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1641-

TRACES AND QUASI-TRACES
ON THE BOUTET DE MONVEL ALGEBRA

by Gerd GRUBB and Elmar SCHROHE

1. Introduction.

In their work on the geometry of determinants of elliptic operators,
Kontsevich and Vishik [KV] introduced the canonical trace, a novel func-
tional TR A defined for a class of pseudodifferential operators A

on a closed n-dimensional manifold X. What makes it remarkable is that

it extends the standard operator trace, and hereby complements the non-
commutative residue.

The noncommutative residue resA was discovered by Wodzicki [W]
and, independently, by Guillemin [Gu]; it is a trace (i.e., a nontrivial linear
functional which vanishes on commutators) on the full algebra A of all
classical pseudodifferential operators on X. The noncommutative residue
turns out to be the only trace on A with this property, up to multiples.
Moreover, the value of resA is determined from finitely many terms in the
asymptotic expansion of the symbol of A (in fact, from the component
of homogeneity -n in this expansion); we call such functionals "locally
determined" .

It vanishes on operators of noninteger order or of order  -n, and it

is here that Kontsevich and Vishik’s functional takes over: TR A is well-

defined and nontrivial when A is of noninteger order or of order  -n, and

Keywords: Canonical trace - Nonlocal invariant - Pseudodifferential boundary value
problems - Boutet de Monvel calculus - Asymptotic resolvent trace expansions.
Math. classification: 58J42 - 35S15.
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it vanishes on commutators [A, A’] of these types. It is "global" in that the
value of TR A depends on the full operator and cannot be determined from
the terms in the asymptotic expansion of the symbol. The canonical trace
equals the standard trace when the order is  -n; it is moreover defined

on integer-order operators with certain parity properties, see below.

In this article we shall generalize the canonical trace to pseudodiffer-
ential boundary value problems in the calculus of Boutet de Monvel [B].

The original approach of [KV] is based on studies of generalized zeta
functions ((A, P, s) = Tr(AP-’) and certain regularizations of them, where
P is an auxiliary elliptic operator. This does not extend easily to the
situation of manifolds with boundary; in the case without boundary, P-’
is a classical ydo again (by Seeley [S]), whereas complex powers of elliptic
boundary problems fall outside the calculus of Boutet de Monvel. However,
the introduction of TR A can instead be based on trace expansions of heat

operators Ae-’p (Lesch [L]) or resolvents A (P - A) - ’ (Grubb [G4]), where
the latter admit a direct generalization to manifolds with boundary (Grubb
and Schrohe [GSc]).

Therefore, let us explain the functional of [KV] from the resolvent
point of view: Let A be a classical ydo of order v ; its symbol has an
expansion in local coordinates with smooth

in (x, ~) and homogeneous of degree v - j in ~ for lçl ~ 1. When P is

an auxiliary elliptic operator of integer order m &#x3E; 0 with no principal
symbol eigenvalues on R-, a calculation in local coordinates shows that
the operator family A(P - À)-N has for N &#x3E; (n + v)/m a trace expansion

for A - 00 in a small sector around cf. Grubb and Seeley [GS1].
Here each Cj (and each c~) comes from a specific homogeneous term in the
symbol of A(P - A) ~~ , whereas the Zi depend on the full symbol. So the
coefficients Zj and c~ depend each on a finite set of homogeneous terms in
the symbols of A and P; we call such coefficients ’locally determined’ (or
’local’), while the Zi are called ’global’. When v ~ Z, the c~ vanish. When
v E Z and ( j - n - is an integer k &#x3E; 0, both Zj and Zi contribute
to the power (2013A)"~~~; their sum is independent of the choice of local
coordinates, whereas the splitting in Cj and Zi depends in a well-defined
way on the symbol structure in local coordinates (see [GS1, Th. 2.1] or [G4,
Th. 1.3]).
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In ( 1.1 ), = resA, depending solely on A, cf. [W], [Gu]. Moreover,
cf. [KV], [G4],

in the following four cases:

A is even-even and n is odd,

A is even-odd and n is even;

in the cases (3) and (4), P is taken to be even-even with m even. In all the
cases ( 1 )-(4) , resA = 0, there is no contribution to (2013A)~~ from the first
sum in (1.1), and

where f tr a(x, ~) ltfl is a finite part integral (explained in detail in Section 3
below) .

When v E Z, we say that A or a has even-even alternating parity (in
short: is even-even), when the symbols with even (resp. odd) degree v - j
are even (resp. odd) in ~:

and the derivatives in x and ~ likewise have this property. A and a are said
to have even-odd alternating parity in the reversed situation, where the
symbols with even (resp. odd) degree v - j are odd (resp. even) in ~:

etc. These properties are preserved under coordinate changes. For brevity,
we shall say that A (or a) has a parity that fits with the dimension n, when
(3) or (4) holds.

[KV] only considered the cases (1)-(3); the operators satisfying (3)
were called odd-class operators. (4) was included in [G4].

The relations can also be formulated in terms of the generalized zeta
function ((A, P, s) = Tr(AP-s); here we assume P invertible for simplicity.
It is known from [W], [Gu] that ((A, P, s) extends meromorphically from
large Re s across Re s = 0 with a simple pole at 0,
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this follows also by translating (1.1) to a statement on the pole structure
of ((A, P, s) (as e.g. in [GS2, Cor. 2. 10]). Here

with Cv+n defined as 0 if v  -n or v V Z. In the cases (1)-(4), Gv+n and
resA vanish (for any choice of local coordinates), so that

The coefficient Co (A, P) has an interest also when none of the

conditions (1)-(4) is satisfied. Then it has the properties:
are locally determined.

Moreover, Co (A, P) can be written as (1.3) plus local terms. Functionals
with properties as in (1.9) for a system of auxiliary elliptic operators P will
be called quasi-traces.

By use of more functional calculus, defining log P, one can moreover
show that the two expressions in (1.9) are noncommutative residues of
suitable combinations of the given operators and log P ; cf. [KV] and
Okikiolu [0] for Co (A, P) - Co (A, P’), cf. Melrose and Nistor [MN] for

Co ( ~A, ~], P). (In works of Melrose et al., notation such as Tr(A) or 
is used for Co (A, P); it is called a regularized trace there.)

In order to extend the definition of the canonical trace to operators
in the calculus of Boutet de Monvel [B] on an n-dimensional compact C°°-
manifold X with boundary 8X = X’, we shall rely on resolvent expansions
analogous to (1.1). To this end we choose an auxiliary operator P1,D, which
is the (invertible) Dirichlet realization of a strongly elliptic principally
scalar second-order differential operator.

It was shown in [GSc] that when A = P+ + G is a pseudodifferential
boundary operator in this calculus of order v E Z with G of class 0,
then there is a trace expansion for N &#x3E; (n + v)/2:

The proof depends on a reduction to parameter-dependent qbdo’s on X’,
where can be used; it is easily generalized to cases where A = G of
noninteger order v and class 0. When v / Z, the c~ vanish.
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As explained e.g. in [GS2] this yields the expansions:

In (1.10), À ----t oo in a sector of C; in (1.11), t -~ 0+; (1.12) describes the
pole structure of the meromorphic extension of r(s) to C. The

coefficients are proportional to the coefficients in ( 1.10)
by universal constants; in particular,

where cv+n and are taken as 0 when v  -n or v V Z. The coefficients
cj and c~ are locally determined, whereas the c" are global.

Relation (1.12) implies that the generalized zeta function

extends meromorphically with

In [FGLS], an analogue of Wodzicki’s noncommutative residue was intro-
duced by Fedosov, Golse, Leichtnam, and Schrohe for operators in Boutet
de Monvel’s calculus. In [GSc] we were able to show that the coefficient
co = P1,D ) in the above expansions satisfies the relation

We shall presently investigate Co(A, Pl,D) as a candidate for a canoni-
cal trace. We establish quasi-trace properties as in (1.9), with formulas for
the "value modulo local terms". Moreover, we extract some cases where

Co(A, P1,D) is independent of P1,D and vanishes on commutators [A, A’],
so that it is a trace. Here we show in particular that Co ([A, A’], 0

whenever A and A’ are singular Green operators of class zero and orders
v and v’ with v --~ v’  the same is true when v + v’

is an integer and a certain parity holds, provided we narrow down slightly
the class of admissible auxiliary operators Pl. When A = P+ + G and
A’ = P£ + G’ both have nontrivial pseudodifferential part (and hence the
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orders are integer), however, one cannot hope for more than the quasi-trace
property, see Remark 4.2 for a discussion of this point.

In contrast with the boundaryless case, the powers PSD are far from
belonging to the qbdbo calculus when s ~ Z, so we do not expect to find
residue formulas as in [KV], [O], [MN].

The quasi-trace property has an interest in itself, for situations where
one has some control over the local terms. Our formulas for Co (P+, P1,D)
in Theorem 4.1 and for Co (G, P1,D ) in Theorem 3.6 moreover show how the
values are related to formulas for the boundaryless manifolds X resp. X’.

2. Preliminaries.

Let X be an n-dimensional compact C°° manifold with boundary
aX - X’, X and X’ provided with C°° vector bundles E and E’. We
can assume that X is smoothly imbedded in an n-dimensional manifold X
without boundary, provided with a vector bundle E such that E = 
We consider the algebra of (one-step) polyhomogeneous operators in the
calculus of Boutet de Monvel

Here P is a pseudodifferential operator satisfying the transmission condi-
tion. The subscript ‘~’ indicates that we are taking the truncation of P
to X, i.e., the operator given by extending a function in C°° (E) by zero
to a function in L2 (X , E) , applying P, and restricting the result to X°;
the transmission property assures that this gives an element of C°° (E) .
Moreover, G is a singular Green operator (s.g.o.), I~ a Poisson operator,
T a trace operator, and ,S’ a pseudodifferential operator on X’. We assume
that all are of order v. Details on the calculus can e.g. be found in [G2].

As a first observation we note that for classical (one-step polyhomoge-
neous) qbdo’s P of order v on X, the calculus of Boutet de Monvel requires
v E Z in order for the transmission condition to be satisfied at The

definition of the operators G, K and T (and, of course, S), however, ex-
tends readily to noninteger v, so one can also ask for an extension of the
canonical trace to operators of the form
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with pseudodifferential part equal to zero and all elements of order v E R.

We next fix an auxiliary operator: We let Pi be a second-order
strongly elliptic differential operator in E with scalar principal symbol,
and denote by P1,D its Dirichlet realization on X. By possibly shifting the
operator by a constant, we can assume that PI and P1,D have positive lower
bound, so that the resolvents Qx = (Pi - A) - 1 and (P1,D - A) - 1 are
defined for A in a region

with suitable 6; &#x3E; 0 and &#x3E; 0. Moreover, we take a strongly elliptic
second-order pseudodifferential operator 81 on and set B =
/ n ~ v

well-known from the theory of on manifolds without boundary, so we
shall restrict the attention to

We henceforth denote P+ -1- G = A.

A natural candidate for an extension of the canonical trace is the

functional A - Co (A, P1,D ) which associates with the ’ljJdbo A = P+ + G
the coefficient of (-~)-N in (1.10), equal to the coefficient of s° in the
Laurent expansion of ((A, P1,D, s) at s = 0 ( 1.14) . We shall show that this
is indeed a good choice at least in two cases:

(i) A = G is a singular Green operator of noninteger order v and class
zero with vanishing pseudodifferential part;

(ii) A = P+ + G is of integer order v with a pseudodifferential operator
P of normal order 0 and G of class zero (we say that a 9do symbol has
normal order d when it is at the boundary).

There are two conditions involved, namely on the class of the singular
Green part and on the normal order of the pseudodifferential part in (ii).
They are both natural, and related:

If G is effectively of class r &#x3E; 0, i.e., if it can be written in the form
G = Go + Z~=(~ Kj-yj, where Go is a singular Green operator of class zero,
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qju = ((9ju)lx,, and the Kj are Poisson operators with ~ 0, then G
will not be bounded on L2 (E), much less of trace class, even if its order is
arbitrarily low, cf. e.g. [G2, Sect. 2.8]. As we are looking for a functional
coinciding with the standard trace for operators of sufficiently low order, we
shall exclude operators of positive class. An expansion analogous to (1.10)
still exists, with the sum over k ) 0 replaced by a sum over k ) 1~o with
a possibly negative starting index ko. In this case, however, the coefficient
co will not in general coincide with the noncommutative residue, cf. [GSc,
Remark 1.2].

For operators P having the transmission property, we find that

Co(P+, P1,D) does indeed have a value modulo local terms that is inde-

pendent of Pl modulo local terms. The commutator [P+, P+] of two pseu-
dodifferential operators P and P’ truncated to X, however, will be of the
form P+ + G", where, in general, the singular Green operator G" will be
of class r &#x3E; 0 unless both P and P’ are of normal order  0, cf. [G2,
Section 2.6]. Hence we can only hope to show the commutator property for
this class.

Recall (cf. e.g. [G2, Lemma 1.3.1]) that any ydo P having the
transmission property at X’ can be written as a sum

where is a differential operator, P(2) is a ydo whose symbol has normal
orders -1, and the symbol of p(3) has, near ~, a large power of xn as a
factor to the left or right.

For a differentials operator P~~&#x3E;, the expansion in (1.10) (with 
is valid without the second series over k ; all terms are locally determined.
Therefore vanishes, and CO (P(l), P1,D) is local in this case,
and so is Pl, D ) - for another choice of auxiliary
operator P2. Thus CO(P(l), Pl,D) satisfies the first part of the requirement
for being a quasi-trace (with value zero modulo local terms). As mentioned
above, differential operators of positive normal order will be left out from
the commutator considerations. So will operators of type p(3), since the
structure is not preserved under differentiation of symbols.

At this point we can state a part of the results we will show in this

paper:

THEOREM 2.1. - Let A = P+ + G and A’ = P+ + G’ be of orders
v resp. v’, with P resp. P’ vanishing if v resp. v’ tf- Z, and with G and G’
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of class 0. Let P, and P2 be two auxiliary operators as explained above.
Then

it vanishes if v  -n or v ~ Z, and otherwise depends solely on the terms
of the first v + n + 1 homogeneity degrees in the symbols of P+ + G, Pl
and P2.

(ii) If v and v’ C Z, assume that P and P’ have normal order 0; if v
or v’ E Z, assume that P and P’ are zero. Then

(2.8) Co ([A, A’], P1,D ) is locally determined;
it vanishes if v + v’  -n or v -f- v’ tJ. Z, and otherwise depends solely on
the terms of the first v + ~~ + n + 1 homogeneity degrees in the symbols of

P+ + G, P+ -~- G’ and Pi.

(Actually, the number of homogeneous terms entering from G is one
step lower; see the statements in Section 3.)

The operators of the form A = P+ + G of integer order with G of
class zero and P of normal order  0 form an algebra; Theorem 2.1 shows
that Co (A, P1,D) is a quasi-trace on this algebra as well as on the singular
Green operators of class zero.

Similarly as in [GSc], our analysis is based on precise information
about the resolvent. We therefore recall the structure of R~, _ 
The Dirichlet problem

is solved by a a row matrix

This is seen as follows: We denote by Kx the Poisson operator solving the
semi-homogeneous problem with f = 0, i.e., Kxp is the solution u of the
equations

The resolvent Ra of P1,D should solve the other semi-homogeneous problem,
with cp = 0. With Qa,+ denoting the truncation to X of the resolvent Q x
of P, on X, one can easily check that Ra = Qa,+ - K).."roQ)..,+ solves the
problem; it has the singular Green operator part 
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We shall also study powers of the resolvent and write them in the
form

Note that

this allows us to replace calculations for powers of Rx by calculations for
A-derivatives.

We shall now start with the proof of Theorem 2.1. The case where
A = G is a singular Green operator of class zero and the pseudodifferential
part vanishes can be attacked more directly and will be studied first.

3. Traces on the algebra of singular Green operators.

Let G be a singular Green operator in E of order v E I1~ and class 0,
and consider i In [GSc] we introduced the auxiliary
variable &#x3E; = (-~) 2 and phrased the results in terms of J-l instead of A.

In the present paper we shall keep A as an index, but will often use &#x3E;
in symbol computations. Some formulas from [GSc] and some immediate
consequences are collected in Appendices A and B, to which we refer in the
following.

As mentioned already, the proof in [GSc] of the expansion (1.10) for
A = G is straightforwardly modified to allow v / Z. For an analysis of
the coefficient, we apply a partition of unity 1 = io 1 Oi subordinate to
a cover of X by coordinate patches Uj, j = 1, ... , jo, with trivializations

mapped into 8Rl , such that
any two of the functions Oil and are supported in one of the coordinate
patches Replacing G by Oil GOi2’ we find from GQ~ + and

a system of terms

where and are supported either in an interior coordinate patch
(with closure in the interior) or a patch meeting the boundary, and we
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can study each term in the local coordinates. Since Oi2 GC:) is strongly
polyhomogeneous of order -oo when 0i2 is supported in the interior, its
kernel is smooth and is for any M. Hence the terms Oil GOi2GC:)
that are supported in the interior have traces that are for any
M and can be disregarded in the following. For the terms Oil GOi2 Qf,+
supported in the interior, is of order -oo; they will be covered by
Lemma 3.1 below, which gives:

For the terms supported in patches meeting the boundary we can use the
results of [GSc] in an accurate way.

Let us first recall some elements of the basic symbol calculus we use,
namely the calculus of parameter-dependent ~do’s introduced in [GS1]. It
will be used both in the (n - 1 )-dimensional setting, relevant for operators
on X’, and in the n-dimensional setting, relevant for operators on X.

For m E R, the usual pseudodifferential symbol space S’(R n 
consists of the functions s (x, ~) E Coo (JRn’ satisfying estimates

for all a,,3 E (We denote
The parameter-dependent version we shall use here is X R", r),
for m E R, d and s E Z, and with r denoting a sector in C B 
it was introduced in [G3], where a detailed account can be found. Here
Srrt,d,s R+) is defined as the space of C’ functions f (x, ç, /1) on

xR"’ xR+ such that, with z = 1/p,

with symbol estimates uniform in z for z  1.

For more general r, the estimates have to hold on each ray in r, uniformly
in closed subsectors of r. When the symbols moreover are holomorphic in

M E r° (just for I (M, fl’ ) ) ) £ with some E depending on the closed subsector),
we speak of holomorphic symbols. The indication JRn’ x JRn’ (and r) will
often be omitted. We say that f(x, ç-, M) is (weakly) polyhomogeneous
in sm,d,s(r), when there is a sequence of symbols fj in 

homogeneous in (~, M) of degree rrz - j + d + s I ~ 1, such that
is in sm-J,d,s (r) for all J E N (strongly polyhomogeneous if the

homogeneity holds for I(Ç-, p)1 ~ 1, with appropriate remainder estimates).
These spaces sm,d,s are a generalization of the spaces ,S’"2’d introduced

in ~GS 1~ (in fact, equals the space of holomorphic symbols in
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they satisfy

by Lemma 1.13]. The notation with the third upper index spares us
from keeping track of such intersections and sums in general calculations.
(It was used systematically in [G3], [G5], [G6].)

When f E there is an expansion in decreasing powers of J1
starting with J1d:

in fact the N’th remainder is in Such expansions play an
important role in the proof of the following fact: When F = OP( f (x, ~, /1))
has a polyhomogeneous symbol in ,S’’~’2,d,o such that all terms are integrable
with respect to ~, then by [GSI , Th. 2.1], the kernel of F has an asymptotic
expansion on the diagonal:

here the coefficients Cj (x) and c[(x) with k = -m + j’ - n’ are local,
determined from the strictly homogeneous version of the j’th homogeneous
term in the symbol of F, whereas the depend on the full operator
(are global). If Z, all c’k are zero. When F is a ydo family on X (or on
X’), the trace expansion for F is found by establishing expansions (3.5) for
components of F in local coordinate systems, carrying them back to X and

integrating the fibrewise traces over X; this leads to a similar expansion of
TrF:

Of course, such a calculation depends on the choice of partitions of unity
and local coordinates, but it is useful for qualitative information. The final
result (3.6) is independent of the choices, in the sense that the collected
coefficient of each power or log-power is so (for k = j - m - n~ C N, cj + c"
is independent of the choices).

This is the basis for the trace expansions we shall show. For purely
ydo terms on X, the expansions will be established relative to X, but the

integration of the kernels will be restricted to X. For all the other types of

operators, the main idea is to reduce the considerations to ’ljJdo’s over the
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boundary X’. In all cases the point is to show that the resulting symbols
belong to suitable S,,d,o-spaces such that (3.5) can be established.

Since we are particularly interested in the nonlocal coefficient c~, we
have to be very careful with remainders and smoothing terms. Recall from
~GS 1, Prop. 1.21] that when an operator F with symbol in is of

order -oo (i.e., lies in then it has a kernel K(F, x, y, JL) with
an expansion in C°° terms

for all L, with KL and its (x, y)-derivatives being ( . Moreover,
since ) has symbol in for all j, there
are expansions

for all L, with and its (x, y)-derivatives being O ( (~~ - L ) . Conversely,
these kernel properties characterize the operators F with symbol in 

(as is seen straightforwardly from the definition).
It follows from (3.3) that S-,,d+,,O. In the proof that

a polyhomogeneous symbol lies in a symbol space ,S’"2~d,s one shows the

symbol properties for the homogeneous terms and treats the remainders
by establishing the kernel expansions (3.8) (with d replaced by d + s) with
smoother coefficients and a higher number of terms, the higher the index
of the remainder is taken.

The sector h used in the present work is

for some E &#x3E; 0, since A = -p 2 runs in A defined in (2.3). All symbols to
be considered in this paper will be holomorphic on F’; this fact will not be
mentioned explicitly each time.

One of the technical points in [GSc] was that in compositions of
two operators, the right-hand factor is taken in y-form and the resulting
symbol is considered in (x,y)-form so that one does not need to consider
the asymptotic expansion in the usual symbol composition formula (cf. e.g.
(3.31 ) below). However, the passage from one of these forms to another can
induce low-order errors. These have to be dealt with carefully in the present
situation, where nonlocal contributions are in focus. Also for this reason,
the following analysis of the effect of smoothing operators is important.
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Smoothing parts of Q x and Ga are easy to deal with, since they have
smooth kernels that are O(A-M) for any M. For compositions containing
smoothing parts of G, we recall that an s.g.o. of order -oo is simply an
operator with C°° kernel on X. So is P+ when P is of order -oo. Such
operators enter as follows (for G~ , cf. (A.14)) :

LEMMA 3.1. - Let G be an operator with C°° kernel, compactly
supported in x R n. Then the traces of GQ~ +, GG (N) and 
have expansions Ej, c~ /-l-2N-j, where

in the expansion of 7

n the expansions of

Proof. - First consider the cases in (ii); here we use that the symbol
of the A-dependent factor has the structure described in Lemma A.4 with

To evaluate the latter, we insert a Taylor expansion of w.r.t.

and use that
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This gives when integrations in (xn, zn) are performed:

Each term in the sum over m, m’ is the trace of a odo on

JRn-1 composed of the operator with kernel (~’, ~’) (smooth
compactly supported) and the operator with symbol

and consequently a trace expansion as in (3.7) with d  -2N-1 in all cases.
The remainder is O(~-2M-1-2N-J-+n-1), Since M can be taken arbitrarily
large, this shows (ii).

For (i), let G be an operator on with compactly supported C"O
kernel such that G = r+Ge+’(its kernel can be constructed by extending
the kernel of G smoothly across Xn - 0 and yn = 0). Then

Here is of the type we considered above, having a trace
expansion with d  -2N - 1. For we use the result known from

~GS 1~ (cf. also [G4, Th. 1.3]) that the kernel of has an expansion on
the diagonal

The expansion of is found by integrating the matrix trace
of (3.11) over where K(G, x, x) - K(G, x, x), so (i) follows, with

, , n --I- , - - -.

As already mentioned, this lemma takes care of the interior parts of

GQ~ +, cf. (3.1), (3.2).
For the parts at the boundary, we can use Proposition

B.3 directly; it shows that they contribute only locally to the coefficient of
A~’~’ .

It remains to consider terms in patches intersecting the
boundary. Here we can draw on the fine analysis of such terms made in
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[GSc] to find the contribution to co in (1.12); it can be used also to isolate
the contribution to co modulo local terms. This will give not only a proof
of (2.7) but also a "value" (modulo local terms) of the constant.

To simplify the presentation, we can unify the treatment of the
coordinate patches by spreading out the images of the sets &#x3E;

by linear translations in the x’-variable, to obtain sets Vil,i2 with positive
distance (in the x’-direction) from one another. Then the sum of the
localized operators Oil GOi2 acts in Ri x we shall denote it by
G again or, if a distinction from the original G is needed, by G. Rx is

likewise considered in these coordinates and may be denoted Rx if needed
for precision.

Recall that when G is defined on Rn from a symbol g(x’, ~’, ~n, 
with Laguerre expansion (B.15), then the operator trn G is defined as the
ydo on JRn-1 with symbol

Recall also (cf. e.g. [G1]) that a singular Green operator on with

compact x’-support is trace-class, when its order is  -n + 1. Then trn G

is trace-class on ffi.n-1 and r

We shall now apply the result of Proposition B.5; that 

60 + 61, with 60 = (cf. (A.12)) and ,S’1
having symbol in ,Sw+1~-2N-1,0 n 8v-2N,0,0. This result was used in 
to pinpoint the first logarithmic coefficient lQ in (1.10), using that only S’o
contributes to it. But the fact that 81 has d-index -1 - 2N also implies
that it contributes only locally to so nonlocal contributions to c~ come
entirely from So .

In the localized situation, denote trn G = G and denote its symbol
trn g = g , expanded in homogeneous terms

We shall use the notion of a regularized integral (or finite part

integral) f f(ç) âç as in Lesch [L], [G4], for polyhomogeneous functions
of ~ E R"’ (it will be used with n’ = n - 1 or n): f f (~) ~~ is the

constant term in the expansion of f(ç)âç into powers of f-L and log f-L.
In more detail:

When f (~) is integrable in ~, jf (fl) ltfl is the usual integral JIRn,f(ç) âç.
When is homogeneous of order v - j in ~ 1, then
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where a calculation in polar coordinates gives

Here,

this is consistent with the integrable case. (Such calculations were basic
in the proof of ~GS 1, Th. 2. l~ . ) More generally, when f (x, ~) is a classical

symbol of order v, f(x, ç) rv ¿jEN fv-j (x, ~), then there is an asymptotic
expansion for &#x3E; - oo,

and we set

J

(This is related to Hadamard’s definition of the finite part partie finie-
of certain integrals [H, p. 184ff.].) In view of (3.12)-(3.14), we have the
precise formula:

where is the Kronecker delta. (One can replace the sum over j # 
by the sum over j  J for any J ~ ~ + n’.)

Remark 3.2. - Let F = OP ( f (x, E) ) be the ydo associated with
the above symbol. It was shown by Lesch [L, Section 51 that the density

= f f (x, ~) is invariant under the change of the symbol induced
by diffeomorphisms of open sets, or v  -n’. Moreover, it was
observed in ~G4~ that the proof of [L] extends to the cases where v E Z and f
has a parity that fits with the dimension n’, cf. ( 1.4)-( 1.5)fr. So in all these
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cases, depends only on F, not on the representation of its symbol in
local coordinates. As a consequence, we can consider this density also for
~do’s having the mentioned properties on a manifold M of dimension n’.
Note that when M is compact,

The notation is used in the following with n’ = n - 1. It was shown
in [G4, Th. 1.3] (by working out [GS1, Th. 2.1] explicitly in this case)
that when f (x’, ç’) is the symbol of a classical ydo F on and

5" = OP’ (s (x’, ~’ ) ) is an auxiliary second-order uniformly elliptic operator
with no principal eigenvalues on R-, then the kernels of F(S + 
and OP’( f (x’, ~1) (S (XI, + J-L2)-N) with N &#x3E; (v + n - 1)/2 have diagonal
expansions of the form

where the b~ are 0 if v ~ Z, and

terms, if v is integer &#x3E; 1 - n,

J

Moreover, if v C Z and f has a parity that fits with the dimension n- l, then
0 and the second formula in (3.19) holds. (Furthermore, the

sum over in (3.18) for the operators F(S + Jl2)-N and 
skips the terms where k/2 V Z, but we need to refer to the general expansion
below. In parity cases, the bj are zero for v + n - 1 - j even, and the b~
are zero.) What we shall show now is that plays to a large extent
the same role as (s + We shall deal with the special cases where
v  here, whereas parity cases will be discussed later, around
Theorem 3.15.

The kernel of ,S’o has an expansion on the diagonal:

where the terms c

homogeneous terms in the symbols ;
) are global.
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then

whereas if v is an integer &#x3E;, -n + 1,

J

where the local terms depend on the first v + n homogeneous terms in the
symbols of g and a(’). vanish Z.

Proof. - The existence of the expansion is assured by [GS1, Th. 2.1],
since So has a weakly polyhomogeneous symbol in ~-27V,o nSv-2N,0,0, so
the main point is to prove the formulas for a" resp. + a". Recall
that 

First consider

hence integrable in ~’ . Since

By [GS1, Th. 2.1], the last integral has an expansion as in (3.18) with v
replaced by v - J and the sum over k starting with k - 1. This expansion
2Nhas no term with /-l-2N, so the only contribution from g to the coefficient

, This ends the proof in the case v  -n + 1,

For the homogeneous terms we use an analysis as in 

Th. 2.1]: Let ti E R+ and write the contribution from 9 v-j as

The first integral gives a local term , since the integrand
is homogeneous in (~’, p) of degree v - j - 2N. Note that when v Z,
the power cannot be -2N. The second integral may be written

r 11
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Here is calculated as in (3.12)-(3.14), contributing,
to the coefficient of tt- 2N . For the last integral in (3.24) we observe that

(N) is in S with d-index  -2N - 1,
the consideration of this integral in the proof of ~GS1, Th. 2.1] shows that it
contributes only locally to the coefficient of jj-2N, and not at all if v ~ z. 0

Remark 3.4. - Similar statements hold when 9 is given in (x’, y’)-
form ; then g(x’,ç’) is replaced by g(x’,x’,ç’) in (3.21) and (3.22). The
extension to this case is carried out as in [G4, Remark 1.4].

In view of the information on general compositions recalled before the
theorem, we have in particular:

COROLLARY 3.5. - Let ,S’ = OP’ (s (x’, ~’ ) ) be a second-order uni-
formly elliptic operator on R’-1 with no principal eigenvalues on R- . Com-

~

paring the expansion (3.18) for the kernel with the expan-
sion (3.20) for the kernel of ,S’o, one has that

We then find:

THEOREM 3.6. - Let G be a singular Green operator on X of order
v E R an d class 0.

---n 

1 ° Let be the symbol of the operator in a localization to

I1~+ as described above. Then

it holds with vanishing local terms if v  -n +1 or v E R B Z.

2° Let P, and P2 be two choices of auxiliary strongly elliptic operators.
Then

is locally determined; it vanishes if v  -n + 1 or v E z.

Proof. Consider G and Q~ + carried over to Rn . Here we have
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as in Proposition B.5. Since Si has symbol in sv+1,-2N -1,0 
has a diagonal kernel expansion as in (3.18) with the sum over starting

1, so the coefficient of /-L-2N is locally determined (vanishing if
1 - n). For ,S’o, we have the diagonal kernel expansion

from Theorem 3.3. We integrate the matrix traces in x’, and we add
on which is described in Proposition B.3. This gives a trace
expansion as in (1.10), with coefficient of (-À)-N == [L-2N equal to

(no local terms 1 - n) ; this shows 1°.

Now if P, is replaced by P2 in these calculations, 1° implies that the
contribution to the coefficient of M-2N is modified only in the local terms,
vanishing if v  -n +1 or v C R B Z; this shows 2°. 0

Remark 3. 7.

(a) Another choice of local coordinates and partition of unity will give
another decomposition in (3.1), but this will modify the term of a given
order in the localized symbol only by terms of the same and higher order.

(b) When v V Z or v  -n + 1, or v E Z and trn g has a parity
that fits with the dimension n - 1, then f F tr trn g 4fl’dz’ will be invariant
under such choices, by Remark 3.2.

(c) In the localized situation, we find by integration from Corollary
3.5 that

for any auxiliary operator S as described there. This reduces the calculation
of Co on Rj to a calculation of a Co on modulo local terms (vanishing
ifv 

We have hereby obtained (2.7) in the case A = G. Now we turn to
(2.8), the commutation property of Co (G, P1,D ) . We shall give a proof that
reduces it to the commutation property for closed manifolds (cf. e.g. [G4]),
using a variant of the preceding analysis.

Here we want to consider G given in a different form in the localized

situation, namely in the form
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explained in Lemma B.6. When 1

since the sum over j, k is rapidly decreasing in the relevant symbol- and
operator norms. Here the C~~ and are on JRn-1; to use
their properties, we have to investigate ~

It was a typical feature of the calculations in [GSc] that we used the
passage from x’-form to y’-form and vice versa in the compositions in such
a way that the case of Ydo symbols over the boundary was reached before
it was necessary to verify asymptotic composition formulas such as

with parameters t and s. In the over the boundary, the
composition formulas work as usual [GS1, Th. 1.18]), whereas the mixture
of p-dependence and u-independence makes it harder to see what goes on
in compositions of the Ydbo symbols reaching into the interior of X. Here
we rely heavily on the special rational structure of the symbols entering in
QÀ’ (The compositions are not covered by [G3].)

In compositions containing (D*QN 4Dj, we have to deal with terms of
the form 

(and their A-derivatives), which do require asymptotic expansions. In

fact, when q2-J is independent of zn, the two factors to the right give
a relatively simple Poisson symbol depending on x’, but then in the

composition with the trace symbol to the left (depending on ~’ through
~(~’)), there will be an infinite expansion as in (3.31), where remainder
estimates have to be shown. We shall treat this by going back to the original
proof of the pseudodifferential composition rule by Taylor expansion,
keeping track of the properties of the terms, in particular the remainder,
by use of the exact formulas. A composition to the left with Cjk =

does not make the expression harder to deal with, since
t, so we include
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PROPOSITION 3.8. - Let Cjk = ~’ ) ) be of order v and
let

For each J E N, is a 1jJdo with symbol in
A-derivatives of the symbol lying in

Proof. In view of the expansion in (A.5),

where

and we have to show the property for each of the terms in the expansion.
The function r J,m is a polynomial in ~ of degree 2m - J - 2 ~ 0. Let us
drop the indexations on ri,m and pi,2? and simply write the fraction as
r(p + u2) -m = q.

We first consider the case where these symbols are independent of xn .
Here one has immediately:

To prepare for the composition of this Poisson operator with the trace
operator to the left, we apply the usual procedure for changing
an operator from x’-form to y’-form:
OPK(b(x’, ~, 
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here we have replaced ( and integrated
(in the oscillatory integrals), and set

Now we compose with in front. For each term in the sum

over lad  M, this gives:

where

In the last step it is used that commutes with h~n and that

is a sum of terms with a similar structure as so that

one can remove h+ in the calculation of the plus-integral, as in (B.5). More
precisely,

where

here the (y’, fl) are polynomials in ~ of degree
(vanishing if this number is  0) and the r~, (~’ ) are in (found from
(B.2)). It follows that

where the sum is over m

vanishing if this number is  0. Each
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is decomposed in simple fractions with poles as

here the numerators are of order J - 2, lying in 

(since the &#x3E;-independent factors coming from derivatives of g3j have order
down and each A-differentiation lowers the third upper index by 2.

We can now apply Lemma B.4 to the compositions of with

(3.37) (recalling from (B.1) that the normalized Laguerre functions have
a factor (2a) -1). 2 This gives symbols in (x, y’)-form on lying

Summing over the indices we find that C 

and each A-differentiation lowers the third upper index by 2.

From the sequence of symbols sa, one constructs a symbol s E
Sv,O,-J-2 having the asymptotic expansion s - sa in the usual

way. There remains the question of how well this represents a symbol of
the operator given in (3.33). This will be dealt with by a consideration of
the remainder after M terms, using the formula in (3.34).

We shall use the strategy explained after (3.7). In order to be able to
distinguish between the various covariables, we shall write here explicitly

[fl’] ) and [7/]) instead of Consider, for large M,
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here we have again commuted D~, c~~ and and removed the latter

because of the special structure as rational functions. The kernel of this
operator is

Performing the differentiations 77 one gets a sum of similar ex-
pressions, now with order M steps lower in the Poisson operator. Consider
one term in such an expression, it is of the form (3.39) with q replaced by

Insert in (3.40) the expansion of the denominator from Lemma A.1:

The composed operators resulting from the terms in the sum over i are of
the form where ,S’2 is a u-independent Ydo on of order

 v + 2m’ + 2i - J - 2 - M (with i  L). These operators belong to the
calculus. Taking M large in comparison with 2L we can assure that their
kernels have any given finite degree of smoothness.

The contribution from ~c-2"2~ -2L pL equals where S’ has

a form as in (3.40) with (p -f- JL2)-m’ replaced by p’ ; it is a 1j;do on JRn-1
of order ~ v + 2m’ + 2L - J - 2 - M. The estimates (A.2) imply that the
entries satisfy all symbol estimates with uniform estimates in /-I E r for

1. Then S’ maps

with uniform estimates in p E r for 1, since the norms of such

mappings are estimated in terms of the symbol seminorms. Taking M large
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in comparison with 2L, we can achieve that the kernel of S’ is a smooth as
we want, with uniform bounds on the (x’, y’)-derivatives.

It follows that

has a kernel expansion as in (3.7) (for d = - J - 2), where L and the
degree of smoothness can be as high as we want, since M can be taken
arbitrarily large. Since differentiation in A lowers the d-index by two steps,
and 8x = -2~Ca~, the information required for (3.8) is likewise found in

this way. This shows that SJ,j,k,m is a Odo with symbol - s in sv,0,-J-2.
Its A-derivatives are treated in a similar way.

This shows the proposition in the case where the symbols are inde-
pendent of xn. Now let 9-2-j depend on Xn, and consider again (3.32). By
a Taylor expansion in xn, q-2-J is of the form

For the terms in the sum over r, we observe that the factor xn goes together
with the trace operator to the left and replaces
its symbol by a) [G2, (2.4.14)]. This lowers the degree -
but not the d-index - by r steps; more precisely it gives times a

linear combination of adjacent Laguerre functions, cf. (B.2). The resulting
composition is of the type we have dealt with above, giving a symbol in
Sv-T,O,-2-J.

The last term in (3.43) is a linear combination of terms of the form

with r polynomial in ~ of order 2m - 2 - J ~ 0; consider one such term.
Insert the expansion (3.41) of (p~-~c2 ) -m . The composed operators resulting
from the terms in the sum over i are of the form j1-2m-2i Si with Si of order
 v ~ 2m -~ 2i - 2 - J - M (with i  L). The operators belong to the calculus,
with more smoothness of the kernels, the larger M is taken in comparison
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with 2L. Finally, the contribution from pL is of the form

The estimates (A.2) imply that for all indices:

with independent of tL C r for ~ ~ ~ &#x3E; 1. Then the resulting operator
S maps HS(JRn-1) to any s E R, with
uniform estimates in IL E r for ~C ~ &#x3E; 1. Taking L large, and M large in
comparison with 2L, we can obtain that the resulting kernel is a smooth
as we want, with coefficient as low order as we want.

As in the preceding considerations, this allows us to conclude that the
whole composed operator belongs to the calculus, with symbol properties
as asserted. 0

Remark 3.9. - In the above proof, one can moreover keep track of
the size of symbol seminorms in their dependence on j and k. It follows
from Lemma B.4 and the results on ~’-derivatives and ~n-derivatives we
used, that for each J, the symbol seminorms resulting from calculations
with Laguerre funtions are only polynomially increasing in j and k. Thus if
the symbol seminorms of the are rapidly decreasing in j and k, as they
are when the Cjk come from an s.g.o. as in Lemma B.6, summations in j
and of operators will converge in the relevant symbol seminorms.

Note that for J ) 1, the (N - 1)’st derivatives of the symbols of the
operators lie in ~o,-2~v-i ~ Sv-2N-1,0,0 n Sv,-2N-1,0 (cf (3.3));
hence in their diagonal kernel expansions as in (3.18), the sum over starts

1, so that they contribute only locally to the coefficient of j.1-2N.
Thus only the terms with J == 0,

can contribute nonlocally to the coefficient of j-l-2N. We can use the analysis
in the proof of Proposition 3.8 to distinguish the contributing part still
further:
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PROPOSITION 3.10. - We have for each N &#x3E; 1 that

where is as defined in (A.12) and has symbol in , &#x3E;

Proof. First let q be independent of xn, and consider how q-2 =
(p + ~2 ) -1 (with p = enters in the proof of Proposition 3.8, for N = 1.
Whenever we apply a differentiation with lal &#x3E; 0 to q, it produces a
sum of rational functions with denominators (p + with m ~ 2 and

p-independent numerators, so only the undifferentiated term q_ 2 retains
the power -1. Therefore the resulting terms in (3.35) with lal &#x3E; 0 have

denominators with m’ ~&#x3E;, 2. Then when we decompose in simple
fractions and apply Lemma B.4, we get symbols lying in ,S’v+1~0,-3. There
remains the term

Here Lemma B.4 shows that it gives a symbol in S’+1,0,-3 
whereas it gives (note that
the norming factors (2r) 2 in the Laguerre functions eliminate the division
by 2~ in (B.8)).

This shows the claim for N = 1, and in view of the information on

A-derivatives, it follows for general N.

When q depends on xn, we consider the Taylor expansion (3.43).
Again, any derivative with r &#x3E; 0 produces rational functions with
p + A 2 in powers &#x3E; 2 in the denominators. So we find that the Taylor
terms, except for the first one, lead to symbols with lower third index. The
first term is dealt with above. 0

THEOREM 3.11. - Consider a localized situation, where G is given
in the form (3.30) and the symbols Cjk(X’, ~’) have compact x’-support.
Define the diagonal sum
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the trace has an expansion (with

where

(with vanishing local terms if v E or v  1 - n).

Proof. For each j, k, we conclude from Proposition 3.10 that

with pseudodifferential operators ’S’o ? /c TV having symbols in sv+1,0,-2N-1.
For the last equality it is used that the trace is calulated from the diagonal
values of the kernel, where y’ is taken equal to x’. The formula (3.49) follows
by summation over j and k c N, using that is rapidly decreasing
in j and and that the symbol seminorms of the composed operators are

polynomially controlled in j and k, as indicated in Remark 3.9.

Since E sv-2N,0,0 , the trace expansion follows
from (3.5) with the statement (3.51) as in the proof of Theorem 3.3. (We
have replaced j by j + 1 in (3.18) and inserted u = (-A) 2 , to facilitate
comparison with (1.10).) D

We have as an immediate corollary (using Proposition B.3 for 

THEOREM 3.12. - Let G be a singular Green operator on X of
order v E R and class 0. Consider a localization G to as described after

Lemma 3.1, write

with ( and carry C back to an operator C on X’ by use
of the considered coordinate mappings. Then
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with vanishing local terms if v  -n + 1 or v E Z. In particular, we
have for the localized operators as well as for the operators on X, X’ :

- local terms,
- local terms,

for any auxiliary elliptic second-order operator S on X’ with no principal
symbol eigenvalues on R-.

This can be used to show the commutation property for Co (G, 

THEOREM 3.13. - When G and G’ are singular Green operators of
orders v resp. v’ and class 0, then Co ([G, G’], P1,D ) is locally determined;
it vanishes if v + or v + v’  1 - n.

Proof. Expand the localized versions in series with Laguerre
operators,

In view of (B.13),

and the diagonal sum associated with this operator as in (3.52) is:

This series converges in the relevant symbol seminorms, in view of the rapid
decrease of the and C’k for j,1~ --~ 00. Then it follows from Theorem
3.12 that

Now we use the fact known for closed manifolds (cf. e.g. [G4]) that each
is local, defined from specific homogeneous terms in the

symbols; then so is the sum. In particular, they vanish in the cases Z

or v + v’  1 - n; then so does the sum. The resulting statements carry
back to the manifold situation. Hence Co ([G, G~], P1,D ) is local. 0

It may be remarked that when

Cjk = OP’(Cjk(X’,Ç’)), then the symbol of G has the same principal part
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but need not equal the full symbol.
Likewise, the normal trace trn G has the same principal symbol as the
diagonal sum Cjj, but not always the same full symbol. In any case,
the above considerations show that they give the same contribution to
Co (G, (modulo local terms, if v E ~, v &#x3E; -n).

This ends the proof that Co(G, P1,D) is a quasi-trace on s.g.o.s. We
can also describe cases where it is a trace; more about that below.

The local terms, we have talked about so far, are defined from the
symbols on X. But in fact, it is only the behavior in an arbitrarily small
neighborhood of X’ that enters:

Assume that a normal coordinate xn has been chosen such that

a suitable neighborhood X 1 of X’ in X is represented by the product
Xi = X’ x ~0,1 ~ , with x E X, written as x - E X’ and

xn E [0,1]. We can also assume that is the lifting of Elx,. Let X(t)
be a C°° function on R+ that is 1 for t  1 and 0 for t &#x3E; 2, and, for E  ~,
let

Then we can write

here Gb ,is supported in Xé/2 == X’ x [0, E/2], and Gi is of order -00 (in
particular it is trace-class). The auxiliary local coordinates can be chosen
such that the variable xn is preserved for the patches intersecting with X l ;
then trn Gb has a meaning as a ~do on X’.

COROLLARY 3.14.

(i) With the decomposition defined above,

where the local terms depend on the symbol of PI and the first v -f- n
symbols of G on Xê only.

For such values of v, Co(G, P1,D ) is a canonical trace on the operators G:

in the sense that it satisfies:
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Proof. For (i), note that since = 

which shows that only the behavior of Rx on X, and the behavior of G on

XE/2 enter in the calculation of Co (Gb, P1,D).
As noted in the preceding theorems, the formulas are exact without

unspecified local terms, when v is as in (ii). Moreover, 
Co (trn Gb, ,S’) then by (3.29), for the allowed auxiliary elliptic operators S.
For the manifold X’ without boundary we have from [KV], [L], [G4] that
Co (trn Gb, S) = TR(trn Gb ) for such v. This shows (3.58). The statements
in (1) and (2) have been shown further above.

For (iii), we note that when v  1 - n, Gb is trace-class with

continuous kernel, and

If Gb is written in the local coordinates in the composition form

(3.52), one can show similar formulas with C instead of trn Gb.
When is integer, it may be so that trn Gb or C has a parity that

fits with the dimension n - 1, cf ( 1.4)-( 1.5)ff. One could then try to show
a canonical trace property of Co (G, P1,D ) as in the corresponding situation
for operators given directly on the closed manifold X’ as in [G4]. This is
further supported by the fact that since ~+ (x’, -ç’,J-L) == ~- (x’, ~’, ~c.c), a(l)
is even-even, cf (A.12). However, there are a lot of terms that give local
contributions; not only lower order terms in compositions but notably all
the ~’) with l # rrt in the symbol of G; cf Lemma
B.4: For l &#x3E; m, the resulting symbols involve ~+, for 1  m ~-, on the
principal level. A high degree of symmetry seems required, or we can restrict
the auxiliary operators to a nicer type:

Consider G as defined on the cylinder X’ x R+ (after being cut down
to a neighborhood X~ of X’). Referring to this fixed choice of normal
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coordinate, we assume that the symbol of P1 is not only even-even with
respect to ~ (as any differential operator is), but it is so with respect to ~’.
This holds when there are no terms with DXn times a first-order operator
in x’, for example when

where Pl is a second-order elliptic differential operator on X’. We can take
Pl with positive principal symbol, to assure strong ellipticity of P, (a little
more generality could be allowed).

Assume that G = (expressed in local coordi-
nates on X’, using xn as the normal coordinate), with the Cjk(X’, ç’) all

being even-even or all being even-odd. Then when GQN and GG (N) are
calculated, we find that

are even-even of order v-2N, resp. even-odd of order v-2N. An application
of the proof of [GS1, Th. 2.1] to these two on X’ gives that in the
even-even case, the local contributions to the coefficient of J-L° and to log u
vanish if n - 1 is odd, and in the even-odd case, the local contributions
to the coefficient of p° and to log p vanish if n - 1 is even. So indeed,
restricting the auxiliary operators to those of the form (3.62), we have a
canonical trace in suitable parity cases. We have shown:

THEOREM 3.15. - Let G be given on the cylinder X’ x R+ with
points (x’, xn) and let Pi, in addition to being strongly elliptic with
scalar principal symbol, be of the form (3.62). Let G be of order v E
Z, with symbol Lj,kEN Cjk (X’, 0’)Ok (qn, a) (for a choice of local
coordinates on X’, with Xn as normal coordinate). Then

holds in the following cases:

(i) All the are even-even and n is even.

(ii) All the are even-odd and n is odd.

In this sense, we may say that s.g.o.s have the canonical trace

in the above cases (i) and (ii). One can also show that Co([G, G’], = 0

when, in the case n even, the and cjk are either all even-even or all even-
odd ; in the case n odd it holds when all the are even-even and all the

are even-odd.
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If G is given in the form (3.52), the statements hold with trn G
replaced by I

One could also introduce a parity concept directly for s.g.o. symbols g,
but it involves some unpractical shifts: Recall that in the polyhomogeneous
expansion g - g,-1-1, the homogeneity degree of the l’th term is

one step lower than the order. Since the pj depend on E’ through
= [E’], the parity statements on the Cjk correspond to the opposite

parity in ~’ for g, relative to the degrees. - Observe moreover that the
parity property depends on the choice of normal coordinate (cf. the general
transformation rule [G2, (2.4.62)ff.]).

For an example where the result may be of interest, let us mention
that the singular Green part of the solution operator for the Dirichlet or
Neumann problem for a strongly elliptic differential operator of the form

(3.62) has even-even parity for the coefficients in the Laguerre expansion
of the symbol. (This is seen by calculations related to those in Remark 4.2
below, for fixed A.) Then it has a canonical trace if n is even.

If we merely have that trn g has a parity that fits the dimension n - 1

(instead of all having it), then there holds at least that TR(trn G) -
Co (trn G, ,S’) is well-defined independently of ,S’ when n is even, resp. odd,
by the result for closed manifolds ([KV], [G4]) applied to X’. This number
can then be viewed as the nonlocal part of Co(G, P1,D), in an explicit way.

Remark 3.16. - The application of [GS1, pf. of Th. 2.1] to trn GI~~
shows even more, namely that in the parity cases (i) and (ii) in Theorem
3.15, all the coefficients Cj with v + n - 1 - j even and all the log-coefficients
c~ with even vanish in (1.10) (cf. also [G4, pf. of Th. 1.3]). This holds
also for the pointwise kernel expansions as in (3.18).

Finally, let us mention another useful application of the method
leading to Theorem 3.13:

COROLLARY 3.17. - When K is a Poisson operator of order v and
T is a trace operator of class 0 and order v’, then, for auxiliary operators
Pi,D an d S as above,

local terms;

the local terms vanishing if ; I-

Proof. Applying a partition of unity, we can reduce to the case
where the operators are given on Rj (with compact x’-support) . Here we
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write (cf. Lemma B.7)

with rapidly decreasing sequences and of u/do’s on Jaen-1
of order v - 2 resp. v’ + -1 (and with compact x’-support). By (3.54) and

The latter equals S) modulo local terms, by the commutativ-
ity property for on JRn-1 and the rapid decrease of the Cj and 
This shows the identity (3.65), and the vanishing statement follows in the
usual way. 0

4. The integer order case with nonvanishing part.

Consider now the case where A equals P+ + G, of order v E Z. Here
, where Co ( G, P1, D ) has

already been analyzed. For the determination of Co (P+, P1,D ), we rewrite
as follows:

It follows from the results of [GSc] recalled in Appendix B that the last
two terms have expansions as in Proposition B.3, contributing only locally
to Co (P+, P1,D ) . For the first term, we find the desired information by
considering PQN A on X. As in Section 3 (see the details after Lemma
3.1 ) , we can use local coordinates and a subordinate parition of unity, now
covering all of X with open sets Ui, such that subsets of X resp. X B X
are mapped to subsets of Rn resp. R’, the intersections of the Ui with X’
being mapped into Again we can replace the images by sets

Vi 1 with positive distance from one another (in the x’-direction), so that
we can refer to one localized operator. By [GS1, Th. 2.1 and 2.7] and the
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more detailed information in [G4, Th. 1.3 ff.], the kernel of in the

localized situation has a diagonal expansion:

where

From the sets mapped into we find by integrating over

R n - Then (4.2) implies

where the coefficients are obtained from the coefficients in (4.2) by integra-
tion in x. In particular, in view of (4.3),

Here cv+n,+ is also locally determined, so we can conclude:

THEOREM 4.1. - Let P be of order v E Z, having the transmission
property at X’. In the localized situation,

When P1 and P2 are two choices of auxiliary operator, then Co (P+, P1,D)-
P2,D) is locally determined.

Proof. It only remains to establish the last statement: It holds,
since the global term f tr p(x, e) dedx cancels out in the calculation of

+

the difference in local coordinates, leaving only locally determined terms. D

Remark 4.2. - As usual, we can ask for cases where the local terms
vanish. They do so for v  -n, where

is easily seen. For v &#x3E; -n, one can analyze cases with parity properties, but
they will in general not have vanishing local contributions, as the following
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considerations show: Let P+ = I, the simplest possible choice, and let PI be
of the simple form (3.62) with Pi selfadjoint positive. We have to expand

Since Q x is even-even,

which contributes to the power (-~)-N when n is even. On the cylinder
X’ x R+, the Dirichlet s.g.o. Ga can be explicitly constructed (cf. (2.10))
to be

with notation as in [G6]. Then 
This is a resolvent on X’, and the N’th derivative has

a trace expansion

which contributes to the power (-À)-N when n is odd.

However, in cases where p has a parity that fits with the dimension

n, one can at least observe that the integral has a
+

coordinate invariant meaning (cf. Remark 3.2), so it gives an explicit value
that can be considered as the nonlocal part of 

Theorem 4.1 assures the validity of (2.7) for Co (P+ + G, P1,D)’ In the
proof of (2.8), we restrict the attention to operators P of normal order  0.

For (2.8), it would be possible to refer again to Laguerre expansions
(as in the considerations of s.g.o.s in Section 3), using that P on the
symbol level acts like a Toeplitz operator. More precisely, if one writes

with

then in the one-dimensional calculus based on Laguerre expansion in

L2(R+), acts like the Toeplitz operator with matrix
cf. [G2, Rem. 2.2.12]. With some effort, the localness of

G’], P1,D ) and Co ( ~P+, P+ ’ 1, P1,D) can be proved by use of the lo-
calness of Co on commutators over X’, but the interpretations and com-
position rules for the involved operators are not altogether simple to deal
with. Instead we shall rely on repeated commutator techniques.
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In order to study the commutator of a pseudodifferential operator P+
of order v with an operator A’ = P+ + G’ of order v’ E Z, we write:

We know from Proposition B.3 that the second term contributes only
locally to Co, and go on with an analysis the first term:

Again, the last two terms contribute only locally to Co, by Proposition B.3.
It is used that our hypotheses on P assure that the s.g.o.s G+ (P) are of
class 0.

Now consider the remaining term The expression
[Q f , P}+ is not very convenient in the boundary calculus, as a mixture of
strongly polyhomogeneous parameter-dependent and arbitrary parameter-
independent interior operators. However, we shall now show that it can be
reduced to an expression with A-dependent factors to the right only, with
better decrease in A than QÀ, plus a manageable remainder term.

LEMMA 4.3. - Let P be of order v and normal order  0. For

r &#x3E; 0, let p(r) denote the r’th commutator of P with Pi:

it is of order v + r and of normal order  minf v + r, 2rl).
For any M &#x3E; 0, may be written as

Proof. Since PI has scalar principal symbol and is of order 2,
[P, is of order v + 1. Since P is of normal order 0 and PI is of normal
order 2, [P, Pl] is of normal order 2 (e.g., OxlPl,2 is generally so). Similarly,
every subsequent commutation lifts the order by 1 and the normal order

by 2, so the r’th commutator is of order v ~ r and normal order  2r. Since
it has the transmission property, it also has normal order  v + r. This
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explains the first statement. The second statement follows by successive
applications of the following calculation:

hence

PROPOSITION 4.4. - Let P and P’ be ’ljJdo’s of order v resp. v’ E Z
and normal order ~ 0, and let G’ be an s.g.o. of order v’ and class 0 ; denote

-) has an expansion

Proof. We know from the preceding calculation that there is an
expansion as in ( 1.10) with v replaced by v + v’; the point is to show that
the series in k starts with a lower power than -N.

Recalling that ~ we find from (4.11 ) :

In order to establish the expansion (4.12) we shall study the terms

as well as

The operator is a Odo on X with a symbol in

. The compositions in (4.15) will therefore be trace-

their trace will for any given M‘ be O(.x-M’) for sufficiently large M. Our
assertion will thus be true for these terms.
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We turn to the terms in (4.14), considered in local coordinates. In view
of (2.6), we can decompose Per) -I- P" where is a differential

operator of order  v + r and normal order  min{v + r, 2r}, and Per) has
the property that G+ (p(r)) is of class 0, as a sum of an operator of normal
order 0 and an operator with a factor xM~ to the right, M’ &#x3E; 2r. Then

Note that

with tangential differential operators Si of order v + r - j. The sym-
bol of has the structure described in (A.10), with typical term

+ where J + 2N + 2r x 2m ~ 4J ~ 2N -~ 2r and

rN+rr,J,m is polynomial in ~ of degree  2m - 2N - 2r - J. When this
is multiplied by and we redefine J + 2r - J’, we get a term with
numerator of order  2m - 2N - J’ and denominator (pi,2 + 
J’ + 27V ~ 2m ~ 4J’ + 2N - 6r ~ 4J’ + 2N ; this is of the type in the
symbol expansion of Q f . Similarly, multiplication by g( for j  2r gives
terms of the types in the symbol expansions of Qf’ with N’ &#x3E; N. The
point of this analysis is that we can write

where the factors have structures like the

N’ ) N, so that Proposition B.3 can be applied.

The composition of A‘ with the terms in (4.16) gives a number of
terms:

To the terms in (i) and (iii) with the s.g.o.-factor G- (Q,+N) we can
apply Proposition B.3 .with v, N replaced by v + v’, N + r; here the series
in 1~ starts with the power (-A)- 2
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with the s.g.o.-factor
is written in view of (4.17) as

where each ( ) is of class 0. Proposition B.3 applies and gives
contributions as in (4.12).

For the terms in (i) and (ii) of the form of an s.g.o. composed with

Q~~+ , we apply Proposition B.5. Since r &#x3E; 1, the series in k has only
powers  -1 - N of A, so the contribution to the coefficient of (-A) is
local.

For (v), we rewrite i noting that
the leftover term for the product is zero, since is"a differential operator.
Now G’Pfl is an s.g.o. of order + v + r and class  min{v + r, 2r}. It
therefore has a representation

with an s.g.o. Go of order v + v’ -~- r and class 0 and Poisson operators Kj
of order v + v’ + r - j. The composition is like (ii); Proposition
B.5 applies to give an expansion (4.12). 

Next we decompose Kj according to Lemma B.7:
with a rapidly decreasing sequence i . Then

The composition with the symbol

We know from (A.8)-(A.11) that is a finite sum of

terms of the form -~- ~~ ) -’n with a polynomial of degree
~ 2m - 2(7V + r) - J. Decomposing it into simple fractions, we obtain
a sum of terms of the form strongly
homogeneous in (ç’, J1) of degree  j + k - 2(N + r) - J. Inserting this
into (4.18) and using Lemma B.1, we see that has its symbol
in ~2~’’~"~+~ the symbol seminorms grow at most polynomially in l.

Since j  2r, we then reach the expansion (4.12).
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The remaining ydo terms in

orem 4.1, using the pointwise kernel expansion on

so we get an expansion contributing only
locally to the coefficient of (-A) - ’ - . 0

We now have all the ingredients for the proof of:

THEOREM 4.5. - Let P and P’ be 9do ’s of order v resp. v’ E Z and
normal order 0, and let G and G’ ; be singular Green operators of order v
resp. v’ and class 0. Then Co ( ~P+ -I- G, P+ + G’~ , Pl,D ) is locally determined.

Proof. We have that

The last term was shown in Theorem 3.13 to contribute locally to Co. For
the two other terms we have the analysis above, through (4.8), (4.9) and
Proposition 4.4, showing that they contribute only locally to Co. 0

This completes the proof that (2.8) holds also for operators of type
A = P+ + G, so Co (P+ + G, P1,D) is indeed a quasi-trace on such operators.
In addition, we have found the interesting information that the contribution

from P+ can be traced back to a pointwise defined contribution from P over
X, and that the contribution from G can be traced back to an interior trace

contribution of order -oo plus a contribution from the normal trace on X’ ;
here both X and X’ are compact manifolds without boundary.

Appendix A. The structure of the auxiliary operators.

We here recall the symbol formulas established and used in [GSc], and
some useful consequences. The parameter-dependent entries were indexed
by p = (-A) " 2 in [GSc]; we simply replace this here by indexation by À,
although p can still appear as a variable.

Throughout this paper, we denote by [~’I a positive C°° function of
that coincides with for |E’| &#x3E; 1. It will often be denoted a(E’) or just
a.

The principal (second-order) symbol of P, is denoted p1,2, so the

principal symbol of
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We assume P, to be strongly elliptic; this means that the principal
symbol P1,2(X,Ç-) has positive real part 0. Since I IM Pl,2 (X, ~) I ,
!pi,2(~~)! ~ CRep1,2(x,Ç-), thereisasectorrsuch fl 0
when p, E r U {0}, (~, p,) =J (0, 0) ; cf. also (3.9).

The following observation will be useful:

LEMMA A.1. - Let p(x, ~) be a uniformly strongly elliptic homoge-
neous second-order differential operator symbol on R’, with p - A - p -f- p 2
invertible for ~C E r. Then for any m, L &#x3E; 0,

Here one has for all indices:

with constants Ca,f3,N independent of p E r for IJLI &#x3E; 1.

An application to gives

Insertion of , I in the last sum leads to (A.1 ) .
Since p is polynomial of degree 1 and homogeneous in
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for 1, showing (A.2). 0

Let ç == in local coordinates at the boundary, then for

(~’, ~u) ~ (0, 0), the strong ellipticity implies that the polynomial in Çn

(A.4) 0, ç’, çn) + A2 = a(x’ )~2 + + C(Z’ ~~) ~ JL2
has two roots Q1 (x’, p) and Q2 (x’, ~’, JL) in When ~c one of the

roots, say Q1, lies in C+ and the other, 02, in C-. For, can

be carried into + Re b ~n + Re c + p2 by a homotopy that preserves
the property of having positive real part, and for the latter polynomial, the
roots are placed in this way; they depend continuously on the polynomial,
hence cannot cross the real axis. The placement of the roots is also preserved
when tt is moved to a general element of r. Thus we can denote the roots

±ir,:’: (x’, ç’, where ",,::1 have positive real part; they depend smoothly on

(x’, ~’, p) for (~’, p) ~ (0, 0). They are homogeneous of degree 1 in (~’, A)
and bounded away from R for p) I - 1, p E r U fol, so in fact they
take values in a sector ( ) 8} for some 8 &#x3E; 0.

We recall from [GSc, Sect. 2.b] (with some small precisions):

LEMMA A. 2. - The symbol of Q~ has the following form in local
coordinates, for JL E r:

here the are (dim E x dimE)-matrices of homogeneous polynomials in ç
of degree 2m - 2 - J with smooth coefhcients, and the remainders q’ 2-M =

satisfy estimates for all indices 

, four 1, p in closed subsectors of r.

Concerning q(x’, 0, ~), we have: Writing
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we can decompose each term in simple fractions (at xn = 0):

where the (x’, ~’, J1) are strongly homogeneous of degree j - J - 2 in
(ç’, J1). This gives a decomposition of q(x’, 0, ~’, J1):

with terms as in (A.7).
The structure of the normal derivatives is similar: We have

for with homogeneous polynomials ~) of degree 2m - 2 - J in
~. At xn = 0 we can decompose as before, obtaining

where the numerators (x’, ~’, p) are strongly homogeneous of degree

It is useful to observe that the as well as K+ are in fact functions
of (x’, ~’, ~), ~ _ -~C2, strongly quasi homogeneous in (~,A) with weight
(1, 2) in the following sense: We say that is (1, 2)-homogeneous
in (ç’, A) of degree d, when

it is strongly so if (A.9) holds for E, weakly so if it holds for
&#x3E; E. Then since r(x’, ~’, a) = t-dr(x’,tç-’,t2À), it is readily checked
that 8f r is (1, 2)-homogeneous of degree d - 2N. Thus for the symbols
that depend on p through A in this way, differentiation with respect to A
lowers the homogeneity degree in (~,/~) by two steps, preserving strong
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homogeneity. The estimates of A-derivatives of the remainders 
likewise improve by two steps for each derivative.

These considerations of A-derivatives, playing on the strong quasi-
homogeneity of symbols coming from Ra, will replace the calculations for
higher powers of Rx used in [GSc], cf. (2.12). (The calculus in [GH] is set up
to handle the anisotropic homogeneity in terms of ~’ and A and could give
further information on higher terms in the full trace expansions, but for
the discussion of the leading nonlocal term we carry out here, the calculus
of [GSI] will suffice.) For convenience, we recall explicitly the structure of
the formulas for symbols connected with higher powers of QÀ, denoting the

symbol of

where the are homogeneous polynomials in fl of degree 2rrz - 2N - J
with smooth coefficients. Moreover for x = (x’, 0),

here are strongly homogeneous of degree j - J - 2N in

(E’, u).
, we obtain corresponding

results : Their structure is as in (A. 10) and (A.11), except that now
the summation will be over the sets J/2 +~V~m~2J+~V+~ 1 and
1 , j , 

The following symbols derived from the principal symbol of q at
0 played an important role in [GSc, Sect. 5] :
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I ~7’

here a = [~’], and a(N) is weakly polyhomogeneous in S-11,0,0 n SO,-2N,O
(in fact in see below). The crucial information established in [GSc.,
Lemma 5.5] was that the coefficient of in the expansion in powers of
j1 (as in (3.4)) is 1: 

/ u’

the remainder is also in since and p-2N are so.

LEMMA A. 3. - The symbols (~-:1: + a) -I are weakly polyhomoge-
neous, belong to and have N’th A-derivatives in SO,0,-1-2N. For
each N, is weakly polyhomogeneous lying in SO,0,-2N.

Proof. First note that ~-:1: and (~-:1:) -1 are strongly polyhomoge-
neous in (~’, ~u) of degree 1 resp. -1, so they lie in ,S’o,o,l resp. 
As noted above, they are strongly (1, 2)-homogeneous in (~’, À) of degree
1 resp. -1; hence the N’th A-derivatives lie in resp. SS’o,o,-1-2N.
Similarly, since K+ and K- lie in a proper subsector off

belongs to with N’th A-derivatives in I

It was observed in [GSc] that we now

recall the proof showing how it also assures that

(just the beginning of the proof) shows that the inverse (1 + does

belong to So,0,0.

For the A-derivatives, we observe that ~~,(~-I-~)-1 = 2013(~+cr)~9~ E
So,o,-’ by the composition rules, and hence by successive application,

Using these informations, it is now seen from the form of a(l) in

(A.12) that it lies in with A-derivatives in ,5’~~0,-2-2k ~ so
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Besides G~N~ (cf. (2.11)), we also need to consider the s.g.o.s 
which arise from compositions such as

Their symbols have the following structure:

LEMMA A.4. - The operators and have symbols of
the form ,

. The numerators are strongly homogeneous
. They are in fact functions of

(x’, ~’, ~), ~ _ -~C2, strongly (1, 2)-homogeneous in (~’, A) of the indicated
degrees, such that differentiation with respect to A gives a strongly (1, 2)-
homogeneous symbol of 2 steps lower degree.

For the remainders the sup-
norms in fIn resp. are bounded by (~’, /~) in powers -2N - 1 - M,
decreasing by lal for differentiations in (~, of order a, and by 2 for each
differentiation in A (no change of the power for differentiations in x’).

Proof. - The formulas for the symbols of G~N~ and come

from [GSc, Prop. 2.5 and 2.3]. The remainder estimates hold since the
symbols are strongly polyhomogeneous in p) so that standard esti-
mates hold when |u| is considered as an extra cotangent variable (on each
ray). The strong (1,2)-polyhomogeneity (ç, A) assures the statements on
A-derivatives. 0

Appendix B. Formulas for compositions
with Laguerre functions.

Recall the formulas for the (Fourier transformed) Laguerre functions
we use in expansions of parameter-independent operators:
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A priori, a here might be any positive number, but we will take a = [~’] -
The pk are the normalized Laguerre functions, which for k c Z form an
orthonormal basis of L2(R). Differentiations in ~’ and gn follow the rules

We have from [GSc] the following formulas for gn-compositions of
Laguerre functions and rational functions involving ~~ :

with universal constants a± , that are for fixed j. The result-
ing expressions are weakly polyhomogeneous symbols belonging to

of the symbols lying in ’

Proof. The formulas are shown in [GSc, Lemma 3.2]. The state-
ments on symbol classes follow since a = [~/] E Sl C K+ E So,o,l
with N’th A-derivatives in S°&#x3E;°&#x3E;’’ , and (a + rl)-l E with N’th

A-derivatives in SO,O,-1-2N , by Lemma A.3. For the derivatives of the com-
posed expressions one can use the formulas [GSc, (3.21)] for the derivatives
of (a - !~~ )’~’z (~ + I~~ ) -’n . 0

These formulas enter in calculations of compositions such as GGBN)
and where the symbol of G is Laguerre expanded and the
rational structure of the symbols of and (A.15) is used.

LEMMA B.2. - The symbol

satisfies for m ~ 0, j and j’ &#x3E; 1 :
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where the are universal constants that are O(mj’ ) for fixed j, j’.
This is a weakly polyhomogeneous symbol in 8o,0,-j-j’, with N’th À-
derivatives in for all N. There is a similar formula for m  0,
with j and j’ interchanged, /1:+ and /1:- interchanged.

Proof. The formulas were shown in [GSc, Lemma 4.2], and the
symbols are analyzed as in the preceding proof. 0

These formulas enter in calculations of compositions such as 
and where the symbol of P is Laguerre expanded and the
rational structure of the s.g.o. is used.

Composition formulas involving 1j;do’s on the interior contain htn-
and hg -projections. We recall from [GSc, (3.9), (4.8)] that the projections
can be removed in certain integrals, e.g.: When q is a rational function of
fIn of the form , then

To see this, note that the integrand in all three expressions is for

) fIn ) --~ oo in C and meromorphic with no real poles, so that the integral can
be replaced by the integral over a large contour in C+ (the "plus-integral" )
or the integral over a large contour in C-. The first equality holds since

is meromorphic with no poles in C+ and is O(Ç";;:2) for 
in C, hence contributes with 0. The second equality holds since 
is meromorphic with no poles in C-, and is O(Ç";;:2) for oo in C,
hence contributes with 0.

The above formulas were used in [GSc, Sect. 3 and 4] to show that
the trace expansions of terms where G or P+ is composed with one of
the parameter-dependent singular Green operators do not contribute to
the residue coefficient co in (1.10). It was in fact shown that they give
expansions where the summation over 1~ as in (1.10) starts 1,
so they do not contribute to the nonlocal coefficient ~" either. This is

important for our present study and will therefore be formulated explicitly:

PROPOSITION B.3. - When G is of class 0 and order v E R, or P is
of order v E Z, the operators GG (N) , and 

have trace expansions of the form
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Proof. For the compositions with G in front, this is essentially the
content of [GSc, Sect. 3], see in particular (3.20) there. We have replaced
the index there by j = -~-1 in the first sum, k = + 1 in the second sum,
to facilitate the comparison with (1.10); recall also that A = (2013A) 2. The
arguments there extend immediately to noninteger v.

For the compositions with P+ in front, the statement is covered by the
calculations in [GSc, Sect. 4], see in particular (4.3) there (which contains
neither nonlocal nor logarithmic terms, since p~l) is a differential operator)
and (4.15) there.

In each case, the result is found by showing that in local coordinates,
the symbol of trn of the operator contains so many negative powers of 
and K± ~- ~ that it is in SV+1,-2N -1,0 n S,,-2N,0,0, so that d = -2N - 1
in (3.6). 0

When v g Z, the log-coefficients a~ vanish in (B.6), since the degrees
of the homogeneous symbols are noninteger.

The conclusions of the proposition hold also if the symbol q of Q~ is
replaced by one of its (x, ~)-derivatives, since they have a similar structure.

The next lemma is used in calculations of compositions of the type
GQ NA,+.A,+

LEMMA B.4. - Let

1:

For rn - 1,

For m &#x3E; l,
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with and being for fixed j.

When m i= l, the resulting symbols are in S0,0,-j-i having N’th A-
derivatives in S0,0,-j-1-2N; for m = l, they are in with N’th

A-derivatives in 

It follows (cf. (A.12)) that

where slm E sl,O,-2N-1, the symbol seminorms being polynomially
bounded in and m.

Proof. The formulas in (B.8) were shown in [GSc, Lemma 5.2],
and the symbols are analyzed as in Lemma B.l.

Formula (B.9) is deduced from (B.7)-(B.8) using (B.5) and noting
that (B.7) contains non-normalized Laguerre functions ø~ and ¡P’m so that
we get an extra factor 2~ from the normalized Laguerre functions. The
statements m follow straightforwardly from the descriptions in

(B.8). The statements for 1 - m were proved in [GSc, Prop. 5.4]; they can
be verified very simply by doing the calculation for N = 1 and passing via
A-derivatives to the general case. 0

The important point in this lemma is that a symbol contributing to co
and ~" does appear, but with a special form that allows further clarification
(using the information (A.13) ) .

We summarize some results from [GSc] on compositions of the form

GQ~ + in the following statement:

PROPOSITION B.5. - Consider GQ~ in a localization to R’. Here

where So and Sl are 9do ’s on JRn-1 with symbols in

expansions

where the sum over k starts at k = 1 for S’1, and the value of ao can be
determined more precisely for ,S’o .
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Proof. This is proved in [GSc, Sect. 5], see in particular Prop. 5.3,
5.4, and Sect. 5.b there. 0

We have in fact in view of Lemma A.3 that So e ~o~-2~v and also
the information on S1 can be upgraded to sv+1,0,-2N-1 by a closer analysis
(as in Section 3 in this paper, using methods from Proposition 3.8 to handle
the case where q depends on xn ) .

Let us introduce a notation for the Poisson and trace operators on

(Laguerre operators) defined from Laguerre functions:

Here 4lj maps L2 (II~n-1 ) continuously (in fact isometrically) into L2 (I~+ ),
and its adjoint is Moreover, because of the orthonormality of
the CPj,

where I is the identity operator on functions on JRn-1.

LEMMA B.6. - A singular Green operator G on R% of order v and
class 0 can be written in the form

with a rapidly decreasing sequence S" .

Proof. The symbol g of G has a Laguerre expansion:

with rapidly decreasing in S’, i.e., the relevant symbol semi-
norms on djk are bounded in j, k for any N, N’ E N. Then

Each Poisson operator OPK( ) has a symbol in y’-
form, l~ (~’, ~) . Since the dj k are rapidly decreasing in ,S’v, the sequence (lk)
is rapidly decreasing in the topology of Poisson symbols of order v + ~. We
now expand lk in a Laguerre series:
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and conclude from [G2, Lemma 2.2.1] that is rapidly decreasing in 
Since

we obtain

which shows the assertion. 0

The last part of the proof shows the following useful result:

LEMMA B.7. - A Poisson operator K of order v + -~ on can be

written with a rapidly decreasing sequence (Cj) of 
with symbols in 81/.
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