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ON SUMMABILITY OF MEASURES

WITH THIN SPECTRA

by Maria ROGINSKAYA &#x26; Michal WOJCIECHOWSKI

1. Introduction.

According to the general uncertainty principle a distribution (a
measure in our case) and its Fourier transform can not be both too

concentrated. In particular, if the Fourier transform of a measure is

supported on a set of a special form then it has no singular part. We call a
set with this property a Riesz set. Many different sufficient conditions for
Riesz sets are known - we refer to [M], [Sh], [A], [HJ], where the conditions
for Td are given - roughly speaking the set should be concentrated on a
halfspace and it can not contain a line. Another sufficient condition (both
for Rd and Td is given in [R], where the set is required to be strongly
antisymmetric. In the present paper we study phenomena which occur only
in the non-compact setting. We give a new class of examples of Riesz sets
on Rd which are both symmetric and also include a lot of lines.

In Section 2 we prove the following criterion inspired by the de Leeuw
transference method, on which the examples of Riesz sets are based.

THEOREM 1. - is a Riesz set in Zd for every
j = 1, 2,... for some K C and a sequence aj --+ oo. Then K is a Riesz

set in 
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As a direct application of the above criterion we prove that so called
f-poles are Riesz sets for every f : II~+ --~ R+ which decreases to 0. For any
positive, decreasing function f : M-~ 2013~ we call a set an f -pole iff it is
an image of the set K f = ~ (x 1, x’ ) Ix’/ ~ under a linear

transformation.

COROLLARY 1. - For each function f : IR+ --+ R+ decreasing to 0,
every f -pole is a Riesz set.

We also give an example of a Riesz set in (d &#x3E; 2) whose
interior contains all lines in one direction except for lines passing through
a set of small (d - 1)-dimensional Hausdorff measure, which disproves the
conjecture, that a Riesz set in can not contain a line, as it does in the

case.

The formulation of Theorem 1 is in the spirit of the criterion given by
Meyer for compact group (cf. [M]). However, instead of using an argument
of a topological nature, we transfer the results from tori to the Euclidean
spaces.

In Section 3 we study special cases of Riesz sets for which the Ll-
summability can be improved. It is easy to see that if the Fourier-Stieltjes
transform of a measure p C is supported on a set K C R d of finite
Lebesgue measure, then p is a bounded continuous function and belongs
to for 1  p  oo. Moreover, We consider

the class of sets K C R d such that the function assigning to t E R the

(d - 1 )-dimensional Lebesgue measure of the intersection of .K with the
hyperplane fxl - t) is LP-summable. We prove the following result.

THEOREM 2. - Let 1  p  2, K C is a closed set and suppose
that there exists y E I~d such that the function

where Md-1 is (d - I)-dimensional Hausdorff measure, belongs to 
Then any finite measure with Fourier transform supported in K is locally
LP’ -summable where 1 + p 11 = 1.

We also give in Section 3 several results about the sharpness of
Theorem 2. Among them, we show that there exists a Riesz set K which is
not a Hardy set, i.e. there exists a summable function with Fourier-Stieltjes
transform supported on K, which does not belong to the class HI (1R.d).
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In Section 4 we study conditions on the set of zeros of the Fourier-
Stieltjes transform of a measure which imply that the measure is absolutely
continuous. We call a sequence A C R d a co-Riesz sequence iff every
finite measure with Fourier-Stieltjes transform vanishing on A is absolutely
continuous with respect to Lebesgue measure. We prove that the co-Riesz
sequences exist.

THEOREM 3. - No matter how slowly the sequence rn tends to 0,
there exists a co-Riesz sequence A such that dist(An, &#x3E; rn.

On the other hand, the fact that the sequence of differences of a

sequence A tends to 0, that doesn’t guarantee, that the sequence A is a
co-Riesz sequence. An example of such a sequence was provided to us by
J.-P. Kahane.

Later in Section 4, we show that vanishing of the Fourier transform
of a function on any sequence without limit points does not guarantee any
additional summability of the function (compare with the Theorem 2).
We also study some properties of co-Riesz sequences and formulate some
problems.

In Section 5 we apply the method developed in the previous sections
to co-Lebesgue sequences. A sequence A C 1R.d is a co-Lebesgue iff for every
measure p E M(Ilgd) with Fourier-Stieltjes transform vanishing on A, the
Fourier-Stieltjes transforms of its singular and absolutely continuous parts
also vanish on A. We establish a criterion for being co-Lebesgue and apply
it to the sequences (1~ = 2,3,...) and 

Notation. - We denote by 1R.d the d-dimensional Euclidean space
with the scalar product (.,.) and Euclidean norm I - 1. By yd we denote
d-dimensional torus identified naturally with the unit cube in R d. All

measures are supposed to be finite Borel measures. The space of finite
Borel measures of bounded total variation on R d is denoted by By
11 - 11 we denote the usual norm on this space, i.e. the total variation of a

measure. We denote by J1s the part of p singular with respect to Lebesgue
measure (cf. [HR, Chapt. III, Th. 14.22]). If a measure p is absolutely
continuous with respect to Lebesgue measure md, there exists 
such that dJ1 == f dmd. In this case we write for shortness J1 E L’(R d),
i.e we identify the measure with f. The restriction of a measure J1 to a

Borel set Q is denoted by J1ln. By ~u(~) we denote the

Fourier-Stieltjes transform of the measure J1 E M(IRd). For A, B C by
A -f- B we denote the Minkowski sum ~x + y : x E A, y E BI; rA denotes
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the set {ra E E ~4} (r E R). By dist (x, A) we denote the distance
between x E and the nonempty set A C R d. The symbol C (possibly
with indexes) denotes a non-negative constant which can change in value
from one occurrence to another.

2. Symmetric Riesz sets.

We begin with the proof of Theorem 1.

Proof of Theorem l. - Suppose that K is not a Riesz set. Then
there exists p E such that supp Q C K and /-t, 54 0. Let us choose
an integer j such that (here I d 
2 ~). Let v E be the measure defined by v(E) = p(ajE + aj Zd)
for E C yd. It is easy to see that P(£) = 0" for every £ E Since

supp o C K, the Fourier-Stieltjes transform of v vanishes outside a Riesz
subset of 0. But EçEZd ps(ajE + and

therefore

This contradiction completes the proof. El

Corollary 1 is a direct consequence of Theorem 1. Linear transfor-

mation preserve Riesz sets, and one always can shift the f-pole in such a
way that it does not contain any line with rational points. For this shifted

f-pole the sequence aj = j is the sequence required in Theorem 1.

Example 1. - Given e &#x3E; 0 there exists a closed symmetric (with
respect to the origin) subset E of the hyperplane L = = 01 c and a

Riesz set K such that mL(LBE)  c and R x E = ~(xl, x’) : (o, x’) E
El C Int K.

Let A C L be an open symmetric set of measure mL (A)  ~
containing all the rational points in L and Al C A2 C ... c A be a

sequence of open symmetric sets such that n and An c A for
n = 1, 2, .... Then we put K = U Fn where

and

We put E = L B A. Clearly which is a

finite subset of Hence, by Theorem 1, K is a Riesz set. The remaining
property, R x E C Int K, is obvious. 11
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It might happen (however we do not know it) that a strengthened
form of Corollary 1 is valid: every Ll function with the Fourier transform
supported by an f -pole is better than L’ integrable (e.g., belongs to some
fixed Orlicz space), and this could be the reason for being a Riesz set.
Theorem 2 being applied to f -poles supports this conjecture. The next
result shows however that this possible improvement cannot be uniform
for all functions f.

Let 4D be a Young function which defines the Orlicz norm on 
we denote the corresponding Orlicz space by (cf. [RR]). We say
that a function f belongs to iff for every x E R d there exists a

neighbourhood U such that f - Xu E 

PROPOSITION 2. - Let the Young function -D be such that LI(IRd)
ct Then there exists f : R+ - and a function F E 

with the Fourier-Stieltjes transform supported on the f -pole Kf, such that
F ~ 

Proof. Let 7p E be a positive function such that ||03C8|| 1 = 1
and its Fourier transform ~ is positive and supported on the unit cube Id.
We can get such a function as the square of an Ll function with smooth

positive Fourier transform supported Clearly we &#x3E; a &#x3E; 0

for a fixed small enough constant o- for x E rI d for some r &#x3E; 0. Let

f : II~+ -~ R+ be a function decreasing to 0 (to be fixed later). For
n = 1, 2,... we define ~n by

where with

Note that

1 ) supp i&#x26; C Kf

Then we put

where the increasing sequence of integers (nj) will be fixed later. We are
going to show that if f is chosen properly = oo for every
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E &#x3E; 0 and a &#x3E; 0. Put O(t) = t-1 ~(t). Since we have

0(t) - oo as t ~ oo. Since 03A6 is superadditive, we have

Thus, using properties 1) - 4), we get that for j such that nj &#x3E; j 2 (aa) -I (d -
 (d - 1)r and &#x3E; ’-’

Put now

Choose the sequence (nj) such that cp(2nJnjd) &#x3E; j d and nj &#x3E; j 3 .
Then, using the above estimation and the definition of f, we get for the
large values of j

Hence the integral is estimated from below by a tail of the
divergent series. D

Using now the well known fact that H¡ (IRd) c (L log (cf.
[St, Chap. 111.5.3]) and that the constructed function F is positive, we get
as a corollary that on R d the class of Riesz sets is slightly larger that the
class of Hardy sets:

COROLLARY 2. - There exists an f -pole K f C R d which is not a
Hardy set, i.e. there exists with Fourier transform supported
by K f such that F V 
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3. Proof of Theorem 2.

We can assume that y - ( l, 0, ... , 0) . Let p E satisfy
supp u c K. Fort &#x3E; 0 we put ut = p*Pt, are Poisson

kernels. Clearly /-it E L l n Coo (IRd) and ||ut||1  ||u||. It is also clear

that supp ¡it C K and ¡it E n We have

where

Since , and ; 1
we get

Hence, if by the Hausdorff-Young inequality,

Thus for every

Let y = Rd and U = R x SZ be an open neighborhood of
y such that Q C is an open neighborhood of y’ with finite (d - 1 )-
dimensional Lebesgue measure. Then

Hence there exists C &#x3E; 0 such that for t &#x3E; 0,

By assumption - pju in the *-weak topology. is

bounded for t &#x3E; 0, we get that pj u E LP’(U). 0

The f -pole with is called a q-pole.

COROLLARY 3. - Let 2  p  00. If the support of the Fourier

transform of a measure 11 is contained in a finite union of q-poles, where

q &#x3E; p, then 11 E Lfoc (R’).
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Corollary 3 gives another proof that q-poles are Riesz sets for q &#x3E; 2.

However, by applying Theorem 2, one can construct Riesz sets which do
not seem to be treated by Theorem 1.

Example 2. - Let K E R d be any q-pole (q &#x3E; 2) which does not
contain a line orthogonal to the first coordinate. Let Kn = K n ~n  
n + 1 ~ . If C R d is any sequence with bounded first coordinate,
then the set + rn) satisfies the assumption of Theorem 2 for
p&#x3E;q’.

Corollary 3 shows that every q-pole is a "local" Ap for every q &#x3E; p &#x3E; 2.
The next remark shows that (a) Aq,loc ct Ap for 2  q  oo and 1  p  oo,
and (b) Ap,loc =1= for p, q &#x3E; 2 and p # q.

PROPOSITION 3. -

a) Let 1  q  oo. There exists a function with the

Fourier transform supported on a q-pole, such that F ~ for any
1  p  oo.

b) Let 1  q  oo. There exists a function F with the Fourier

transform supported on a q-pole, such that F ~ for every p &#x3E; q.

Proof. - We use the function F constructed in the proof of Propo-
q-1

sition 2. We let f (t) = min(l, t q(d-1&#x3E; ) and nj = j . Then

as j -~ oo. This proves part (a). For part (b) we have for j such that
é!(2j-I)  (d - l)r,

as j ~ ~ for any fixed 03B5 &#x3E; 0.
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4. co-Riesz sequences on R.

We call A = C a co-Riesz sequence iff every measure

J1 E such that /~(A) = 0 for A E A is absolutely continuous with
respect to the Lebesgue measure on 

Though a number of results in this section make the impression that
every sequence l1 = C R such that 0 (resp.

dist(A, x) = 0, which, in case when A is monotone, is equivalent to
IÀn - I = 0) should be a co-Riesz sequence, this is not true.

That is shown by Example 3 below, which was provided by J.-P. Kahane
to the previous version of this manuscript (and appears here with his kind
permission). The further study of co-Riesz sequences in connection with
Helson sets is provided in the forthcoming paper [W].

On the other hand we can show that a number particular sequences
from this class are indeed co-Riesz. This is in the case when Theorem 1

could be applied. Note that, despite the fact that Theorem 1 is formulated
for Riesz sets, which by definition are closed, it remains valid in this setting
- in the proof of Theorem 1 we only use the values of the Fourier transform
at the points from some special (countable) set.

Proof of Theorem 3. - Without loss of generality we can assume
that is a non-increasing sequence consisting of powers of 2. Moreover
we can assume that 2:: rj == oo. Then we put An = for n = l, 2, ....
It is easy to check that for every n = l, 2, ... the intersection 2 n (R B A) n Z
is a set contained in a halfline (i.e. bounded from above). Hence it follows
from the theorem of F. and M. Riesz (cf. [HJ, 1.1.3, p.13]) and Theorem 1
that A is a co-Riesz sequence. D

Remark. - An obvious modification of the proof of Theorem 3 gives
its analogue for several variables. Namely, one can prove that for every
sequence (rn ) decreasing to 0 there exists a co-Riesz sequence A = (An) C
R~ such that f An 1) &#x3E; rn for n = 1, 2,....

Contrasting to the example given by the Theorem 3 is the following
example.

Example 3. - There exists a non co-Riesz set A, which is yet "thick"
at infinity, i.e., d(x, A) = 0.
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Proof. Let us start from a sequence of Riesz products

where

and

We can e.g. take for j &#x3E; 2n, == ~ otherwise. For the
Riesz products the condition ( 1 ) implies that pn is a singular probability
measure supported by [2013~,~], whose Fourier-Stieltjes transform is carried
by the set 0 = 0,J=1,J ~ 0) c Z. We identify pn with
a 1-periodic measure on the real line and consider an - cppn, so that

6i = where Sp E ~- 2 , 2 ~, cp &#x3E; 0, ~~ 0, and 0

on (- 2 , 2 ) . Note that + [-~, ~].
Finally, we set

and where

ta,l is a very rapidly increasing sequence of integers (to be chosen later).
Observe that ¡¡;;,(~) == i’. (~) cos(an~) . Moreover, as all the measures in the
sum p - are positive, the measure p is a singular probability
measure:

On each particular interval (c,v - 2 , c.~ -f- 2 ), with w E Q,

~ = 0,~=1, we have and £n vanishes
outside of these intervals. So, taking into account the condition (2), we can
construct a sequence mn such that T~ (~)  for all )£) &#x3E; mn.

Now we will chose inductively the sequence an and the sequence of
sequences An such that

for all

(5) for any A E An n [-mn, mn] the distance dist(A, An+1 )  2-n;

and

(6) for all ~ &#x3E; m,,  2-n.

After such sequence An is constructed, we can take A = An
(in the sense that A E A if dist(A, An) - 0). The norm convergence of the
sum 2:;:0 J-lj and (4) imply 0. And the conditions (5) and (6) give
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that dist(x, A)  2 ~B for all x E which

completes the proof.

To construct the sequence An notice that outside of the intervals

(w - 2 , w -+- 2 ), with w E Q, all the functions Fn (and so ¡in) vanishes, by the
construction, and thus the only difficulty in the choice of An occurs on these
intervals. Let sn be the partial sum pj. Note that, sn = Tl P, where P
is a trigonometric polynomial on each of the intervals under consideration.
As any trigonometric polynomial has only finitely many roots on an
interval, sn has finitely many roots on the interval (w - 2 , w -~ 2 ) for each w.
Denote the set of those roots by It is clear, that l~.n n (w - 2 , w -f- 2 ) C

As for any A E En,, by the definition sn (a) - 0, for each A E En,,
we can choose an interval h, C (w - 2 , w -~- 2 ) which contains A and has
length less than 2-n, such that I  Tn on As there are only finitely
many intervals (w - 2 , w -f- 2 ) in the interval [-Mn, and there are only
finitely many points in each interval, there are only finitely many intervals

with A E (U,, n [-Mn, Let rn be the minimal length of such
an interval. Then we choose Let 11n+1 on the
intervals (w - 2 , w -i- 2 ) be the sequence of zeros of the function L7:; íi;.
Notice that on each interval Ia the function £n(£) + 
takes a non-positive value at the point where and a non-

negative value at the point where = 1, as For

the chosen value of an+1 we can find all the range of values of 

on the interval So there exists a root of the function L7:; 3 (and so an
element of on each interval for all A E ( (UEn,w ) n m~]). As
the length of all the intervals h, is less than 2-n this means that condition
(5) is satisfied. Similar arguments show that condition (6) is satisfied as

well. As condition (4) is satisfied by the construction, this complete the
proof. 0

It appears that there is no estimate on the growth of the distribution
of the values of a function with the Fourier transform vanishing on a
sequence A (unlike the result about f -poles) .

PROPOSITION 4. - For every sequence A C R d with no limit points,
and every Young function -D such that rt there exists

f E such tllat /(A) = 0 for A E A.

Proof. Put 4J(t) == Since Ll(IRd) =1= 0 (t) - oc as
t -~ oo. Let o be the function from the proof of Proposition 2 which is,
additionally, decreasing to 0 at infinity (this requirement is equivalent to
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smoothness of Y) . Let xo = ( 1, 0, ... , 0) E Rd and put for m, k E Z

Obviously fm,~(~) _ (1 - ei27rk(ç,xo»);¡;(ç2-m). Thus the Fourier transform
of fm,k is supported on the cube and ( 1 - I for

~ E R . Since &#x3E; 0 and 0 is decreasing at infinity, for every m G Z
there exists K = .K(m) E Z such that fm,k is positive on the cube Id and
fm,k(X) &#x3E; for x E r2-mld, for all |k| &#x3E; K(m). Since the set A n 2m Id
is finite, for every c &#x3E; 0 we can always find an (arbitrarily large) integer
N such that  c for A E A n Hence there exists

integer km such that we have (A)  !- for A E A n 2m Id, where
M = #(A n 2mld). Clearly = 0 for A ~ A B 2mjd. Put

£ n hi n2 fm,,, km,,
where the numbers mn (n = 1, 2, ...) are going to be chosen later. We
prove that for every a &#x3E; 0 the function lF(ahi ) is not integrable on any
fixed neighbourhood of the origin, say aI d (note that we can assume that
hl is positive in Since V is a superadditive function,

If r2-"2n  a we have

If mn is chosen to satisfy ~(n-32"2nd) &#x3E; n, then for n sufficiently large

Thus Let us consider now the functions defined by

where Then,
obviously, Also

and
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Thus the function ~2 == ~~~~ is bounded, summable, and hi (A) =
h2 (~) for all A E A. Hence the function f = hl - h2 E its Fourier
transform vanishes on A and f is still not in m

Remark. - If (D (x) = .rlog(.c + 1), then one can modify the above
construction to get a function which does not belong to 

Proof. - After some minor modification we can assume that h2 is

continuously differentiable. Indeed, during the construction, when we define
numbers we replace the condition (A)  1 by the condition
./~,A~(A)  Then we get the estimate on the gradient of gmn in
the same way as the estimate for the sup norm of in the proof above.
Let X be a smooth function supported on 2I d such that x - 1 on Id. Since
the function

belongs to the space HI, the function f belongs to H1 iff f + h3 does. The
function f + h3 is positive on the cube I d, because it coincides there with
hi . Hence, by [St, Chapt. III.5.3~, the restriction ( f ~- h3 ) ~ Ia = should

agree with an L log L-summable function on every compact subset of I d,
which is not the case. D

In the proof of Theorem 3 the arithmetic relations between elements
of A were crucial, as we used the fact that all but finitely many elements
of ai ’Z belong to A. On the other hand, the set of non co-Riesz sequences
is open in the following sense.

PROPOSITION 5. - For any function f on which decreases to

0, and any sequence l1 - (An) C R which has no limit points, there

exists a sequence of positive numbers (rn) such that for every measure
J1 E M(IIg), for which 11J111 = 1 and [2013’r,T’]) ~ f (r) and any sequence
l~’ - (A£) c R such that )An - A’  rn (n - 1,2,...), there exists a
measure p’ E M(R) such that Q’(A£) for n = 1,2,... and J1s = ~s.

Proof. We need the following lemma.

Lemma l. - Given c E (0,1), r &#x3E; 0, x E R and a measure

p E M(R) as in the Proposition 5, there exists a measure v = v(c, r, x) E
M(R) absolutely continuous with respect to Lebesgue measure, such that
supp for every
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and Ilvll (  C (c ~ f ( T ) ) , where the constant C does not depend on c, r, x
and u. 

We show first how Proposition 5 follows from the lemma. Let (rn)
and (cn ) be sequences of positive numbers such that the intervals [An -

are pairwise disjoint, ¿en  oo  oo.
n

Then p’ is a finite measure which satisfies all the

requirements.

Proof of Lemma 1. Let ~ E be such  C,
 C, 1~’(x)1  ~ 2, supp~ C ~-2, 2~ [-1,1].

Put |Y’ (y)|. . It is easy to see that ||pR|| 1 
C1 max( 1, R) . We denote Without loss of generality we
suppose that x = 0. We consider first the case Q(0) = 0. Then we

have 11M * C2 (c + f ( T ). Indeed, since Q(0) = 0, we can represent
M = MR + Mn where MR is supported on the interval [-R, -R], jg~ = 0

and  2 f (R) . Then we estimate the convolution separately for ,uR
and J-lR

Since sup, we get

Putting R = § we get the desired estimation. Hence the measure v = ~c * ~r
satisfies the conditions of the lemma. 0 we put v = (~c - ( f 

· D

Remarks. - 1) It follows from the proof that if A satisfies the

assumption of Proposition 5 and = 0 for A E A then there exists

J1’ such that J1s /-t’ s and ¡L’ vanishes on some open set containing
A.

2) Proposition 5 can be easily extended to a multidimensional case.

The next result shows that in the previous proposition the sequence
(rn ) could not be chosen uniformly for all measures, without the decrease
condition.

PROPOSITION 6. - For every positive sequence (rj) there exist

sequences A = (An) and A’ = ( an ) and p E M(R) such that  rj
and there is no p’ C such that /~(A~) ~ Q’ (A£) for n = 1, 2,....
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Proof. We set 11’ _ Z. We index the sequences A and A’ by integer
numbers rather then natural ones. Let (an ) be a decreasing sequence of
positive numbers such that E an  oo and be the sequence of positive
integers such that E k,,a2 = oo. Put bn = aj where j is the unique index
such that ki +...  n  ki + ... (here we put 1~0 = 0).
Set

where is a sequence of positive integers satisfying for j = 1, 2,...

Let (2i)-1(ðwn - ð-wn) We have -

sin 7rWnt. Hence Qj (À2n) is positive for n  ki +... + equals 1 for

ki -i- ... ~-1~~ _ 1  n  ki +... + kj and vanishes for I~1 + ... + kj  n. Thus

Q(A2n ) &#x3E; bn for n = 1, 2.... Clearly = 0 2~, (j = 1, 2,...).

Suppose to the contrary that there exists a finite measure J-L’ such
that ~u’ ( j ) _ ~u(~~ ) . By the de Leeuw transference theorem (cf. [deL], [StW,
Chapt. VII, Th. 3.8~), there exists a bounded measure v E M(1I’) such that

and v(n) - ¡i’(n) for n = 1, 2, .... 
E bj = oo which contradicts the fact that A 12k : k - 1,2,...} is a A2
set, i. e. v E for every measure v E with

the Fourier transform vanishing outside A. 0

The above construction has one more application. We can use it to
construct a sequence which does not allow co-balayage.

PROPOSITION 7. - There exists a sequence 11 = (An) such that

and measure p E such that there is no measure p’ E M(R) supported
on a compact set such that ~c(~n) _ ¡i’ (Àn) for n = 1, 2, ....

Proof. Let A and p be the same as in the proof of Proposition 6
with one modification: the condition 2) on the sequence is replaced by
another condition

2’ ) 

Suppose that there exists J-L’ E M(R) such that ~c’ ( ~n ) - for

n = 1, 2, ... and supp// C [-T, T] for some T &#x3E; 0. Then the derivative of
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í1 is bounded by Hence, for sufficiently large n, we have

Thus E 1¡l’(n)12 = oo, and 9 vanish on m ~ 2n . We finish proceeding as
in the proof of Proposition 6. 0

Remarks. - 1) Note that for A = Z, the measure p’ with properties
postulated by Proposition 7 exists, and it is supported by an interval of
length 1. This is exactly what the de Leeuw theorem says:

2) We say that a sequence A C R has de Leeuw property iff for
every measure J-l E M(R) , there exists a measure p’ E M(R) with compact
support, such that JL~(A) = ¡l(À) for every A E A. By the de Leeuw
transference theorem, for every finite set F c R and r E any subset

of the set F + rZ has the de Leeuw property. We do not know whether the
converse is true.

3) It is much easier to construct a sequence A without the de Leeuw
property if we omit the condition &#x3E; 0. Moreover,
every sequence A which contains an increasing subsequence (xn ) such that
lim xn = oo and lim(x2n - X2n+I) = 0, has not de Leeuw property. Indeed,
let v E be a measure with Fourier transform supported on the
interval [-1, 1] such that = 1 and let Vr E M(R) be defined by
vr (t) - L~(1). Passing, if necessary, to a subsequence we can assume that

rn  oo where rn - x2n+1 - X2n  X2n - X2n-l for n = 1, 2, . ...
Put Then we have  llvll - . ~ rn~2  00,

~c(x2n) = and ~(x2n+1) - 0 for n = 1, 2, .... Hence the supremum
of the derivative of Q on the interval (x2n, is greater then r:;;I/2.
Therefore the derivative is unbounded, which means that p is not

compactly supported.

5. co-Lebesgue sequences.

We call the sequence A C a co-Lebesgue sequence iff for every
measure p E such that ~c (~) - 0 for E A, the singular part &#x3E;s
shares the same property, i.e. fis (£) = 0 for ~ G A. Clearly every co-Riesz
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sequence is co-Lebesgue. A slight modification of Theorem 1 allows to state
the following criterion.

PROPOSITION 8. - Assume that A C has the following property.
For every ~ E A there exists cx E R such that aA is a Riesz set, and

a£ E Then A is a co-Lebesgue sequence.

Proof. Let ~ E A and a E R be such that a£ E ~d and is a

Riesz set. Let v C be the measure defined by v(E) = + 

for E C Clearly vs (E) _ It is easy to see that for every
k C Zd,

as well as

Since [i(ç) == 0 for ~ E A, the Fourier transform of v vanishes outside some
Riesz subset of Zd . Hence, by the assumption, vs = 0. Since aç E the

above formula yields that ~cs (~) = vs (a~) = 0. 0

Examples 4.5. - 4) Let k = 2,3,.... Then the sequence Ak =
C R is co-Lebesgue one. Indeed, let a E Ak. Then a k E Z.

Therefore e Z for j = 1, 2, .... Hence ja E Ak for j = 1, 2 ....
Therefore n Z = Z+, and, by F. and M. Riesz theorem, Z B (-!Ak)
is a Riesz set.

5) Let Ao = If a = log m E Ao then na = log mn E A for
n = 1, 2, ... and hence, similarly as in Example 4, ZB~Ao =Z- is a Riesz
set.

Remarks. - 1) In fact, Proposition 8 together with the above exam-
ple give something more, namely if ;u(~) = 0 for ~ E A~ then = 0 for

g e 11~ 

2) We do not know whether Ak are co-Riesz sequences.
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