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ON THE GEVREY HYPO-ELLIPTICITY

OF SUMS OF SQUARES OF VECTOR FIELDS

by Antonio BOVE and François TREVES

1. Introduction.

This article consists of two parts. Part I is devoted to the Poisson
stratification of an analytic variety defined by the vanishing of r real-

valued, real-analytic, functions in an open subset of a symplectic manifold
M. This concept is then specialized to the case where M = T*Q)0,
the cotangent bundle of an analytic manifold with the zero section elided
(actually, since our viewpoint is strictly local we take Q to be an open subset
of R~) and to functions that are (after division by A) the symbols of
real vector fields Xi in Q. It is used to conjecture a necessary and sufficient
condition for the sum-of-squares operator -L = Xf +... to be analytic
hypo-elliptic.

defines the Poisson stratifica-

tion of the variety V = F (0) in three steps. Step 1 : Through the inductive
use of F and of its differentials of every order, DmF, an analytic stratifica-
tion of V is defined. Step 2 : By using the rank of the pullback of the funda-
mental symplectic form a of to every analytic leaf (and repeating Step
1 as many times as needed), one gets a stratification by (disjoint) analytic
submanifolds (the "symplectic leaves") on each of which cr has constant
rank. Step 3: In each symplectic leaf one looks at the submanifolds defined

Keywords: Stratification - Symplectic - Sums of squares of vector fields - Analytic and
Gevrey hypo-ellipticity.
Math. classification: 35H05 - 35A20.
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by the vanishing of the Poisson 
of a given length t = 0,1,... (and the nonvanishing of at least one multi-
bracket of length £ + 1). By repeating Steps 1 and 2 as many times as

needed, one gets the final Poisson stratification, in which each stratum is
a real-analytic Poisson submanifold of V.

CONJECTURE. - The sum of squares -L is analytic hypo-elliptic
if and only if every Poisson stratum of the set Char L of common zeros of
the symbols Fj = A symb (Xj) in phase space .Jli! = Q x 101) is
symplectic (i.e., the pullback to the stratum of the fundamental symplectic
form is nondegenerate).

If a stratum is not symplectic it has a foliation by bicharacteristic
curves. Generically, such a bicharacteristic curve c is either a ray, i. e., the
base projection of c is a single point XO C Q, or else projects onto a "true"
curve q C Q. In Part II we describe an approach which, we hope, will lead
to the determination of the precise Gevrey hypoellipticity of L, i.e., of the
smallest number s &#x3E; 1 such that if Lu is analytic, then u is of Gevrey
class G’ (in the vicinity of some point of T*Q)0). In this context the
microlocal neighborhoods are to be understood in terms of higher-order
microlocalization (the order is linked to the depth of the stratum). We
associate a precise Gevrey threshold to bicharacteristics that are rays (i.e.,
"vertical" ) providing a lower bound for the Gevrey index of the solutions
of Lu E CW. When the base projection of the bicharacteristic curve c is a
"true" curve (i. e., c is "horizontal" ) we limit ourselves to describing our
approach and a couple of examples. We hope to complete this work in
a future publication, by providing a precise algorithm that will yield the
Gevrey threshold associated to horizontal bicharacteristics.

We wish to thank N. Hanges for pointing out an error in our original
definition of the analytic stratification (Subsection 2.1).

2. The Poisson stratification and the analytic
hypo-ellipticity conjecture.

2.1. Analytic stratification of an analytic set.

Throughout this subsection V shall denote the set of common zeros
of a finite family Fl, ..., Fr of real-valued CW functions in an open subset U
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of Euclidean space Needless to say, N &#x3E; 1, r &#x3E; 1 and 0 ~4 V The

purpose of this subsection is to define an analytic stratification of V of a
very specific nature: we want to decompose V as a (locally finite) union
of disjoint, connected CW submanifolds of U, the analytic strata, each of
which is defined in an open (and dense) subset of Ll that contains it, by the
vanishing of a finite set of polynomials with respect to Fl, ..., Fr and their
partial derivatives (of any order).

To achieve this we proceed as follows. Let m be the maximum value of
rank F in V; 0 ~ m  min (N, r) . We define a "functor" T which assigns
to V three analytic "objects" :

(1) a C’ submanifold 910 (V), whose connected components constitute
our first batch of strata;

(2) a subvariety Vi C V defined by the vanishing of the minors of rank
m of the Jacobian matrix

(3) a subvariety V2 C VB 9B0 ())) defined by the vanishing of the
minors of rank m + 1 of -

Having done this we apply the operation T to Vi and V2 separately
by using their defining functions, the Fj’s and the specified minors, thus
obtaining two new batches of analytic strata 91o (Vi) (i - 1, 2) and four
analytic subvarieties Vi, j (i, j = 1, 2). Next we apply the functor I to the
latter, and so on and so forth.

We define 9B0 (V) as the subset of V consisting of the points x° having
an open neighborhood N (x° ) C Ll with the following property:

. There is an an open neighborhood N (x° ) C U and a set of indices ja
(a = 1, ..., m, 1  ji ... N) such that

and dFj, i.e., some minor

) does not vanish at x’..
I

Note that 910 (V) is a CW submanifold of U of codimension m; it is a
relatively open, possibly empty, subset of the regular part of V, i.e., the
subset of V consisting of the points in a neighborhood of which V is a CW
submanifold; but the latter can be strictly larger than 9’to (V) even if V
is irreducible, as seen in Example 1 below (for an example of a reducible
algebraic set see Remark 1). The complement V B~o (V) of ~o (V) can be
regarded as the union of two subsets:
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(1) the subset Vi of V in which all the minors
- - 

of rank m of the Jacobian matrix vanish identically;

(2) the set V2 of the points x° E V having an open neighborhood,
C U, in which, for some set of indices ja (a - 1, ..., m,

does not vanish at

We point out that V2 = 0 if m == r. A crucial aspect of this

decomposition lies in the following claim:

The union Vi U 91o (V) is a closed subset of V.

Proof. Indeed, if the neighborhood C Ll of x° E V2
is as in Property #2 then n VI == 0 by definition. At no

one of its points can n V be a C’ submanifold of codimen-

sion m; for if it were, this submanifold would have to be identical to

{.r E Fj (x) = 0, a = 1, ..., m} (assuming the latter submanifold
to be connected). Thus N (x°) n Mo (V) = o. 0

The zero set of F in u~ (Vi U 91o (V)) is the analytic subvariety V2;
it is also the zero set in UB (Vi U 9io (V)) of all the minors 

. We may now repeat, for V2, the previous decomposition
starting with the map

As for VI it is an analytic subset of
Ll of the same type as V. We may repeat the same decomposition starting
with the map

Remark 1. - Denote by m1 (resp., m2) the maximum value of
rankF(l) (resp., on VI (resp., V2). Whereas we always have
m2 &#x3E; m1 it may happen that ml  m as shown in the classical example
of Milnor: in R2 take Fi = x (1 - x), F2= y(1-x). Here m = 2 and
~o (v) _ ~ (o, 0) ~ whereas m1 = 1 and Vi is the vertical line x = 1.
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As we have said we iterate indefinitely the operation T; the end
product of this procedure is a decomposition

in which the connected analytic submanifolds 11a are pairwise disjoint.
Since the ideal of germs of analytic functions at a point is Noetherian we
see that every compact subset of Ll intersects only finitely many Ao;.

By our construction, the Acr form a "tree" rather than a linear

sequence. The following property of the Ao; will play a simplifying role
in the forthcoming: for each a E Z+ there are finitely many differential
polynomials

and an open (and dense) subset Lla of Ll such that

Moreover, each point x° E l~a has an open neighborhood C Ua in
which the rank of the map

is exactly equal to codim 

DEFINITION 1. - The decomposition (1) will be called the analytic
stratification of V and each submanifold A~ will be referred to as an

analytic stratum of V.

Implicit in this definition is the role of the map F: U - But if

G is a CW diffeomorphism of an open neighborhood of the origin in R~ onto
another such neighborhood, the analytic stratification of V viewed as the
null set of G o F is the same as its stratification when V is viewed as the

null set of F.

Example 1. - Consider the Whitney umbrella, i.e., the variety
We have

and

But the map whose rank we use to define Vi is the map JR3 - JR4 defined

by
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Its differential is given by the matrix

~ u u 

whose restriction to VI has rank 2 for z # 0 and rank 1 at the origin. The
analytic stratification of V consists of 5 strata.

Let W be an analytic subset of Zl defined by the vanishing of finitely
many analytic functions Gl , ..., Gs . Suppose W C V and let 

-’

be the analytic stratification of W. In general it is not true that to each {3
there is a such that A) c as shown in the following

Example 2. - The analytic stratification of V = ( (z, y, z) E R ; z2 =
X4 + y4 } consists of three strata:

Now take E JR 3; Z == X2, y = 0}; the analytic stratification
of W consists of a single stratum, W itself. But W C V+ U 101 and 0 E W,
W n v~ ~ 0.

2.2. Symplectic stratification of an analytic submanifold.

In this subsection we take the dimension N to be even, N = 2n, and
we dxj as the fundamental symplectic two-form
in JR2n. If x C we denote by ~x the nondegenerate skew-symmetric
bilinear form induced by a on the tangent space To each germ of

real-valued C’ function f at x there is a unique germ of Cw vector field at
x, which we denote by Hf, defined by the property that, for any tangent
vector v to Ll at x, ax (H f, v) == (df (x), v). Here df (x) is the differential of
f at x and (, ~ is the duality bracket between tangent vectors and cotangent
vectors; H f is usually referred to as the Hamiltonian vector field of f. If
g is another germ of CW function at x we denote the Poisson bracket of f
and g by {f,g} = a (Hf, Hg).

Let E be a connected submanifold of Ll of class C~’ endowed with a

property similar to that of the submanifolds ~a in (2.2):
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(2.3) there are functions and an open
set U’ such that : and the
rank of the map G = (G1, ..., Gs) is equal to codim at every
point of E .

Henceforth we shall assume that (2.3) holds. Then, if d = codim is
the rank of G (x), x E E, each point x° of E has an open neighborhood
.lU (x° ) C Ll in which there are indices 1  i1 ...  id  s such that the
following is true:

We denote by o-s the pullback of o- to ~: for each x E Ll the restriction
to the tangent space of the nondegenerate skew-symmetric bilinear
form ax is a skew-symmetric bilinear form ax I r possibly degenerate. The
rank of the bilinear form i. e., the rank of the linear map 2013~ 

defined by is related to that of the matrix (f Gj, (x)~ 1B~,~Bs by
the formula 

’ ~ ’

(Both ranks are even numbers.) We refer to rank as the symplectic
rank of the submanifold E at the point x. Denote by Eo the open and dense
subset of E consisting of the points x at which the symplectic rank of E
is maximum, say equal to /-t &#x3E; 0. Each connected component of Eo is a
submanifold of U of class C’ whose symplectic rank is everywhere equal
to /~.

The subset EBEo is an analytic subset of E : it can be defined in

U’ as the set of common zeros of G1, ..., Gs and of all the v x v minors
of the matrix where v = p + codim ~ - dim ~. It is an
analytic subset of ?~l’ precisely of the type considered in Subsection 1 and as
such it admits an analytic stratification of type (2.1) in U’. The dimension
of each analytic stratum of EBEo is strictly less than dim. Furthermore
these strata also have Property (2.3). This means that we can repeat with
each one of them the construction started with E; and that it will suffice
to repeat this same construction a number of time not exceeding dim E to
obtain a decomposition

where each ~,8 is a submanifold of an open subset U’ 0 of U’ and satisfies
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the analogue of Condition (2.3) in U’ø. The submanifold ~,6 are pairwise
disjoint.

We can carry out the decomposition (2.4) taking E to be any of the
analytic strata AQ of the analytic set V in Subsection 2.1, thus obtaining
a new decomposition into pairwise disjoint CW submanifolds of U,

DEFINITION 2. - The decomposition (2.5) will be referred to as the
symplectic stratification of the analytic set V and each stratum will

be referred to as a stratum in the sense of the symplectic stratification
of V.

In (2.5) the family of Cw submanifolds is locally fi-

nite in U. Each submanifold Aa,(3 satisfies Property (2.3) for an ap-

propriate choice of the functions Gj among the differential polynomials
Pa,k(F1, ..., Fr, ..., Fl, ..., ...) and of the open set Ll’ C U. The
symplectic rank of each Aa,(3 is constant.

2.3. Poisson stratification.

We continue to deal with the analytic set V and with the functions
Fi E CW (Ll), i - 1, ..., r. For each multi-index I - (iI, ..., iv) with
1  il, ..., i, , r , v &#x3E; 2, we write

We refer to v as the length of the multi-index I; we also write = v.

When |I| = 1, when I for some i, 1  i  r, we equate FI to Fi.

DEFINITION 3. - We say that the functions Cw (U)
satisfy the Hormander condition if for every x E Ll there is a multi-index

I, 1, such that Fi (x) ~ 0.

We can define the monotone decreasing sequence of analytic subsets
of Ll: for each v &#x3E; 2,

In particular V = V ~ 1 &#x3E; . The Hormander condition states that
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Note that there is a subsequence of integers 1 = v1  v2  ... such

that

Now consider, for any given integer p &#x3E; 1, the symplectic stratification
of the analytic set V(’P) (Definition 2):

In each stratum

empty or else, it is an open and dense subset of (as the latter is a
connected CW submanifold).
components. We obtain thus the decomposition

Letting p range over the set of positive integers yields a decomposition

t’-i J-v

in which, whatever p and j,

( 1 ) the CW submanifolds EJvp) are connected and pairwise disjoint;
(2) at every point o

to one and the same (even) nonnegative integer;

(3) at every point of S’ all Poisson brackets FI of length v  Vp+1
vanish but at least one of length Vp+1 does not.

DEFINITION 4. - The decomposition (2.6) will be called the Pois-
son stratification of V defined by the functions F1, ..., Fr and each subman-
ifold will be called a Poisson stratum of V defined by these functions.

We shall refer to vp as the depth of the Poisson stratum 

It follows immediately from the elementary properties of the Poisson
bracket that the Poisson stratification of V defined by the functions

Fl, ..., Fr is invariant under nonsingular C’ substitutions, i.e., substitutions
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with ~ I

If a Poisson stratum E of V is not symplectic (i.e., if the pullback to E
of the fundamental symplectic form in T*Rn is degenerate) then the inter-
section TED (TE)7 -L is a nonvanishing vector bundle over E which satisfies
the Frobenius condition: the commutation bracket of two of its smooth

sections is a section of TE n (TE)~. As a consequence TE n de-

fines a foliation on E in which all the leaves have the same dimension. We

shall refer to the leaves of this foliation as the bicharacteristic leaves and

to any analytic curve contained in a bicharacteristic leaf as a bicharacter-
istic curve. The following terminology simplifies a little some forthcoming
statements.

DEFINITION 5. - By a normal bicharacteristic curve in the Poisson
stratum E we shall mean the range c of an analytic embedding F of R
into E which is a bicharacteristic of E and has the property that 7r o F has
constant rank (necessarily equal to 0 or to 1).

2.4. Poisson stratification associated to vector fields.

We consider r real vector fields X1, ..., Xr of class CW in a con-

nected and open subset SZ of JRn and the "sum of squares" operator
-L = Xf + ... + X2 . Let denote the cotangent bundle of Run
from which the zero section has been deleted and 7r the base projec-
tion T*RnB0 --&#x3E; R n. The symplectic manifold of the preceding sub-

-1
sections will be the open subset 7r (Q) of T*RnB0. The variety V will
be the set of common zeros of the of the vector fields

Xj ; in other words, V will be the characteristic variety of the operator
L, Char L. In accordance with established custom the symbol of

a real vector field X is obtained by substituting lgj for the partial
derivative and therefore a (X) is purely imaginary. We have equated

XJ

X21 + ... _+X2 to -L to ensure that the principal symbol of L is nonnegative:

We apply the concepts of the previous subsections with the choice
of F4 = 1, ... , r . This choice will define once for all

the meaning of the Poisson strata of Char L. We recall that a subset of

phase-space T*R’ is said to be conic if it is invariant under the dilations

(x, ~) -~ &#x3E; 0. Of course Char L is conic. We can repeat the
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constructions in Subsections 1.1, 1.2, 1.3, making use only of functions
F (x, ~) that are homogeneous with respect to ~, i.e., F (x, A~) = A~F (x, ~)
for some integer m and all A E R. We obtain

PROPOSITION 1. - Every Poisson stratum of Char L is conic.

We say that the vector fields Xl, ..., X, and the differential operator
L satisfy the Hormander condition if the set of functions (Xj),
j = 1,..., r, does (Definition 3). That they do will be our hypothesis
throughout (unless otherwise specified).

We list here a few examples that are going to guide us in the sequel.
In the first example the characteristic variety is smooth but nonsymplectic:

Example 3 ([B-G, 1972]). - The characteristic set of the Baouendi-
Goulaouic operator

consists of the two open half-spaces x, - Ç1 == ~2 - 0 , ~3 &#x3E; 0 (resp.,
~3  0). The (maximal) bicharacteristic curves are the x2-lines.

The next example generalizes the Baouendi-Goulaouic operator in
that the characteristic variety is smooth, but now it is symplectic.

Example 4 ([0, 1973]). - The characteristic set of the Oleinik

operator 
- -., B - -I- B -

can be identified to the phase-space (X2, X3, ~2, Ç3) with the null section
excised. It admits the following stratification: two symplectic strata xl -
~l 0, ~2 &#x3E; 0 (resp., ~2  0) at depth 1; two nonsymplectic strata

Ç1 == ~2 - 0, ~3 &#x3E; 0 (resp., ~3  0) at depth p. The latter remains
true down to depth q -1. At depth q we encounter the zero section (which,
by our convention, is not part of Char L ). The (maximal) bicharateristic
curves in the nonsymplectic strata are the X2-lines.

In the next example at depth 1 the Poisson strata are symplectic;
nonsymplectic strata occur at depth p &#x3E; 1; symplectic strata re-appear at
depth r &#x3E; p.

Example 5. - At depth one the characteristic set of the operator
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(p  r  q  fp + &#x3E; 1) admits the symplectic strata 
0, E2 &#x3E; 0 (resp., E2  0 ). It admits the strata = E2 = 0, E3 &#x3E; 0

(resp., ~3  0) at depth p and the strata xl - x2 = ~2 = 0, ~3 &#x3E; 0

(resp., ~3  0 ) at depth r. We encounter the zero section at depth q. The
only nonsymplectic strata occur at depth p; the bicharateristic leaves in
the nonsymplectic strata are the X2 -lines.

In a variant of the preceding example the strata at depth r are
isotropic, not symplectic (yet their base projections are lines).

Example 6. - The characteristic set of the operator

(p  r  q, i &#x3E; 1) admits the symplectic strata xl - Ç1 == 0, ~2 &#x3E; 0

(resp., ~2  0) at depth one. It admits the strata x, = ~2 = 0, ~3 &#x3E; 0

(resp., ~3  0) at depth p and the strata xl - z3 = Ç1 == Ç2 == 0, ~3 &#x3E; 0

(resp., ~3  0 ) at depth r. We encounter the zero section at depth q .
The only symplectic strata occur at depth one. In the strata at depth p
the bicharacteristic leaves are the X2 -lines. The strata at depth r are the

(~2?~3 ~ 0) half-planes; they are isotropic.

The next example shows that the characteristic set may lie above a
single point.

Example 7 ([M, 1981]). - The characteristic set of the Metivier

operator

consists of the two rays a

The following variants of the M6tivier example shows how the rays can
occur as singularities of the characteristic variety. In the first example they
lie in intersecting symplectic planes entirely contained in the characteristic
set; in the second example they lie on the boundary of symplectic surfaces
also entirely contained in the characteristic set; but the surfaces cannot be
smoothly continued beyond the rays.

Example 8. - The characteristic set of the operator
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consists of the symplectic surfaces ~1 = 0, xl = ±X2, z2£2 # 0, and of the
two rays x, - X2 = 0, Ç2 ~ 0.

Example 9. - The characteristic set of the operator

consists of the symplectic surfaces Ç1 == 0, xI x3, 0, and of the
two rays xl = X2 = 0, g2 Q 0.

2.5. The analytic hypo-ellipticity conjecture.

We recall that a linear differential operator L in Q with C°° coefficients
is said to be hypo-elliptic in SZ if, given any open subset U of Q and any
distribution u in U, Lu C C~ (U) F u C C~ (U). We recall the classical
theorem of Hormander (see [H, 1967]):

THEOREM. - For the "sum of squares" operator X2 + ... y- Xr
to be hypo-elliptic in Q it is necessary and sufficient that the real vector
fields X 1, ..., Xr satisfy the Hormander condition.

In our present set-up the vector fields Xj are defined and analytic in
Q. A theorem of Nagano (see [N, 1966]) states that the base Q is foliated by
immersed analytic submanifolds defined by the following property: the tan-
gent space to any leaf at any of its points is equal to the "freezing" at that
point of the Lie algebra g(X1,...,Xr) generated (through commutation)
by the vector fields Xi,..., Xy.. To say that L (X2 + ... + satisfies

the Hormander condition is to say that there is only one Nagano leaf, Q
itself (since S2 is connected); to say that L does not satisfy the Hormander
condition at some point x’ is to say that the Nagano leaf A through
x’ is a proper submanifold of Q and thus dim A  n . In passing note that
A = if and only if all the vector fields X 1, ..., Xr vanish at xo. The
hypo-ellipticity of L precludes this.

A differential operator L in Q (with CW coefficients) is said to be

analytic hypo-elliptic if, given any open subset U of Q and any distribution
u in U, Lu C C’ (U) - u E C’ (U). By virtue of the Cauchy-Kovalewski
theorem, the analytic hypo-ellipticity of L in Q is equivalent to the

following:
o given any open subset U and any function u E C~ (U),
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We restate the conjecture first formulated in [T, 1999]:

CONJECTURE 1. - For -L = X2 +... + be analytic hypo-
elliptic in 0 it is necessary and sufficient that every Poisson stratum of
Char L be symplectic.

When the Nagano foliation defined by Xl,..., X, admits a leaf A with
dim A  n the conormal bundle of A is a Lagrangian submanifold of 
entirely contained in Char L. A nonempty, relatively open subset of this
Lagrangian submanifold must be contained in a Poisson stratum of Char L.
Since this stratum has dimension  2n it cannot be symplectic.

Remark 2. - The linear differential operator L in Q is said to be

germ-analytic hypo-elliptic at a point xo E S2 if to every open neighborhood
U of x. and to every function u E C~ (U) such that Lu E Cw (U) there
is an open neighborhood V C U of zo in which u is analytic. Obviously L
is analytic hypo-elliptic in Q if and only if L is germ-analytic hypo-elliptic
at every point of Q. But a sum of squares operator can be germ-analytic
hypo-elliptic at a point zo without being analytic hypo-elliptic in any open
neighborhood of xo (see [Hanges, 2003]).

We wish to mention two consequences of the analytic hypo-ellipticity
conjecture. We have already pointed out that the Poisson stratification is
invariant under nonsingular substitutions of the type (2.7). In particular,
the Poisson stratification of Char L is invariant under substitutions

r

with a§ C Cw (Q), det nowhere zero in Q. But then,3 ( jl-j,k-r) 
if the conjecture 1 is correct, the analytic hypo-ellipticity of
-L = X2 + ... +X2 and that of -L = Xi +  - y- Xr are equivalent
properties.

Now let us use the following notation. For each multi-index I -
we write

where [ , ] is the Lie bracket. For each length £ ) 1 we form the sum of

squares operator
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It is clear that each stratum of Char L is a stratum of Char L(~) for some
£ ~ 1; and conversely, each stratum of Char L (~), for any .~ = 1, 2, ... , is a
stratum of Char L. The following ensues:

~ if the conjecture 1 is correct, L is analytic hypo-elliptic if and
only if the same is true of L(~) for every positive integer .~.

It is often convenient to reason microlocally. The sum of squares -L
is said to be analytic hypo-elliptic at the point (XO, Ç-°) E 0 x ~01) if
given any function u E C~ (Q),

Below, we say that L is analytic hypo-elliptic in a conic open subset U
of SZ x ~0~) if L is analytic hypo-elliptic at every point of U. In this
language, for L to be analytic hypo-elliptic in Q it is necessary and sufficient
that L be analytic hypo-elliptic in Q x (R’B ~0~) . This allows us to state
the microlocal version of Conjecture 1:

CONJECTURE 2. - For -L = X2 + ... y- X2 to be analytic hypo-
elliptic in a conic and open subset U of Q x 0 1) it is necessary and
sufficient that every Poisson stratum of U n Char L be symplectic.

Returning to the sums of squares operators L(~) we define the follow-

ing sequence of open and conic subsets U(R) of Q x (JRnB (0)) :

We have U(£) C Ll ~~+1 for each .~, and x (R"B ~0~) for £ sufficiently
large (we are tacitly assuming that the Xi are defined and analytic in an
open neighborhood of the closure of Q). Note that the set n Char L(’)

might be empty, when Char L(£) = Char L~~+~&#x3E; . If it is not empty, then
at each one of its points all multibrackets a (XI), t, vanish, but at
least one multibracket of length f + I does not. This leads to the microlocal
version of one of the statements above:

9 If the conjecture 2 is correct, then for L to be analytic hypo-
elliptic in Q it is necessary and sufficient that L(~) be analytic hypo-
elliptic in U(~) for every positive integer t.

In a sense, at the microlocal level this observation reduces the study
of the analytic hypo-ellipticity of sums of squares to that of sums of squares
-L = X2 + ... + Xr having the property that, at each point of Char L, at
least one of the brackets for (Xi) , a does not vanish.
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3. A partial Gevrey hypo-ellipticity conjecture.

3.1. Gevrey hypo-ellipticity.

We continue to deal with the real vector fields Xl, ..., Xr of class
C’ in the domain Q C Rn and with the "sum of squares" operator
-L = Xi + ... + X,2. In what follows s will always denote a real number
s ~ 1. We recall that a complex-valued function F E C°° (Q) is said to be of
Gevrey class s if to each compact set Ken there are constants C, M &#x3E; 0

such that, for all multi-indices a = (Q1, ..., an) E ~+ and all x E K,

We have used multi-index notation: ~a~ - al ~- - - - + an; a! = cxl! - - - an!;
8"F = where 8j = 8 . We denote by Gs (Q) the space of1 

- 

J

functions F E C°° (Q) of Gevrey class s. Of course G1 (S2) = C’ (Q). If

s &#x3E; 1 the differential operator L is said to be Gevrey-s hypo-elliptic when
the following is true:

9 Given any open subset Q’ of Q and any distribution u in Q’, Lu E

Gevrey hypo-ellipticity requires that the Hormander property be valid
(Definition 3). Indeed the existence of a Nagano leaf A with dim A  n

through a point x° G Q allows one to construct a solution h of the
homogeneous equation Lh = 0 in a neighborhood of x° which is not of class
C~ at x° . In other words Gevrey hypo-ellipticity implies hypo-ellipticity
and, as a consequence, the Gevrey-s hypo-ellipticity of L is equivalent to
the following property:

~ Given any open subset S2’ of Q and any C°° function u in Q’, Lu E

PROPOSITION 2. - Let the differential operator -L = XI -f-~ ~ ~-~-XT
satisfy Hormander’s condition and let the real number s &#x3E; 1 be arbitrary.
For L to be Gevrey-s hypo-elliptic it is necessary and sufficient that the
following properties be valid:

(1) Let XO E 0 be arbitrary. To each open neighborhood U c Q of x’
there is another open neighborhood V C U of XO such that, given any
F E G’ (U), there is a solution u E GS (V) of the equation Lu = F
in V.
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(2) Given any open subset Q’ of SZ and any COC; function u in S2’, if Lu = 0
in Q’ then u E GS (0’).

Proof. - That Properties 1 and 2 entail the Gevrey-s hypo-ellipticity
of L is self-evident. The Gevrey-s hypo-ellipticity of L implies trivially
Property 2. Since L satisfies Hormander’s condition the classical subelliptic
inequality

r

is valid for suitable positive constants J, c, c’ and all p E C°° (Q) [L* : adjoint
of L; norm in the Sobolev space H’~ The estimate (3.2) implies
the local solvability of the equation Lu = F. If moreover L is Gevrey-s
hypo-elliptic, Property 1 ensues. D

When s - 1 Property 1 is a direct consequence of the Cauchy-
Kovalewski theorem. In the remainder of this paper we shall focus on

Property 2 of Proposition 2. We shall restrict our attention, in the sequel,
to the that satisfy the Hormander condition
but are not analytic hypo-elliptic. This allows us to assume that not all the
Poisson strata of Char L are symplectic.

Before proceeding let us clarify the two-variables case, meaning that,
after division by a nonvanishing factor, we are looking at a differential
operator

where the Aj and the Aj are analytic functions in an open neighborhood
Q of the origin in R2. Moreover we assume that the vector fields a andax,

a2 ( j = 1, ..., v) satisfy the Hormander condition.
PROPOSITION 3 (cf. Theorem 3.11, [T, 1999)). - If the differential

operator (3.3) is not analytic hypo-elliptic in some open neighborhood
of the origin in R 2 then the ray co (resp., consisting of the points
((o, 0) , ,(0,7)),7&#x3E; 0 (resp., T  0) is a Poisson stratum of L.

Proof. The characteristic variety of L is defined by the equations
Ç1 = 0, Aj (xl, x2) - 0 (j - 1,..., v). Let us write V = 7r (Char L). If the
origin is either a singular point or an isolated point of V then the ray co
is a Poisson stratum of L.
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Now suppose the origin is a nonisolated regular point of V. Let
p be the smallest positive integer such that -1 (0,0) =I- 0 for some j; a.p- kj
Hormander’s condition demands p Define, for each j = 1, v,

1 , A ’- 

’ ° ° ° ’

Since V is an analytic curve and V’ is an analytic subvariety of V there
are only two possibilities: either the origin is an isolated point of V’ for
some j, in which case the ray co is a Poisson stratum of L; or else there is
an open neighborhood S2’ C SZ of the origin such that SZ’ n v, = SZ’ n V for
every j = 1,..., v. In the latter case the implicit function theorem applied
to enables us to define V in Q’ (possibly contracted
about the origin) by an analytic equation xl = p (X2). For every j = 1, ..., v,

It

is divisible by x 1 - cp (X2); and for at least one j we have

sion that in a sufficiently small open neighborhood of the origin

with The analytic hypo-ellipticity of the differential
operator in (3.4) can be proved by the same methods used to prove the
analytic hypo-ellipticity of D 2 + X2’D 2 in R2 (see e.g. the forthcoming
paper [A-B, 2004]). 0

3.2. Basic symplectic submanifolds.

As before 7r denotes the base projection T*R’BO --4 R~. Below m will
be a positive integer; we denote by L JRn) the space of linear maps

-~ ~n .

DEFINITION 6. - By a basic symplectic submanifold of 7r (Q) we
-1

shall mean a Cw submanifold of 7r (Q) such that the following is true, for
every (XO, çO) E E:
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9 There are a C’ embedding F of an open subset U of R’ into 0, a C~’
map U - L R’) and an open cone 0 in such that

the map (~/, 7y) --~ (F (y) , 4J (y) 7y) is a symplectomorphism of U x r
onto a conic neighborhood of (x° , çO) in S.

It follows immediately from (9) that E is symplectic and conic, and
furthermore, that m - 1 dim E = dim 7r (~). We recall that a symplecto-
morphism is a diffeomorphism which preserves the fundamental symplectic
two-form. Here because of "conicity" it preserves the fundamental symplec-
tic one-form. The latter is equivalent to saying that

the identity map of R"~, for every I transpose of the

differential ay (Y) I -
-1

PROPOSITION 4. - For a C’ submanifold E of 7r (Q) to be basic
symplectic it is necessary and sufficient that to each point (XO, Eo) EE E

there be an open neighborhood U C 0 of x’, analytic coordinates Xl, ..., Xn
in U and an open cone f in R nB fol containing 1;,° such that E r1 U x r)
is defined by the equations

where m = 1/2 dim E

In the preceding statement U x r is viewed as a conic subset of n-1 (Q).

Proof. The sufficiency of the condition is self-evident. Suppose
(~), Definition 6, holds. There is no loss of generality in assuming that U is
an open ball centered at the origin in and that x° = F (0), f1° = W (0) Tlo
with q’ C r. There is an open neighborhood W of x° in Q in which we can
select analytic coordinates xl, ..., xn vanishing at XO such that W n Jr (S) is
defined by the equations xi = 0, i = l, ..., n - m. This means that Fi = 0

for i - l, ..., n - m, and that the Jacobian matrix 

is nonsingular. In other words we can take x" = as

parameters. Let çj ( j = 1, ..., n) denote the dual coordinates. The pullback
of the one-form equivalently, to (x", ~") -space, must

This demands that we have, on
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for suitable CW functions pzj in U (possibly contracted about 0). Let us
then carry out the following change of variables:

The contragredient change of variables is given by

where x" is viewed as a function of i equal to x" when xi - xi = 0 for
all i = 1,..., n - m. After deleting the tildas we see that there is a conic

and open neighborhood of (x’, çO) in 7r (f2) in which the submanifold E is
defined by the equations (3.5). 0

The linear model is self-evident: a basic simplectic linear subspace E of
Cn ~ 2-’- (equipped with the natural symplectic form w = x.y’ -x’ .y)
is the complexification of a real linear subspace of R n.

PROPOSITION 5. - If a two-dimensional symplectic submanifold E

of 7F (Q) is such that dim n (S) = 2 dim E = 1 then E is basic.

Proof. A two-dimensional symplectic submanifold E of 7r (f2), of
class conic and symplectic, containing the ray x = 0, ~ _ (o, ..., 0, T),
T &#x3E; 0, is defined by equations

with xn varying in some interval (-6, 6), 6 &#x3E; 0, fIn &#x3E; 0 and real-valued

analytic functions fi, pz such that

The pullback to E of the fundamental one-form ~ is equal to
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The change of variables ) dt reduces us to

and the associated change of dual variables

show that the following equations are satisfied on S: iFi = 0 (i = 1,..., n -1 )
and

on E. It follows at once that .6 can be defined by the equations (3.5) with
m == 1. 0

Symplectic submanifolds E of 71 (Q) such that dim 7r (S) = 2 dim S &#x3E;

1 are generally not basic.

3.3. Symplectic slicing along a bicharacteristic.

We return to the "sum of squares" operator -L = Xi -~ ~ ~ ~ -~-XT in the
open subset 0 of JRn. Throughout the sequel, by the term "bicharacteristic"
we shall refer to a normal bicharacteristic curve c in some Poisson stratum

E of Char L (Definition 5); (x’, çO) will be a point of c.

DEFINITION 7. - By a symplectic slicing along c about the point
- 1

(x°, f1° ) E c we shall mean a basic symplectic submanifold E of 7r (Q) such
that S n c is an arc of curve containing (x°, ~° ) and such, moreover, that

2 dim ~ = 1 +dim7r (c).

If E n c is an arc of curve, 1 + dimpr (c) is the smallest possible value
of m = 2 dim ~; m = 1 or 2 depending on whether 7r (c) is a single point
or a true curve. The conic span c of c, i.e., the set of points (x, Afl) with
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(x, ~) E c and A &#x3E; 0, is isotropic since it is contained in the Poisson stratum
E and perpendicular to TE for the symplectic form ; c is a conic Lagrangian
submanifold we must have E n E = ê. If m = 2 then ? c s n E
but we may also have dim £ f1 ~ = 3. This does not preclude 9 c Char L
(cf. Example 10).

As before let (U, xl, ..., xn) be a local chart in Q centered at x°, with
and an open and convex cone

r c R-B ~0~ with ÇO E r, such that s n (U x r) is defined by the equations
(3.5). Let f1° = (o, ..., 0,1). When m = 1 the bicharacteristic c = c is the

ray.r=0,~=(0,...,0,T).
When m = 2 c is a curve

with t E R and

The latter conditions entail ~’’ (o) ~ 0, g’ (o) - 0. Therefore, after

contracting U" we can take xn-i as parameter and write

Now we have cp + qbg’ m 0 which requires ~ (t) &#x3E; 0 for all t (lest c

meet the null section of T*Q). If we carry out the change of variables
in-1 = xn = xn - g [with no effect on the equations defining
e n ( U x r)] the dual change of variables reads

On c we get

Clearly c is equal to the conic span of the curve t - ( 0, ..., 0, t, 0) ,
(o, ..., 0,1 ) ) which is also a bicharacteristic and can be taken to be c without
loss of generality.

Example 10. - Let L be the Oleinik operator (Example 4):

The open half-subspace defined by xi = ~2 = 0, ~3 &#x3E; 0, is a Poisson
stratum E of Char L of depth p; E is foliated by the lines parallel to the
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x2-axis, which are normal bicharacteristic curves in E. We select c to be

the curve in E defined by x3 = 0, ~3 = 1. The submanifold

is a symplectic slicing along c about any one of its points. Note that
SC Char L.

Example 11. - We consider the following generalization of the

M6tivier operator (Example 6):

with p, q, k integers and 1  p  q and k ) 1. The rays x = 0, Ç1 = 0, ~2 ~
0, are the bicharacteristic curves that make up the Poisson stratum at

depth p . We take

and E to be the submanifold defined by x, = 0, Ç1 == 0, ~2 &#x3E; 0. We have

c C S and 2 1 dim E = 1 + 7r(c) - is a symplectic slicing along the
bicharacteristic c about the point x = 0, ~1 = 0, ~2 = 1.

Exam pl e 12. - the characteristic variety,

is symplectic 0. The rays x = 0, Ç1 = 0, 0, are the

bicharacteristic curves that make up the Poisson stratum at depth 3. We
may take c and E as in the preceding examples is a symplectic slicing
along the bicharacteristic c about the point x = 0, 0, fl2 = 1. But note
that here we cannot find a basic symplectic submanifold E D c such that

S C Char L.

In what followse will be a symplectic slicing along the bicharacteristic
c about the point (x°, ~° ) E c (Definition 7) and let m = 2 dim E - We have
always m  n; this is obvious if n &#x3E; 2 and follows from Proposition 3
when n = 2.

By (U, Xl, ..., xn) and r we shall mean respectively an analytic local
chart in Q centered at x° (i.e., all the analytic coordinates x2 vanish at x° )
and an open and convex cone in fol with ÇO == (0, ..., 0, 1) E r, such
that

(1) c n (U x F) is either the ray of points (0, (0, ..., 0, T)), T &#x3E; 0 (case
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(2) E n (U x r) is defined by the equations (3.5).
We shall indicate that all these conditions, including 1 and 2, are

satisfied by saying that the local chart (Uxl,...,x,,) and the cone rare
adapted to the pair (~, c) at (x°, f1°). Possibly after contracting r about
the ray through (0,..., 0,1) we may also assume that (

for all ~ E r and some C &#x3E; 0. Here and throughout the sequel we use
the Euclidean norms for vectors as well as covectors. We shall also use the

notation f1° to mean the projection of f1° into the subspace of the coordinates
Çn : when m = 1, ~o == 1 viewed as a point in the "cone" R+; when

m = 2 we have ~° _ (0, 1) E R . Note also that when m = 1 it is pointless
to mention (x’, ~°) as this point determines and is completely determined
(up to a positive dilation of g° ) by c. In the case m = 1 we shall to refer to
c either as a ray or as a vertical bicharacteristic; when m = 2 we refer to c
as a horizontal bicharacteristic.

3.4. The Gevrey threshold of L at vertical bicharacteristics.

In this subsection we focus on the case m = 1: our bicharacteristic

c is the ray of points x = 0, ~ = (0, ..., 0, gn) with gn &#x3E; 0. We describe

an algorithm that associates to the the bicharacteristic ray c a Gevrey
threshold for the "sum of squares" + ... +X2

We reason within the framework described in the preceding para-
graph. We make use of the two-dimensional symplectic slicing

the local chart (U, xl, ..., xn) and the cone r are adapted to the pair (E, c).
We define a parametrized family of deformations of S: the parameter

will be a point a = (a1,...,an-1) E ~n-1, 0  aj  1 for every

j = 1,..., n - 1. We define

with p &#x3E; 0 suitably large. The submanifolds S (a) are asymptotic to E in
the sense that if (x, ~) E E (a) then x, ~~ --~ ((0,..., xn), (0,..., 0, 1)) E ~

--~ oo. We are going to look at the restriction to E (a) of
the symbol c
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We can write, in the open neighborhood U C R~ of the origin,

Since o- (Xi) ((0,..., 0), (o, ..., 0,1)) = 0 we must have ai,n (0) == 0 for every
i - l, ..., r. By the Hormander condition not all vector fields Xl’...’ Xr
vanish at the origin: the rank of the matrix be

strictly positive. After a linear change of the variables Xl, ..., Xn-1 which
replaces the local chart ( II, x 1, ..., xn ) and the cone r by a local chart
and a cone also adapted to the pair (E, c) at (x° , ~0) we may assume

whence

The analyticity of the coefficients of the vector fields Xi allows us to write

with the understanding that an = 1 (and IPI = pi + ... + pn ) . The infinite
series in (3.8) is absolutely convergent for
sufficiently small).

Denote by 0 the subset of (Qn-1 consisting of the points (a, , ..., an- 1)
such that 0  ai  1 for 1  i ~ n - 1, verifying the following condition:

The subset C~ is open and dense in ~n-1 n (o,1)n-1. Indeed, the set

(N = 1, 2,...) which do not belong to 0 satisfy one of the following finitely
many linear equations:
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Taking a E 0 ensures that,

since the left-hand side in (3.10) is actually equal to the number of indices

equivalent to

The set of rational numbers 2 (aj + ak - + ’’’ + Pn-1 an-I)) &#x3E;

max ai is finite, implying the finiteness of the set of rational numbers p
1 iv

such that (3.10) is valid, and consequently, the existence of a maximum
element, from now on taken to be p. We underline the fact that, thus de-

fined, u depends on L, E and a E 0; moreover, u  1 since max ai  1
1i,v

and

We can now rewrite (3.8) as

where ,S’ (a) consists of pairs (l, A) E Z+ x Q, with A = ai + aj -
(pi ai + ... + Pn-1an-1) for some pairs of integers i, j E [1, - - ., n] and some
(pl, ...,~’Jn-1) E Zn- 1, such that 0. Note that A  2. The number A
is positive, since A # 0 by definition of p, and since

We make use of the following order on Z+ x Q: (t, A) « (.~’, A’) means
that either t &#x3E; £’ or else A  A’. We denote by S’° (a) the subset of maximal
pairs (.~, A) E S’ (a) for the order ~; S° (a) is a finite set. This allows us to
isolate a "dominant part" ,
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such that

We underline the fact that to any E Z+ there is at most one rational
number Az such that (f, AE) E S° (a) ; and then 2p  Az x 2. Since
Pa (xn, ~n) &#x3E; 0 for large Çn we must have

This implies that if Y
which is the same as saying that, for £ == 1,

But (3.12) is also true if .~ &#x3E; 2 since then £ - A + 2p ) £ - 2 + 2p. This
enables us to attach a Gevrey index s (L, S, a) to the operator L relative to
the symplectic submanifold E (a). In order to do this we attach a Gevrey
index to each binomial ~ , Heuristically
we think of the symbol

which, after division by the elliptic symbol ~2/-’ and after extraction of the
(A - root, is akin to the symbol of the differential operator

where H is the Heaviside function and The solution

of the homogeneous equation - 0 is of

In view of this it is natural to attach the Gevrey

attach the Gevrey index:

to the operator L, relative to the symplectic slicing E along c and to the
multiplet a = (aI, ..., a,-,) E C~.

DEFINITION 8. - By the Gevrey threshold of L at the bicharacter-
istic ray c we shall mean the supremum, denoted by s (L, c), of the numbers
s (L, ~, a) as a = (ai , ... , ranges over 0 and E ranges over the set of

all symplectic slicings along c.
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Example 13. - We consider the following three vector fields in 
, with p &#x3E; 1, q &#x3E; 1. The ray defined

is taken to be the bicharacteristic c and the

submanifold defined by 0, ~2 &#x3E; 0, to be the symplectic slicing
S. We carry out the deformation

where a is an arbitrary rational number such that 0  a  1 . If

-L = xl + X) + X§ we have

We take ~c = max (a,1 - pa) ; and thus

We derive directly

The largest possible value of s (L, E, a) is obtained by minimizing M, i.e.,
for a = 1 We find

This is consistent with the result of [Ma, 1998], according to which the
Gevrey hypo-ellipticity of the generalization of the Metivier operator (see
Example 7), , is precisely equal to the number (3.13).

CONJECTURE 3. - If L is Gevrey-s hypo-elliptic in 0 then s &#x3E;
s (L, c) for every bicharacteristic ray c .

3.5. Horizontal bicharacteristics.

We close this article with a few words about the case m = 2:

the central point in phase-space JRn x JRn is still (0, (0,..., 0, 1)); our

bicharacteristic c is the line of points (x, ~) such that xl - ~ ~ ~ = xn-2 =
xn = 0,  T , ~ - (0,...,0,1) ; necessarily n &#x3E; 3 (in view of
Proposition 3). We can consider the four-dimensional symplectic slicing
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with R &#x3E; 0 suitably large. We define a parametrized family of deformations
of 6: the parameter will be a point a = (a,, ..., an-2) E ~’~-2, 0  aj  1 for

every j = 1, ..., n - 2. We define E (a) to be the set of points (x, ~) E U 
such that

The submanifolds S (a) are asymptotic to £ as ]g] = gn - oo. We look at
the restriction to £ (a) of the symbol 

Here we must allow for the possibility that v = n - 2, as is the

case for the Baouendi-Goulaouic operator (Example 3) whose symbol is
cr (L) == ~1 -~- ~2 + X!Ç5. After a linear change of the variables xi , ..., xn-2
which replaces the local chart (Uxl,...,x,,) and the cone r by a local
chart and a cone also adapted to the pair (9, c) at (0, (0, ..., 0,1)) we
may assume l, ..., v’ - min (v, n - 2) and

We can then write

here with the understanding that a,,-l - 0, an = 1.

A superficial inspection of (3.15) shows the difficulty of isolating a
"leading part" in the far right-hand side. But even assuming that such a
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part has been isolated, one encounters the difficulty of assigning a Gevrey
"threshold" to a pseudodifferential operator

(the sum is finite). Of course there are cases where the procedure is

straightforward; we conclude with mentioning two such cases.

Example 14. - In dealing with the symbol of the Oleinik operator
in R3 , 

the nonsymplectic stratum E is defined by Xl = ~2 = 0, ~3 &#x3E; 0. Our

bicharacteristic curve c is the x2-line in E defined by x3 = 0, ~3 = 1; and the

symplectic slicing E along c is defined by xl = Ç1 = 0, ~3 &#x3E; 0 (Example 13).
The "displacement" £ (a) is defined by xl = Ç3a, Ç1 = Ç3, E3 &#x3E; 0. We have

with p = max (pa, 1 - a (p - q) ) . The Gevrey hypo-ellipticity of the "heat-
like" convolution operator D 2 2+ near the point ( (o, 0, 0) , (o, 0,1 ) ) E
T*1R.3 is equal to max ( 1, ~c-1 ) . We must therefore choose a to minimize
p (in order to get the "worst" possible Gevrey regularity). This demands
a = q-1 and yields the Gevrey exponent s = 9., in keep with known results.p

Example 15. - Consider the symbol

where 1  p  q and r &#x3E; 0. The stratum E , the bicharacteristic curve c and
the symplectic slicing are the same as in Example 14, defined respectively
by x, = Ç1 == ~2 - 0, ~3 &#x3E; 0; x3 - ~l - ~2 - 0, ~3 = 1; XI - 
0, ~3 &#x3E; 0. The displacement is also the same:

Here we look at the solutions of the ODE with the large parameter ~3 &#x3E; 0,

If q  p ~ r then, for ~3 large, the is negligible compared
to ~3~1-a(q-p)) and we choose C1 = 1, C2 = 0. If q = p + r we take

C1 = 2, C2 = 0. In the cases q # p + r the inverse Fourier transform

with respect to ~3 of the general solution of (3.16) yields immediately a
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function of (x2, x3) which is of Gevrey class at most s  p with respect
to E3 (s - .2 is obtained taking then, for E3 large, thep q

monomial E3 2(1-a(q-p)) is negligible compared and we choose

cl - 0, c2 - 1. The inverse Fourier transform with respect to ~3 of the
general solution of (3.16) yields immediately a function of (X2, X3) which is
of Gevrey class at most is obtained for (
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