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The present text is a technical appendix to [Ca04], giving with proofs
the results used there concerning geometric quotients, Zariski regularity,
and S-stability.
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1. Geometric quotients of complex spaces.

1.1. Introduction.

This first part is a polished version of a first draft, partly based on
the exposition of this first draft given in the master thesis of A. Horing
([H03]), whom I thank for his authorisation to use his text here. The aim
of this first part of the present text is to prove the following result.

THEOREM 1.1. - Let X be a compact connected normal complex
space and let S C C(X), the Chow Scheme of X, be a covering family
for X. Note R(S) the equivalence relation on X induced by S, for which
x, y E X are equivalent iff contained in a connected union of a finite number
of the members of the family of analytic cycles of X parametrised by S.

Then there exists a fibration qs : X- --+ Xs such that its general fibre
is an equivalence class for R(S). Furtllermore qs is almost holomorphic and
unique up to equivalence of meromorphic fibrations. The map qs is called
the S-quotient of X.

A covering family ,S’ C C(X) must be understood as in Def. 1.8, i.e.

its irreducible components are compact, the generic members of the family
S are irreducible and the projection from the incidence graph to X is

surjective.

Theorem 1.1 was proved in [Ca81] in the case where ,S’ is supposed
to be irreducible. The general case however easily reduces to this special
case. We follow very closely the approach of [Ca81], simplified in one step.
A similar result holds in the algebraic category, as carefully shown by a
different approach in [DeOl, ch.5], see also [Ko96].

The normality of X is essential, as shown by the examples given in
[Ca81]. By way of constrast, the compactness assumption of X and of the
components of ,S’ can be weakened to the X-properness of the incidence
graph of each of the components of S (see [Ca94]).

We now shortly sketch the proof of Theorem 1.1: it is obtained from
the study of the increasing sets Rn (x) C X consisting of all y E X which
can be connected to a given generic x E X by a connected union of n &#x3E; 0
members of the family S.

Easy arguments (given in Section 1.4, based on Remmert’s proper
image theorem and the compactness of the irreducible components of S)
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show that these sets are analytic closed in X (assuming S to have only
finitely many components, a case to which one can easily reduce the general
case) .

In a first step (Section 1.5) we begin by treating the easiest case: when
the support of a generic cycle parametrized by ,S’ is already the fibre of an
almost-holomorphic fibration q : X- - S (see notations below in 1.1 for
this notion). We show that in this case q is already the S-quotient.

We next solve the case when the family is "stationary" (ie: for

generic x E X, the dimension of R2 (x) is the same as that of 

by showing that the for x E X, are the family of fibres of an
almost-holomorphic meromorphic map.

In Section 1.6 we solve the main case, where S is irreducible, by
reducing to the preceding "stationary" case. This reduction step is a

consequence of the fact that the dimension of Rn (x) is obviously bounded.
We show that when this dimension becomes stationary, the family Rn (x),
for x E X, is in fact a "stationary" family.

This is the crucial step of the proof. It unfortunately requires preli-
minary technical irreducibility criteria both of global and local (analytic)
nature, exposed at the beginning of Section 1.6.

Finally in Section 1.7 we solve the general case, by an easy reduction
to the case where ,S’ is irreducible. This reduction consists in suitably
composing the quotients obtained component-by-component of S.

The proof allows to find (finite) bounds on the length of chains needed
to connect points in one generic equivalence class, which (slightly) improve
the ones shown in [K-M-M92]. This is exposed in Section 1.8.

For reader’s convenience, we started by recalling in Section 1.2 the
few basic facts that we use from the theory of Chow-Schemes in the analytic
context .

The remaining sections prove Theorem 1.1.

Notations, fibrations, almost holomorphic maps:

For general facts on complex analytic spaces, we refer to [KK83]. Com-
plex spaces are reduced and of finite dimension. The topology considered
is, unless otherwise specified, the metric (analytic) toplogy. Otherwise, it

is the Zariski topology. For meromorphic maps we use the terminology de-
fined in 1.2. The abbreviation "wlog", for: "without loss of generality" will
be frequently used. We also recall the following terminology from [Ca04].
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DEFINITION 1.2 [Ca04]. - Let f : X- - Y be a surjective meromor-
phic map between normal compact irreducible complex spaces and let
reX x Y be the closure of the graph of f.

1. Let py : r - Y be the restriction of the second projection to r, then
we define py (r) as the image of f. By consequence f is said to be
surjective if Y = pY (1,) . This definition is equivalent to the fact that
flu is dominant, where U C X is a Zariski open set such that f is
defined on U.

2. We defines the indeterminacy locus If to be the set of points E X
where the hbre of the first projection pXl (x) C r is not a singleton.
Define furthermore f (I f ) = 

Then f is said to be almost holomorphic if Y.

3. Y, defines as the (Chow- theoretic) fibre of f over
y. If y V f (I f), this definition coincides with the usual definition of a
fibre.

4. For U C X, define the image of U by f to be: f (U) .= 
Of course, if U does not meet the indeterminacy locus this coincides
with the usual definition.

DEFINITION 1.3 [Ca04]. - A fibration f : X - --j Y is a surjective
meromorphic map between irreducible compact complex spaces such that
the generic fi bre of f is irreducible. A fi bration is said to be (almost)
holomorphic, if so is the map.

Another fibration f’ : X~2013 2013~ Y’ is said to be equivalent to f if there
exist bimeromorphic maps u : X- - X’ and v : v : Y- - Y’ such that
f’ o u = v o f. We say that f’ is a model or representative of f.

1.2. Generalities on the cycle space.

In this paragraph we recall some basic notions about the cycle space
that parametrizes compact cycles with multiplicities for a given complex
space. We give a brief presentation of this so-called Cycle Space (or Chow
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Scheme in the algebraic case) following the original paper [Ba75, Ch. 0-II]
and the expository [C-94, Ch. VIII]. A description of the topology of the
cycle space can be found in [SGAN82]. Lemmas 1.9-1.12 expose elementary
properties of covering families that will be of importance in the following
sections.

DEFINITION 1.4 [Ba75]. - Let X be a complex space and dEN an
integer. A d-cycle on X is a finite linear combination Z where

the ni ’s are nonnegative integers and the Zi ’s compact irred uci ble analytic
subsets of X of pure dimension d which are pairwise distinct. The support
of Z, denoted IZI is the union of the (red uced) Zi ’s. The integer ni is called
the multiplicity of Zi in the cycle Z.

The set of all d-cycles is denoted Cd (X ) and the set of all cycles (the
union of all Cd(X) for is denoted C(X). We call C(X) the cycle space
or Chow scheme, or Barlet space of X.

We fix the following notation: If S is a complex space parametrizing
a family of cycles (Zs)sEs, then we note Z, the cycle with multiplicities,

C X its support and [Zs] the point in C(X) corresponding to Zs . If S
is embedded in C(X), we identify occasionally s E Sand [Z~] E C(X).

We shall define the notion of an analytic family (Zs)sES of d-cycles
of X parametrised by an analytic space ,S’ only when S is normal, because
a simple geometric description of this notion can be given in this situation,
which is the only one we shall use. Moreover, one can always reduce to this
special case by normalising the parameter space.

DEFINITION 1.5 ([Ba75, Chapt. 1, Thm 1]). - Let ,S’ be a normal

complex space and be a family of d-cycles of X parametrized by
S (ie: for each s E S, Z, is an element Let

The set I is called the zncidence graph of the family S. We note
ps and px the restrictions of the first and second projections of S x X to

Gs.

Then this family is said to be analytic ifi

I . the incidence graph is a closed analytic su bset of S x X.

2. the restriction of the first projection ps of S x X to I Gs I is proper,

surjective and its fibres have pure dimension d.



636

3. for any irreducible component I of IGSI, there exists a positive
integer n-7 such that for s generic in 8j ps(IG-’ s 1) all irreducible

components of contained in ~ have multiplicity (The closed
analytic cycle Gs - is called the graph of the analytic
family parametrized by S).

4. For any s C S, any j, and any local multisection a : S’ I defined

on a small open neighborhood S’ of s in S, if the image of a meets
Zs at a single point x, contained in a unique irreducible component
Z’ of Zs, the multiplicity of in Zs is m.nj, where m is the degree
of the restriction to the image of a.

Remark. - Let us comment briefly on condition 4. in the above

definition: when Gs ( is given, and also the nj ’s as above, the multiplicities
on each fibre for any s E S can be uniquely determined, so as to satisfy
this condition if S is normal. This is the content of the second assertion of

1.7 below.

One property of analytic families should be mentioned (which is part
of the definition, in general): if (s, x) G the graph of such an analytic
family, then shrinking S near s, there exists a finite proper ramified covering
map g : U --~ S x B, defined on some open neighborhood U of (s, x) in I Gs 1, ,
where B is an open polydisc in such that ps = h o g, if h : S x B - S
is the first projection.

The main result here is:

THEOREM 1.6 [Ba75]. - The definition of an analytic family (for
arbitrary S) defines a contravariant functor Fd from the category of
complex spaces to the category of sets, being simply the set
of analytic families of compact d-dimensional cycles parametrized by S.
Morphisms are defined by base change over the parameter space.

This functor is representable, i. e. there exists a complex space Cd(X)
and an isomorphism of functors -F~ 

The following geometric version of Hironaka’s flattening theorem is
of constant use:

THEOREM 1.7 ([Ba79], see also [C-P94]). - Let G C 8 x X be an
irreducible compact analytic subset such that the restriction p : G - S is
surjective.
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There exists a unique meromorphic map f : ,5’- ~ C(X) sending a
generic s E S to the reduced cycle of X with support In particular,
the image of f is compact since S is.

If moreover the fibres of p are all of same dimension, and if S is

normal, then f is holomorphic.

We call f the (Chow- theoretic) fibre map of p.

1.3. Covering families.

Notation: If s E Sand ZS is the corresponding cycle on X, then the
restriction of pX to is an embedding with image
Z, 1. This identification motivates to note =: ~5.

DEFINITION 1.8. Let X be a compact connected normal complex
space. Then S C C(X) is said to be a covering family of X if the following
conditions are satisfied.:

l. S is an at most countable disjoint union of compact irreducible
subvarieties C C(X).

2. If s is a generic point, then Z, is irreducible and reduced, this
for any irred uci ble component of S’.

3. X is the union of for s E S.

Remarks. -

1. Note that our condition on X implies in particular that X is irre-
ducible. Furthermore as generic cycles are supposed to be reduced,
the multiplicities n3 will be equal to one. So we shall not distinguish
between the incidence graph and the graph GS . In the following
we write GS for the incidence graph.

2. We could replace conditions 2)-3) equivalently by: the restrictions of
the projection ps (resp. px) to the incidence graph has irreducible
reduced generic fibres (resp. is surjective).

3. If S is a covering family, then at least one of its irreducible components
is a covering family. Conditions 1) and 2) are obvious and for 3)
consider that by compactness of the components of S, the incidence
graph of every irreducible component of ,S’ is itself compact, so its

image by pX in X is either X or a proper analytic subset. As X is
irreducible, Baire’s category theorem yields the result.
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4. The condition of compactness of the irreducible components will be
critical for our proof. By ~Li75~, it is always satisfied for compact
Kahler manifolds.

5. We will always suppose ,S’ to be normal. If ,S is not normal, let

d : S’ -~ ,S’ be its normalization, then the morphism d corresponds
to an analytic family of n-cycles parametrized by S’ (use the func-
toriality in 1.6). In fact, this family contains the same cycles as S,
but the same cycle Z, will appear several times, if s C ,S’ is not a

normal point. This also shows that normalizing does not change the
equivalence relation R(S) induced on X (cf. Section 1.4).

The following easy lemma will play a crucial role at some key steps of
the construction. Especially important is the irreducibility property stated
in the second assertion.

PROPOSITION 1.9. - If S is a covering family of X and is any of
its irreducible components, then

l. Z, is connected for s C S,

2. (the incidence graph of Si) is irreducible and compact for every i.

Proof. The first assertion is an immediate consequence of the

analytic Zariski’s Main theorem, combined with Stein factorisation.

The second assertion will be proven using the next few easy lemmas.
Fix an irreducible component By 1.12, ps2 is open. By the irreducibility
Lemma 1.10 there is a dense Zariski open subset C Si such that
G* C Gs, is irreducible. By the density Lemma 1.11, G* is

dense in so is also irreducible. The compactness follows from the

properness of ps2 stated in 1.5. D

Remark. - Note that the proof of the second assertion also holds for
every irreducible compact analytic subset of S.

LEMMA 1.10 (Irreducibility lemma). - Let X and T be complex
spaces, with T irreducible. Assume X has only finitely many irreducible
components. Let cp : X - T be a proper surjective holomorphic map, the
generic fibre of which is irreducible.

Then, there exists a dense Zariski open subset T* c T, such that

~o-’(T*) is irreducible.
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Proof - There is a unique irreducible component of X, say Xo,
mapped surjectively onto T, otherwise the fibre of p over the generic point
of T were not irreducible. Now the other irreducible components of X are

mapped by ~p to finitely many proper closed analytic subsets of T. Just
choose T* to be contained in their complement. D

LEMMA 1.11. Let (Z,), E s be an analytic family of cycles for X,
a compact connected normal complex space, parametrized by a reduced
complex space S. Let S* C S be a dense Zariski open subset of S and
Gs (resp. Gs* ) the incidence graph of the family S (resp. S*), with their
topology induced as subsets of S x X. Then Gs. is dense in Gs (for both
topologies: metric and Zariski).

Proof. As the metric topology is finer than the Zariski topology,
it is sufficient to show the assertion in the first case. By Lemma 1.12, ps is
an open mapping, so the preimage in GS of the dense S* is dense.

PROPOSITION 1.12. - In the situation of lemma 1. 11, let ps : S

be the restriction of the projection on the first factor. Then ps is an open
mapping for the analytic topology.

Proof. Let (s, x) E I Gs 1, the graph of such an analytic family, be
any point. Then shrinking S near s, there exists a finite proper ramified
covering map g : U - ,5’ x B, defined on some open neighborhood U of
(s, x) in I Gs 1, where B is an open polydisc in such that ps = h o g, if
h : S’ x B --~ S is the first projection. (This is part of the definition of an
analytic family. (See [Ba75, Chapt. 1], or the remark following 1.5). This
obviously implies the stated openness of ps. 0

Remark. - An equivalent statement is: if f : X - S is a surjective
proper holomorphic map from X, purely n + d-dimensional, to S, normal
and purely n-dimensional, then f is an open map, if all fibres of f are
d-dimensional. The similar statement is standard for flat maps, but we

could (unfortunately) not find this statement in the literature.

1.4. S-equivalence.

DEFINITION 1.13. - Let S C C(X) be a covering family for X. For
81, ... , sn E S we say that ZS1, ... , Z~ form an n-chain of S if the union
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of their supports is connected. We say that the n-chain is ordered if ~ IZsJ I
meets ~ZS~+1~ for j = 1,...,n- 1.

Two points x, x’ E X are called S- equivalent iffx and x’ can be joined
by an n-chain for some n depending on x, x’. In which case we say
that x and x’ are n-equivalent.

As every point x in X is connected to itself by a 1-chain, this define
an equivalence relation R(S) on X.

We say X is S-connected if R(S) has a single equivalence class (i.e.
any two points can be connected by some n-chain). A subset of X is S-
saturated if it is the union of R(S) -equivalence classes.

Remarks. -

1. Note that we did not suppose ,S’ to be irreducible, yet we suppose
as usual for covering families that its irreducible components are

compact. Furthermore the equivalence relation R(S) depends only on
the supports of the cycles on X, the structure of an analytic family
does not appear in the definition. Arbitrary base changes on ,5’ do not
change this equivalence relation. In particular, the normalization of
,S’ does not change R(S) (cf. Def. 1.8).

2. If Z, is a member of the family S , that does not meet any other
member of the family ,S’ (ie: IZsl n ZS~ ~ ~ ~ ~ s = s’), then I Z, I
is an equivalence class for R(,S’) . For example, if f : X --+ ,S’ is a flat

proper surjective connected holomorphic map with X smooth (normal
is sufficient), and if is the family of its fibres, the equivalence
relation R(S) is of course the one having the fibres of f as equivalence
classes. We will use this (trivial) example of an equivalence class
in 1.5.

3. We note

the graph of the equivalence relation. In the same way, for n &#x3E; 1

we set

and y are n-equivalent }.

Set, by definition, Ro (S) := Ax, the diagonal of X x X and note that
R(S) = UnRn (,S’) . In the following, we fix a covering family ,S’ and replace
R (S) by R and Rn(S) by Rn.
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LEMMA 1.14. - Let X be a compact connected normal complex
space and S C C(X) an irreducible compact covering family for X. Note
Gs C S x X the incidence graph and ps : Gs - S (resp. Gas - X )
the restriction of the first (resp. second) projection. For any n &#x3E; 1, let

pn : Ran - X (resp. p~ : Rn -~ X) be the restriction of the first (resp.
second) projection of X x X on X to Rn. Then

l. R, is irreducible and compact.

is Zariski closed and compact.

Proof - 1) We follow [Ca8l]: Let := (Zs x Zs)scs be the
analytic family of compact cycles in X x X parametrized by S. Then for
generic s the cycle rs is irreducible and reduced, so we apply 1.9 to obtain
that the incidence graph F C S x X x X is irreducible and compact. Let
qi : T -~ X be the restriction of the i-th projection (i = 2, 3) to r, then
R, = (q2 x q3) (r) is irreducible and compact.

2) We have:

,y and are n-equiv.,

z and x are 1-equiv.}

In particular, y and z can be connected by an (n + 1 )-chain, which allows
to conclude, as (p’ x pi ) ( (y, x), (~, z) ) _ (y, z). For the other inclusion
suppose y and z to be (n + I)-equivalent (but not n-equivalent, otherwise
there is nothing to show) and sl , ... , sn+1 E ~S’ such that I
is connected and contains g and z. Suppose wlog this chain to be ordered
(otherwise permute the indices 8j), then y ~ lzs,l and z E ~ As the

cycles are connected, we have, for x G IZS11 n I Zs, 1, that x and g (resp. z)
are I-equivalent (resp. n-equiv.) and (p’ x p1 ) ( (g, x) , (x, z)) = (y, z).

3) Complex spaces are separated, so Ax is closed. Then T .-

(p~ x p’)-’(,Ax) C X x X x X x X is closed, so compact for the

metric topology. It is also Zariski closed, as p~ x p’ is holomorphic. So
the restriction p’ x p~ : T - X x X is a holomorphic mapping between
compact complex spaces. By Remmert’s proper mapping theorem, its image
is an analytic subset of X x X, its compactness being obvious.

DEFINITION 1.15. - Let R° be an irreducible component of Rn. Then
RO is said to be significant if it contains Ax.
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In the following we note R° the union of the significant irreducible
components of Rn and cm := dim(R°). Because Rn C Rn+l , we have:
R) C RA 1, and so the sequence dn is non-decreasing and bounded by the
dimension of X x X, and so becomes eventually stationary.

Remarks. -

1. Let cr : X’ --+ X the blow-up of a point P on a smooth projective
surface. Then define two points on X’ to be equivalent if their

images in X coincide. The graph of this equivalence relation is

X’ C X’ x X’. More precisely, if E = then X’ x x X’ =
Ax, U (E x E). So the only significant component is the diagonal itself.

2. Let X be smooth projective surface and f : X --~ C a morphism onto
a smooth curve and s : C ---+ X a section of f, note C’ C X its

image. Let R be the equivalence relation on X induced by R’ -
(X x c X) U (C’ x C’) C X x X (two points are I-equivalent if they
are both in the same fibre or both in C’). It is then clear that any
two points can be connected by a 3-chain, so R = X x X ; X consists
of single equivalence class. If we delete the non-significant component
C’ x C’ from two points are n-equivalent iff they are in the same
fibre, so R = X x c X, each fibre is an equivalence class for R. We see
that the non-significant component has important influence on the
equivalence classes.

The following lemma shows that, by way of contrast, for an irreducible
covering family, the non-significant components have no influence on the
graph of the equivalence relation.

LEMMA 1.16 (Infinity lemma). - Let X be a compact connected
normal complex space. For any symmetric set Ax C A C X x X (i.e.
(x, y) E (y, x) E A) note R°° (A) c X x X the graph of the equivalence
relation induced by the reflexive, symmetric relation on X with graph A.

Let S C C(X) be a normal irreducible covering family for X. Then
urith the notations of 1.13 and 1.15, uTe have for any n &#x3E; 1 :

Proof. As A C B implies c R°° (B), we obtain



643

( The irreducibility of ,S’ assures = c R° (,S’) ) . We are left to
show that

1.5. The stationary case.

If S’ is an irreducible covering family of the complex space X and Gs
the incidence graph, we have the following basic diagram:

We will start with an easy case.

PROPOSITION 1.17. - Let S be irreducible, assume px : Gs --~ X
is a proper modification, that ps : Gs - S is proper surjective, with

generic fibre irreducible, and assume that q ps o (pX ) -1 : X- ---&#x3E; S is
almost-holomorphic. The generic fibres of q (ie: the generic Zs) are then
R(S)-equivalence classes, and q is the S’-quotient of the family S.

Remark. - The hypothesis that q is almost-holomorphic is essential,
here. Consider indeed the case in which X = I~2, and is the family
of lines through a given point a C I~2.

Proof. If Z, is a regular fibre of q (ie: if Z, does not meet the

indeterminacy locus of q), then Zs does not meet any other member of the
family ,S’’, if cr : ,S’- -~ C(X) is the fibre map, and if 5’ C C(X) is its image.
(See the part c) of proof of 1.19 below for details). D

DEFINITION 1.18. - Let X be a compact connected normal complex
space, ,S’ an irreducible covering family for X and GS the incidence graph.
Then S is said to be stationary. if

is a modification

2. = d2 = d1 = dim(Ri(S))

THEOREM 1.19. Let X be a compact connected normal complex
space and ,S’ C C (X ) an irreducible stationary covering family for X, note
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Gs C S x X the incidence graph and.
the restriction of the first (resp. second) projection to Gs. 

’

Then qs = ps X- - S is an almost holomorphic fibration
which is the S-quotient of X.

Proof. - We show by contradiction that qs is an almost holomorphic
fibration and suppose that a generic fibre of qs meets the indeterminacy
locus Iqs . By construction this is equivalent to say that the fibre meets the
indeterminacy locus 7 -i. Moreover, for s E S, q-,(S) = Px s

a) We will obtain a contradiction in the following way: For j = 1, 2 let
qj : the restriction of the second projection of X x X on X to

R~. As px is a modification there is a Zariski open dense subset X* of X,
such that every point x E X* lies in exactly one cycle IZsl parametrized by
S (in particular pXl is defined on X * ) . Hence = n.

Claim: + 1.

Assuming this, as x is generic in X, it follows that:

dim(R)) &#x3E; -~ dim(X) + 1 &#x3E; dim (I Z, 1) ~- dim(X) = dim (R A

This clearly contradicts the fact that ,S’ is stationary.

b) We are left to show the above claim:

As is Zariski open (hence dense) and ps open by 1.12, the
set is open dense in S. So if we fix x E X*, we may suppose
that for s = qs (x) there exists an irreducible Zariski open neighborhood
,S’* C ~S’ such that Zs, is irreducible and reduced for all s’ E ,S’* .

By our hypothesis lzsl meets I -1, so let y E I ByPx x

the analytic version of Zariski’s main theorem, as X is normal pXl (y)
is connected, so of positive dimension everywhere. We choose a curve
C C that contains (s,y) and is locally irreducible at this point.
As C C ,S’ x ps (C) has dimension 1 and is locally irreducible in s. Up
to restricting a bit further we may suppose that S* n ps (C) is irreducible.

By assumption the fibres of ps over S* n ps (C) are irreducible, so
by the Irreducibility Lemma 1.10 applied to ps - ps (C) we
obtain a Zariski open set U C ps(C) such that is irreducible of

dimension + 1. As x is generic, we may suppose s E U, and to
ease notations that U = ps (C). It follows that W C X
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is irreducible of dimension + 1, as it contains IZ,l as a proper
subset.

We show that W x C R° . Indeed if y’ and y" in W are generic,
note Zs, (resp. Zs") the unique cycle containing y’ (resp. ~") and s’ E ps (C)
(resp. s" E ps(C)). Then Z,, and Zs~~ contain y by construction. So y’
and y" can be joined by a 2-chain. Furthermore as I C W, we have
(x, x) c W x as x is generic this allows to conclude. It follows in

particular that the fibre q2 1 (x) contains W x hence is of dimension at

least + 1. This completes the proof of the claim.

c) We show that qs is a fibration and the 8-quotient,: As seen in
the first part, the generic fibre of qs is a cycle ZS, which is by definition
irreducible. We saw that qs is almost holomorphic, so there exists a Zariski
open S* C S, such that for s E S*, the fibre qs’(s) - I yields

n 7 -i =0. Suppose there exists x G I and s’ E ,S’, s’ 7~ s such

that x E is not a singleton, so x E a contradiction.
x

So n = ~ for s ~ s’ and by the remark after 1.13, I = 
is an ,S’-equivalence class. 0

1.6. The irreducible case.

We will now show Theorem 1.1 in the case where S is irreducible,
otherwise said, that S is an irreducible covering family of X.

The proof (Thm 1.24) consists in a reduction to the stationary case.
For this, we will construct a stationary irreducible covering family 8’ that
induces the same equivalence relation on X and then apply Theorem 1.19.

The generic member of this stationary family consists of the set 
of all y E X which are n-equivalent to ~, for x E X generic, and n

sufficiently large, but independent of x. The main point of the proof consists
in showing that this Rn (x) is irreducible. This needs some technical criteria
for irreducibility, both of local and global nature, which we expose now,
starting with the standard:

LEMMA 1.20. - Let V be a complex space and W C V a complex
subspace. Suppose V to be locally irreducible at W (ie: at its generic point).

For any desingularization d : V’ --+ V of V, the fibres of d over W are
connected.
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Proof. - If V is normal along W, the analytic form of Zariski’s main
theorem gives the stated result.

In the general case, let d’ : V" -~ V be the normalization of V and
let d" : V’ - V" be a desingularization of V". Then d d’ o d" is a

desingularization of V. We saw that d" has connected fibres, so d has
connected fibres if d’ is bijective.

We show this property: The claim is local on the base, so fix a

v E W C V, now d’ is a finite map, and for each point v" E d’-1 (v),
there is a unique local irreducible component of V" through v", and this
component is mapped bimeromorphically onto the unique local irreducible
component of V through v. Thus, d’-1 (v) consists of the single point v",
hence d’ is bimeromorphic.

We now come to the second and main technical lemma:

LEMMA 1.21 ~Ca8l~ . Let V be a complex space, W an irreducible
complex space. Let g : V --+ W be a surjective holomorphic map and
r : W - V a holomorphic section with image W’:= a (W). If V is locally
irreducible at the generic point of W’ then for w E W generic:

l. The fibre Vw = is locally irreducible at a(w).
2. If g is proper and V irreducible then Vw is irreducible.

Proof. This result was shown in [Ca81] using analytic methods and
cycle space theory. We shall give here a short proof based on the existence
of desingularizations (1) .

Before starting the proof, let us indeed observe that if V is smooth,
the first property follows from Sard’s theorem, together with the analytic
lower-semicontinuity of the rank of holomorphic map. And that the second
property follows from the Stein factorisation. We shall now reduce to this
situation using a desingularisation of V.

Proof of 1) As the assertion concerns only generic fibres, we suppose
W to be smooth and connected. Let d : V’ -7 V be a desingularization
of V as in 1.21, i.e. the fibres of d over W’ are connected. Note W" . :==

(’) As T. Peternell indicated to me, this result can be deduced from [B-F93], by
combining theorems 1.1 (applied to property (1.5.10)), and 2.1. Because the proofs of
[B-F93] are quite involved, we give the alternative easy proof above (using desingulari-
zation, however).
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d-1 (W’) C V’ and g’ = g o d : V’ - W. Then as v’ is smooth, there exists
a Zariski open dense W* c W such that g’l : g’-1 (W * ) -~ W * is smooth

(this stronger version of Sard’s lemma follows directly from the usual one
and the analyticity of maps under consideration). So for w E 
is smooth and there is exactly one connected component of that

intersects W", this by the preceding lemma.

Now assertion 1) follows directly, as g-’(w) is smooth and connected
near the connected W", so irreducible. This implies that = d(g’-1 (w))
is irreducible at a(w).

Proof of 2) Keeping the same notations, we see that g’ : V’ ~ W is
a proper map between nonsingular varieties, so the Stein factorization of

g’ exists, lest 9 : Y’ --~ W be with connected fibres and h : W --4 W finite
such that g’ = h o 9. As in the first part suppose g’l : /"~(~*) 2013~ W * to
be a smooth map, i.e. that its fibres are smooth. We will show that

they are also connected, so irreducible, this implies that d(/~(t~))
is irreducible.

As g’-1 (w) _ (h o g)-1 (w) - g-1 (h-1 (w)) and the fibres of g are
connected, we see that g’-1 (w) is connected if and only if h-1 (w) is a sin-
gleton. So we have to show that h is one-to-one. Let h’ := cr o h : W - W’
then h is one-to-one exactly if h’ is one-to-one, as the section a is injective.
Let dl : W" - W’ and 91 : W" --~ W’ be the restrictions of d and g respec-
tively. By hypothesis, dl has connected fibres, yet dl-’(w) - g ~ -1 ( h’-1 (w ) )
(see diagram) for w E W’. So h’ is one-to-one. D

We shall need the last small technical lemma:

LEMMA 1.22. - Let h : W - R be an holomorphic map between
complex analytic spaces, with W irreducible. Then some irreducible com-

ponent of R contains h(W).
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Proof. - Otherwise, for each irreducible component R’ of 
is of empty interior and closed in W. This contradicts Baire’s category
theorem, because W is covered by countably many such sets. D

We now come to the crucial irreducibility lemma wich allows to reduce
the case ,S’ irreducible to the case ,S’ stationary.

LEMMA 1.23 - Let S c C(X) be an irreducible compact
covering family and Rn = Rn (~S’) C X x X the graph of n-chains induced
by S on X (cf 1.4). Note p : R§/ - X the restriction of the first projection
to the union of its significant components, and for x E X, let R° (~) be its
fibre over x.

Suppose dn := dim(R~) = dim(R° ) _. d2n. Then

l. R) is symmetric,
2. R’~’(x) is irreducible and locally irreducible at (x, x) for a generic

x E X,

3. R~ is irreducible and locally irreducible at (x, x) for a generic x E X .

Proof. 1) is obvious, since Rn is symmetric.

2) follows from 3) and Lemma 1.21 applied to the proper map
p : R~ 2013~ ~ and its natural holomorphic section cr : X - AX.

3) It is clearly sufficient to show that R~ is locally irreducible at the
generic point (x, x) of the diagonal, because then R° will be irreducible.
(Because otherwise, two of its components, both containing the diagonal,
would provide distinct local irreducible components at each point of the

diagonal) .

We now assume by contradiction that I1, 12 are two local irreducible
components of R~ at a generic point (x, x) of the diagonal. We can assume,
wlog that dim (I1) = dn.

The respective sets of reducible points of h , I2 are analytically
constructible and do by construction not contain Au . So if ij U
is the restriction of the j-th projection to Ij (j = 1, 2), and aj : U - Ij
its natural section via the diagonal, then h is irreducible at the generic
point of Au. So by Lemma 1.21 we see that the fibres 
are irreducible and locally irreducible at (x, x) for x E U generic. To limit
notations we identify h (x) c x X and its image in X, for j = 1, 2.
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The second projection h - U induces a U-space structure on
II, and similarly for I2 -~ U. So we can define the fibred product

We next define h : This is well-

defined, as (x, y) can be joined by an n-chain and so do (y, z).

Claim: We can suppose wlog that W is irreducible.

Proof: Let q : 11 X U 12 ---~ h be the projection on the first factor of
the fibered product, then the generic fibre q-1 ( (x, y)) !2--- 12 (y) is irreducible.
h itself is irreducible, so by the Irreducibility Lemma 1.10 there exists a
Zariski open set Ii C h such that is irreducible. In particular
U* := pi (7~) is Zariski dense in U. We conclude that q-1 (h) is irreducible
and contains As. Yet as x E U generic, we may suppose that x E U* and

up to restricting to U*, that 11 Xu 12 is irreducible. 0

We now show that this implies h(W ) C R~. Indeed, for x in U, we
have ((x, x), (x, x)) E W, so DU C h(W). Because W is irreducible, h(W)
is contained in one irreducible component R° of R2n, by Lemma 1.22 above.

Suppose that Ro is not significant, then R, n Ax is a proper analytic
subset of the irreducible Ax, so of empty interior in Ax. In particular, it
does not contain the relatively open DU C Ax. Thus Ro is significant, and

h(W) c ~.
Moreover, h(W) contains

and

Summing up, we see that h(W) C R° is contained in some local irreducible
component R’ of R2n and contains h as a proper subset, as 12. This
is a contradiction, because it implies, by the choice of n:

(We implicitely used here the following standard property: if A C B
are irreducible complex analytic spaces, with A closed in B, and if B,
then: dim(B) &#x3E; dim A). 0
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To conclude the proof of Theorem 1.1 for an irreducible family S, it
is thus now sufficient, due to Theorem 1.19, to prove:

THEOREM 1.24. - Let X be a compact connected normal complex
space and ,S’ an irreducible covering family for X. Then there exists an
irreducible stationary covering family S’ for X such that R(5) = R(5’).

Remark. - This theorem implies the existence of the S-quotient in
the case where S is supposed to be irreducible, the uniqueness following
from the universal property 1.25. Indeed by Theorem 1.19 the 5’-quotient,
exists, yet as the equivalence classes for ,S’ and 5’ coincide, this is also the

5-quotient,.

Proof. The sequence R;; C X x X is totally ordered and nonde-
creasing, so there exists some n E N such that dim(RAn) = dn = d2n -

Fix such a n and let p : R) - X be the restriction of the first
projection. Then by Lemma 1.23 the generic fibre is irreducible, so p is
a fibration. By [C-P94, p. 331, prop. 2.20], this induces a unique mero-
morphic map g : X - --+ C(X ) defined by x 1---+ RA (x) on the Zariski open
dense subset of X consisting of points where the fibre of p is irreducible,
reduced and of minimal dimension. We note 5’ the image of g. Because X
is compact and irreducible, 5’ is also compact and irreducible by Theorem
1.7. Let Gs, C 5’ x X be the incidence graph of S’ then the image of
px : Gs, - X is dense (it contains the points where 9 is defined). But Gs,
is compact, so the continuous pX is surjective. We conclude that 5’ is an
irreducible covering family.

We show the following two claims:

1. R (S) - R(5’),

2. S’ is stationary.

Proof of 1) By prop. 1.14, is irreducible and so, by Lemma
1.23, is irreducible, too. For x E X generic, we have: R~ (,S’) (x) _
R 9 (S’) (x) by construction of S’. So the generic fibres of the first projections
p : R° (,S’’) -~ X and p’ : -~ X coincide, hence and R° (,S’)
are bimeromorphic. The bimeromorphic map between them is just the
restriction of the identity map on X x X, so admits a bijective extension.
So we even have C R(S). Apply now the infinity Lemma
1.14 to both sides to obtain jR(~) = R(S).
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Proof of 2) By part 1), 1
so R2(S’) C R2n(S), in particular This implies

So we are left to show that p x : Gas, - X is a modification. Let

B C X be an analytic subset such that g ) : X B B -~ C(X) is a holomorphic
map. Then ,5’* := is a Zariski open irreducible subset of S,
and we note Gs* := Gs, n (S’* x (X B B)) c Gs, (this is a subset of

the incidence graph of ,S’* ) which is Zariski open and dense in Gs,. Then
G%* - X ) B is holomorphic and the following diagram commutes

(because g o p = g o p’, if p’ : R§/ - X is the second projection, this because
R° is symmetric; this is the main point of this part of the argument):

For x E X ~ B, we have px (-1 (x) C S* x f xl. So if the fibre contains
(s, x) and (s’, x) then s = ps* ((s, x)) - 
ps* ((S , x) ) = s’ by the commutativity of the diagram. Summing up we see
that px I is holomorphic and one-to-one, so it is a biholomorphism. As X
and Gs, are reduced, we obtain that pX is a modification. D

1.7. Proof of Theorem 1.1.

We shall now, as in [Ca99], consider the set of (equivalence classes
of) almost-holomorphic fibrations f : X- - Y of which the general fibre
is contained in some S-equivalence class (depending on that fibre). We
denote by S’) this set of (equivalence classes) of fibrations.

If the S-quotient exists, it will belong to S), and as its general
fibres are of maximal possible dimension (=dimension of an S-equivalence
class) its base space will be of minimal dimension among base spaces of

fibrations in S).

The proof now reduces to show that the inverse is true: If we choose
a fibration in S) with base space of minimal dimension, it is the S-
quotient. The main argument is Lemma 1.29 which makes extensive use of
the irreducible case.
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We start with a preliminary easy observation:

PROPOSITION 1.25 (Universal Property of the S-Quotient). - Let X
be a compact connected normal complex space and S c C(X) an irreducible
compact covering family for X. Let qs : X- - Xs be the S-quotient and
7r : X - - Y be an almost holomorphic fibration on Y, a compact normal
complex space such that the general fibre is contained in an S-equivalence
class. Then there exists a unique almost holomorphic map g : Y- - Xs
such that qs = g o 7r.

Remark. - This universal property shows that the S-quotient is

unique up to meromorphic equivalence and completes the proof of Theorem
1.1 in the irreducible case. Note that the proof uses only the compactness
of Xs and not the irreducibility of S, hence remains valid for the case
where the covering family ,S’ is not irreducible nor compact, as Xs will stay
compact (cf. proof of Thm 1.1 ) .

Proof. Uniqueness is obvious: For y E Y general, note 7Zy the S-
equivalence class containing the fibre 7r~(~/) then g(y) := is the

only possible choice. This defines g on a dense set.

Existence: Let f = (7r, qs) : X- - Y x Xs and r C Y x Xs be
the closure of its image. The projections py : T -~ Y and pXs : r - Xs
are surjective proper holomorphic mappings. We will show that py is a

modification, then g := pxs o (py)-’ allows to conclude.

Note lq, (resp. If) the indeterminacy locus of qs (resp. f). A general
fibre 7r- 1 (y) is in a S-equivalence class, so is contracted by qs. As qs and

f are almost holomorphic, it meets neither lq, nor If. Now, ~r-1 (~) -
f-1(py1(y)) is contracted by qs, hence by f. So = 

is a point, so there exists a open neighborhood U C Y of y such that
U is finite. As the general points are dense in Y, py is

finite.

But r is irreducible as it is the image of the closure of the graph
of f in X x Y x XS by the projection py x pXs . So if Y* C Y is a

Zariski open set such that for y E Y*, ~r-1 (~) meets neither 17r nor IqS’
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then r* = is Zariski open and dense in r. Note X* := f -1 (h* ),
then the restrictions of 7r and f to X* are holomorphic. 7r is a fibration,
so the generic fibres are irreducible, hence connected. As 7r = py o f and
for y C Y*, ~r-1 (y) C X*, this implies that the restriction of py to r* is

injective, hence a holomorphic inverse V* 2013~ exists. As py is

finite, it extends to a meromorphic map on Y.

We are left to show that g is almost holomorphic. For s C Xs generic,
g-1 (s) _ 7r(qs’(s)), yet the generic fibre of qs is contained in X*, so its

image by 7r is in the dense Y*. 0

We now proceed to construct step-by-step the S-quotient in the

general case:

DEFINITION 1.26. - A fibration f : X- - Y induces an equivalence
relation on X in the following way : for g C Y, let be the (Chow-
theoretic) fibre as defined in 1.2. By definition two points x, x’ in X are
1-equivalent if there exists ayE Y such that x, x’ e f -1 (y) . As every point
x is connected to itself, the graph of 1 -chains R1 ( f ) C X x X is symmetric
and contains the diagonal, hence induces an equivalence relation on X (as
in 1.16), whose graph will be denoted R( f ) C X x X.

DEFINITION 1.27. - Let S be a not necessarily irreducible covering
family for a compact connected normal complex space X. A fibration

f : X- - Y on a compact connected normal complex space Y is subor-
dinate to S if a general fibre of f is contained in an ,S’-equivalence class. We
note S) the (non-empty) set of S’-subordinate almost holomorphic
hbrations of X.

Remark. - The fibration f is thus subordinate to ,S’ iff R1 ( f ) C R(S’),
or equivalently, if R( f ) C R(,S’) .

DEFINITION 1.28. - For S a covering family for X, let Si C S be an
irreducible compact component. Note Gs2 the incidence graph of Si and
p’ : Gs, ---+ X the projection to X. For f c S), we say that Si is

f -covering if f o p’ : Gs, - ---+ Y is surjective.

Remark. - If Si is a covering family for X, it is f-covering. In fact, SZ
is f-covering if and only if a generic fibre of f meets some cycle parametrized
by S..
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The following lemma provides a "constructive" method to find the
S-quotient in finitely many (at most dim(X)) effective steps. Start with
an element of 0(X, S) (for example id) and an f-covering irreducible
component ,S’2 of S. Then there are two possibilities: a generic cycle for ,5’Z
is contained in an f-fibre, then go on with the next f-covering irreducible
component, if any. If this is not the case, construct an irreducible covering
family S’ and its quotient map qs,. Then qs, is in F(X, S) and we replace
f by qs’. Continue until all f-covering irred. components satisfy the first
case, then f is the S-quotient (cf. proof of Thm. 1.1 below).

LEMMA 1.29. - Let f : X- - Y E S) and ,S’2 an f-covering
irreducible component of S. Then either:

I. or,

2. there exists an irreducible compact covering family S’ of X such that
the ,S’’-quotient qs, : X - --~ Xs, satisfies the following properties,

3. 3 g : Y- -~ Xs, an almost holomorphic mapping such that qs’ == go f
(in other words: f is subordinate to S’).

4. dim(Xs,)  dim(Y)
5. R (Si) c R (S’)
6. R(S’) c R(S)

Proof. Assume R( f ); then R1(Si) í R1 ( f ) (cf. proof of
the infinity lemma). So for a generic s E we have &#x3E; 0,
otherwise the irreducible cycle I Z, would be contained in some fibre of f.
Because ,S’i is f-covering, a generic cycle (Zs)sEs2 is not contained in the

indeterminacy locus I f nor in any exceptional fibre of the fibration f (i.e.
fibres of dimension larger than that of the generic fibre).

In this case set and define := to be the

Zariski closure. By construction is an irreducible compact cycle in
Y and up to restricting to a Zariski open set we can suppose the

family of cycles to be equidimensional. The same argument as in the proof
of Lemma 1.30 below, shows that is an analytic family in Y.
If r x Y denotes the closure of the incidence graph of this family, then
the generic fibres of the projection of r on Si are equidimensional, and

by [C-P94], or [Ba79], induce a meromorphic map p : Si- --+ C(Y). Note
S’i the normalization of the closure of the image, then parametrizes an

analytic family on Y. It is even an irreducible compact covering family as
is f-covering.
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If we restrict 8; a bit further, an application of Lemma 1.30 shows
that Z, := for s E 8; defines an analytic family in X. As
before, passing by the closure of the graph, we get a meromorphic map
from ,S’2 to C(X). Normalizing its image, we obtain an irreducible analytic
family ,S’’, which is compact by Theorem 1.7, the generic member of which
is some Z§ , constructed above. This is a covering family, since it contains
the dense family 

Let qs, : X- - Xs, be the ,S’’-quotient of X. By construction, a
generic fibre of f is contained in some Zs (which is an 8’ -chin of length
one). It follows that a general fibre of f is contained in a S’-equivalence
class and we use the above universal property of the S’-quotient to obtain
an almost holomorphic g : Y - --~ Xs, such that qs, - g o f.

We check the other properties stated:

a) A generic qs,-fibre is an S’-equivalence class, so contains at least
one By hypothesis its image = is of positive dimension,
so a generic fibre of g is positive dimensional, hence dim(Y) &#x3E; dim(Xs,).

b) By construction of S’, a generic ,S’i-chain of length one is contained
in a similar 8’ -chin. So, C Rl (,S’’) by irreducibility of both sides,
and we conclude by the infinity lemma.

c) It is sufficient to show that C R(S) (by the infinity lemma,
again). By a density and irreducibility argument, we are left to show that
Zs - is contained in some S’-equivalence class, for s E 8;
generic.

However, f is subordinate to S, and so for y E generic, the
fibre is contained in one ,S’-equivalence class, depending on y. But
each such fibre of f contains some element of the length one 8i-chain I Z, 1.
As Sz is a subset of S, I Zs is in a single ,S’-equivalence class, and so, any
x E generic there belongs to the ,S’-equivalence class containing
I Z,1. Thus also C R(S), as claimed. D

In the course of the preceding proof, we used the following:
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LEMMA 1.30. - Let S be an irreducible covering family for Y and
f : X- - Y an almost holomorphic fibration between compact connected
normal complex spaces. Then there exists a Zariski open set S* C S such
that

defines an analytic family of cycles on X, where _ ~ f and the

closure is taken in the Zariski topology.

Proof. The support of a generic cycle Z, is not contained in the

image of the indeterminacy locus (cf. 1.2). Note that for y V 
the usual and the Chow-theoretic fibre coincide, so no distinction will be

necessary in the following.

As ZS is irreducible, is an irreducible relatively
Zariski open set in As f is a fibration, we may apply the remark
after the irreducibility lemma to obtain that for a generic s, f -1 ( ~ Zs ~ ) is

open and irreducible in X. Let ,S’* c S be the Zariski open set where

this is satisfied and the Zariski closure . is of dimension
dim (I Z, 1) + dim (X) - dim (Y).

We want to show that (Z,),Es. is an analytic family. But ,S* being
normal, [Ba75, par. 1, Thm. 1] states that if the incidence graph G’ -
{(~, x) x e c S* x X is analytic and the projection ps* : GS* --~ S*
is proper surjective with equidimensional fibres, the family Zs is analytic.
The family (Zs)SES* C Y being analytic, its incidence graph

is analytic and the meromorphic map (id, f ) : G~ 2013 2013~ Gs* is holomorphic
on a dense subset V of GS* (for s fixed, (id, f ) is holomorphic on fsl x
/’~(~Z~)). Being by definition the preimage of the analytic space Gs* ,
V is locally analytic, so its Zariski closure G’ s * is locally analytic and
closed, hence analytic. As X is compact, ps. is proper surjective and by the
condition on the dimension imposed above, its fibres are equidimensional. 0

Pro of of T h eorem 1.1.

Let f : X- - Y, f E S) be an almost holomorphic fibration
such that dim(Y) is minimal and note (Si)iEI the irreducible components
of S. We show that f is the S-quotient. Define
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For i E J, by definition of f -covering, f (G s¡) is analytic of codimension
1 or more in every point, and so:

E := is contained in a countable union of proper

analytic subsets of Y.

If F = is a general fibre such that y ~ ( f (I f) U E), then F
is an R( f )-equivalence class as it does not meet I f, so has no intersection
with other f-chains of length one.

Now on the one hand, by Lemma 1.29, for i C (I B J), we have
C R(f), so if Z, is a cycle parametrized by E (I B J), we

have either I On the other hand if Zs a cycle
parametrized by Sz, i E J, as F is general, we have F n 2s ==0.

It follows that F is S-saturated, as it is the union of the R(S)-
equivalence classes generated by the cycles it contains. As f is supposed to
be S-subordinate, F is contained in a single S-equivalence class.

We conclude that a general f-fibre is an R(S)-equivalence class. D

1.8 An estimate of the length of S-chains.

The above proof of Theorem 1.1 easily gives an estimate of the length
of the S-chains connecting two general S-equivalent points of X (see [K-
M-M92] and [DeOl] for similar results).

PROPOSITION 1.31. - Let S be an irreducible covering family of a
normal variety X. Let qs : X- - Xs be the S-quotient of X and F a
regular fibre of qs (ie: F is assumed to be contained in the locus where
qs is regular, or holomorphic. The existence of regular fibres is equivalent
to qs being almost-holomorphic). Then any two points of F are joined
by an S-chain of length at most 1 := 2f -~’, where r := dim(Zs), and
f := dim(X) - dim(Xs) is the dimension of a generic fibre of qs. In

2f -1, unless S is the family of points of X.

Proof - Assume the sequence dl, d2, d4, ..., d2k is strictly increa-
sing, while d2~ = Thus d2k &#x3E; d1 + k. From the proof of 1.1,
we see that di = m + r, while d2k = m + f, if m .- dim(X). Thus

and k x f - r. Hence the claim, since by
construction, two points of F are connected by a T-chain of length 2~ . 0

Remark. - The proofs given here work also when ,S’ has all of its

components covering, if r denotes the infimum of the corresponding r2’s.
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So, in this case, we always get: 1 ~ 2f -1. The estimate is then in this case

slightly sharper than the one I x 2f - 1 given in [K-M-M92], [De0l]. The
estimate 1  2f - 1 can easily be deduced but apparently not improved
in the general case from 1.31, by the reduction process described in the
previous section.

In the general case, we have:

PROPOSITION 1.32 ([De01] , ~K-M-M92~ ) . - Any two points of a re-
gular fibre F’ of q : X - -* Xs, can be connected by an S’ -chain of length
at most l’ - 2b _ 1, if b = dim(X) - is the dimension of F’.

(Recall from 1. 31 that a fibres of an holomorphic fibration is said to
be regular if it does not meet the indeterminacy locus of that fibration, or
equivalently: is contained in the locus where q is llolomorpllic).

Proof. - Using the same notations as in the proof of 1.29 above, we
just need to show that if this estimates holds for f in place of qs,, it holds
also for f’ . :== qs,, where R(qs,) is (the equivalence relation) generated
by and ,S’’ being constructed as in 1.29 from f and 5i, an
irreducible f-covering family of X.

By 1.31, any two points of any regular fibre F’ of f’ are connected
by an ,S’’-chain of length l"  2b’ -r’  2 b’-b-1 where b’ := dim(F’),
r’ := dim(Z~,) ~ b + 1, with b := dim(F), and F any regular fibre of
f. By the definition of Z,,, we immediately see that any two of its points
are connected by an (,S’2, f )-chain of length at most 2l + 1, if any two

points of any fibre of f can be connected by a f-chain of length l. By the
induction hypothesis on f, we can take 1 .- (2b - 1). So that any two
points of any fibre of f’ can be connected by an S’-chain of length at most

as claimed. 0

2. Zariski regularity.

We shall now introduce the notion of Z-regularity for subsets of

arbitrary analytic spaces. This is a weak notion of countable constructibility
which seems to be satisfied by the set of fibres enjoying an "analytic"
property, for (essentially) arbitrary holomorphic maps between complex
spaces.
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DEFINITION 2.1. - Let A c S’, where ,S’ is a complex space. We say
that A is Z-regular (in S) if for each irreducible Zariski closed subset T
of ,S’, A n T either contains the general point of T, or is contained in a
countable union of Zariski closed proper subsets of T. In the latter case,
we say that A is of first 2ariski category in T.

There are many examples of this situation (actually it rather seems
that counterexamples are unnatural in algebraic or analytic geometry).

THEOREM 2.2. - Let X E C. Let Ap C C(X) be the set of
points t parametrising the set of irreducible reduced subvarieties Yt of X

possessing a certain property P.

Then A p (X ) = A p is Z-regular in C (X ) if P is any one of the following
properties.

is special.

2. Yt is a (possibly singular) rational curve.

3. Yt has algebraic dimension at least d, d any given nonnegative integer.

4. 7rl(Vt)X E 9, where 9 is a class of (isomorphism classes) of groups,
and is the image in of the fundamental group of the

normalisation of Vt.

Proof. For 1 (resp. 3, 4), use [Ca04] and Proposition 2.3 below
(resp. [Ca80’], [Ca99]). Assertion 2 is easy. D

Recall that a compact complex manifold X is said to be in Fujiki’s
class C if it is bimeromorphic to some compact Kahler manifold X’

(depending on X).

PROPOSITION 2.3. - Let P be a property such that if f : X- - Y is
any Vibration such that X E C, then the set of irreducible fibres of f having
property P is Z-regular (in Y). Then, for any X E C, Ap(X) is Z-regular
in C(X).

Proof. Let T C C(X) be irreducible Zariski closed. Let V = vT be
the incidence graph of the family T. By [Ca80], V E C. Thus Ap(X) n T is
Z-regular in C(X), by the hypothesis made on P. 0

PROPOSITION 2.4. - Let A C S be Z-regular. There exists a counta-
ble or finite family of Zariski closed irreducible subsets ,S’2 of S such that:
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1. for each i, Ai := contains the general point of ,S’i,

2. A is the union of the Ai’s.

The family Si is moreover unique if it is irredundant. (That is, if

there is no inclusion among the in the sense that j, then ,S’2 is

not included in Sj, and conversely Sj is not included in ,S’i~.

The are then called the components of A.

Proof. Let A be the Zariski closure of A in S, and let A’ be an
irreducible component of A. Consider A n A’: it either contains the general
point of A’, or is contained in a countable union B of Zariski closed subsets
of A’. In the first case, A’ is a component of A. Proceed then in the same

way with A, but after removing its component A’. In the second case,
remove A’ from A, and replace it by B. Repeat this process, observing
that for each component of A, we let at each step decrease the dimension
of the remaining irreducible components. So the process ends in finitely
many steps for each irreducible component of S, which shows the existence
statement.

The uniqueness statement is easy to check: assume we have two

irredundant families Si and S’j of components of A. It is sufficient to show
that any is contained in some If not, A n Si is contained in the

countable union of the AD5’- It is then of first Zariski category in This

contradicts to the definition of a component of A. D

The notion of Z-regularity has applications to the construction of
meromorphic quotients.

THEOREM 2.5. - Let X E C be normal. Let A C C(X) be Z-

regular. Let T := T(A) be the family of components of A, as defined
in 2.4. (If T is not covering, we add the family of points of X~. Let
qA :== qT : X- - XT :- XA be the T-quotient of X. Let t E A such that
vt meets some general fibre F of qT.

Then Vt is contained in F. We call qT the A-reduction of X.

Proof. By the defining property of qT, its general fibre F is an
equivalence class for R(T(A)). In particular, any Vt, t E A, is either disjoint
from, or contained in F. 0



" 661

Remark. - Two points in such a fibre are joined by a T(A)-chain,
but not necessarily by an A-chain. Such a T(A)-chain turns out to be an A-
chain if A is stable under specialisation, in the sense defined in the question
just below for a family of special subvarieties of X.

For example, this is the case for properties 2, and 3 in 2.2 above. For
property 2, this is simply because rational curves specialise to unions of
such. For property 3, see [Ca80’]. The case of property 1 is not presently
known, but a positive answer to the following question is expected.

Question: Let f : X - --~ Y be a special fibration, with X E C. Is
each irreducible component of Xy special, for each y E Y?

An immediate application of 2.5 above, obtained explicitly in [Ca92]
from [Ca81] by taking for A the family of rational curves, and in [K-M-M92]
in the algebraic case by using their glueing lemma, is the following.

THEOREM 2.6. - Let X E C be normal. There exists an almost

holomorphic map rx : X- - R(X), called the rational quotzent of X such
that:

l. the fibres of rx are rationally connected (ie any two of their points
are contained in a connected union of finitely many rational curves),

2. if a rational curve C inside X meets some general fibre F then

C is contained in F.

Moreover, A-reductions can be constructed in a relative situation as
well.

THEOREM 2.7. - Let X E C be normal. Let f : X --+ Y be a holo-
morphic fibration. Let A C C(X) be Z-regular. Let A f C A be the set of
all t’s E A such that % is contained in some fibre of f (depending on t).

Then:

1. A f C C (X ) is also Z-regular.
2. If qA f : X- - XAf is the A f-reduction of X, there exists a

factorisation hA f : XA f - --~ Y such that f = hA f o qA f .
3. Moreover, for y E Y general, the restriction of qA f to Xy is the

Ay-reduction of Xy, if Ay : A f n C(Xy).
The map qA f is called the A-reduction of f.
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Proof. The fact that A f is Z-regular is obvious, because A is Z-
regular, and A f is the intersection of A with its Zariski closed subset

C(X/Y) consisting of t’s such that Yt is contained in some fibre of f. We
thus have a quotient qA f for A f .

The natural map f : (X ) - ~ Y now defines the factorisation

f - hA f o because the generic equivalence classe for T(Af) is ob-

viously contained in some fibre of f. (Recall indeed that, according to the
notations introduced in 2.5, T(Af) stands for the family of components of
Af, defined in 2.4).

We shall now show that, for y general in Y, (T(Af))y - T(Ay). This
will immediately imply that (Xy ) Ay = and so the claim. (Recall
that we denote by Zy the fibre over y of a map Q : Z - Y, for y E Y, and
by Zs the meromorphic quotient of Z by the equivalence relation generated
by a family ,S’ of subvarieties in C(Z)).

Notice first that, by definition, Ay - (A f ) y, for any y. Next, if T’ (A f )
is the union of all components of T(Af) surjectively mapped to Y by /~,
then (T(Af))y = (T(Af))y for y general in Y. It is thus sufficient to show
that = T(Ay) for y general in Y.

We shall now show this statement. First, we have, for y general,
Ay - (Af)y C This gives the inclusion: T(Ay) C 

To show the reverse inclusion, let T be a component of Then:

Ty C T(Ay) for general y. Indeed: is contained in a countable

union of Zariski closed proper subsets Bj of T (by Z-regularity). For each
j, the set Cj of y’s E Y such that (Bj n Ty ) has empty interior in Ty is

Zariski closed, and proper in Y. If C is the union of the Cj’s, and y is not
in C, we conclude that (T’(Af))y C T(Ay), as claimed. D

The main applications of 2.7 are to construct relative versions of the
rational quotient, of the core, and other natural fibrations. For example,
applying 2.7 to the family of rational curves on X E C, we get:

PROPOSITION 2.8. - Let f : X --+ Y be a holomorphic fibration, with
X E C, normal. Then f has a rational quotient, that is, a factorisation

f = R f or f, where r f : X - - R( f ) is a fibration which induces the rational
quotient rx, : Xy- - R(Xy) _ (R(f))y for y general in Y.
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3. Stability.

DEFINITION 3.1. Let A C C(X) be Z-regular, for X E C, normal.
We say that A is stable if it has the following two properties.

(stabl) The general fi bre of qT : X- - XT is in A if T is any covering
irreducible component of A, in the sense of definition 2.4 above.

(stab2) su bvariety and f : V- - W is a fi bration wi th general
fibres Vw in A, and if there exists a subvariety W’ C V such that

[W’] c A, and f (W’ ) = W, then [V] e A. (Said otherwise: V is in
A if i t is fibered over W wi th fi bers in A, and with a transversal W’
also in A).

(By abuse of language, we say that a subvariety Z of X is in A if the
point [Z] E C(X) which parametrises this subvariety is in A).
Let us give some examples.

THEOREM 3.2. - Let X E C, and let .. be as in 2.2.

Then:

1. Ap is stable, if P is the property of being special and X is smooth.

2. Ap is stable, if P is the propery that 7f1 (Vt) x C g, where 9 is a class
of (isomorphism classes) groups which is stable in the sense of [Ca99].
(Such classes are the class of finite, or solvable groups, for example).
The proof is given in [Ca04] for assertion 1, and in [Ca99] for

assertion 2. D

The basic result about stability is the following.

THEOREM 3.3. - Let A c C(X) be Z-regular and stable, for X E C,
normal. Let qA : X- - XA be the A-reduction of X, as defined in 2.5.
Then the general fibre of qA is in A.

Proof - Because of [stabl], the statement is obviously satisfied for
the quotient of X by any of the covering irreducible components of T(A),
and so for the first step of the construction of qA, as exposed in 1.6.

To deal with the general case, we proceed by induction on the number
of steps needed to construct qT, with T = T(A), this number of steps
being defined as in the proof of 1.32. We are thus reduced to show that,
if f : X- - Y is an almost holomorphic fibration with its general fibre
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in A, and if T’ C T(A) is irreducible compact, and parametrises a family
Yt of cycles of X such that % is irreducible, reduced and is in A for t
general in T’, and if, moreover, the family T’ is f-covering and such that
dim(f (Vt)) &#x3E; 0, for t generic in T, the T"-quotient qT" : X- - XT" of X
has general fibres in A, if T" C C(X) is defined as in the proof of Lemma
1.29. By the property [stab 1], it is sufficient to show that the general
member Vt’ of the family parametrised by T" is in A for t general in T’.
But this is immediate, by property [stab 2], since by its very definition,

- f 1 ( f (Yt ) ) - --~ W := has general fibres in A, and
has a subvariety W’ (namely: W’ := which is in A, and is mapped
surjectively onto W by D

From 3.2 and 3.3, we immediately deduce:

COROLLARY 1. - If X E C is smooth, the general fibre of the core of
X is special.
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