (yn) of elements of D
with xn ~D yn, for each n, and with having an H-accumulation
point. Since E is (H, I)-calibrated, there exists A C N with A E H such
that, for any n E A n BI is bounded. Since f is Tukey,
for any E An and, therefore, E An is

bounded in D. 0

6.1. (Fin*, P(N))-calibration. By taking H = Fin* and I = 
we obtain, by Theorem 6.1, a property which is preserved under Tukey
reduction; the property can be stated as saying that for each converging
sequence there is an element bounding all but finitely many elements of
the sequence. In the lemma below, we show that this property holds for
a-ideals of compact sets (in fact, even relative a-ideals) and fails for non-
trivial analytic P-ideals. Therefore, no partial order from this latter class
can be Tukey reduced to a partial order in the former one.

PROPOSITION 6.3. - (i) Each relative a-ideal of compact sets is
(Fin*, 

(ii) An analytic P-ideal is (Fin*, P(N)) -calibrated if, and only if, it is
a trivial modification of Fin or is isomorphic to 0 v Fin.

Proof. (i) If I is a relative a-ideal of compact sets and (Kn) is a
sequence of elements in I converging to an element K of I, then K U Un Kn
is a compact set in I bounding the sequence 

(ii) Only the implication ~ needs justification. Let I = Exh(~)
for a lsc submeasure 0. If there is an increasing sequence of natural
numbers (nk) such that I and 0, then

-~ 0, oo, in the submeasure topology on I but, for all 
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~n~ : I~ &#x3E; K) g I. Thus, I is not (Fin*, P (N)) -calibrated. We can, therefore,
assume that such a sequence does not exist.

Let Xn = f k EE N : -1 &#x3E; 0(f kl) &#x3E; ’ I with the convention that
1/0 = oo. Note that each element of I intersects each Xn in a finite set.
Conversely, by our assumption from the preceding paragraph, if y intersects
each xn in a finite set, y is in I. Thus, if only finitely many of the xn’s are
infinite, then I is a trivial modification of Fin. If infinitely many of the xn’s
are infinite, by taking finite unions of them, we can partition N into infinite
sets yn, n ~ N, so that a set is in I precisely when its intersection with each
yn is finite. Thus, I is isomorphic with 0 x Fin. D

It was proved by Fremlin [3], Proposition 3M(b) that the P-ideal Zo
is not Tukey below NWD. The following corollary generalizes this result.

COROLLARY 6.4. - If I is an analytic P-ideal and J a relative a-
ideal of compact sets with I T J, then I is a trivial modification of Fin
or is isomorphic to 0 x Fin.

Proof. This is immediate from Theorem 6.1 and Proposi-
tion 6.3. D

In the following proposition we record a simple observation on the
bottom part of the Tukey order among (Fin*, P (N))-calibrated basic orders.
It is a continuation of Proposition 4.3.

PROPOSITION 6.5. - Let D be a (Fin*, basic

order.

(i) If D is not locally compact, then NN T D.

(ii) If D is a-compact non-compact, then D =T N. In particular, if D
is a-compact, then it is locally compact.

Proof. To see (i), define f as in Proposition 4.3(ii). Now, since D
is (Fin*, P(N))-calibrated, f(D) is cofinal in To check it, let (kn) be an
element of Then converges in D to z. Since D is (Fin*, P(N))-
calibrated and directed, it follows that the sequence (xkn) is bounded by
an x E D. Then kn  f(x)(n) for each n E N.

To see (ii), we need to show N T D and D T N. Since D is
directed by condition (1) in the definition of basic orders, the first of these
inequalities follows immediately from D ~T 1 which is a consequence of
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Proposition 4.3(i). To show the other inequality, it will suffice to see that
there exists a countable subset of D cofinal in D. We claim that, in fact,
each x E D has a neighborhood which is bounded. Assume towards a

contradiction that this is not the case, that is, that there is an xo E D such
that no open set containing xo is bounded. Fix an increasing sequence Ln,
n E N, of compact subsets of D whose union is D and a decreasing sequence
Un, n E N, constituting a topological basis at xo. By Lemma 4.4, for each n
there exists a finite set Fn C Un not bounded by any element of Ln. Then
we can arrange Un Fn in a sequence converging to xo. By assumption this
sequence is bounded by some zo E D which leads to a contradiction since
zo cannot be an element of any Ln .

The "in particular" part, is immediate from (i) and (ii) and the fact
that 1:.T N. D

6.2. ((FinxFin) Fin)-calibration. We take now H = (Fin x
Fin)+ and I = 0 x Fin in Theorem 6.1 and obtain another invariant of
Tukey reducibility. We will leave it to the reader to check the following
easy proposition.

PROPOSITION 6.6. - If a basic order is (Fin*, P(N))-calibrated,
then it is ((Fin v Fin)+, 0 v Fin)-calibrated.

The following lemma gives a simple criterion for being ((Fin 
Fin)+ , 0 x Fin)-calibrated for an analytic P-ideal.

LEMMA 6.7. - Let I = be an analytic P-ideal with 0 a lsc
submeasure. The following conditions are equivalent:

(i) I is Fin)+ , 0 x Fin)-calibrated.

(ii) for any E &#x3E; 0 there exists 6 &#x3E; 0 such that any disjoint sequence
of finite sets with supn  6 has a subsequence (xnk) with

O(Uk xnk)  E.

Proof. To see (i)=~(ii), assume that (ii) fails. Then there exists an
Eo &#x3E; 0 and disjoint sequences (wn)n, i E N, of finite sets such that
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By (6.3), 0 is an (Fin x Fin)+-accumulation point of the sequence

On the other hand, if A C N x N is in (Fin x Fin)+,
for infinitely many n, A n x N) is infinite. Thus, (6.4) allows us to
pick f E N‘ ~ such that and n  I, that is,

(n, i) E A and is not bounded.

We prove now (ii)*(i). Let be a sequence of elements

of I with an (Fin x Fin)+-accumulation point x E I. It will be enough to
show that we can pass to a subsequence (with respect to the index i) of
( (xn ) n ) and then, for each value of the index i in the chosen subsequence,
we can go to a subsequence (with respect to the index n) of (xn)n so that
the resulting double sequence, denoted again by has union

in I, that is, is bounded in I.

By considering we can assume that x = 0. Our

assumption, condition (ii), guarantees that for Ei = 2-i there is b2 &#x3E; 0

such that the rest of the condition holds. By going to a subsequence (with
respect to the index i ) of the sequence of sequences ( (xn ) n ) and then, for
each i, to a subsequence of (xn)n we can assume that, for each i and n,

Fix z. We can pass to a subsequence (with respect to the index n)
and assume that converges pointwise to some Y’* C N. Note that

It is not difficult to go to a further subsequence of (xn)n and find an
increasing sequence of natural numbers mn so that for all n

and

By (6.5) and (6.7), (wn)n is a sequence of disjoint finite sets with

supn §(w/j )  61 . Thus, by our assumption (ii), we can go to a subsequence
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Note now that (6.9) implies that, for any
From this, the definition of the wn’s, and (6.8), it follows that

, This, in turn, in conjunction with (6.6) gives
and we are done.

After [2] we call an ideal I a generalized density P-ideal if there exist
submeasures Oi, i C N, on N with finite and pairwise disjoint supports such
that I = Exh((~) where ~(x) = sup- Oi(x) for x C N or, in other words,

1 11 I

(A finite set F C N is the support of a submeasure Øi if F) = 0 and
0 for each n E F.) It was noticed in [2] that Zo is a generalized

density P-ideal. Moreover, all ideals Is, for S C N, studied in [8], Theorem
6 are by their very definition generalized density ideals.

PROPOSITION 6.8. - (i) Each generalized density P-ideal is ((Fin x
Fin)+, 0 x Fin)-calibrated.

(ii) Let I be an F, P-ideal. Then I is ((Fin x Fin)-calibrated
if, and only if, I is a trivial modification of Fin.

Proof. (i) Each generalized density P-ideal easily fulfills condition
(ii) of Lemma 6.7. In fact, given c &#x3E; 0 the conclusion of this condition holds

for any positive 6  e.

(ii) The implication ~ is clear. To see #, we will show that an For
P-ideal I which is not a trivial modification of Fin does not fulfill condition

(ii) from Lemma 6.7. Let I = Exh( ø). Since I is F,, by the proof of [9],
Theorem 3.4, there exists an E &#x3E; 0 such that if (xn) is a disjoint sequence of
finite sets with infn ~(xn) &#x3E; 0, then E. Since I is not a trivial

modification of Fin, for any given 6 &#x3E; 0, {?~ : ~(~n~)  6121 V I. Now
by splitting this set into appropriate disjoint intervals, we obtain a disjoint
sequence (xn ) of finite sets such that

."

Then for any subsequence (xnk) of (xn ) we have
finishes the proof of the proposition.

It was proved in [8], Theorem 7 that This is a very

special case of the corollary below.
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COROLLARY 6.9. - If I is an F~ P-ideal, J is a generalized density
P-ideal and I T J, then I is a trivial modification of 

Proof. This is an immediate consequence of Proposition 6.8 and
Theorem 6.1. D

7. Analytic P-ideals and relative a-ideals of compact sets.

As was shown in Corollary 6.4 no non-trivial analytic P-ideal is Tukey
reducible to a relative a-ideal of compact sets. However, it turns out that
there exists a functor associating in a canonical way with each analytic
P-ideal a relative a-ideal of compact subsets of 2~. In the present section,
we define and study this functor.

A compact subset K of 2~ is called monotone if, for any x E K and
y C x, y E K. We will associate an ideal of compact monotone subsets of
2~ with each ideal of subsets of N. Let I be a ideal of subsets of N. Define

D(I) = ~K C 2~ : K compact, monotone and 3x C Nn x~~0, ... , KI.
The family of monotone compact sets D(7) comes up naturally and its use
is instrumental in the proof of the theorem characterizing analytic P-ideals
as those of the form Exh(§) for a lsc submeasure 0 [9].

It is easy to see that the union of two elements of D(7) is in D(I)
and that a monotone compact subset of an element of D(I) is in D(I). It
is straightforward to check that if I is an analytic P-ideal, then D (I ) is a

a-ideal of monotone compact sets, that is, in addition to the two properties
stated in the previous sentence, we also have that a compact set which is
a countable union of elements of D(I) is in D(I). Thus, since monotone
compact sets form a closed family of compact sets, D(I) is a relative a-

ideal of compact sets. We consider D(I) equipped with inclusion as partial
order.

First we describe an ordering which has a combinatorial definition
and which, as is proved in the next lemma, is Tukey equivalent to D(I).
For an ideal I of subsets of N different from Fin, define
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where, for x, y C N, we write x  y if each element of x is smaller than

each element of y.

We order D’(I) by ~~~(7) defined by

It is easy to check that --D’(I) is a directed partial order.

LEMMA 7.1. - If I is an ideal of subsets of N different from Fin,

Proof. Since D(7) consists of compact and monotone sets, a set
K is in D (I ) precisely when for some (xn ) E D’(I),

By what was said above F defines a function from D’(I) to D(I) with
cofinal range. It is a straightforward consequence of the definition of  D’ (I)
that F is a monotone map. Thus, D(7) T D’(I). Note, however, that F is
also a Tukey map. Indeed, if K E D (I ) and (Yn) E D~(7) is such that for any
z E K, for all n E N, Yn Cl z, then the E D’ (I ) : F((x,)) C K~ is

by (yn). 0

In this section, we prove several results describing the behavior of
the operator D(I) for analytic P-ideals I. As the computations following
the proof of Theorem 7.6 show, the various non-triviality assumptions on
analytic P-ideals in these results are necessary.

The first theorem states that the operator D respects the Tukey order.
Since I T II/n for any analytic P-ideal I, an immediate consequence of
this theorem is the fact that is the Tukey top element among all
basic orders of the form D(I) for analytic P-ideals I.

THEOREM 7.2. - Let I and J be analytic P-ideals with J ~ Fin.
then D(I) T D(J).

To establish the above theorem, we will need a result giving a
combinatorial condition on I and J which implies D(7) T D(J). This
is included in the following lemma. Note that, for arbitrary ideals (and not
only analytic P-ideals) I and J, this lemma immediately yields that if I is
Rudin-Blass below J, then D(I) T D(J).
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In the lemma below and in the proof of Theorem 7.2, for a sequence
(xn ) of finite subsets of N, we write xn - 0 if each natural number belongs
to finitely many xn’s. It should not be confused with the usually stronger
condition that (xn ) converges to 0 in the submeasure topology of some
analytic P-ideal.

LEMMA 7.3. - Let I, J be ideals of subsets of N with J ~ Fin.
Assume there exists h : Fin - Fin such that for any sequence (xn) of
elements of Fin, uTe have

(i) and Un xn E I, then there exists a subsequence (Xkn)
of (Xn) such that h(Xk,,) ---+ 0 and E J;

Proof. If I = Fin, the conclusion is clear since D(Fin) -T 1 by
definition of D. Thus, assume that both I # Fin and J # Fin. In light of
Lemma 7.1, it will suffice to prove the conclusion of the lemma for 

and D’(J).
We now modify h to h’ : Fin --+ Fin so that h’ fulfills (i) and the

following strengthening of (ii):

To define h’ fix an infinite set a E J. Let

where min 0=0. The first part of the conclusion of (i) holds for h’ since
xn ~ ~ implies E a : min x  k) - oo while the second part holds
since Point (ii’) holds since h’(x,,) --~ 0 and

Un h’ (xn ) E J imply the analogous properties for the sequence ( h (xn ) ) n
and, therefore, also Un xn C I. By the very definition of h’, h’ (xn ) - 0 gives

E a : 1~~ ~ oc as n - 00, hence Xn - 0. Additionally,
note that h’ (x) # 0 for all x E Fin.

Now we modify h’ to h" : Fin - Fin so that h" fulfills (i) and (ii’) and,
additionally, is one-to-one. Fix again a C J infinite. Note that if for each
x E Fin we have h’ (x) C h" (x) and h" (x) B h’ (x) E a : k &#x3E; max h’ (x) ~,
then h" still fulfills (i) and (ii’ ) . (To see the first part of (i) use h’ ( X kn) 7~ 0
for all n.) Let xp, be a list of Fin in which each element appears
once. Define, by induction on p, h"(xo) = and
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where m is the smallest element of a strictly bigger that the numbers
and maxh"(xi) for i  p. Clearly h" is one-to-one and, by

what was said above, fulfills (i) and (ii’).

Thus, we can assume that the function h has these properties. Let

(xn ) E D(I). Then xn - 0 and Un xn E I. Hence, by (i), there

is a subsequence (Xkn) such that and h(Xkn) - 0’
This last condition allows us to go to a further subsequence to insure

 for all n. It follows that E D’(J). Define
= We claim that f is a Tukey reduction of D~(7) to

D’(J).
Fix C D’ ( J) . Since h is one-to-one, for each n, the set ~x E

Fin : h(x) C is finite. Moreover, since E D’ ( J), Yn --~ 0 and

Un Yn E J. Thus, by (ii’), a sequence enumerating fx E Fin : 3n h(x) C ~}
tends to 0 and the union of this sequence is in I. It follows that, if we

let zn - U~x E Fin : h(x) C then each zn is finite, z’ n --+ 0,
and Un zn E I. Let (zn) be a subsequence of such that zn  zn+1
for all n. Then (zn ) C D~(~). We prove that (zn ) is a bound on the set

E D~(7) : f((xn)) ~D~(J) If (xn ) is in this set, then it follows
from the definition of f that for each n there is a I~ such that C Yn-
This immediately implies, by the definition of (zn), that for each n there
exists with x k C zn . Thus, we proved that D’ (I ) T D’ (J). 0

Proof of Theorem 7.2. - We show that if I T ~.I, then there exists
a function h as in Lemma 7.3.

Let 0 and 0 be lsc submeasures with I = Exh( cjJ) and J = Exh(b) .
By modifying 0 to 1jJ’ (x) == + Tic’, 2-’, we get a Isc submeasure 1jJ’
such that J = &#x3E; 0 for x # 0. Thus, we can assume that 0
itself has this property. Below we consider I and J with the submeasure

topologies.

Let f : I - J be a Tukey map. By Theorem 5.3(i), we can assume that
f is measurable with respect to the a-algebra generated by analytic sets,
in particular, f is Baire measurable. Since I is Polish, there is a comeager
subset such that the restriction of f to it is continuous [6], 8.38. Thus, there
exists a dense set Q C I and a E Q such that flQ is continuous at a. Note
now that the function 1 3 x - E ~I is also a Tukey map. By
redefining f to be this map, we can assume that /(0) = 0 and that there
is a dense set Q C I such that 0 E Q and flQ is continuous at 0.

Now let x C N be finite. Since Q is dense, we can chose qx E Q so
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that, with the usual convention max0 = 0, we have

We can, and will, assume that 0. We now define h : Fin by
letting h(x) be a finite set such that

We claim that h fulfills conditions (i) and (ii) of Lemma 7.3.

Let (xn) be a sequence of elements of Fin. To see (i), let xn -- 0
and I. Then by the second part of (7.1), limn - 0. By
continuity of flQ at 0, limn 1jJ(f(qxn)) - 0. By (7.2), this implies that

0. By going to a subsequence we can insure that

If the sequence (xn) attains only finitely many values, then Un f (qxn) E J.
Otherwise, we can assume that (xn ) attains each value only once. Thus,

which together with our assumption and (7.2) gives
J. In either case, since f is Tukey, we get that I.

Now, the first part of (7.1) gives that Un Xn E I, and we are done. C7

The next theorem shows that the operator D lowers Tukey complex-
ity.

THEOREM 7.4. - If I is an analytic P-ideal which is not a trivial
modification of Fin, then D(I) T I. If, additionally, I is not isomorphic
to 0 x Fin, then D(I) T I.

We will need a lemma.

LEMMA 7.5. - Let I be an ideal of subsets of N. Then D(I) xT

Proof. If I = Fin, D(I) consists only of the empty set and the
conclusion is clear. If Fin, in view of Lemma 7.1, it suffices to show that

D’(I) T I x NN. We map (xn) E D’(I) to (Un Xn, (maxxn)n) E I x NN.
Now if x E I and f E are given, consider the set

IG

To see that this set is bounded in D~(7), it will suffice to show that given
k there is an m such that for each (xn) E A, x n [k, Xn for some
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n. Note that for each (xn) E D’(I), 1~  and for each (xn) E A,
f (I~), so we can take m to be f(k) + 1. 0

Proof of Theorem 7.4. - If I is not a trivial modification of Fin,
then, by [12], NN T I and, therefore, I. Thus, from Lemma 7.5,
we get D(I) T I. If, additionally, I is not isomorphic to 0 x Fin, then
I 1:.T D(I) by Corollary 6.4. D

The following theorem contains general upper and lower bounds for
D(I).

THEOREM 7.6. - Let I be an analytic P-ideal. Then D(I) T
NWD and, if I is not equal to Fin, T D(I).

Proof. Fix a lsc submeasure 0 with I = Exh( 4J). Since the Polish
submeasure topology T on I is stronger than the topology inherited by I
from 2~, we conclude that if K is a closed subset of 2~, then K n I is closed
in T.

Claim. Let K be compact monotone. Then K E D(I) if and only if
K n I is nowhere dense in T.

Proof of claim. By what was just said K n I is T-closed. If it were
not nowhere dense, we would be able to find xo E I and E &#x3E; 0 such that

~y E I : 4J(y6xo)  6} C K. Let yo E I be such that yo B ~O, ... , n) g K
for each n. By lower semicontinuity of 0 we can find no such that

which implies, by monotonicity of jF
contradicting the choice of yo.

Now let K be compact monotone and such that K n I is nowhere
dense in T. This allows us to find E with K and

 2-k . Then, by lower semicontinuity of 0, Uk Xk C I. For each n,
U~ f 0, ... , 7z} contains one of the which implies, by monotonicity
of K, that it is not an element of K. Thus, K E D (I ) .

By the claim we have the following mapping

We show that it is a Tukey map. Fix F C I which is closed and nowhere
dense in I with T. By the claim it will suffice to prove that
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where the closure is taken in 2~, is nowhere dense in T. We will show that
this set is included in F. Note that D(I) : K n I C F} is monotone.
Therefore, we will be done if we show that

for any monotone set A. The inclusion is obvious. Let now x E A n I.
Fix as k - oo, with Xk E A. Then, Xk n x - x and, since x E I
and A is monotone, Xk n x E A n I. By the lower semicontinuity of 0,

It remains to show that D(I) if I is not Fin. Since I is a P-
ideal, D(I) is a relative a-ideal of compact sets. Thus, by Proposition 6.5(i),
it will suffice to see that D(I) with the Vietoris topology is not locally
compact. Let x E I be infinite. Then P (x) B Fin is not locally compact with
the topology from 2~. Now, by simple arguments involving definitions of
topologies on 2~ and we get that the function

is a homeomorphic embedding of P(x) B Fin onto a closed subset of D(I).
Thus, D(7) is not locally compact either. D

We can now compute the Tukey degree of D(7) for simple analytic
P-ideals. Directly from the definition D(Fin) = {Ø}, so we get

Next we have

if I is a trivial modification of Fin without being equal to Fin.

Indeed, in this situation I and we get the above Tukey equivalence
from Lemma 7.5 and Theorem 7.6. Since 0 x Fin -T again from
Lemma 7.5 and Theorem 7.6, we get

T

The following theorem shows that the functor I -~ D(I) is not trivial,
that is, it does not map all analytic P-ideals not equal Fin to As is

customary, we denote by E,, the set of compact Lebesgue measure zero
subsets of 2~ ordered by inclusion. By a result of Fremlin [3], N~ ~ T ~~.

Proof. By Lemma 7.1, Theorem 7.2, and the remark preceding
this theorem, it will be enough to show that ~~ T D’ (I ) for some analytic
P-ideal I. Let I be an ideal of the form
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where (bn ) is a sequence of positive reals converging to 0 whose sum is
infinite and which is such that for each n there is an arbitrarily large m
such that for some k 

--I-......, --L L.

Clearly I is an analytic P-ideal. The above condition on the bn’s allows us
to pick a sequence of finite sets Xn C N, n e N, and y’ C for k E x,,
so that

are pairwise disjoint.

Define

Obviously, K is compact. We equip K with a finite Borel measure A which
is defined by assigning to each basic open set of the form

where mo E xo and - ymn for n  N, the value bmN . Note that
conditions (c) and (b) insure that /t is well-defined with 1 ~ p(K)  oo.

Define now a function F on D~(7) by letting

We claim that F is a monotone map from D’(I) to ~~ with cofinal range.
This will show that -D(7) First we show that the map goes into EI-
The set F((zn)) is closed since the is closed in the topology
on D~(7) which is inherited from the inclusion D~(7) C Fin where Fin is
equipped with the product topology. To see that J1(F(zn)) = 0, one shows
that for each no, But note that

and by the definition of p this last set has measure not exceeding Is
By its very definition F is monotone. To see that its range is cofinal in £11
fix a closed measure zero subset L of K. We can find now an increasing
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8. Cofinal subsets of analytic ideals.

A natural class of directed partial orders consists of analytic ideals
of subsets of N with the inclusion order. We establish a result about

definability of cofinal subsets of analytic ideals. It was proved by Zafrany in

[15] that any analytic ideal I contains a G6 subset G such that every element
of I is contained in the union of finitely many elements of G. Moreover,
some analytic ideals have natural cofinal G6 subsets. Consider, for example,
a compact metric space X with a countable n Let I be

an analytic a-ideal of closed subsets of a compact metric space X. (So I
is, in fact, G6.) Then the ideal I of subsets of N naturally associated with
Z by letting

is analytic and has a natural G5 cofinal family consisting of sets of the form
xK = In : Un 0} with K E T. We show that cofinal G5 ’s always
exist. This result strengthens Zafrany’s theorem mentioned above.

THEOREM 8.1. - Each analytic ideal of subsets of N has a cofinal
G6 subset.

Proof. According to [9], Theorem 2.1 and Theorem 3.4, we have
three cases. (In the notation of [9], Case 2 below is h  f I and Case 3 is
__ ~ -"

Then I = Un Fn with Fn compact. Let

Each Fn is a compact subset of I and for any sequence xn with Xn E F,,,
Xn - N. Thus, Un Fn is a G 8. Clearly it is cofinal in I.

Case 2. There exists a partition i, k Ei NJ of N into finite non-
empty sets such that for y C N x N
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Since An is analytic, we can find a continuous surjection gn :
Now define gn : W -~ An by letting

We check that gn is a homeomorphic embedding. It is clearly continuous
and since

_ , , , , ., -’I...... ,

it is injective. If ( then, since the sets d~ are
iinite,

It follows that x and (gn ) -1 is shown to be continuous. This implies
that An = are G8. Moreover, if Xn E An, then N, hence
B = Un An is a G5 as well. Since for each y E An we can find y’ E An with
y C y’ and since B C I, we see that B is cofinal in I.

Case 3. There exists a partition ~d~ : of N into finite non-

empty sets such that for y C ii x N

Let

J

The set A is analytic, so we can find a continuous surjection g : -&#x3E; A.

Consider the function h : NN x --~ I whose value h(zl, z2) is given by

Let B denote the range of h. Note that by the choice of the dk’s, B is

indeed included in I. In fact B is cofinal in I. To see this, note that for any
Y E I , y = yl U y2 such that y2 does not contain any dr’s and, for somei

Thus, it will suffice to show that B is a G6. To see this, it is enough to
prove that h is a homeomorphic embedding. Its continuity and injectivity
follow immediately from the definition. To see continuity of the inverse of

h, note that if - h(zi, z2) as n ~ oo, then, by finiteness of the
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9. Questions.

The P-ideal LI/n is a Tukey maximal analytic P-ideal, in fact, more is
true. Theorem 2B from [3] implies that for a basic order to be Tukey below
LI/n it suffices that there exists on it a complete metric compatible with the
topology and making the maximum operation uniformly continuous. Also
NWD T LI/n is true [3]. Thus, the following questions seems justified.

Question 1. - Is II/n Tukey maximal among all analytic basic
orders?

The next question is related to Proposition 6.8.

Question 2. - Is 20 Tukey maximal among ((Fin x Fin)+, 0 x Fin)-
calibrated analytic P-ideals? Is it maximal among Fin)+, 0 x Fin)-
calibrated analytic basic orders?

The first part of the next question is an old problem of Fremlin. The
second part asks for even more. It has to do with Proposition 6.3.

Question 3. - Is NWD Tukey maximal among analytic a-ideals of
compact sets? Is NWD maximal among (Fin*, P(N))-calibrated analytic
basic orders?

In [8], Theorem 6, a family of analytic P-ideals Is, S’ C N, is proved
to fulfill IS1 #T Is2 iff ,5’2 is finite. The next question asks whether this
would persist after applying the functor D. An affirmative answer to this
question would show that the Tukey order is very complicated among basic
orders which are T NWD and strictly Tukey above No two Tukey
inequivalent elements are known there.

Question 4. - Is it true that D(Is1) T S’1 B ,S’2 is finite?

The following question concerns the top part of the Tukey order
among analytic P-ideals.

Question 5. - Are there two Tukey inequivalent Fa P-ideals?

The next question is related to Proposition 4.3.

Question 6. - Is it true that if D is a locally compact, non-compact
basic order, then D =T N or T D?

As the following slight modification of an example from [8], Example
1 demonstrates, if the above question has an affirmative answer, the proof



1910

will have to fully use the assumption that the maximum operation on a
basic order is continuous. Define the partial order to be

with inclusion as the order relation. By following the argument from
[8], one checks that D is not Tukey comparable with I~~ so it fails the

property asked about in the question. It is, however, easy to see that D is
locally compact with the topology inherited from and that it fulfils

conditions (2) and (3) from the definition of basic orders. In fact, it satisfies
Lemmas 3.1 and 3.2. Moreover, union is the least upper bound operation
on D. It is Borel but it fails to be continuous.

The following question asks for strengthening of Theorem 7.7.

Question 7. - Is Tukey equivalent to E,,? Is it Tukey
equivalent to NWD?
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