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1811-

RESTRICTIONS OF SMOOTH FUNCTIONS

TO A CLOSED SUBSET

by Shuzo IZUMI

Introduction.

There remain very simple unsolved problems in a close neighbourhood
of elementary calculus. They are concerned with the values of smooth
functions on a subset as follows. Let X be a closed subset of a domain
of a Euclidean space R’.

1) Extension problem: Find the condition for a function on X to be
extendable to a Cd function on S2.

2) Flatness problem: If X is thick enough around ç, the Taylor
expansion of a differentiable function f defined in a neighbourhood of ~ is
determined up to some order. Find a geometric expression of this thickness.

Whitney [W2] posed the extension problem and gave a necessary
and sufficient condition in the case n = 1. Glaeser [G1] solved this

problem in the case d = 1 introducing the linearized paratangent bundle.
(Originally, the spelling is "paratingent" in French, cf. [B] and ~G 1~ . )
Recently, Bierstone, Milman and Pawlucki [BMP2] introduced a very

interesting geometric notion "higher order paratangent bundle" to

this problem, generalizing Glaeser’s paratangent bundle. This is a variant
of higher order tangent bundle of X. Further, they associated to every
function f : X - R, a subbundle V£ f C d(X) x R (d, N E N) over X.
In these constructions and they used a set operation found

Keywords: Whitney’s problem - Spallek’s theorem - Smooth functions - Higher
order paratangent bundle, Flatness - Multi-dimensional Vandermonde matrix - Self-
similar set.

Math. classification: 26B05.
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by Glaeser (see §3). They posed a general conjecture on the extension
problem as follows.

(*) A function f is Cd extendable if and only ifvd f is the graph of a mapping
into R for a suitable N.

They proved that, for the closure X of an open subset of a regular
submanifold of a Euclidean domain, coincides with the full higher
order tangent bundle of the submanifold on X and that the conjecture (*)
is affirmative for such X. Further, they have obtained a positive result for
the important case of compact subanalytic sets.

We call the second problem flatness problem since uniqueness up to
order r of Taylor expansion at ~ E X is assured by controlling r-flatness
by the values on X. This problem was first considered by Spallek [S]. The
present author [I] developed fundamental properties of "Spallek function" ,
an invariant defined for the germ Xç which measures the efficiency of
flatness control of functions at ~ by their values on X.

Since Whitney’s works, it has been widely known that the theory
of smooth functions is closely related to the interpolation theory (e.g.
[W2], [G2], [K], [MM], [S], [BMP2], [I]). The reason is that differential

properties are not punctual but "molecular" (Glaeser) as seen in the bi-
punctual inequality used to define Whitney function (see [W1]). Glaeser
[G2] proposed two methods of application of interpolation, Lagrange
interpolation and "interpolation schemes" to treat differential properties.
He put emphasis on the latter. But we adopt the former method in this
paper. Following Glaeser, we treat interpolations with (n + d) ! /n! d ! nodes
for the problems of Cd functions on R’. The most important point is that
"Vandermonde matrix" appears in the matrix representation of Taylor
expansion (see the proofs of 4.1 and 6.2). We measure the behavior of the
accumulating nodal sets.

In 4.1 we show the following. Suppose that X C R’ includes nodal
sets accumulating to a point and that their Vandermonde determinants
are not rapidly decreasing relative to their diameters. Then X has the
full higher order paratangent spaces at the accumulating point. Remember
that if X has full higher order paratangent spaces at any point of X, the

conjecture (*) is valid for such X (see [BMP2]). Many classical fractal
sets, such as Cantor set, Koch curve, Sierpinski gasket and Menger sponge,
satisfy this condition (see 5.2).
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As for flatness, we need a more quantitative argument. We give a
sufficient condition 6.2 for a set X to control flatness of functions at a point
of X (see 6.2). This is nothing but a sharpened form of Spallek’s theorem.

We consider that our study still leaves a major portion of the extension
problem open. We treat only rather easy phenomena in the following sense.
A set satisfying the condition in the main theorem 4.1 has always the full
higher order paratangent space at the accumulating point. The construction
of the paratangent bundle requires repetition of Glaeser operations in

general (cf. [BMP2], 1.8). In contrast, the sets treated in 4.1 call for it only
once. By the result [BMP2], 1.3, it might be inevitable to assume the
graphic condition of with e &#x3E; d for Cd extension in general.

In the case of the flatness problem, it is interesting to analyse the
growth of Spallek functions (cf. [I], 2.9, 3.6, 4.4). But we have no idea to
connect our present method to observe them.

Aknowledgments. 2013 This work was partly done during the stay at
Université des Science et Technologies de Lille. The author wish to express
his sincere thanks for the courtesy and for the helpful discussions with the
participants of Séminaire d’Analyse Complexe et Différentielle of Lille,
in particular to Professor Anne-Marie Chollet. He also would like to thank
the participants of Seminar of Functions of Complex Variables of Kyoto.

1. Multivariate Lagrange interpolation.

Let us recall some elementary facts on Lagrange interpolation in R’.
In the following, functions are R valued and linearity is over R.

PROPOSITION 1.1. - Let A be a subset of JRn of N distinct points
and fin , ... , f N be functions defined on A. Then the following conditions
are equivalent.

1) A is not contained in the vanishing locus of any non-trivial linear
combination of f l , ... , f N .

2) For any set of values prescribed at each point of A, there exists at
most one linear combination of f l , ... , f N which takes these values at each
point of A.

3) For any set of values prescribed at each point of A, there exists at
least one linear combination of f l , ... , f N which takes these values at each
point of A.
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Proof. Let V :== denote the square matrix of the values

of f at points a 1, ... , aN. Then, 1) and 2) are equivalent to the condition
that the row vectors of V are independent. The condition 3) is equivalent
to saying that the vectors generate the whole N dimensional space. Since V
is square, 1), 2), 3) are all equivalent to the condition that V is regular. D

PROPOSITION 1.2. - If S C R" is not contained in the vanishing locus
of any non-trivial linear combination of fl, ... , fM, there exists A c S such
that #A = M and A is not contained in such a locus either.

Proof. Let W := denote the (possibly infinite)
matrix of the values of f i at points s E S. The rows of W are linearly
independent by our assumption. Hence, there is an M x M regular minor
matrix. Then the set A of the points corresponding to the columns of the
minor satisfies the condition. 0

2. Polynomial interpolation.

For a subset A of R" , let Hdeg(A) denote the minimum of the degrees
of non-zero polynomials vanishing on A. If there is no such polynomial,
we put Hdeg(A) - oo. The dimension of the vector space of homogeneous
polynomials in n + 1 variables of degree d coincides with that of the vector
space of polynomials in n variables of degree less than or equal to d.

We express it by

PROPOSITION 2.1. - If A is a subset of R n and Hdeg(A) &#x3E; d + 1,
then #A &#x3E; N(n,d).

Proof. Consider the vectors of dimension #A whose components
are the values of a monomial of degree less than or equal to d at points of A.
Such vectors are N(n, d) in number. If #A  N(n, d), these vectors are
linearly dependent. This implies that some non-trivial linear combination of
the monomials vanishes at each point of A. This contradicts the assumption
Hdeg(A) &#x3E; d -+- 1. El

Let us take the set of multi-indices
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(H . i 1 -E- ~ ~ ~ -~ in ) and express the monomials and the derivatives in
x :_ (x 1, ... , xn) as follows:

,

LEMMA 2.2. The sum of the degrees of all monomials in n variables
of degrees less than or equal to d is equal to the following numbers.

Proof. Let xl, ... , xn be the variables. Let (l~ = 1, 2,..., 5)
denote the k-th expression in the equality above. The first expression ,S’1
is just the quantity mentioned at the top of the lemma. Expression S’2 is

obtained by counting the degrees in xp separately for each p. The summand
is the sums for the terms of degree just i in .Cp. Expression N(n - 1, d - i)
denotes the number of such terms, of degree equal to or smaller than d - i in
the variables other than xp . The preceding multiplier n is the number of the
choice of p. The summand of S3 is equal to the product of the degree i and
the number of the monomial bases in n variables of degree just i. Equality
S3 = 54 follows from

I I a 1

The last equality S4 = S’5 follows from the obvious equality

Suppose that A is a set of N(n, d) distinct points in I~n indexed as

Fixing an ordering of I, we obtain an N(n, d) x N(n, d) matrix

where i E I are multi-suffixes seen as the row indices and j E I are multi-
exponents seen as the column indices. Y(A) is called the n-dimensional

Yandermonde matrix- of A (cf. [AS]). This has the following properties.
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PROPOSITION 2.3. -

distinct points.

1) Det V(A) is homogeneous of degree 7V(?~+l,d2013 1) with respect to
the p-th coordinates of a2 (i E I ) for each fixed p = 1, ..., n.

2) Let cp : be a linear transformation expressed by a matrix P.
Then

3) Det Y(A) is an invariant of translations, i.e.

Proof - 1) This follows from 2.2 (with ,S’1 = S5 in the proof).

2) The general linear group GL(n, R) is generated by the transforma-
tions of the following forms.

1B , , I 1 I B

In case (a), Det ~ A
Det P = A. Since Det Y(A) is homogeneous of degree N(n + 1, d - 1) with
respect to the p-th coordinates of ai (i E I), we have

These prove the equalities.

3) We have only to prove the invariance with respect to the

transformations in x, direction, which follows in the same way as case (a)
above. 0

Remark 2.4. - We call cp : R~ 2013~ R" affines if it is a composition of an
invertible linear transformation p’ after (or before) a translation p" . If cp is
an affine transformation, the determinant of its linear part cp’ is the ratio of
the signed volumes of p(B) and B for any measurable subset B. Thus the
proposition above implies that the quotient is expressed as
the N(n + 1, d - l)-th power of the ratio of the signed volumes of p(B)
and B.

Applying 1.1 and 2.1 to the monomials x-7, we have the following.



1817

PROPOSITION 2.5. - Suppose that A is a set of N(n, d) distinct points
in R" with n,d E N. Then Hdeg(A)  d + 1 and the following conditions
are equivalent:

1) Hdeg(A) = d -f- 1,

2) Det V(A) 7~ 0,

3) there is a unique polynomial of degree at most d which takes the
set of values prescribed at each point of A.

The author knows the following geometric interpretations of these
conditions.

1) The case n = 1 is well known: Det V(A) # 0.

2) The case d = 1 implies that n + 1 points ai . := (a2I , ... , ain )
(i = 0, ... , n) in R" are contained in a hyperplane if and only if

3) Suppose that n = d = 2. Let bl, b2, b3 denote the intersection
points of

the line joining allo and ao2o and the line joining alo, and a002,

the line joining atoll and aoo2 and the line joining a110 and a200,

the line joining aioi and a2oo and the line joining aoii and ao2o

respectively. By Pascal’s theorem, 1) in the proposition is equivalent to the
condition that bi , b2, b3 are not contained in a line.

3) A sufficient condition for 2) for general n, d is given in [AS], 3.6.
A convenient version of this condition is given in [I]. (The author does not
know whether this convenient version loses generality or not in comparison
to [AS], 3.6.) These assure that a general set A of N(n, d) points has
non-vanishing Det V (A).

3. Higher order paratangent bundle.

Bierstone, Milman and Pawlucki [BMP2] have defined the higher order
paratangent bundles of order d for a subset X of a Euclidean space

(or of a manifold), generalising Glaeser’s paratangent bundle. We briefly
describe the necessary part here. Note that we adopt the general definition
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of TN,~ (X ) explained in the last section of [BMP2], whereas they used only
the case N = 1 in the main part of the paper. Necessity of using larger N
was already pointed out and related lemmas were prepared by them.

Let X be a metric space and V a finite dimensional R vector space.
We call a subset E C X x V a bundle (of subspaces of V) over X if the
fcbres Ea : {~ : (a, v) E E~ are linear subspaces of V. Let X be a subset of
a Euclidean space Rn. Let Pd be the R vector space of polynomials on R"
of degree equal to or less than d and its dual vector space.

Let us denote assignment of the value (-1) (an f (a) to f E Pd
by 6(p). This expresses the derivative of the Dirac delta function of order p
with Ipl  d. We adopt this symbol because of notational simplicity. But
take care that it has different properties according to d. For example,
6a = 6b always holds in Po* but not in We have

in where ei is the multi-index whose i-th component is 1 and other

components are 0. In general, the derivatives

form the dual basis of ( (x - a)P : dl and all the derivatives of 6a are
expressed by those of 6b in Pd (see the first equality in the proof of 4.1).

Let us put Eo :== {(a, A6a): a E X, A E We define Ek inductively
as follows. If Ek is defined, put

and

where X x ... x X x denotes the canonical projection
onto the first factor times Pd . The intersection of the closure of AEk and
the diagonal coincides with the set of all the limiting points of

when ao,..., aN approach to a. Finally we put

where Span Ek denotes the linear span of Ek in the fibre. The procedure
of obtaining Ek+l from Ek is an example of Glaeser operation in [BMP2].
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The sequence Ei C E2 c E3 G -" stabilizes and we have 

(k &#x3E; 2dimPd*) as a general property of Glaeser operation (see 
[BMP2], 3.3). This saturation TN (X ) : E2 dim Pd is called the paratangent
bundle of order d of X (see [BMP2]). This is a closed subbundle of X x Pd
in the obvious sense. It is known that, for a subbundle (of subspaces),
closedness is equivalent to upper semi-continuity of inclusion (see [C], p. 67).
Let us call the fibre the paratangent space of order d of X at a.
Glaeser’s (linearized) paratangent bundle is isomorphic to 

Remark 3.1. - We can replace the control condition

with any c &#x3E; 0 independent of i and a (see [BMP2], §5). This control
condition is used to prove the easy half of the conjecture below (cf. 4.7,
4.16, 4.17 of [BMP2]). Hence the control condition seems to endow 
a character peculiar to class Cd. 

’

Now we describe the construction of v1v f in order to have its image,
although we do not use its explicit form later. Consider a function f : X - R
and the bundle

over X. If lfk is defined, put

and

where 7r: denotes the canonical

projection onto the first factor times 7~d x R. Finally we put

Since the extension is also a Glaeser operation, the sequence

3.3) and the saturation is denoted by 
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CONJECTURE 3.2 (Bierstone-Milman-Pawlucki). - Let X be a closed
subset ofR~. Then there exists N E N such that a function f : X - R can
be extended to a Cd function if and only C x Pd is a graph
of a map into R.

Only-if part was proved by themselves (see [BMP2], 4.17). They
proved if part when X is the closure of an open subset of a regular
submanifold. The paratangent bundle with N = 1 is sufficient for

their proof. We prove a sharper form of this result in the next section.
They also proved the case of compact subanalytic sets with some loss of
differentiability using their deep results [BMP1] on composite functions.

Remark 3.3. - Suppose that X is a closed subset of JRn and Y a dense
subset of X. If for any ~ E Y, then = Pd* for any

by the closedness of Then the conjecture 3.2 is affirmative
for such an X by [BMP2], proof of 4.20.

Remark 3.4 (see [BMP2], 4.23). - Suppose that X C M c R",
where M an m-dimensional regular submanifold of JRn and that

for any ~ E X. Then the conjecture 3.2 is affirma-

tive for such an X.

4. Set germs with full higher order paratangent spaces.

THEOREM 4.1. - Let C R be a positive sequence and

Ak := lao C R" sets of N(n, d) = N + 1 distinct points (k 
Suppose that (see Figure 1) :

1) Ak is contained in the closed ball of radius rk centred at ak
2) == ç,

3) = 0,

4) there exists c &#x3E; 0 independent such that

If X is a closed subset including U Ak, then

Remark 4.2. In view of 2.3 and 2.5, the condition 4) implies that
the points of Ak are algebraically in general position in the balls of 1)
uniformly with respect to k. If the interior of X is adherent to 0, this
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Figure 1. Illustration of Theorem 4.1

condition is satisfied. Hence, by [BMP2], proof of 4.20 (see 3.3 above with
Y = X), we see that our theorem is an improvement of [BMP2], 4.19:
balls are replaced by the sets Ak of N + 1 points.

Proof of l~.1. - Let po? -’’ pN denote the elements of I (n, d). If f is
a polynomial of degree d, we have

w « i v 1 v i i

Namely, the Dirac deltas ..., are expressed in terms of the higher
0 N

order derivatives of the Dirac delta at ao in 

Since the Vandermonde determinant does not vanish, 6 (pi) are spanneda

by 6ak, 6,,k . All the elements of V (Ak - with column index i are
1 N 

0

homogeneous polynomials of degree Ipi in all the components of all ai - ao
and the Vandermonde determinant Det is a homogeneous
polynomial of degree n - N(n + 1, d - 1) in them. Then the elements with
row index i of the cofactor matrix

are homogeneous of degree

J

in them. Here, the last equality follows from (2.2). Applying condition 4)
and 2.2, we see that all the elements ao ) -1 with row index i
are majorized by a constant multiple of 7 Hence the control

conditions for the coefficients of bao in the construction of are

satisfied. Then follows as their limits. 
Ti-V, 

F-1
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5. Paratangent bundles of self-similar sets.

First we recall the definition of self-similar set. The readers can refer

to [F] and [YHK] for further explanation. A map R" is called a

contractzon if there exists K E (o, 1 ) such that

If a finite set ~pl, ... , cpp : JRn ---7 JRn of contractions of R" is given, there
exists a unique non-empty compact set S C R" such that *9 = 
Such an S is called the attractor or the invariant set of cpl, ... , In

particular, every contraction p of R" has a unique fixed point F(p). The
following is known as Williams’ formula. For the attractor of cpl , ... , pp, I
we have

where (il , ... , iq ) runs over all finite sequences of elements of {I, ... , ,p}.
Let us call an affine transformation a similarity transformation if it

preserves the angle of every ordered triplet of points. If Sp is a similarity
transformation, there exists A E (0, oo) such that

We call A the similarity ratio of cp. An attractor of ~ol, .. - , pp (p &#x3E; 2) is

called self similar, if all pz are similarity transformations (see [F]). (Often
more general attractors are called self-similar (see [YHK], p. 18).) The next
lemma is almost immediate from 2.4.

LEMMA 5.1. Let A be a point set with ~A = N + 1 = N(n,d)
and B another point set similar to A. Then we have

where 6 denotes the diameter.

THEOREM 5.2. - For any we define N by N(n,d) = N + 1. Let
X C R" be a self-similar subset uritll Hdeg(X) &#x3E; d+ 1. Then TN, s (X ) = Pd
for any s E X . 

Proof. - Suppose that X is defined by contracting similarity trans-
formations (Pi, - - - , pp. By 3.3, we have only to prove that 
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for points s of a dense subset of X. Then, by Williams’ formula, we may
assume that s is the fixed point of cpil o ... o i.e. s = F((pi, o ... o ’Pik ).

Since Hdeg X &#x3E; d + 1, there exists an N + 1 point subset A c X
such that Hdeg A &#x3E; d + 1, by 1.2. This implies that V(A) # 0 (and
Hdeg A = d + 1) by 2.5. Since ~p21, ... , ’Pik are similarity transformations,
so is 0 ~ ~ ~ o ’Pik’ Let A &#x3E; 0 denote its similarity ratio. Of course, A  1.

The set Ak := (Wil o ~ ~ ~ o is included in the closed ball of

radius Ak - x E ~4} with centre s. If we number the points
of Ak as Ak ak, ak I arbitrarily, Ak is contained in the ball of radius
rk := 2Ak - 81: : x E ~4} centred at a~. We know that

by 5.1. Since this expression and the ratio are independent of k,
the condition 4) of the theorem holds. D

Most of the classical fractal sets constructed geometrically are

self-similar and not contained in an algebraic hypersurface (hence
Hdeg(X) &#x3E; d -I- 1). Among them are Cantor set, Koch curve, Sierpinski
gasket and Menger sponge. Non-algebraicity of these fractal sets follows
from the fact that the local Hausdorff dimension of a proper algebraic
subset is smaller than that of the ambient space by one.

6. Control of flatness by values.

Let f be a Cd function defined on an open neighbourhood of 0 E R’.

Let us call f k -flat if f (P) (0) = 0 for p := (po, ... , pn) E I (n, d) with
|P|kd

Remark 6.1. - As to the terms flatness and order, the author now
understood that it is better to use both depending on the category of
functions. When we treat analytic functions, order is convenient because
it is a valuation (or related to valuations, on a singular space), a familiar
notion to algebraists. If the order of f is p, then f is of course (p - 1)-
flat. When we treat Cd functions for finite d, there occurs a difficulty in

defining order. If all the partial derivatives of f vanishes order up to d,
f is d-flat. But we can not define its order confidently, so long as we permit
non-integer values. So flatness is better in this category.
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THEOREM 6.2. Let p &#x3E; 0 be a positive number, C JR a positive
sequence and Ak ~ao , ... , C JRn (k E N) sets N + 1

distinct points. Suppose that:

1 ) Ak is contained in the closed ball of radius rk centred at ao ;

4) there exist (

For a Gd (d &#x3E; p) function f defined in a neighbourhood of 0, we put

(i) If m is an integer and limk-. 0, then f is m-flat at 0.

(ii) If m is not an integer and Sk is bounded, then f is [m]-f1at at 0,
where [m] denotes the maximal integer not greater than m.

Remark 6.3. - This theorem is useful in the following situation. Let
tSk I C R be a positive sequence. Suppose that Ak is contained in the closed
ball of radius Sk centred at 0. If p, q &#x3E; 0, in the theorem is majorized by

The first factor of Tk is concerned with the shrinking of balls containing Ak
and the second with flatness of the values of f along U If the Tk tend
to 0, then so do the Sk. If the Tk are bounded, then so are the Sk .

Remark 6.4. - The expression m above is rather complicated. We can
understand this as follows. If the conditions in the theorem holds, then e
must satisfy e &#x3E; n ~ N(n + 1, d - 1) by 2.2. The equality here means that
the points of each Ak are algebraically in general position in the balls of 1)
"uniformly with respect to l~" . If this is the case, we have m = p and,
in view of 6.3, (i) is a sharpening of Spallek’s theorem [S], 1.4: balls are

replaced by sets Ak of N + 1 points. The term e - n ~ N(rc + 1, d - 1) &#x3E; 0 is

the adjustment for the case when the algebraic genericities of the positions
of the points of Ak degenerate as 1~ increases.

Proof of 6.2. - We may assume that f is defined in a neighbourhood
of the closure of the convex hull of U Ak. Let us adopt an ordering of I (n, d)
such that
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where M = N (n, d -1 ) . Then by the Taylor formula, there exists Of E (0, 1)
such that we have

;’ , ... , . I 1.. _1 ,

where

and V(Ak - ao ) is the Vandermonde matrix of the translation of Ak
by -ao . As we have seen in the proof of 4.1, the elements with row index i

1 
are homogeneous of degree

i

in all the components of all ai - ao. Hence there exists C &#x3E; 0 such that

Since f is of class Cd and since limk- liMk-00 bk- 0, we see that
J y 

"0 .. i 
-

Recall that our asumption impliess that I  rp Sk - In the case of (i),
this implies that I = 0 for pi with lpi I  m. Since

ak - 0, we have f ~~Z &#x3E; (0) = 0 for such pi, which completes the
proof of (i).

In case (ii), let us define p and S’~ by

Since p  p, = 0 holds and (ii) follows from (i).
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