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TRANSFER MATRICES AND TRANSPORT FOR

SCHRÖDINGER OPERATORS

by François GERMINET, Alexander KISELEV
&#x26; Serguei TCHEREMCHANTSEV

1. Introduction.

We consider discrete, resp. continuous, Schrodinger operators
H - 2013A-(-V, with Dirichlet boundary conditions, acting on

= £2([1, +(0)), resp. ~ - L2([0, +(0)). On the lattice the Laplacian
-A is the finite differences operator (-AV))(n) -- + 1) + 0(n - 1),
and in the continuum 2013A~ = -0". The goal of the present paper is to
study the dynamics associated to H as it is determined by the Schrodinger
equation. We provide lower bounds on the dynamics that involve the be-
havior of the transfer matrices T(E, N, 0). Our main general result relates
the amplitude of T(E, N, 0) to the evaluated dynamics at time T N N.
Although our main lower bound and its consequences do not depend on
the nature of the spectrum of H (and we would rather consider this as an
advantage than as a shortcoming), a typical range of applications will be
in the presence of singular spectrum (pure point or singular continuous).

To study the evolution of the dynamics, we define the averaged
moments of order p associated to the initial state localized at the origin
and with energy "localized" in an open interval I, and at time T, by

KeyuTords: Schr6dinger operators - Transfer matrices - Transport exponents.
Math. classification: 81QI0 - 47N50.
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where f E an infinitely differentiable positive function with

compact support in I, and

Here xo is the characteristic function of the interval [0,1] (we could also
consider initial states ~o E L2([0, 1]), i.e. such that ’Øo = and 61 is

the element -+-oo) ) equal to 1 at x = 1 and zero everywhere else. We
shall denote by C + (I ) the set of smooth functions compactly supported on
I and taking nonnegative values. To investigate the polynomial behavior
in T of M(p, f, T) we define the lower and upper transport exponents
corresponding to a function f E C +,

In the recent years, the propagation rates of wavepackets, and in
particular behavior of the moments of initially localized states has been
an object of active research; see for example [G], [C], [La], [SBB], [BCM],
[BGT1], [BGT2], [BSB], [DR1], [DR2], [GSBI], [GSB2], [BGSB], [JSBS],
[KL], [DT], First works on the subject focused on the relation
between regularity of the spectral measure (usually expressed in terms
related to the Hausdorff dimension) and dynamics. Guarneri [G] proved
that if the spectral measure is uniformly a-continuous, then (in our
notation) ,C3- (p, f ) &#x3E; a/d for any f E Cü(Iae) (where d is the dimension
of the coordinate space - here d = 1). His results were extended by
Combes [C], Last [La] and Guarneri, Schulz-Baldes [GSBI] . Motivated by
numerical works of Mantica [Ma], a new approach using generalized fractal
dimensions has been developed by Barbaroux and two of us in [BGT1],
[BGT2], [BGT3]. We also refer to Guarneri and Schulz-Baldes [GSB2]
where similar ideas are developed under more restrictive hypotheses. This
approach provides a lower bound of the moments M(p, f , T ) in terms of
integrals that we would like to call "transport integrals" :

where C (0, l),c &#x3E; 0 and A - 1-tf(H),P. is the spectral measure associated
to the initial state The estimate that is proved in [BGT1], [BGT2]
reads
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for some constant C &#x3E; 0, with J1 = and d the dimension of the

physical space. A key point in the analysis of the present paper will be the
equivalence,

proved in [BGT3] for transport integrals; where by f - g we mean the
existence of a universal constant c such that c- 1 f , g  c f . Following (1.5),
[BGT1], ~BGT2~’s result then reads, for compactly supported functions f,

"1 / 1 v

The nonnegative reals D/ (q) are called the generalized fractal dimensions
of the measure J-L, and they are defined 1 as follows:

For general properties of these dimensions we refer to [BGT3], [GT]. For
the role of these dimensions in dynamical systems and in thermodynamics
formalism, see [P].

Later on, (1.7) has been extended to any measure p by one of us in
[Tcl]. The lower bound (1.7) improves on previous ones (given in terms of
Hausdorff or Packing dimension of p [G], [C], {La], [BCM], [GSB1]), for in
addition to be (i) non smaller, it allows (ii) for a non linear behavior in
p: ,Q~ (p, f ) may grow with p, where previous lower bounds were constant
in p, and in addition it may be (iii) non zero for atomic measures (when
previous ones were automatically zero in presence of pure point spectrum).
In the present paper we present a one-dimensional general lower bound on
the transport integrals Thanks to (1.5), it enables us to provide
the first concrete applications of (1.7).

We shall prove the following (we refer to Theorem 2.1 for a precise
statement): if f E 0 and f - 1 on some set ,S’ of positive
Lebesgue measure, then for any q E (o,1 ) and cr &#x3E; 0,

where N = [T’+’] in the discrete case and N = T1+a in the continuous
case. Here k(E) is some fixed finite function, positive for Lebesgue a.e. E
(in the discrete case 1). Combining (1.9) with (1.5) then provides a
lower bound on the dynamics in terms of the behavior of transfer matrices.
As a particular corollary, our result yields nontrivial lower bounds as soon as
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the transfer matrices I I T(E, N, 0) II do not grow faster than polynomially in
N on a set of energies E of positive Lebesgue measure, and this, regardless
to the nature of the spectrum and regardless to the Hausdorff dimension
of the spectral measure Indeed if one has I I T (E, N, 0)11 ~ C(E)N’* for
all E E S, S ~ &#x3E; 0, and all N large enough, then, if f =- 1 on S,

Y

with 0- (oc, f similar bound follows for the upper

transport exponents ~3+ (p, f ) if for some sequence of scales one checks

C(E)N; for all E C S. We refer to Theorem 2.2 and

Theorem 2.3 for detailed statements.

We shall apply (1.10) and its analog for upper exponents to several
kinds of potentials V: a random decaying potential as considered in [KLS],
the almost Mathieu operator as in [La], [DR2], and sparse potentials.
In the last case we obtain dynamical bounds (with ~3- (oo, f ) - 1 or

{3+ (oo, f ) = 1 ) for some bounded or unbounded potentials. Our application
to the almost Mathieu operator provides, in particular, a new proof to the
celebrated example of Del Rio, Jitomirskaya, Last, Simon [DR2], where
,~3+ (p, f - 1) == 1 is shown to coexist with pure point spectrum and

exponentially localized eigenstates. Indeed our analysis implies for this
model that D:81 (q) = 1, q C (o,1), and thus (3+(00, f == 1) - 1 by (1.7).
Thus, the general bound (1.7), which follows from Guarneri’s old strategy,
is powerful enough to take into account the mecanism which yields the
quasi-ballistic dynamical behaviour pointed out in [DR2]. It thereby sheds
some new light on this famous example.

More generally, one of our goals in this paper is to provide a better
understanding of the mechanism that can produce a non trivial transport
even in presence of pure point spectrum. If traditionally, point spectrum has
been associated with localized dynamics, the first example of a Schrodinger
operator with point spectrum and unbounded growth of moments on a
subsequence of times tn 2013~ 00 of an initially localized state is this almost
Mathieu operator mentioned above, coming from [DR2]. Recently, an
example of Schrodinger operator with point spectrum and ~3- (p, f - 1) ~
1 - (2p)-l has been studied in [JSBS]. By applying our criterion to

the random decaying model of [KLS], we provide a new example of a
concrete model with point spectrum, obtaining ,~- (oo, f ) = 1 everywhere
in the spectrum. The mechanism of transport in this example is different
from both [DR2] and [JSBS]. In [DR2], the transport is fast only on a

subsequence of times due to, roughly speaking, long periodic structures in
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the potential. In [JSBS], the fast transport is due to exceptional energies. If
the support of f does not contain such energies, the corresponding transport
exponents vanish. In the example we discuss here, the lower bounds on the
moments hold for all times and are valid everywhere in the spectrum.

Recently, Damanik and Tcheremchantsev [DT] have obtained dynam-
ical lower bounds in the case where

with constants C, ~ uniform in N, E on some set A(N) of energies depend-
ing on N. The proof (which holds only in the discrete case and for the
initial 61) is based on Parseval formula and is totally different
from that of the present paper. Surprisingly, it is sufficient that A(N) con-
sists of a single energy Ec independent of N, to have nontrivial dynamical
lower bound. The method in [DT] is good if the sets A(N) are "thin", but
is far from being optimal in general. In particular, under Condition (1.11)
[DT]’s result yields ,Q (p) &#x3E; ( 1- 3~/p)/(l +~), which is weaker than ( 1.10) .

As another corollary of our main result, we get the following. Let us
assume that for some set S of positive Lebesgue measure, one has

where the symbol E’ stands for the sum the discrete case and

the integral fo dx in the continuous case. Then as soon as f =- 1 on ,S’, one
has B+(p, f ) &#x3E;, 1 - 1 +’ for all p &#x3E; 0, and B+ (oo, f ) = 1. In particular, thep

case a - 0 should be compared to Simon-Stolz criterion for absence of pure
point spectrum [SiSt]. They show that if then E is

not an eigenvalue. In other terms, if inf Ee s ’, ), then

there is no point spectrum in S. But nothing can be said about transport.
Here we require the same kind of condition but with the infimum inside the

summation; then one can deduce not only the absence of point spectrum,
but also non trivial transport: (3+ (p, E) &#x3E; 1 - p on S.p

If traditionally the most relevant order of the moment is the moment
of order p = 2:1D~II(2, f, T) (and its associated transport exponents ~3~(2, f )),
the other values of p turn out to be meaningful, providing important
information on the wave-packet structure. For instance, it is quite clear that

wave-packets behave differently in cases where (3:1::.(p, f ) is a constant ~3~ (f ),
or if it does increase with p. The idea is that, in the first case, wave-packets
do not spread out when travelling, and in the second case, different parts
of a wave-packet travel at different speeds, so that wave-packets spread out
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when travelling. Natural quantities to look at are then the limits as p goes
to 0 or oo: f3I (0+, f ) = limp-0 f3I (p, f ) and f3I (oo, f ) = limp-,,,, ~3~ (p, f ) .
In this paper we shall relate the behavior of the moments M(p, f, T) to the
speed of the different parts of the wave-packet. In particular we shall give
a precise statement to the following idea: f ) gives information on
the speed of the essential part of the wave-packets, while (3I (00, f ) gives
information on the speed of the fastest part of the wave-packets. More

precisely, set, for Q ~ 0,

where PN is the spatial projection outside the ball of radius N and center
of the origin. Define S* (a) the growth exponents of P(a, T). Then it is

shown that

and

We moreover relate the behavior of the transfer matrices to the functions

S::i:(0152) by showing: if ~ ~ T (E, N, 0) ~ ~  N’y for all E E 5’, ~ &#x3E; 0, and all N

large enough, then, if f =- 1 on S, one has 1 and ,S’- (0152) ~ 2-y for all
a  0152~ (and a similar result for subsequences). The latter is a consequence
of the lower bound described in (1.10). We refer to Section 4 for precise
statements.

The paper is organized as follows. In Section 2 we state the general
lower bounds we obtain for quantum dynamics, that we prove in Section 3
for both discrete and continuous models. In Section 4 we develop a general
analysis of wave-packets that leads, in particular, to the characterization
of the transport exponents as p tends to 0 and +oo. Section 5 is devoted
to the application of our general lower bounds to Schrodinger operators
with different type of potential: a random decaying potential (discrete
and continuous model), several kind of sparse potential, the quasi-periodic
potential studied in [La], [DR2] and that we revisit here. In Appendix
we first prove the trace estimate one needs to apply [BGT1], [BGT2]
to the general class of potential we consider. We then provide a general
approximation lemma that enters the proof of our main result in a crucial

way, and that relies on the Helfrer-Sojstrand formula.

Acknowledgements. - F.G. thanks Abel Klein for many enjoyable
discussions, as well as the hospitality of the University of Chicago where
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P. Sloan Fellowship and NSF grant DMS-0129470.

2. General lower bounds in dimension one.

For x E Z or R we shall use the following notations

The potential V is assumed to be polynomially bounded: there exists
a, b &#x3E; 0 such that

for all x E Z+ in the discrete case, and x E R+ in the continuous case.

Moreover, in the continuous case we further suppose that the potential
satisfies the following regularity property:

and Y~2&#x3E; is relatively -A form-bounded with relative bound  1. To fix

the notation we thus require the existence of two constants 81  1 and 62
such that

We note that our results extend to operators defined on the full line.

For a given operator H on .~2 ( ~l, +(0)), resp. L 2 ( [0, +(0)), we define
the transfer matrices T(E, x, y) between sites y and x as:

where denotes the solution of Hu = Eu, E e Iae, satisfying
sin 8, + 1) = cos 6~, resp. = sin 6~ 

cos 0 (note that T (E, x, x) = Id). It follows from the definitions that if u is
a solution of the eigenvalue equation Hu = Eu, E E R, then
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Note that in the discrete case, the transfer matrix T(E, x, y), x &#x3E; ~/ ~ 0,
can be written as

We further define, for E E R, the measurable function

Recall the definition of the moment of order p given by (1.1) and its
associated transport exponents given by (1.3). To specify transport rates
nearby a given energy level, and following [GK2], we construct transport
exponents associated to a given open interval ~3~ (p, I ) together with the
local transport exponents (3~ (p, E) as

~""’0B~ I

We finally define the lower and upper asymptotic transport exponents at
energy E by

Basic properties of such moments and transport exponents are studied
in [GK2]. In particular the fact that the moments M(p, f, T) are finite
and that the transport exponents defined in (2.9)-(2.11) lie in ~0,1~ relies
on [GK1]. It is valid for any potential V in the lattice case, and under
Conditions (2.3)-(2.4) in the continuum.

The key theoretical result we prove is the following.

THEOREM 2.1. - Let H = -A + V where V satisfies (2.2), and
in addition (2.3)-(2.4) in the continuous case. Let S be a bounded set of
positive Lebesgue measure: ,S’ C [-K, K]. Pick f E 0 and

f = 1 on S. For any q E (o, 1 ) and cr &#x3E; 0 there exist constants Cq &#x3E; 0 and

C2 (depending only on q, f, a, a, b, K) such that for all 6- E (o,1),

I, 11 ,---I i / -III

where N = the discrete case and N = in the continuous

case ; k(E) is a finite constant, positive for Lebesgue a.e. E, given by
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where the constant K81,82 &#x3E; 0 depends only on Ol, 02 appearing in (2.4),
and uo is defined belour Eq. (2.5). As a consequence, for any p &#x3E; 0 and

T &#x3E; 0,

with N = [T 1+a] in the discrete case and N = in the continuous case.

The constant C3 depends on p, f, a, a, b, K. The constants Cp &#x3E; 0 and C3
in (2.14) depend also on the continuous case.

Remark 2. I .

(i) Theorem 2.1 is stated for a given set S’ at a given time T (and
thus a given scale N). This flexibility will thus allow for different kind of
applications. For instance S may depend on T, or one might consider time
sequences to get result on upper exponents.

(ii) We note that the conclusions of Theorem 2.1 do not depend on
the nature of the spectral measure That is why our result enables
one to investigate indifferently dynamics in the pure point or singular
continuous region. Moreover, it is easy to see that the bound (2.14) remains
stable under finite perturbations of operator H = Indeed, one
can easily see that if one changes the potential V in a compact region
then, in the same sense as in (1.6), I I T (E, N, 0) 11, where T
and T’ denote, respectively, the transfer matrices for the unperturbed and
the perturbed Hamiltonian. The constants in the equivalence are uniform
in N &#x3E; 0 and EEl, I a compact interval. As a consequence, the two

corresponding transport integrals in (2.14) are equivalent. At the same
time it is well known that changing the potential even in one point may
change dramatically the nature of the spectrum (leading, for example, to
a transition from pure point to singular continuous, e.g. [DRMS]) and the
support of the spectral measure. Thus, from this point of view, dynamical
results are more stable than spectral ones. This stability holds, of course,
for all the results of the present paper since they are obtained using
Theorem 2.1. Such an observation was already made in a similar context
in [DT].

(iii) The result immediately extends to any boundary condition at
the origin (provided the operator is self-adjoint). One then has to change
the solution uo accordingly in the constant in (2.13).

(iv) To keep the size of this paper in check, we decided to discuss
in detail half-line case only. There is a straightforward extension to the
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whole line case, where in (2.12) and (2.14) is replaced by
N, 0)11, IIT(E, -N, 0) ~ ~ ) . The proofs are nearly identical; a small

adaptation is needed in the proof of Lemma 3.1 which we will leave to
the interested reader. We are going to use the whole line version when
discussing transport in the almost Mathieu equation (Section 5.3).

Theorem 2.1 is a combination of the three following ingredients :

(i) The general bound obtained in [BGTI] , [BGT2], which provides
a lower bound for the moments of order p and at time T using transport
integrals with q = (1 + d ) -1 and s = T -1 (here d = 1).

(ii) The equivalence property between the transport integral 1,, (q, E)
and the generalized R6nvi integral L. (q, ~) == ~- J* drp (r - E, x + proved
in [BGT3].

(iii) The lower bound on the spectral measure, evaluated on a ball
of radius E = T-1, in terms of the behavior of the transfer matrices

T(E, N, 0) with N x5 T, and for almost all energy with respect to the

Lebesgue measure (and not to the spectral measure!). Such a lower bound
is given by Proposition 2.1 below.

Proposition 2.1 indeed converts the upper bound on I I T(E, n, 0) II into
a lower bound on the spectral measure. The idea of the proof is similar to
that in [CM, Section 4] where dimp(p) = 1 is proved for sparse barriers
model. Our proof is however technically different, and provides more precise
estimates in terms of the 

PROPOSITION 2.1. - Let H be as in Theorem 2.1, 1/Jo as in (1.2),
and let I be a compact interval. There exists a universal constant C1 and
for all M &#x3E; 0 and a &#x3E; 0, a constant C2 (depending on I , M, a, a, b) such
that for all E [ and all A E I, one has (setting N = [E-l-a] in the
discrete case and N = in the continuum)

I in the discrete case, S(N, E) =
in the continuous case, and k(E) is given in

Theorem 2J Eq. (2.13).
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Remark 2.2

(i) While in the present paper we use only the lower bound (2.15),
the upper bound

can easily be derived from our analysis in the discrete case.

(ii) It is clear that in the case of singular measures the first bound in
(2.15) may be significantly better for some energies A. Indeed, if the norm

] is large for some E, it is possible that S(N, E) is small (of
order I IT (E, N, 0)11-2) . This may happen if E is close to the spectrum of H.
However, to use the stronger bound, one should have a rather good control
from above of S(N, E) for a given large N as a function of E, which is not
easy.

(iii) The power 2 of IIT(E, N, 0) II in Proposition 2.1 is optimal, as
can be seen, for instance, from the analysis on discrete sparse potential
achieved in [Tc2].

(iv) As an illustration, assume that for Lebesgue a.e. E in a neigh-
borhood of A, one where C is uniform in E

and N. The bound (2.15) yields p(A - E, A + s) ~ C~~l+2’~+2~. . If as

far as spectral dimensions are concerned such a lower bound is useless,
it turns out to be quite useful for transport properties, as already no-
ticed in [Tcl]. In addition, note that (2.16) yields, in this particular case,
~(~2013~,j-+c) ~ for any cr &#x3E; 0, and thus p is 1- 2-y continuous
if -y  1/2.

We turn to some consequences of Theorem 2.1. Let S be any Borel set

with I-t(S) &#x3E; 0, and f a measurable function. Define f s = JL-essinfsf(E).
Let us recall that f s is the unique real number such that one has simulta-
neously :

(i) f (E) &#x3E; f s for p-a.e. E,

(ii) for all v &#x3E; 0, there exists Sv C S, &#x3E; 0, such that for all
E E ~S’v, one has f (E)  fs -E- v.

THEOREM 2.2. - Let H be as in Theorem 2.1, ’l/Jo E 1-(, as in (1.2),
and recall the definition of l’ (2.8). Suppose there exists a bounded Borel
set S C [-K, K], of positive Lebesgue measure: ISI &#x3E; 0, such that 1’s =

Leb-essinfS1’(E)  oo. Then, for all f E C’ (R), f = 1 on S, one has for
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all p &#x3E; 0,

For the moment M(p, f, T) itself, for any v &#x3E; 0

where C1 &#x3E; 0 depends on p, v and C2 &#x3E; 0 depends on p, f, v, a, b, K. These
constants depend also on O1, 82 in the continuous case.

It follows that if ~y(E) =  00, then for all p &#x3E; 0,

(Note that if -y(E) is continuous at E, then -(E) - 7(E).)

Let us discuss this result. First of all, of course, (2.18) starts to be
nontrivial for p &#x3E; 2-ys. Next, in the case of the whole line operator, it is

sufficient to assume that one takes in (2.8) either the limit r - +oo or
x --~ -oo for all conclusions to remain true.

In the particular case where q(E) = 0 for Lebesgue a.e. E E I, where
I is some open interval, Theorem 2.2 asserts that ~3- (p, E) = 1 on I. One
may see this as the dynamical version of spectral results saying that if the
transfer matrices are bounded, then the spectrum on I has an absolutely
continuous component [Sil], which implies = 1 by Guarneri’s
arguments [G]. Actually the absolutely continuous spectrum gives a little
bit more: it gives M(p, f , T) &#x3E; CTP in (2.18). But on the other hand (2.8)
with ~y(E) = 0 is a weaker condition than the strict boundedness of the
transfer matrices.

More generally, Theorem 2.2 belongs to the set of results relating
power law upper bounds for the transfer matrix and lower bounds for

dynamics. The oldest results are obtained using the power-law subordinacy
theory of Jitomirskaya-Last. Provided ~y(E)  ~y  1/2 on some set S,
it ensures that the spectral measure restricted to ,~ is, if not zero,
1 - 27 continuous ([JL, Corollary 4.4]); it then yields through Guarneri’s
type argument as developed by Combes [C] and Last [La], 
C(J, v)TP(1-2"’(). This bound is nontrivial for all p &#x3E; 0, provided  1/2
(the condition -y  1/2 prevents the spectrum from having eigenvalues).
If the set S has a positive Lebesgue measure, one can compare it with

the bound of Theorem 2.2. One can easily see that the bound (2.18) is

better for p &#x3E; 1 whatever is the value of -y E (o,1/2). Strictly speaking,
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as a singular measure, may be supported outside S, in which case the
subordinacy theory cannot supply any information at all. On the other

hand, if 181 I = 0, (8) &#x3E; 0, then our Theorem 2.2 cannot be applied
directly.

As another remark, let us compare Theorems 2.1 and 2.2. One

can observe that Theorem 2.1 has a wider domain of applications than
Theorem 2.2. For example, if there is only a single energy (or a finite number
of energies) E, where q (E)  --f-oo, Theorem 2.2 gives no result. At the same
time in such cases Theorem 2.1 may work. In particular, this is the case of
random polymer model [JSBS], where one proves that C

for E : E - clm. It is easy to see that Theorem 2.1 yields
/3"(p, 1) ~ ~(~ " 1 /p) if f = 1 near Ec. This bound is, however, weaker
than that of [JSBS] ~3- (p,1 ) &#x3E; 1 - 1 / (2p) obtained by methods of [DT].

We have the following equivalent of Theorem 2.2 for subsequences of
time.

THEOREM 2.3. - Let H be as in Theorem 2.1 and as in

(1.2). For a given increasing sequence such that limi &#x3E;0 n2 - -f-oo,
we define for E E I1~ the measurable function taking values on [0, +oo]:

Suppose there exists a bounded Borel set S C ~-K, K], of positive Lebesgue
measure: S ~ &#x3E; 0, such that qs - . Then, for all

. on S, one has for all p &#x3E; 0,

For the moment M(p, f, T) itself, there exists a sequence such that

for any v &#x3E; 0 and i &#x3E; 0, there are positive contants C1 (v) and C2 s. t.,

It follows that 1 then for all p &#x3E; 0,

COROLLARY 2.1. - Let H be as in Theorem 2.1. Suppose that for
some set S of positive Lebesgue measure, and for some 0152 ~ 0,
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where the symbol ¿~ stands for the sum the discrete case

and the integral dx in the continuous case, then for any E E S,
B+ (p, E) &#x3E; 1 - 1 pa for all p &#x3E; 0, and B+ (E) = 1.p

3. Proof of the general bounds.

3.1. Proof of the spectral bounds: the lattice case.

This subsection is devoted to the proof of Proposition 2.1. Let Eo E R.
We introduce "finite volume operators" by cutting the potential after some
site N &#x3E; 0 and replace it by a constant:

The constant Eo will be chosen so that approximating operator has
bounded solutions at the energy interval of interest to us. In particular,
if this interval does not lie in the spectrum of free operator, the shift will
be necessary. We write for the spectral measure associated to 0 and

H (Eo,N) , and R(Eo, N) (z) == (H(Eo,N) _Z)- Ifor the corresponding resolvent.
We prove the following technical result.

LEMMA 3.1. - Let H = -0 + V be any discrete Schrodinger
operator. There exists a finite universal constant C1 &#x3E; 0, such that for any

andN&#x3E; 1,

Here T(E, N, 0) is the transfer matrix of H(Eo,N), which coincides with the
same transfer matrix for the original operator H.

Remark 3.1. - In its spirit, Lemma 3.1 is close to a result of

Simon in [Sil]. The bound in [Sil] is derived for general ID discrete
and continuous Schrodinger operators provided the transfer matrices are
uniformly bounded in N. However, the power that one gets in this general
context is not as good as the one Lemma 3.1 provides for the particular
operator gets supN II T (E, N, 0) ~~6 in [Sil] and 
here. It is of course crucial for the dynamical lower bound to get the smallest
possible power. A related result in a continuous setting has been used
already by Pearson [PI] in his work on sparse potentials.
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Proof of Lemma 3.1. - Let Eo and E be as in the lemma. It follows
from the Stone’s formula that

Let We estimate

below as follows:

Using the transfer matrices representation, one has for any n &#x3E;- N,

where T is the transfer matrix corresponding to the operator 
In (3.5) we used that == IITII ( for any 2 x 2 matrix with complex
coefficients and determinant 1 (see e.g. [CFKS, chapter 9]). Note that

T, where To is the transfe]
matrix of the free Laplacian:

Note that for any real

elliptic, so that

where C &#x3E; 0 is a finite universal constant. As one leaves the real line

for the complex plane the bound (3.6) no longer holds. However, for any
1, 1171 ~ 1 one can show that the following bound still holds:

Indeed,
developing 1 ~ yields (3.7). As a consequence,
plugging (3.5) and (3.7) into (3.4) gives
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It is well known (e.g. [CL], [PF]) that

where m(z) is the Weyl function of operator (the Borel transform
of its spectral measure). One observes that solutions uo (n, E), u7r /2 (n, E)
for n  N + 1 are the same for both and H since the potentials
coincide on [0, N~ . Since uo (N, E) and u7r /2 (N, E) are both real, we have

where is finite and similarly for + 1). It follows from (3.3),
(3.8) and (3.9) that

Straightforward computations show that the minimum of the polyno-
mial t ~ (a + tb)2 + (c + td)2 is obtained for the particular value
to = - (ab + + d2 ) . Putting that into (3.10) and using the fact
that the Wronskian of uo and U,/2 is one, we get the first bound of (3.1).
The second bound of (3.1) follows directly since

Remark 3.2. - Note that, as a consequence of (3.1), H (Eo, N) has
absolutely continuous in the range of E’s under consideration. That the
sprectum is actually purely ac follows from well known results (see e.g.
[We], [GP], [LS]).

Proof of Proposition 2.l. - For given A E I, N we shall use

Lemma A.1 with Hl - H and H2 = H(À,N). Since I is compact and the
potential V is polynomially bounded, one can see that V2 (x) I --

with constants A, b uniform in A E I, N. Thus, the bound of
Lemma A.l together with Lemma 3.1 gives for any M &#x3E; 0, o- &#x3E; 0,

where depends only on I, M, Q, a, b.
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3.2. Proof of the spectral bounds: the continuous case.

Following [GK1], the approximation lemma given in the appendix
remains valid in the continuum as well (in particular one needs a suitable
Combes-Thomas estimate with explicit rate of exponential decay). We are
thus left with the proof of the analog of Lemma 3.1 in the continuum. For
the sake of completeness we provide a sketch of the argument. We show
that there exist constants &#x3E; 0 for Lebesgue a.e. E E R, such that if
Eo is such that E E [Eo + 1, Eo + 3], then

It then follows from the latter that for A E R, and for any E E (0, 1 )),

To prove (3.13) we proceed as in the discrete case, namely we cut the
potential and use the matrices of the free Laplacian after the cut. We first
make use of Sobolev-estimates. Recall V = + V(2), where V (1) &#x3E; 0
and Y~2&#x3E; is relatively -A bounded with nonnegative constants 01  1

and 82 as in (2.4). As a consequence there exists a constant  oo,

depending only on 81, 02, such that uniformly in n &#x3E; 1,

(see e.g. [CFKS] or [GK2, Lemma A.2]). For convenience we assume
Ke1,e2 ? 1 (by may be enlarging Ke1,e2 if necessary). Pick q  1, and
consider the vector

It follows from (3.14) that
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where we used the boundedness of the transfer matrix T(E, N, x) -
To(E - Eo, N, x), with (E - Eo) E [1, 3], x &#x3E; N, and To the free transfer

matrix, and the continuous analog of (3.7) (e.g. [Sil]). The constant
~Oi,e2 ~ 0 is independent of E. Using now the kernel formula for the
resolvent (z), one gets an expression for cp in terms of the basic

solutions uo and Un /2 at complex energy z = E + iq:

where j and m is the Weyl function (see
e.g. [T]). Similarly, = uo (y, z)dy. Set co (z) - ~uo, xo) =

fo uo(y, z) dy. Letting r~ going to zero, it thus follows from (3.16) (see the
proof of the discrete case for more details) that

The function co (z) is analytic by analyticity of (see e.g. [T]), thus
co (E) is not zero for Lebesgue almost every E. The r.h.s. of (3.17) can be
now bounded from below in the same spirit as in (3.10) in the discrete case.
Finally, we get

Here k is positive for Lebesgue almost 

3.3. Proof of the lower bounds on the moments.

We first prove Theorem 2.1. It will be a combination of Proposition 2.1
and the lower bound on the dynamics given by the transport integrals and
that relies on [BGT1], [BGT2], [BGT3].

’ 

Proof of Theorem 2.1. - Let f C Cü(IR), f &#x3E; 0, f = 1 on S. We
first derive the lower bound (2.12) on transport integrals
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We shall take advantage of the equivalence of different definitions of

the generalized fractal dimensions of a measure, as stated in [BGT3,
Theorem 2.1]. Such an equivalence was well known, and rather trivial, for
q &#x3E; 1. It is not the case in the more delicate regime q E (o, 1), which has
recently been treated in [BGT3] for any Borel measure on R of finite mass.
In particular putting together Lemma 2.1 and Lemma 2.3 of [BGT3] gives,
for some finite geometric constant Cq &#x3E; 0, and for any Borel measure u of
finite mass,

We thus have to bound from below the quantity

j-+c)) . Since the function f is uniformly continuous, there exists n E (o,1 )
such that ]_ - 2q. Define the set

Now for any E  Tj and for any .r c J, one verifies that (~ 2013 E, x + E) c
 C {2/,/(~) ~ ~} (recall that f = 1 on S). It follows that

for all E  q and .r ~ J,

Moreover, for any given M &#x3E; 0 and a &#x3E; 0, we get from Proposition 2.1,
Eq. (2.15) that uniformly in x E I = [-B - 1, B + 1], where B is such that
supp f c [-B, B],

with

Recall the elementary inequality

Moreover it follows from Jensen inequality that:
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It follows from the combination of (3.20), (3.21) and (3.22) that

where we fixed M = 2/q. Let E E S. Then, if E~  c/2 and £  q, the
definition of the set J implies x E J. Therefore, using Fubini Theorem and
integrating on E only over ,S’ yields (note that 2 )

for T large enough, where 1 The bound (2.12) then
follows from (3.19) and (3.24).

We turn to the proof of (2.14) on 1DR(p, f, T) for which the following
general lower bound was shown to hold:

The constant C depends also on E)l, 02 in the continuous case. In the

lattice case, and for compactly supported measures (which is the present
case) (3.25) is the main results of [BGT1]. This result (or, more exactly, a
similar one) has been extended to any measure in [Tcl, Theorem 4.2]. In
a continuum setting, the lower bound (3.25) is also valid, as described in

[BGT2], provided the operator ,f E Cc~, is shown to be Hilbert-
Schmidt, with

where XN is the spatial projection onto [0, N]. That xN f (H) is Hilbert-

Schmidt is needed in [BGT1, Theorem 3.2] and [BGT2, Lemma 1], and the
explicit bound (3.26) is used in [BGT1, Eq. (3.16)] and [BGT2, Eq. (31)].
In appendix A.1 we supply this bound for the general class of potentials
we consider here (the argument is done in arbitrary dimension).

Now, plugging (2.12) into (3.25) yields



807

for T large enough, were , The state-

ment of Theorem 2.1 follows. 0

Proof of Theorem 2.2. - Let S and f be as in the theorem. We
thus assume that qs = Leb-essinfsy(E)  oo. By definition of -Is for

v &#x3E; 0, there is a set Sv C S, &#x3E; 0, such that ~y(E)  ’rs + v if E E Sv.
Now it follows from the definition of’r(E) in (2.8) that

where h(E) = sup~ n, 0)11 ~ 1 is a measurable function. Note
that h(E) is finite for all E E Sv. Since Sv is a bounded set and f = 1 on
,S’v, one can apply Theorem 2.1 with the set S = and a = v. First, we

get from (2.12),

Since h is finite on ,S’v and k(E) is positive for Lebesgue-a.e. E, the
integral in (3.29) is a positive constant depending on p, S, v. Finally, since
N = [T’+’] and £ = T-1, we obtain from (3.29) for any v &#x3E; 0, and for all

By definition of the generalized dimension.

We turn to the moments f, T). We combine (3.30) with (3.25)
to get, for any v &#x3E; 0,

with suitable new constants. In particular we get

Pick now E E R such that y(E)  oo. Then for any bounded open interval

I :3 E, qI  oo, and it follows from the definition of the transport exponents
in (2.9) that B- (p, I) &#x3E; 1- this is true for all I :3 E, we get withp

the definition (2.11 ) that /

Proof of Theorem 2.3. - We repeat the proof of Theorem 2.2 above
but with the subsequence of scale Ni, and thus the subsequence of time

Ti = It leads to upper limits rather than lower limits. 0
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Proof of Corollary 2.1. - By hypothesis, for any v &#x3E; 0 there exists a

sequence such that Leb-essinfsIIT(E, ni, 0)~~-2 &#x3E; Thus

for any i E Z+, there exists a set ,S’2 C S of full Lebesgue measure in S:

= 0, such that for all E E Si, one has I IT (E, ni, 0) ~~ -2 &#x3E; 

Consider 5 == it has full Lebesgue measure in S: IS B 51 == 0.

By construction we have that for any E E 6’ and for any i E Z+,
IIT(E, ni, 0)11  . Now Theorem 2.3 applies to the sequence

and the set S. m

4. An analysis of the wave-packets spreading.

In this section we shall introduce and study some quantities related
to the spreading of wave packets. In particular we shall make rigorous the
idea that the behaviour of {3-:1:. (p, f ) as p goes to zero is governed by the
essential part of the wave packet, while the behaviour of ,~~ (p, f ) as p goes
to infinity is governed by its fastest part. In the sequel we restrict ourselves
to the discrete Hilbert space .~2 (~d), but the analysis can be carried over
to the case.

Let 0 be some normalized initial = 1 (think about
0 = f smooth and compactly supported). For any a &#x3E; 0, T &#x3E;, 1

let us consider the function

where (~n)nE~d denotes the canonical basis of in other terms

and it is defined so that P(O, T) = 1 for all T &#x3E; 1. Define now, for

a E [0, two exponents taking values in [0, 

If T) = 0 for some a&#x3E;0 starting from T &#x3E; To, we define = +00.
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Note that for simplicity, and most of the time, we shall drop the
subscript o and simply write P(cx, T), ure shall also drop the
dependency in f in the transport, and write j3I (p).

One immediately checks that both functions ,S’- (a) and S+ (a) are
nondecreasing and that S* (0) = 0. The choice of signs is such that for all

To motivate this convention note that if ,S’- (a)  for some a &#x3E; 0,
then taking 6 &#x3E; 0, one has for all T large enough

For S+ (a) similar bound holds on some sequence of times. The consistency
of this convention will become even clearer in the sequel.

The bound (4.3) also illustrates how the functions (c~) control the
power decaying tails of the wave packet. These tails are important when
considering the moments of position operator as shown by the following
proposition.

PROPOSITION 4.1. - One has

denotes the Legendre transform of,

Proof of Proposition 4.1. - The proof is quite immediate and
follows from (4.3) and its equivalent with ,S’+ (c~) and time sequences. For
instance, if S’- (c~)  +oo for some a &#x3E; 0, then it follows from (4.3) that
for any 6 &#x3E; 0 and T large enough,

the same lower bound

remains trivially true. 0

When considering the functions two couples of numbers are
of particular interest:

Since ,S’~ are non decreasing functions,
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Using (4.3), one can interpret at as the (lower and upper) rates of

propagation of the essential part of the wave packet, and a§ as the rates
of propagation of the fastest (polynomially small) part of the wave packet.
As pointed out in [DT], the following lower bounds holds:

where dimH and dimp denote the Hausdorff and the packing dimensions
of the spectral measure ltp respectively. These bounds are a consequence of
Corollary 4.2 below, but they follow also from classical proofs of [G], [La],
[GSB1].

Of course (4.6) does not say anything in presence of pure point
spectrum. One may think that pure point spectrum always implies aF == 0!
For it is well known, from the RAGE theorem, that for any 0 belonging to
the point spectrum subspace,

so that 0 for all a &#x3E; 0. But it does not imply that

S7’~~ (a) = Indeed, for some a &#x3E; 0, P(a, T) may tend to 0 slowly, for
instance like a &#x3E; 0. In which case S’- (a) = 0 and thus az &#x3E; 0.

A similar behavior for time sequences leads to at &#x3E; 0, as illustrated by
the perturbed almost Mathieu model of [DR2], revisited in the present
paper, where the spectrum is pure point, but at = 1 (a consequence of
Theorem 5.5 and Corollary 4.2).

It follows from Proposition 4.1 that ,~~ (p) &#x3E; al , and with (4.6) one
recovers the well known Guarneri’s type lower bounds [G], [C], [La], [GSB I] .
Since 0:1:(p) are nondecreasing, one gets

We will show that, unlike and dimp(py), the numbers a±
exactly characterize /~(0+). In a similar way, one easily derives from
Proposition 4.1 that

and we will show that the numbers 0152; exactly characterize these limits
(3~ ( 00 ). This makes rigorous the idea that the behaviour of (3~ (p, f ) for
small p is governed by the essential part of the wave packet, while the
behaviour of ~3~ (p, f ) for large p is governed by its fastest part.
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THEOREM 4.1. - Assume that for some ~ &#x3E; 0 (in most examples
~ = 1), and for all p &#x3E; 0, there exists a constant Cp &#x3E; 0 such that,

Then

As a consequence,

Remark 4.1.

(i) The lower bounds $* (0+ ) ) at and ,C3~ (oo) &#x3E; a~ do not require
Condition (4.9).

(ii) The upper bound (4.10) is the first non linear and general upper
bound for dynamics of quantum systems. In [Tc2], the behaviour of P(a, T)
is explicitly obtained for the sparse potential model of [JL], [CM], and one
can compute ,S’- (c~) . Combining (4. 10) with this analysis exactly yields the
upper bound obtained in Combes-Mantica [CM] for p ~ 2, and for all p in
Tcheremchantsev [Tc2].

Proof of Theorem 4.1. - The lower bounds (4.7) and (4.8) are

already proved. Next, since (4.9) implies ø:i: (00) ~ g, the bound 

a§ # g follows. We turn to the upper bounds, and in first place to (4.10)
for 0+ (p, f ) . For any given cx E (a and 6, v &#x3E; 0 with + ð,
we set:

Note that if aj = g we do not even need the term R3. Clearly,

and, for T large enough,
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Next, we estimate
for any A &#x3E; 0 for all T large enough .
choosing A = p(~ + 6) leads to, for T large enough,

For any m &#x3E; 0, (4.9) implies

Taking m &#x3E; 2~, we see that
(4.17) R4  C(p, 6)-
It follows directly from (4.14)-(4.17) that

The result follows. The proof for (3- (p) is similar.

Now, notice that (4.10) immediately implies (3:l: (00) ~ To prove
that ,~+ (0+ )  at , assume that at  aj (otherwise there is nothing
to prove: (3+(0+) ~ a~ = at), and pick a = at + v  at
with small v &#x3E; 0. Then &#x3E; 0, and taking p small enough one has
a &#x3E;, at - 8+(a)/p, therefore (4.10) implies ~3+ (p)  cx. It follows that

(3+ (0+) ~ at . The proof for (3- (0+) is similar. 0

As an immediate corollary, we can characterize quantum systems with
an homogenous dynamical behaviour, namely systems where the transport
exponents are constant: /?~(p) = {3:l: for all p &#x3E; 0.

COROLLARY 4.1. - Under the condition (4.9), B- (p) = (3- for all

In other terms, quantum systems with an homogenous dynamical
behavior are characterized by the fact that their wave-packets travel at a
unique speed (but not necessarily constant for al =1= at is possible). Thus,
in such systems wave-packets do not spread out and stay gathered.

Good candidates for quantum systems with a non homogenous dy-
namics are operators with: random decaying potential as in Section 5.1,
sparse barriers as in Section 5.2, polymers [JSBS], and Fibonacci poten-
tials [DT], while we would rather expect the Almost Mathieu model treated
in Section 5.3 to have a homogenous dynamics (this is already proved for
the upper exponents). But it turns out that to decide whether a given op-
erator exhibits a non homogenous dynamical behaviour not only requires
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lower bounds on the dynamics but also nontrivial upper bounds, which is
known to be a challenging issue for the coming years. The sole quantum
system where a non homogenous behaviour has been proved to hold is the
sparse barriers potential operator of [JL], [CM] treated in [Tc2]: for suit-
able (3- (p) is non constant in p and one has a-  a- = 1

(while 0+(p) = 1 for all p, and thus ai a+ = 1).
As a second corollary of Theorem 4. l, combining (4.11 ) with the main

result of [BGT1] (recalled in (1.7)), we get:

COROLLARY 4.2. - Under the condition (4.9~, the following bounds
hold:

where D;1/J (q) are generalized fractal dimensions of the spectral measure of
the initial state 

In particular we get, with possible strict inequalities,

We end this section by extracting from Theorem 2.2 and Theorem 2.3
some information on the repartition function ,S’~ (0:) and on a’.

PROPOSITION 4.2. - Under the conditions of Theorem 2.2, resp.
Theorem 2.3, for the state 0 = f (H)61 the following holds:

resp. = 1 and ,S’~ (c~)  2-ys for all a  with qs as in Theorem 2.2,
resp. Theorem 2.3.

Proof of Proposition 4.2. - That au = 1 is immediate from (2.19)
and the equality 0-(c)c) = Now, for any a  au , ~S’- (cx) is finite and

thus max(a, 1 - s p a~ ) = 1 - s p a~ provided p is large enough. Then note
that (2.18) says that ,C3(p) &#x3E; 1 -2~/p. Conbining the latter with the upper
bound (4.10) finishes the argument. The proof for the upper exponents is
similar, using Theorem 2.3. 0

Remark 4.2. - That Theorem 2.2 and Theorem 2.3 actually provide
the exact value of (i.e. cxu = 1) suggests that the lower bounds supplied
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by these theorems indeed take into account the fastest part of the wave
packet represented by c~~ (strictly speaking, to be sure that it is true, one
should prove that at  1 for the considered models).

5. Applications.

5.1. Application to random operators with decaying potential.

Let us consider the Schrodinger Operator with random decaying
potential on t’(Z+),

with the convention u(-1) = 0 and

Here the aw (n) are i.i.d. random variables with a bounded distribution

p (not necessarily smooth), such that the expectation Exp(a~,) = 0 and
Exp(a~) = 1. We denote by P the measure on the probability space, namely
P = p. We specified the form of the potential as in (5.2) in order to
simplify the exposition. However, our result is valid under the more general
condition described in [KLS, Section 8], for a - -1

Under the condition that has an absolute continuous distribu-

tion, the following was shown in [KLS], [KL]:
1. 2, then the spectrum of HW is P-a.s. pure point with

polynomially decaying eigenfunctions.

2. If JAI (  2, then the spectrum of H,, is P-a.s. pure point on
E : V 4 - À2 2 and singular continuous on E : ]E] I  V 4 - À2.
Moreover, in the case of singular continuous spectrum, the local Hausdorff
dimension of the spectral measure at energy E is given by (4 - E2 -
). .

3. Suppose that I A I  2 and o is such that 0 (where P~ is
the projector on the continuous spectrum of Then for this initial state

moments are almost ballistic. In particular, in our notations, {3- (p, E) = 1
for all E : E ~  V 4 - À 2.

Note that [KLS], [LS] yield no dynamical results in the pure point
regime. If the distribution of aw ( 1 ) is not absolutely continuous, there are
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no results (spectral or dynamical) at all. In the present paper we fill this
gap, by applying Theorem 2.2.

We denote by and by ;~w (p, E), ~w (E) the moments and
transport exponents of Hw .

THEOREM 5.1. - Let Hw be the operator introduced in (5.1)-(5.2).
For P a. e. w the following holds: for any f E f &#x3E; 0, f = 1 on

some compact subinterval J C (-2, 2), for any v &#x3E; 0, there exists a finite
constant C~, (p, J, v) &#x3E; 0, such that for all sufficiently large T

As a consequence for

any E E (-2, 2),

Proof of Theorem 5.1. - Such a model fits into the framework of

[KLS], so that the following holds [KLS, Theorem 8.2]:

(5.5) For a.e w, for a.e E,

Now Theorem 5.1 follows by application of Theorem 2.2. 0

If A  2 then P-a.s. Hw exhibits a spectral transition from pure
point to singular continuous spectrum 
ý4 - À2) [KLS]. As Theorem 5.1 shows, this spectral transition disappears
if one turns to dynamics and take 13- (oo, E) as a (weak) indicator of the
dynamical behavior of the quantum system: 0-(oo, E) remains equal to
1 everywhere on (-2, 2) . We moreover believe that the local transport
exponents of order p, ~3- (p, E), should increase continuously as E varies
from the edge of ~-2, 2j to its center, although our result is not sharp
enough to prove this. Note that this provides a new example of Schrodinger
operator with pure point spectrum and nontrivial transport. The first such

example of what has been seen as a "pathological" behavior has been given
by Del Rio, Jitomirskaya, Last, Simon in [DR2]. It yielded the interesting
question of what should be called localization [DR2]. The operator
presented in the present article with A  2 raises another issue (related
to the first one though), namely: what should be called a transition? This
question is also discussed in [GK2], [GK3].

We point out that the result of the Theorem does not depend on
the absolute continuity of the law of a,(l), unlike the spectral result in
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[KLS] and dynamical results in [KL]. It is an explicit example illustrating
an advantage of Theorem 2.2 in that it yields directly dynamical lower
bounds. If -y(E)  1/2, i.e. if E lies in the singular continuous part of the
spectrum then Theorem 5.1 provides a new result only if the distribution
of c~(l) is not absolutely continuous.

A continuous analog of this result is as follows. Assume that g(x) E
Co(O, 1). Let be i.i.d. random variables satisfying same conditions
as before. Let

satisfying boundary condition cos Ou(O) + sin Ou’(0) = 0. Denote by g the
Fourier transform of a function g.

THEOREM 5.2. - Let HW be the operator introduced in (5.6).
For P a.e. cv, the following holds: for any f E Cü(IR), f &#x3E; 0, f - 1 on

some compact subinterval J C (0, oo), for any v &#x3E; 0, there exists a finite
constant J, v) &#x3E; 0, such that for all sufficiently large T

As a consequence
for any E &#x3E; 0,

Similarly to Theorem 5.1, this result follows from Theorem 2.2 and
Theorem 9.2 of [KLS]. In [KLS], it was shown that

’-"

Notice that while the spectral conclusions can be drawn only for a.e. 8
[KLS], we obtain dynamical bounds for all boundary conditions. Moreover
for a.e. 8 the spectrum is pure point for E &#x3E; 0 small enough, and singular
continuous if E is large enough, while there is no transport transition in the
(weak) sense that E) = 1 for all E &#x3E; 0. Note that to the best of our

knowledge it is the first continuous Schrodinger operator with coexistence
of point spectrum and transport.
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5.2. Application to discrete sparse potentials.

We first consider bounded barriers and provide an application of
Theorem 2.2. We then propose a model with high barriers where Theo-
rem 2.3 yields non trivial results.

We shall denote by xn &#x3E; 0 the location of the nth barrier and by
hn &#x3E; 0 its height. The potential then has the form

acting on f’(Z+). We first consider the case where for all n &#x3E;, 1

and for some a &#x3E; 0, and to fix the ideas we require

In particular the case of barriers of same height, hn - a for all n, is of

interest.

If a = 0 then the potential is quite sparse; this case has been studied
in detail starting from the work of Pearson [PI]. In particular, if 0152 = 0,
Kiselev, Last and Simon [KLS] proved that the spectrum is purely singular
iff En h n - 2 = oo, provided hn --+ 0, and Krutikov, Remling [KrR] extended
this result to the bounded case supn hn  oo. It is moreover not very
difficult to check, using either Jitomirskaya-Last’s version of subordinacy
theory [JL], or Proposition 2.1 that the spectral measure is 1 dimensional:
dimH(/L) == 1. Thus from the transport point of view, using Guarneri’s
argument as in [La], one gets quasi-ballistic transport in the energy range
(-2,2). It follows that /3- (p, E) = 1 for any E E (-2,2). Note that
since one actually shows that -y(E) = 0 on (-2, 2), with 7(E) as in (2.8),
,~- (p, E) = 1 can also be derived from Theorem 2.2.

The situation gets more interesting if a is not zero. It implies that for
any small q &#x3E; 0, and for n &#x3E; no large enough + _ _ Xn 

is thus enough to treat the case

which is the only assumption on xn we henceforth make and which is

more general than (5.10). One can easily see [Z] that under conditions
lim sup xn/n+1  1 and hn - 0, the spectral measure is again one-
dimensional and thus the transport is quasi-ballistic. Thus, the interesting
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case is that of bounded hn which do not go to 0. For such model with

particular choice rn = ~yn, ~y &#x3E; 2, hn == v =1= 0, Zlatos has recently shown [Z]
that for some values the spectral measure has fractional Hausdorff
dimension. We shall obtain dynamical lower bounds for this model in full
generality.

For E E (-2, 2) the transfer matrix of the free Laplacian is similar
to a rotation. We shall denote by C(E) the constant coming from the
diagonalization of the matrices, so that, for any k # 0,

Note that C(E) explodes at E ~ ~2, but it is continuous in E and

thus remains uniformly bounded on any compact subset of (-2, 2). The
sparseness of the potential then implies that, for any E E (-2, 2),

One can observe that in the region where 1(E)  1/2, The Jitomirskaya-
Last method yields positive local Hausdorff dimension and thus nontrivial

dynamical lower bound like ~3-(p, E) &#x3E; 1 - 21( E). We can prove more
general bounds as follows.

THEOREM 5.3. - Let be a sequence positive integers so
that with a and let (hn)n?l be a sequence of reals so
that 0  hn  a for some a &#x3E; 0. Consider H = -0 + acting
on g2(Z+) with any boundary condition. 

’

The following holds: For any E E (-2, 2),

and thus

where ~y(E) is defined in (5.13).

Proof of Theorem 5.3. - The Theorem follows immediately from

(5.12), Theorem 2.2 and the continuity of q(E) in (-2,2). 11
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Once again we stress that the above result is valid regardless the na-
ture of the spectrum of H. From the spectral point of view, we believe that
the situation could change dramatically as one plays with the parameters
of the models: a, a and (hn ) . Thus it may be very hard to determine the
precise nature of the spectrum.

We turn to the second class of sparse potentials to which we shall
apply Theorem 2.3. In what follows, the height of the barriers hn grows to
0o so that there is no a.c spectrum [sip].

THEOREM 5.4. - Let (hn)n,o be a sequence of nonnegative reals
ulith hn = oo. Pick cx &#x3E; 0. F’or n &#x3E; 1 pick xn so that rn )

Define - Then for any f E
Co (-2, 2) and v &#x3E; 0 there exists C( f , p, v) &#x3E; 0 (and finite) so that

for some Ti - oc, and thus for any E E (-2,2), and p &#x3E; 2ce,
rt-

p

Moreover, if a  1/2, then H has a purely singular continuous spectrum
with packing dimension 1 - 2a and for any p &#x3E; 0: 0+ (p, E) &#x3E;,
1 - 20152.

Proof of Theorem 5.4. - Take f C Cc)o(-2,2), and denote by Cf
the constant Cf C(E), where C(E) is given by (5.11) above.
Pick v &#x3E; 0. Since oo, we know that (h. + 3) ~ (Cf)’I" for any
n larger than some nv. Following the argument described above, we have
uniformly in E C suppf

n

The first part of the result nows follows from Theorem 2.3.

If now a  1/2, then define en by as in

Proposition 2.1. It follows from this proposition that, for any E E supp f ,
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for n large enough,

Therefore, for such E’s,

It implies that 1 - 2a. 0

5.3. Transport for Almost Mathieu revisited.

In this section we would like to revisit the quasi-periodic model
considered by Last [La] and Del Rio, Jitomirskaya, Last Simon [DR2] where
a quasi-ballistic behavior for the upper exponent is shown (,C3+(p, f - 1) =
1, p &#x3E; 0) although the measure is zero-continuous, and even pure point with
exponentially localized eigenfunctions in [DR2]. The operator is defined on
t2 (Z) by

Here we take a irrational and A &#x3E; 2 so that the Lyapunov exponent
is positive everywhere: as a . consequence the spectrum is purely singular
[CFKS]. Our main purpose here is to show that the lower bound in

terms of transport integrals, as provided by Barbaroux and two of us in

[BGT1], actually does provide a full understanding of the mathematical
phenomenon that allows such operators with singular and even pure point
spectrum to exhibit quasi-ballistic transport for some time sequence. In
other terms we shall show that the transport integrals behave quasi-
ballistically for some sub-sequences of time and thereby that the generalized
fractal dimensions D~ (q) are one for q E (0,1 )).

We moreover complete the picture given in [DR2] by showing that
the result is valid for a dense G5 set of irrational frequencies a.

We shall follow closely the strategy of [La], [DR2], which is to con-
struct periodic approximate operators. However the use of our Proposi-
tion 2.1 to get the quasi-ballistic behavior of the transport integrals makes
proofs simpler. Recall the notation (1.4).

THEOREM 5.5. - Let g : R be any function with 

g(t) - + oo and 1 (typically g(t) = log t). There exists a
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dense G6 set of irrationals Q such that for any 0152 E 0, for all 8 E [0, 27r[
and A E ~0,1~, for any q E (0, 1), there exist a constant Cq and a sequence
Ek -~ 0 such that

As a consequence Dtól 1 (q) = 1 for q E (o,1), and thus (3+(p, f = 1) = 1.

Remark 5.1.

(i) As a consequence we note that for the A’s such that the spectrum
is pure point the upper generalized dimensions of D+(q), satisfy
D+(q) = 1 for q E (o,1 ) and D+ (q)  dimp(p6,) - 0 for q &#x3E; 1 (see [BGT3,
Section 4]). The family of dimensions is thus discontinuous at q = 1.

(ii) Note that we are dealing with whole line operator here; therefore
we apply in the proof the whole line version of Theorem 2.1. See Remark
after the formulation of this theorem.

To prove Theorem 5.5 we shall construct inductively suitable a’s using
continued fraction expansion of real numbers (like in [La], [DR2]).

LEMMA 5.1. - Fix a rational number ~xo = po/qo. Then for every
sufficiently small E  E(ao) &#x3E; 0 there exists 6(E, ao) &#x3E; 0 such that if

I a - ao I  6, then for any interval I containing at least one band of the
periodic operator uTe have uniformly in 9 E [0,27r) and A E [0, 1],

where the spectral measure of He,a,a associated to the initial
state 61.

Remark 5.2. - In the particular case where I is the whole spectrum,
then (5.16) together with (3.19) reads -

Proof of Lemma 5.jL - First set A = 0. Since x0 is rational

the spectrum of consists of qo bands: 

Following [DR2] there exists &#x3E; 0 independent of 0 so that

Furthermore, uniformly in E E = 1,2, ... , qo, transfer matrices are
bounded uniformly in 8 by some constant
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C(cxo) for any N &#x3E; 1. If we now let A vary in the compact interval ~0,1~
it is clear that we still have, uniformly in 0 E [0, 27r), A E [0,1] and

We pick any E  E(ao), where £(ao) is chosen to ensure (recall

Now note that

Let us pick a- &#x3E; 0. As a consequence of (5.18) and (5.20), following the
perturbative argument given in (3.6)-(3.7) (or see [Sil] ) , we get, uniformly
in 0 E ~0, 2~r), ~ E ~0,1~ and j = 1, 2, ~ ~ ~ , qo, , 7

where we required that |x - aol is small enough (depending on E, a,

and g) so that log 2. Then for such a’s, apply
Proposition 2.1 with M = 2, which is possible with the state ~o = 61 since
the spectrum of He,a,a is a bounded set (so one can write 61 = 
with f smooth and compactly supported). Recalling (5.19) together with
limt~~ = 0, it follows that for E small enough,

uniformly in j J For such a’s

it follows from (5.22), that, uniformly in 8 C ~0, 2~) and A E ~0,1~,

In the first inequality we used (5.17) and in the second (5.19). 0

Proof of Theorem 5.5. - For a fixed sequence 1k tending to zero,
define the sets
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Notice the set of all a for which Theorem 5.5 is true contains the set

Aoo = k=l k- On the other hand, by Lemma 5.1, each of the sets Ak
contains a dense open set: all rational numbers ao along with their small
neighborhoods (which depend on k, ao). Therefore, contains a dense

G5 set. D

A. Appendices.

A.1. A trace estimate.

Under the general hypotheses (2.3)-(2.4) on the potential, the fol-
lowing result follows from [KKS, Theorem 1.1] with the slight adaptation
discussed in [GK2, Lemma A.4] .

THEOREM A.1 ([KKS]). - Let H = -0 + V on L2(JRd), with V
as in (2.3)-(2.4), and let v &#x3E; 4 . Define (X~ ) as the translation of (X) by
x E i.e. the multiplication operator by (u - x) . There exists a constant
Tv,d,81,82’ such that, uniformly in x E 7ld,

where 4 and [[~]] ] is the smaller integer
&#x3E; 1 . Consequently for any measurable bounded function f &#x3E; 0 on R with
compact support, one has

We prove the following

COROLLARY A.I. - Let H be as above. For any function f E
there exists a constant such that, for all N &#x3E; 0

where PN is the spatial projection onto the cube centered at 0 of

size N, and IIAI12 is the Hil bert-Schmid t of A.

Proof of Corollary A.l. - Pick k s.t. 2 &#x3E; v + d. It follows from

Theorem A.1 that, for all x, y E Z~,
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Then, by taking large enough,

Finally, the result follows from

A.2. An approximation Lemma.

We state this approximation Lemma in a d-dimensional discrete set-
ting and with abstract approximant operators. The proof in the continuous
case is similar, except for the precise Combes-Thomas estimate it requires.
More precisely in the L2 (Ilgd) case, using the Helffer-Sj6strand formula as
below requires the explicit dependency of the constants in Combes-Thomas.
We refer to [GK1] where such a version of Combes-Thomas has been de-
rived.

LEMMA A.1. - Let and H2 = Ho + V2, Ho = -A,
be operators acting on f2 (Zd), such that V, (x) - for for

some N &#x3E; 1. We shall assume the polynomial bound

for all x with some positive A, b. Let M &#x3E; 0, a &#x3E; 0 and ‘
There exist finite constants C( f , M, a, A, b) &#x3E; 0 and m(M, a, b)

1

such that for any E
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where

As a consequence, if I is a compact interval, there exists a finite

constant C(I, M, a, A, b) &#x3E; 0 such that for any E &#x3E; N- 1+0- and x E I,

where ~csH2 ~ , i = l, 2, denotes the spectral measure of Hi associated to the
vector 61.

Remark A.l. - Relying on Gevrey functions, the recent analysis in

[BGK] implies that the error term in (A.7) can actually be shown to be
subexponentially small, rather than polynomially.

We recall the Helffer-Sjostrand formula [HS] (see also [D, Section 2.2],
[GKI] , [BGK]) for a self-adjoint operator H and a (at least slowly) decaying
smooth function f:

OJ ll~

where z = u -I- iv, n = 1, 2, ..., and fn (z) defined as:

where the function T is smooth such that T(t) = 1 1 and T(t) = 0
2. A direct computation yields this useful bound:

where I and x,~ are the

corresponding characteristic functions. The choice of n will be made later,
in (A.17) .

We also recall the well-known Combes-Thomas estimate for H =

Ho + V: there exists a constant nd &#x3E; 1, depending only on the dimension
d, such that

Proof of Lemma A.l. - Let Hl and H2 be as in the Lemma. Denote

by RI and R2 their respective resolvents. Hypotheses on Via, V2 imply that
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We first show

N. Using (A.12) and the Combes-Thomas estimate (A.11), one
has:

Here

.11

We combine (A.8), the resolvent identity, and
(A.14), to get

, I .. . I

Suppose n &#x3E; 2 + b + d. Plug (A.10) into (A.15). The kth derivative of fx,E:,
k ) 0, is bounded by I uniformly in x. Moreover note that

supp fx,e C x + supp f for e  1. Divide the set ,l3 in two parts B1 = 10 
1 ~ and 62 z 1  (u~ ~ . 1. As a consequence, on

and B2 , one 1 and thus 1) &#x3E; mini I?ld On B1
It yields after computations,
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Since (A.13) follows if one chooses n large enough such that

We turn to the second part. As in Combes-Mantica [CM], let us pick
It follows that for any measure ii

(and thus for one has

Since
follows.

For the reader’s convenience, we provide in a few lines the proof of
the Combes-Thomas estimate (A.11), which holds for any type of potential
in the lattice. If A is an operator on define Aa = ealAe-al, a E 
Note that Ha = and that its resolvent satisfies R. (z) = (Ha -z)-1.
Furthermore, one has, in the operator _ ~ Cdlal I
uniformly in 1, for some finite constant Cd that we assume larger than

1/2 with no loss of generality. It follows from the resolvent identity that

Let q = We impose ! I
1 otherwise, ). Note that in any case,
a consequence, since I
Then, taking advantage of one has, for all 0152 such that

for a suitable choice of the signs of (0~1," ’ ad) = a. The bound (A.11)
follows with qd = 2Cd &#x3E; 1.
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