Ould M. ABDERRAHMANE

Stratification theory from the Newton polyhedron point of view

<http://aif.cedram.org/item?id=AIF_2004__54_2_235_0>

L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/
A stratification of a variety V is an expression of V as the disjoint union of a locally finite set of connected analytic manifolds, called strata, such that the frontier of each stratum is the union of a set of lower-dimensional strata. The most important notion in stratification theory is the regularity condition between strata. The notion of (w)-regularity introduced by Verdier in [15] plays a very important role in the study of algebraic and analytic varieties. Moreover, he showed that the (w)-regularity condition implies the Whitney (b)-regularity condition. The (c)-regularity, defined by K. Bekka in [2], is weaker than the Whitney (b)-regularity, and he showed that the (c)-regularity condition implies topological triviality. In this paper, we will investigate these regularity conditions relative to a Newton filtration in terms of the defining equations of the strata. The article is organized as follows. In Section 1 we present a characterization for Bekka’s (c)-regularity condition. Next we give a criterion for regularity conditions in terms of the defining equations of the strata, following [1] we introduce a pseudo-metric adapted to the Newton polyhedron in Section 2. Using this construction we obtain versions relative to the Newton filtration of the Fukui-Paunescu Theorem (Theorem 4 below). In this approach it is possible to consider a version relative to a Newton filtration of the (w)-regularity condition. We show that this
condition implies the \((c)\)-regularity condition. In Section 3, using the criterion of the regularity condition given in Section 2, we prove that the J. Damon and T. Gaffney condition in ([5], Theorem 1) implies the \((w)\)-regularity condition related to the Newton polyhedron.

Since complex varieties can be considered as real varieties, we shall only consider the real case.

Notation. — To simplify the notation, we will adopt the following conventions: for a function \(g(x,t)\), we denote by \(\partial g\) the gradient of \(g\) and by \(\partial_x g\) the gradient of \(g\) with respect to the variables \(x\). For a non zero vector \(v\) of \(\mathbb{R}^n\), we denote by \(L(v)\) the line spanned by \(v\). Also, let \(\mathbb{R}^n_+ = \{(x_1, \ldots, x_n) \in \mathbb{R}^n, \text{ each } x_i > 0, i = 1, \ldots, n\}\) and \(Q^n_+ = Q^n \cap \mathbb{R}^n_+\), \(Z^n_+ = Z^n \cap Q^n_+\).

Let \(\varphi, \psi: (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)\) be two functions. We say that \(|\varphi(x)| \lesssim |\psi(x)|\) if there exists a constant \(C\) such that \(|\varphi(x)| \leq C|\psi(x)|\). We write \(|\varphi| \sim |\psi|\) if \(|\varphi(x)| \lesssim |\psi(x)|\) and \(|\psi(x)| \lesssim |\varphi(x)|\). Finally, \(|\varphi(x)| \ll |\psi(x)|\) when \(x\) tends to \(x_0\) means \(\lim_{x\to x_0} \frac{\varphi(x)}{\psi(x)} = 0\).

1. Stratification.

In this section, we recall some definitions about stratification. The stratification theory has been introduced by H. Whitney [16] and R. Thom [13].

Let \(M\) be a smooth manifold, and let \(X, Y\) be smooth submanifolds of \(M\) such that \(Y \subseteq \overline{X}\) and \(X \cap Y = \emptyset\).

(i) (Whitney \((a)\)-regularity)

\((X,Y)\) is \((a)\)-regular at \(y_0 \in Y\) if:

for each sequence of points \(\{x_i\}\) which tends to \(y_0\) such that the sequence of tangent spaces \(\{T_{x_i}X\}\) tends in the Grassman space of \((\dim X)\)-planes to some plane \(\tau\), then \(T_{y_0}Y \subset \tau\). We say \((X,Y)\) is \((a)\)-regular if it is \((a)\)-regular at any point \(y_0 \in Y\).

(ii) (Bekka \((c)\)-regularity)

Let \(\rho\) be a smooth non-negative function such that \(\rho^{-1}(0) = Y\). \((X,Y)\) is \((c)\)-regular at \(y_0 \in Y\) for the control function \(\rho\) if:

for each sequence of points \(\{x_i\}\) which tends to \(y_0\) such that the sequence of tangent spaces \(\{\text{Ker}(d\rho(x_i) \cap T_{x_i}X\}\) tends in the Grassman space of \((\dim X - 1)\)-planes to some plane \(\tau\), then \(T_{y_0}Y \subset \tau\). \((X,Y)\)
is \((c)\)-regular at \(y_0\) if it is \((c)\)-regular for some control function \(\rho\). We say \((X, Y)\) is \((c)\)-regular if it is \((c)\)-regular at any point \(y_0 \in Y\).

1.1. A criterion for \((c)\)-regularity.

We suppose now that \(M = \mathbb{R}^{n+m}\) and \(0 \in Y \subset \overline{X} - X\) (the regularity conditions are defined locally). Modulo an analytic transformation of \(\mathbb{R}^{n+m}\) near \(0\), if necessary, we may assume that \(Y\) coincides with its tangent space \(T_0Y\). Let \((x, t) = (x_1, \ldots, x_n, t_1, \ldots, t_m)\) denote a system of coordinates of \(\mathbb{R}^{n+m}\). For notational convenience we also use \(x_{n+s} = t_s\). We assume that

\[
Y = \{(x, t) \in \mathbb{R}^{n+m} \mid x_1 = \ldots = x_n = 0\}.
\]

Then we can characterize \((c)\)-regularity as follows:

Theorem 1. The pair \((X, Y)\) is \((c)\)-regular at \(0\) for the control function \(\rho\) if and only if \((X, Y)\) is \((a)\)-regular at \(0\) and \(|\partial_t(\rho|_X)(x, t)| \ll |\text{grad } (\rho|_X)(x, t)|\) as \((x, t) \in X\) and \((x, t) \to 0\).

The following proof is inspired by the proof of Bekka-Koike ([3], Theorem 2.4)

Proof. At first, we have the following equality:

\[
T_{(x,t)}X = (\text{Ker } d\rho(x, t) \cap T_{(x,t)}X) \oplus K_{(x,t)},
\]

where \(K_{(x,t)} = (\text{Ker } d\rho(x, t) \cap T_{(x,t)}X)^\perp \cap T_{(x,t)}X = L(\partial_t(\rho|_X)(x, t))\) i.e., a line spanned by the gradient of the function \(\rho|_X\).

\((\Rightarrow)\) Let \((x_i, t_i)\) be a sequence of points \(X\) which tends to \(0\) such that \(T_{(x_i, t_i)}X\) tends to some \((\text{dim } X)\)-dimensional space \(\tau\). Taking a subsequence if necessary we can suppose that \(\text{Ker } d\rho(x_i, t_i) \cap T_{(x_i, t_i)}X\) tends to some \((\text{dim } X - 1)\)-dimensional space \(\tau'\) and \(K_{(x_i, t_i)}\) tends to some one-dimensional space \(L\). By Bekka \((c)\)-regularity \(\{0\} \times \mathbb{R}^m \subset \tau'\). Since \(\text{Ker } d\rho(x_i, t_i) \cap T_{(x_i, t_i)}X \subset T_{(x_i, t_i)}X\) and \(K_{(x_i, t_i)}\) is orthogonal to \(\text{Ker } d\rho(x_i, t_i) \cap T_{(x_i, t_i)}X\), we have \(\{0\} \times \mathbb{R}^m \subset \tau\) and \(L\) is orthogonal to \(\{0\} \times \mathbb{R}^m\) which means \((X, Y)\) is \((a)\)-regular at \(0\) and \(|\partial_t(\rho|_X)(x_i, t_i)| \ll |\partial_t(\rho|_X)(x_i, t_i)|\).

\((\Leftarrow)\) Let \((x_i, t_i)\) be a sequence of points \(X\) which tends to \(0\) such that \(\text{Ker } d\rho(x_i, t_i) \cap T_{(x_i, t_i)}X\) tends to some \((\text{dim } X - 1)\)-dimensional space \(\tau\).
When passing to a subsequence one can suppose that all the $T_{(x, t)} X$ have the same dimension (dim X), and that this sequence of space converges to some space τ' and $K_{(x, t)}$ tends to some one-dimensional space L. By the Whitney (a)-regularity $\{0\} \times \mathbb{R}^m \subset \tau'$. Since $|\partial_t(\rho_{(x)}(x, t, t))| \ll |\partial(\rho_{(x)}(x, t, t))|$, which implies $L \subset \mathbb{R}^n \times \{0\}$, L is orthogonal to $\{0\} \times \mathbb{R}^m$. Hence we have $\{0\} \times \mathbb{R}^m \subset \tau$.

This completes the proof of the theorem.

1.2. Ratio test conditions and (w)-regularity.

For X, Y as above, we say X is (r)-regular (resp. (w)-regular) over Y at 0, if for any unit vector v tangent to Y

$$|\pi_p(v)||x(t)| \ll |x| \text{ as } p = (x, t) \in X \text{ and } (x, t) \to 0$$

(resp. $|\pi_p(v)| \lesssim |x|$ when $p = (x, t) \in X$ near 0) where π_p denotes the orthogonal projection of \mathbb{R}^{n+m} to the normal space of X at $p \in X$. We can find a lot of information about this in [6, 8, 14].

Let $F: (\mathbb{R}^n \times \mathbb{R}^m, \{0\} \times \mathbb{R}^m) \to (\mathbb{R}^p, 0)$ be an analytic map-germ. We denote by V_F the variety of the zero locus of F. One can note that $\Sigma(V_F) = \{F^{-1}(0) - \{0\} \times \mathbb{R}^m, \{0\} \times \mathbb{R}^m\}$ gives a stratification of V_F around $\{0\} \times \mathbb{R}^m$. Hereafter, we will assume that

$$X = F^{-1}(0) - \{0\} \times \mathbb{R}^m \text{ and } Y = \{0\} \times \mathbb{R}^m.$$

Setting $F := (F_1, \ldots, F_p)$, assume that the Jacobi matrix of F has rank k on X near 0, where $k \leq p$ is the codimension of X in \mathbb{R}^{n+m}. We note that the normal space to X is generated by the gradient of the functions $F_j (j = 1, \ldots, p)$ at each $P \in X$ near 0. Let us recall some definitions and notations, used by Fukui and Paunescu in [6].

Let j_1, \ldots, j_k be integers with $1 \leq j_1 < \cdots < j_k \leq p$. We set $J = \{j_1, \ldots, j_k\}$, $F_J = (F_{j_1}, \ldots, F_{j_k})$ and

$$dF_J = dF_{j_1} \wedge \cdots \wedge dF_{j_k}, \text{ where } dF_j = \sum_{i=1}^{n+m} \frac{\partial F_j}{\partial x_i} dx_i,$$

$$d_x F_J = d_x F_{j_1} \wedge \cdots \wedge d_x F_{j_k}, \text{ where } d_x F_j = \sum_{i=1}^{n} \frac{\partial F_j}{\partial x_i} dx_i,$$

and we define $d^x F_J$ by $dF_J = d_x F + d^x F_J$.

ANNALES DE L'INSTITUT FOURIER
For $I \subset \{1, \ldots, n\}$, $S \subset \{1, \ldots, m\}$, $J \subset \{1, \ldots, p\}$ with $\#I + \#S = \#J = k$, we set $\frac{\partial F_j}{\partial (x_{i_1}, t_{s_1})}$ to be the Jacobian of F_j with respect to the variables x_i ($i \in I$), and t_s ($s \in S$). When $S = \emptyset$, we simply denote it by $\frac{\partial F_j}{\partial x_i}$. We then define $\|dF\|$, $\|d_x F\|$ and $\|d^x F\|$ by the following formulae:

\[
\|dF\|^2 = \sum_j \|dF_j\|^2 \quad \text{where} \quad \|dF_j\|^2 = \sum_{I, S} \left| \frac{\partial F_j}{\partial (x_I, t_S)} \right|^2,
\]

\[
\|d_x F\|^2 = \sum_j \|d_x F_j\|^2 \quad \text{where} \quad \|d_x F_j\|^2 = \sum_I \left| \frac{\partial F_j}{\partial x_I} \right|^2,
\]

\[
\|d^x F\|^2 = \sum_j \|d^x F_j\|^2 \quad \text{where} \quad \|d^x F_j\|^2 = \sum_{I, S: S \neq \emptyset} \left| \frac{\partial F_j}{\partial (x_I, t_S)} \right|^2.
\]

For a matrix M we denote by $|M|$ the absolute value of its determinant.

Then we have a simple criterion for the regularity conditions of $\Sigma(V_F)$ as follows:

Theorem 2. — For X, Y as above, we have the following equivalences

(i) (X, Y) is (a)-regular at 0 if and only if $\|d^x F\| \ll \|dF\|$ when $(x, t) \to 0$ on X.

(ii) (X, Y) is (r)-regular at 0 if and only if $|x| \|d_x F\|$ when $(x, t) \to 0$ on X.

(iii) (X, Y) is (w)-regular at 0 if and only if $\|d^x F\| \lesssim |x| \|d_x F\|$ holds on X near 0.

(iv) (X, Y) is (c)-regular at 0 for the function ρ if and only if $\|d^x F\| \ll \|dF\|$ and $|\partial_t \rho_{|X}| \ll \frac{\|dF \wedge d\rho\|}{\|dF\|}$ as $(x, t) \in X$, $(x, t) \to 0$.

Here, $\|dF \wedge d\rho\|^2 = \sum_j \|dF_j \wedge d\rho\|^2$.

Proof. — Since (i), (ii) and (iii) have already been obtained in [6], we only have to prove (iv). Indeed, following ([6], lemma 1.4), one get that the orthogonal projection π of $v \in T_{(x,t)}M$ to the tangent space $T_{(x,t)}X$ is expressed by the following form:

\[
\pi(v) = \sum_{i=1}^{n+m} \frac{\sum_j (dF_j \wedge dx_i, dF_j \wedge v)}{\|dF\|^2} \frac{\partial}{\partial x_i}.
\]
Since $\partial \rho_{|X} = \pi(\partial \rho)$, we can easily see that $\langle \partial \rho_{|X}, \partial \rho \rangle = \frac{\|dF \wedge d\rho\|^2}{\|dF\|^2}$, but $\partial \rho = \partial \rho_{|X} + \partial \rho_{|N}$ (where N denotes the normal space to X), which implies

$$\|\partial \rho_{|X}\|^2 = \langle \partial \rho_{|X}, \partial \rho \rangle = \frac{\|dF \wedge d\rho\|^2}{\|dF\|^2}.$$

Hence, we can deduce from Theorem 1 that (iv) holds. \square

We next state one sufficient condition for (c)-regularity.

Corollary 3. — Suppose that $\partial_t \rho = 0$, then X is (c)-regular over Y at 0, if

$$\|d^x F\| \ll \frac{\|dF \wedge d\rho\|}{|\partial \rho|} \quad \text{as} \quad (x, t) \in X, \quad (x, t) \to 0.$$

Note that when $p = k = 1$, this inequality is a necessary condition for (c)-regularity.

Proof. — It is trivial that (1.3) implies (X, Y) is (a)-regular at 0. We first remark, by (1.1) the following equality:

$$\partial_t \rho_{|X} = \sum_j \langle dF_j \wedge dt_j, dF_j \wedge d\rho \rangle \frac{\partial}{\partial t_j} \frac{\|dF\|^2}{\sqrt{\|dF\|^2}} = \sum_{i=1}^n \frac{\partial \rho}{\partial x_i} \sum_j \langle dF_j \wedge dt_j, dF_j \wedge dx_i \rangle \frac{\partial}{\partial t_j}.$$

Then, by Cauchy-Schwartz inequality, we have

$$|\partial_t \rho_{|X}| \lesssim \frac{|\partial \rho| \|d^x F\|}{\|dF\|} \quad \text{for} \quad j = 1, \ldots, m.$$

We now assume (1.3). We then have $|\partial_t \rho_{|X}| \ll \frac{\|dF \wedge d\rho\|}{\|dF\|}$ as $(x, t) \in X$, $(x, t) \to 0$. It follows from the equivalence in (iv) of Theorem 2 that (X, Y) is (c)-regular at 0. \square

2. (w)-regularity and (c)-regularity relative to the Newton filtration.

Let us recall some basic definitions and properties of the Newton filtration (see [1, 5, 7] for details). Let $A \subseteq \mathbb{Q}^d_+$. A Newton polyhedron
\(\Gamma_+(A) \subset \mathbb{R}^n \) is defined by \(\{ \text{the convex closure of } A + \mathbb{R}^n_+ \} \). The Newton boundary of \(A \), \(\Gamma(A) \) is the union of the compact faces of \(\Gamma_+(A) \). We let \(\mathcal{F}(A) \) denote the union of the top dimensional faces of \(\Gamma(A) \). The Newton vertex \(\text{Ver}(A) \) is defined by \(\{ \alpha : \alpha \text{ is vertex of } \Gamma(A) \} \). \(A \) is called convenient if the intersection of \(\Gamma_+(A) \) with each coordinate axis is non-empty. Throughout, we suppose that \(A \) is convenient.

From the Newton polyhedron, we construct the Newton filtration. We first observe that by the convenience assumption on \(A \), any face \(F \in \mathcal{F}(A) \), \(\dim F = n - 1 \). So let \(w_F \) be the unique vector of \(\mathbb{Q}^n_+ \) such that \(F = \{ b \in \Gamma_+(A) : \langle b, w_F \rangle = 1 \} \). We can suppose that the vertices of \(A \) are sufficiently close to the origin so that all the \(w_F \in \mathbb{Z}^n_+ \). We will suppose henceforth that \(A \) satisfies this property. Then, we construct the following map \(\phi : \mathbb{R}^n_+ \to \mathbb{R}_+ \). The restriction of \(\phi \) to each cone \(C(F) \) (where \(C(F) \) denotes the cone of half-rays emanating from 0 and passing through \(F \)) is defined as follows:

\[
\phi_{|C(F)}(\alpha) = \langle \alpha, w_F \rangle, \quad \text{for all } \alpha \in C(F).
\]

We extend this map to \(\mathbb{R}^n_+ \) as follows:

\[
(2.1) \quad \phi(\alpha) = \min \{ \langle \alpha, w_F \rangle : F \in \mathcal{F}(A) \}, \quad \text{for all } \alpha \in \mathbb{R}^n_+.
\]

The map \(\phi \) is linear on each cone \(C(F) \) (where \(F \in \mathcal{F}(A) \)), and the value of \(\phi \) along each point over \(\Gamma(A) \) is equal to 1 and \(\phi(\mathbb{Z}^n_+) \subset \mathbb{Z}_+ \). This is called the Newton filtration induced by \(A \).

For any monomial \(x^\alpha \), we define \(\text{fil}(x^\alpha) = \phi(\alpha) \). This extends to a filtration on the ring \(\mathcal{C}_n \) of analytic function germs : \((\mathbb{R}^n,0) \to (\mathbb{R},0) \) (via Taylor expansion) by defining

\[
(2.2) \quad \text{fil} \left(\sum c_\alpha x^\alpha \right) = \min \{ \phi(\alpha) : c_\alpha \neq 0 \}.
\]

We denote the set of \(g \) with \(\text{fil}(g) \geq l \) in \(\mathcal{C}_n \) by \(\mathcal{A}_l \). The number \(\text{fil}(g) \) will be also called the level of \(g \) with respect to \(A \).

Now we introduce the control functions associated to \(A \) as follows:

\[
(2.3) \quad \rho(x) = \left(\sum_{\alpha \in \text{Ver}(A)} x^{2p\alpha} \right)^{\frac{1}{2p}} \quad \text{and} \quad \bar{\rho}(x) = \sum_{\alpha \in \text{Ver}(A)} x^{2p\alpha},
\]

where \(p \) a positive integer. Moreover if \(p \) is big enough (it suffices, for example, that \(p\alpha \in \mathbb{Z}^n_+ \)), \(\bar{\rho} \) will be \(C^w \).

TOME 54 (2004), FASCICULE 2
Note that for an element $g = \sum c_\alpha x^\alpha \in C_n$, the support of g is $\text{supp}(g) = \{ \alpha : c_\alpha \neq 0 \}$; it is clear that $g \in \mathcal{A}_t$ if and only if $\text{supp}(g) \subseteq \Gamma_+(t\mathcal{A})$ which is also equivalent to $|g| \lesssim \rho^t$ (see [1, 5] for details). Thus \mathcal{A}_t can be written as

$$
(2.4) \quad \mathcal{A}_t = \{ g \in C_n : \text{supp}(g) \subseteq \Gamma_+(t\mathcal{A}) \} = \{ g \in C_n : |g| \lesssim \rho^t \}.
$$

We say that an analytic function germ $g \in C_n$ is an \mathcal{A}-form of degree d if $\text{supp}(g) \subseteq \Gamma(d\mathcal{A})$ (i.e., $g \in \mathcal{A}_d \setminus \mathcal{A}_{d+1}$). Furthermore, for $f \in C_n$, we denote the Taylor expansion of $f(x)$ at the origin by $\sum_{\nu} c_\nu x^\nu$. Setting

$$
H_j(x) = \sum_{\nu \in \Gamma(j\mathcal{A})} c_\nu x^\nu, \quad j \in \mathbb{Z}_+,
$$

we can write $f(x) = \sum_j H_j(x)$ (Newton filtration), where H_j is \mathcal{A}-form of degree j. Also if $\#\mathcal{F}(\mathcal{A}) = 1$, we can replace the Newton filtration associated with \mathcal{A} by the weighted filtration associated to w^F. Moreover, if $w^F = (1, \ldots, 1)$, this Newton filtration coincides with the usual filtration.

2.1. Compensation factor.

Let $\rho_i : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be a continuous function. We say that ρ_i is the ith compensation factor associated with \mathcal{A} if for each $g \in C_n$, we have that $|\rho_i \partial_{x_i} g| \lesssim \rho^{\tilde{\rho_i}(g)}$. Next we give some examples of compensation factors associated with \mathcal{A}.

(i) Here, we have the trivial example for the compensation factors, given by

$$
\rho_i(x) = x_i \quad \text{for} \quad i = 1, \ldots, n.
$$

(ii) Let $L_j = L(x_j)$ denote the x_j-axis. We then put $\alpha^j = L_j \cap \Gamma(\mathcal{A})$ for $j = 1, \ldots, n$ (the axial vertices of $\Gamma(\mathcal{A})$). We define the weight of the variable x_i, $\mathcal{A}(i) = \mathcal{A}(x_i) = \max\{ w_i^F : F \in \mathcal{F}(\mathcal{A}) \}$. We may introduce the compensation factors as follows:

$$
\rho_i(x) = \left(x_i^{\frac{2_\mathcal{A}}{\mathcal{A}(i)}} + \sum_{\alpha \in \text{Ver}(\mathcal{A}) \setminus \{ \alpha^i \}} x^{2_\mathcal{A}_\alpha} \right)^{\frac{\mathcal{A}(i)}{2_\mathcal{A}}}, \quad i = 1, \ldots, n.
$$

It is easy to check that these functions ρ_i are compensation factors associated with \mathcal{A} (see [1, 11] for details).
(iii) The following compensation factors are inspired by the work of Damon-Gaffney in [5]. For all integers $l \geq 0$, we let

$$R_{l,i} = \{ \alpha \in \mathbb{Q}_+^n : \langle \alpha, w^F \rangle \geq l + w_i^F, \forall F \in \mathcal{F}(A) \} \quad \text{for } i = 1, \ldots, n.$$

We may introduce the compensation factors as follows:

$$\rho_{l,i}(x) = \left(\sum_{\alpha \in Var(R_{l,i})} \frac{x^{2\alpha}}{\rho^{2l}} \right)^{\frac{1}{2}}, \quad i = 1, \ldots, n.$$

It is easy to see that for any integers $l \geq 0$, we have that $\rho_{l,i}(x) \leq \rho^{m_i}(x)$, where $m_i = \min_{F \in \mathcal{F}(A)} \{ w_i^F \}$, which implies that $\rho_{l,i}$ is continuous at the origin. On the other hand, by the construction of $\rho_{l,i}$ we can deduce that $|\rho_{l,i} \partial_x g| \leq \rho^{\text{fil}(g)}$ for all $g \in C_n$. Hence, we get that these functions $\rho_{l,i}$ are compensation factors associated with A.

Observation. We should note that in the case where $\# \mathcal{F}(A) = 1$ (i.e., weighted filtration associated with $w = (w_1, \ldots, w_n)$), the natural choice of compensation factor is that given by L. Paunescu in [10] as follows:

$$\rho_i = \rho^{w_i} \quad \text{for } i = 1, \ldots, n.$$

Moreover, for any other compensation factors ξ_1, \ldots, ξ_n associated with the weighted filtration, we have that $\xi_i \leq \rho^{w_i}, i = 1, \ldots, n$. Unfortunately, in the general case we have not succeeded in finding the best compensation factors ρ_1, \ldots, ρ_n such that for any other compensation factors ξ_1, \ldots, ξ_n, we have that $\xi_i \leq \rho_i$. However, for each $\gamma \in \mathbb{Q}_+^n$ such that the monomial x^γ is ith compensation factor, we have $|x^\gamma| \leq \rho_{l,i}$, where $\rho_{l,i}$ are the compensation factors defined in (iii).

Now we fix the compensation factors ρ_i for $i = 1, \ldots, n$ relative to the Newton filtration, and consider the singular metric of $M = \mathbb{R}^{n+m}$ defined by

$$\langle p_i(x) \frac{\partial}{\partial x_i}, p_j(x) \frac{\partial}{\partial x_j} \rangle = \delta_{i,j} := \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases},$$

$$\langle \frac{\partial}{\partial t_i}, \frac{\partial}{\partial t_j} \rangle = 0 \quad \text{and} \quad \langle \frac{\partial}{\partial t_i}, \frac{\partial}{\partial t_j} \rangle = \delta_{i,j}.$$

Here, $(x, t) = (x_1, \ldots, x_n, t_1, \ldots, t_p)$ denotes a system of coordinates of \mathbb{R}^{n+m}. By elementary calculation we have

$$\langle dx_{i_1} \wedge \cdots \wedge dx_{i_k}, dx_{i_1} \wedge \cdots \wedge dx_{i_k} \rangle = \rho_{I} := \rho_{i_1} \cdots \rho_{i_k}.$$

TOME 54 (2004), FASCICULE 2
2.2. \((w)\)-regularity associated with \(\mathcal{A}\).

Let \(F : (\mathbb{R}^n \times \mathbb{R}^m, \{0\} \times \mathbb{R}^m) \to (\mathbb{R}^p, 0)\) be analytic. We next assume that

\[
(2.6) \quad Y = \{(x, t) \in \mathbb{R}^n \times \mathbb{R}^m : x_1 = \cdots x_n = 0\} \quad \text{and} \quad X = F^{-1}(0) - Y.
\]

Setting \(F := (F_1, \ldots, F_p)\), assume that the Jacobi matrix of \(F\) has rank \(k\) on \(X\) near \(0\), where \(k \leq p\) is the codimension of \(X\) in \(\mathbb{R}^{n+m}\). We note that the normal space of \(X\) is generated by the gradient of the functions \(F_j\) \((j = 1, \ldots, p)\) at each \(P \in X\) near \(0\). Following [6], we define \(\|dF\|_{\mathcal{A}}, \|d_x F\|_{\mathcal{A}}, \|d^2 F\|_{\mathcal{A}}\) and \(\mathcal{D}_{\mathcal{A}}(\ell)\) by the following formulae:

\[
(2.7) \quad \|dF\|_{\mathcal{A}}^2 = \sum_j \|dF_j\|_{\mathcal{A}}^2 \quad \text{where} \quad \|dF_j\|_{\mathcal{A}}^2 = \sum_{I,S} \left(\rho_I \left| \frac{\partial F_j}{\partial (x_I, t_S)} \right| \right)^2,
\]

\[
\|d_x F\|_{\mathcal{A}}^2 = \sum_j \|d_x F_j\|_{\mathcal{A}}^2 \quad \text{where} \quad \|d_x F_j\|_{\mathcal{A}}^2 = \sum_I \left(\rho_I \left| \frac{\partial F_j}{\partial x_I} \right| \right)^2,
\]

\[
\|d^2 F\|_{\mathcal{A}}^2 = \sum_j \|d^2 F_j\|_{\mathcal{A}}^2 \quad \text{where} \quad \|d^2 F_j\|_{\mathcal{A}}^2 = \sum_{I,S: S \neq \emptyset} \left(\rho_I \left| \frac{\partial F_j}{\partial (x_I, t_S)} \right| \right)^2
\]

and

\[
(2.8) \quad \mathcal{D}_{\mathcal{A}}(\ell) = \sum_j \sum_{I,S: \#S = \ell} \left(\rho_I \left| \frac{\partial F_j}{\partial (x_I, t_S)} \right| \right)^2 \quad \text{where} \quad \rho_I = \prod_{i \in I} \rho_i.
\]

We first remark that \(\langle dF, dF \rangle = \|dF\|_{\mathcal{A}}^2\) and \(\langle d_x F, d_x F \rangle = \|d_x F\|_{\mathcal{A}}^2\).

Now using the above construction, we state the version relative to the Newton filtration of the Fukui-Paunescu Theorem ([6], Theorem 2.1).

Theorem 4. — The following conditions are equivalent

(i) \(\mathcal{D}_{\mathcal{A}}(m) \preceq \mathcal{D}_{\mathcal{A}}(m-1) \preceq \cdots \preceq \mathcal{D}_{\mathcal{A}}(1) \preceq \mathcal{D}_{\mathcal{A}}(0)\) holds on \(X\) near \(0\).

(ii) \(\|d^2 F\|_{\mathcal{A}} \preceq \|d_x F\|_{\mathcal{A}}\) holds on \(X\) near \(0\).

(iii) For any \(C^1\)-functions \(\varphi_j\) \((j = 1, \ldots, p)\) near \(0\), and \(s = 1, \ldots, m\),

\[
\left| \sum_{j=1}^p \frac{\partial F_j}{\partial t_s} \right| \preceq \sum_{i=1}^n \rho_i \left| \sum_{j=1}^p \frac{\partial F_j}{\partial x_i} \right| \quad \text{holds on} \quad X \quad \text{near} \quad 0.
\]
(iv) For \(J \subset \{1, \ldots, p\} \), \(I = \{i_1, \ldots, i_{k-1}\} \subset \{1, \ldots, n\} \) with \(1 \leq i_1 < \cdots < i_{k-1} \leq n \), \(s = 1, \ldots, m \),
\[
\rho_I \left| \frac{\partial F_J}{\partial (x_I, t_s)} \right| \lesssim \|d_x F\|_\mathcal{A} \quad \text{holds on } X \text{ near } 0.
\]

(v) For \(J \subset \{1, \ldots, p\} \), \(i = 1, \ldots, n \), \(s = 1, \ldots, m \),
\[
\|dF_J \wedge dx_i, dF_J \wedge dt_s\| \lesssim \rho_i \|d_x F\|^2_\mathcal{A} \quad \text{holds on } X \text{ near } 0.
\]

(vi) For some positive \(C^1 \)-functions \(\phi_J \) on \(X \) with \(J \subset \{1, \ldots, p\} \), \(i = 1, \ldots, n \), \(s = 1, \ldots, m \),
\[
\left| \sum_J \phi_J (dF_J \wedge dx_i, dF_J \wedge dt_s) \right| \lesssim \rho_i \sum_J \phi_J \|d_x F\|^2_\mathcal{A} \quad \text{holds on } X \text{ near } 0.
\]

Proof. — The proof is similar to that of Fukui-Paunescu in [6]; it is enough to replace the \(\|x\|_w \) (resp. \(\|x\|_{w^F} \)) in the proof of Theorem 2.1 [6] by the \(\rho_i \) (resp. \(\rho_I \)). \(\square \)

We say that \(X \) is \((w)\)-regular over \(Y \) at 0 with respect to \(\mathcal{A} \) (or \(w^A \)-regular), if one of the above equivalent conditions holds. When \(\#\mathcal{F}(\mathcal{A}) = 1 \), we find that \(\rho_i(x) = \rho_{w^F}(x) \) for \(i = 1, \ldots, n \), hence our \((w^A)\)-regularity reduces to the weighted \((w)\)-regularity (see [6]). Moreover, if \(w^F = (1, \cdots, 1) \), these coincide with the usual \((w)\)-regularity (Verdier’s regularity).

We shall prove the following theorem.

Theorem 5. — For \(X, Y \) as above, if \((X, Y)\) is \((w^A)\)-regular, then \((X, Y)\) is \((c)\)-regular for the control function \(\bar{\rho} \) (we recall that \(\bar{\rho}(x) = \sum_{\alpha \in \text{Ver}(\mathcal{A})} x^{2p_{\alpha}} \)).

Remark 6. — The converse of the theorem is false in general: (Kuo’s example [8])

\[
F(x, y, t) = y^2 - tx^2 - x^5, \quad X = \{y^2 = tx^2 + x^5\} - \{0\} \times \mathbb{R} \quad \text{and} \quad Y = \{0\} \times \mathbb{R}.
\]

We consider the usual filtration \((\mathcal{A} = \{(1, 0); (0, 1)\}) \). It is easy to see that \((X, Y)\) is \((c)\)-regular at 0 for the control function \(\bar{\rho}(x, y) = x^2 + y^2 \), but that \((X, Y)\) is not Verdier \((w)\)-regular at 0 (see [14] for details).
As an immediate corollary we have

Corollary 7. Let \(f_t : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0) \), \(t \in \mathbb{R}^m \) be a family of weighted homogeneous polynomials defining an isolated singularity at the origin. We set \(F(x, t) = f_t(x) \), then the stratification \(\Sigma(V_F) \) is \((c)\)-regular. (we again recall that \(\Sigma(V_F) = \{ F^{-1}(0) - \{0\} \times \mathbb{R}^m, \{0\} \times \mathbb{R}^m \} \))

Proof. Let us put \(X = F^{-1}(0) - \{0\} \times \mathbb{R}^m \) and \(Y = \{0\} \times \mathbb{R}^m \). Consider the weighted filtration associated with \(\mathcal{A} = \{ (\frac{1}{w_1}, 0, \cdots, 0), \ldots, (0, \cdots, 0, \frac{1}{w_n}) \} \) such that \(f_t \) is a weighted homogeneous polynomial with the weight \(w = (w_1, \cdots, w_n) \in \mathbb{Z}^n_+ \). Now from the Theorem 5, it is enough to show that \((X, Y)\) is \((w^A)\)-regular, that is,

\[
|\partial_t F| \lesssim \|d_x F\|_A \quad \text{holds on} \quad X \text{ near } Y.
\]

Since \(f_t \) defines an isolated singularity at the origin, we can see that \(\|d_x F\|_A^2 = \sum_{i=1}^{n} (\rho^{x_i} \frac{\partial F}{\partial x_i})^2 \) is not zero outside the origin, and this implies our inequality. \(\square \)

Corollary 8. Let \(f_t : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0) \), \(t \in \mathbb{R}^m \) be a real analytic family non-degenerate (in the sense of Kouchnirenko [7]) and \(\Gamma(f_t) = \Gamma(f_0) \), then the stratification \(\Sigma(V_F) \) is \((c)\)-regular.

Proof. By standard argument, based on the curve selection lemma, we can see that

\[
|\partial_t F| \lesssim \sum_{\alpha \in \text{Ver}(\Gamma(f_0))} |x^\alpha| \lesssim \sum_{i=1}^{n} |x_i \frac{\partial F}{\partial x_i}|.
\]

Therefore, \((X, Y)\) is \((w^A)\)-regular for any Newton filtration. In particular, \((X, Y)\) is usual \((w)\)-regular (Verdier’s regular). \(\square \)

Before starting the proofs of the above results, we will first illustrate these results with several examples.

Example 9 (Briançon-Speder family [4]). Let \(f_t : (\mathbb{R}^3, 0) \to (\mathbb{R}, 0) \), \(t \in J = [-1, 1] \), be a family of weighted homogeneous polynomials defined by

\[
f_t(x, y, z) = z^5 + t y^6 z + x y^7 + x^{15}.
\]

We set \(F(x, t) = f_t(x) \), \(Y = \{0\} \times J \) and \(X = F^{-1}(0) - Y \). It is easy to check that \(|\partial_t F| \lesssim \|d_x F\|_A \) holds on \(X \) near 0, where \(A = \).
\{(1,0,0), \(0, \frac{1}{2},0\), \(0,0, \frac{1}{3}\)\}. Thus, by Theorem 5, we have that \((X,Y)\)
is \((c)\)-regular for the function \(\overline{p}(x,y,z) = x^{12} + y^6 + z^4\). (It is well known that \(f_t\) is not Whitney regular and not usual \((w)\)-regular).

Example 10 (Oka family [9]). — Let \(f_t : (\mathbb{R}^3,0) \to (\mathbb{R},0), \ t \in J = [-1,1]\), be a family of polynomial functions defined by

\[f_t(x,y,z) = x^8 + y^{16} + z^{16} + t x^5 z^2 + x^3 y z^3.\]

We set \(F(x,t) = f_t(x), \ Y = \{0\} \times J \ , \ X = F^{-1}(0) - Y \) and

\[A = \left\{ \left(\frac{1}{2},0,0 \right), \ (0,1,0), \ (0,0,1), \ \left(\frac{5}{16},0,\frac{1}{8} \right) \right\}.\]

It is not hard to see that the inequality \(|\partial_t F|^2 \leq \|d_x F\|^2_A = \sum_{i=1}^n (\rho_i \frac{\partial F}{\partial x_i})^2\) holds on \(X\) near \(Y\), where \(\rho_i\) denotes the \(i\)th compensation factor of type (ii) as defined in 2.1. It follows from Theorem 5 that \((X,Y)\) is \((c)\)-regular for the control function \(\overline{p}(x,y,z) = x^{16} + y^{32} + z^{32} + x^{10} z^4\).

2.3. Proof of Theorem 5.

In order to show this theorem we need the following lemma.

Lemma 11.

1. \(|d\overline{p}|_A \leq \overline{p}(x), \ x \text{ near } 0,\)
2. \(\overline{p} \ll \|dF \wedge d\overline{p}\|_{dF}\) when \((x,t) \to 0\) on \(X\).

Proof. — We first recall that:

\[\|d\overline{p}\|^2_A = \sum_{i=1}^n \left(\rho_i \frac{\partial \overline{p}}{\partial x_i} (x) \right)^2.\]

Therefore, (1) is a simple consequence of the construction of the compensation factors and the control functions.

Let us observe that, by (1.2) we have \(|\partial \overline{p}|_X| = \|dF \wedge d\overline{p}\|_{dF}\). On the other hand, \(\partial \overline{p} = \partial \overline{p}|_X + \partial \overline{p}|_N\) (where \(N\) denotes the normal space to \(X\)). Since \(N\) is generated by the gradients of \(F_j (j = 1, \ldots, p)\), we have that \(\partial \overline{p}|_X = \partial \overline{p} + \eta_1 \partial F_1 + \cdots + \eta_p \partial F_p\). After this, (2) in the lemma, follows from the following more general proposition.
PROPOSITION 12. — Let $f : (\mathbb{R}^n, 0) \to (\mathbb{R}^r, 0)$, $g : (\mathbb{R}^n, 0) \to (\mathbb{R}, 0)$ be two germs of analytic maps, setting $f : = (f_1, \ldots, f_r)$. Then there exists a real constant C such that for $p \in f^{-1}(0)$, and sufficiently close to the origin,

$$|g(p)| \leq C \left| p \right| \inf_{(\eta_1, \ldots, \eta_r) \in \mathbb{R}^r} |\eta_1 \partial f_1(p) + \cdots + \eta_r \partial f_r(p) + \partial g(p)|.$$

We note that if $r = 1$, one finds Theorem 1.1 of Adam Parusiński [12]. Moreover, the proof of this proposition is similar to that of Theorem 1.1 in [12] (we omit the details).

Now we are ready to prove Theorem 5. We assume that (X, Y) is (w^A)-regular at 0. By inequality (iii) in Theorem 4, we have

$$\left| \frac{\partial F_J}{\partial (x_1, t_\mathcal{S})} \right| \lesssim \sum_{i=1}^n \rho_i \left| \frac{\partial F_J}{\partial (x_1, t_\mathcal{S}, x_i)} \right| \quad \text{on } X \text{ near } 0,$$

where $\mathcal{S} \subset S$ such that $\# \mathcal{S} = \# S - 1$. Thus we obtain $\|d^2 F\| \ll \|dF\|$ when $(x, t) \to 0$ on X (i.e., (X, Y) is (a)-regular at 0), and so by Theorem 2, we only have to prove that:

$$|\partial t \bar{\rho}| \ll \frac{\|d^2 F \wedge d\bar{\rho}\|}{\|dF\|} \quad \text{as } (x, t) \in X, (x, t) \to 0.$$

We first remark, by (1.1) the following equality:

$$|\partial t \bar{\rho}| \big| \big| = \left| \sum_{i=1}^n \sum_{I, S} \frac{\partial (F_{J, t_\eta})}{\partial (x_1, t_\mathcal{S}, t_\eta)} \frac{\partial (F_{J, \bar{\rho}})}{\partial (x_1, t_\mathcal{S}, x_\eta)} \right|,$$

and hence

$$|\partial t \bar{\rho}| \big| \big| \lesssim \left| \sum_{i=1}^n \sum_{I, S} \frac{\partial (F_{J, \bar{\rho}})}{\partial (x_1, t_\mathcal{S}, x_\eta)} \right|.$$

According to the inequality in (iii) of Theorem 4, we have

$$\left| \frac{\partial (F_{J, \bar{\rho}})}{\partial (x_1, t_\mathcal{S}, t_\eta)} \right| \lesssim \sum_{i=1}^n \rho_i \left(\left| \frac{\partial (F_{J, \bar{\rho}})}{\partial (x_1, t_\mathcal{S}, x_i)} \right| + \left| \frac{\partial \bar{\rho}}{\partial x_i} \right| \left| \frac{\partial F_J}{\partial (x_1, t_\mathcal{S})} \right| \right).$$
Thus, we obtain
\[
\left| \frac{\partial(F, \tilde{p})}{\partial(x, t)} \right| \lesssim \|d\tilde{p}\|_A \|dF\| + \sum_{i=1}^{n} \rho_i \|dF \wedge d\tilde{p}\|
\]
and, using (2.13), we obtain
\[
(2.14) \quad |\partial_i \tilde{p}_x| \lesssim \|d\tilde{p}\|_A + \sum_{i=1}^{n} \rho_i \frac{\|dF \wedge d\tilde{p}\|}{\|dF\|} \quad \text{on } X \text{ near } 0.
\]
It follows from Lemma 11 that (2.12) holds. This completes the proof of Theorem 5.

3. The Damon-Gaffney condition and (c)-regularity.

In this section we describe some definitions and notations used by Damon-Gaffney in [5].

Given a Newton filtration A as above. We extend this filtration on the ring $C_{x,t}$ of formal power series in the variables $x_1, \ldots, x_n; t_1, \ldots, t_m$ around the origin by defining
\[
\text{fil} \left(\sum c_{\nu}(t)x^\nu \right) = \min \{ \phi(\nu) : c_{\nu}(t) \neq 0 \}.
\]
Let $g = \sum c_{\nu}(t)x^\nu$ be a series in $C_{x,t}$, the support of g, denoted by supp(g), is the set of points $\nu \in \mathbb{Z}^n_+$ such that $c_{\nu}(t) \neq 0$. We denote the set of g with fil$(g) \geq l$ in $C_{x,t}$ by $A_{l,x,t}$. It is not difficult to see the following equality:
\[
A_{l,x,t} = \{ g \in C_{x,t} : \text{supp}(g) \subset \Gamma_+(lA) \} = \{ g \in C_{x,t} : |g| \leq \rho^l \}.
\]
We say that level A_l of the Newton filtration is fit if all the vertices of $\phi^{-1}(l)$ are lattice points of \mathbb{R}^n_+. This says that $l \text{Ver}(A) = \text{Ver}(lA) \in \mathbb{Z}^n_+$ (because of the linearity of the Newton filtration on cones). For A_l which is fit, we let
\[
\text{ver}(A_l) = \{ x^\beta : \beta \text{ is a vertex of } \phi^{-1}(l) \} = \{ x^{l\alpha} : \alpha \in \text{Ver}(A) \}.
\]
We also let
\[
V_{l,x,t} = \left\{ \zeta \in A_{l+1,x,t} : \zeta(A_{k,x,t}) \subset A_{l+k,x,t} \right\},
\]
with $A_{t+1,x,t}\{\partial/\partial x_i\}$ denoting the $A_{t+1,x,t}$-module generated by the $\partial/\partial x_i$, $i = 1, \ldots, n$. Finally, for an element $g \in C_{x,t}$, we let $V_{i,x,t}(g) = \{\zeta(g) : \zeta \in V_{i,x,t}\}$.

Now we can announce the Damon-Gaffney Theorem.

THEOREM 13 (Damon-Gaffney [5]). — Let $f : (\mathbb{R}^{n+m}, 0) \rightarrow (\mathbb{R}, 0)$ be an analytic deformation of a germ $f_0 : (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}, 0)$ (i.e., $f \in C_{x,t}$). Then a sufficient condition that f be a topologically trivial deformation is that there exists a fit A_i so that

\begin{equation}
ver(A_i) \cdot \frac{\partial f}{\partial t_j} \subset V_{i,x,t}(f), \ j = 1, \ldots, m.
\end{equation}

We will call condition (3.5) the Damon-Gaffney condition. Next, our principal goal will be to show that this condition implies a (w)-regularity condition relative to the Newton filtration, hence, these deformations will, in fact, satisfy the Bekka condition.

Given an analytic function $f \in C_{x,t}$, we define

$$\Sigma_f(\mathbb{R}^n \times \mathbb{R}^m) = \{\mathbb{R}^n \times \mathbb{R}^m - f^{-1}(0), \ f^{-1}(0) - \{0\} \times \mathbb{R}^m, \ \{0\} \times \mathbb{R}^m\},$$

which gives a stratification of $\mathbb{R}^n \times \mathbb{R}^m$ around $\{0\} \times \mathbb{R}^m$. Then, we have

THEOREM 14. — For $f \in C_{x,t}$, if there is a positive integer l such that

$$ver(A_l) \cdot \frac{\partial f}{\partial t_j} \subset V_{i,x,t}(f), \ j = 1, \ldots, m \ (The \ Damon-Gaffney \ condition),$$

then the stratification $\Sigma_f(\mathbb{R}^n \times \mathbb{R}^m)$ is (c)-regular.

Proof. — Let us put $ver(A_l) = \{x^\alpha\}$ then we get the following expression:

$$x^\alpha \frac{\partial f}{\partial t_j} = \sum_{i=1}^n \xi_{ij}^{(\alpha)} \frac{\partial f}{\partial x_i} = \xi_j^{(\alpha)}(f),$$

and summing over $x^\alpha \in ver(A_l)$ we obtain

\begin{equation}
\left(\sum_{\alpha \in Ver(lA)} |x^\alpha| \right) \left| \frac{\partial f}{\partial t_j} \right| \lesssim \sum_{i=1}^n \left(\sum_{\alpha \in Ver(lA)} |\xi_{ij}^{(\alpha)}| \right) \left| \frac{\partial f}{\partial x_i} \right|.
\end{equation}
Since $\text{Ver}(lA) = l\text{Ver}(A)$, which means $\rho^l \sim \sum_{\alpha \in \text{Ver}(lA)} |x^\alpha|$. Then we let

$$\xi'_i = \sum_{j=1}^{m} \sum_{\alpha \in \text{Ver}(lA)} \rho^{-1}\xi^{(\alpha)}_{ij} \quad \text{for} \quad i = 1, \ldots, n.$$

It follows from (3.6) that $|\partial_t f|^2 \leq \sum_{i=1}^{n} (\xi'_i \partial f)_{xi}^2$, and so by Theorem 5, it is sufficient to show that these ξ'_i are compensation factors associated with A. Indeed, for any $g \in C_n$, we have from the filtration properties of the $\xi^{(\alpha)}_{ij}$ that

$$\text{fil}(\xi^{(\alpha)}_{ij}(g)) = \text{fil}(\xi^{(\alpha)}_{ij} \partial_x g) \geq \text{fil}(g) + l$$

which means

$$|\xi^{(\alpha)}_{ij} \partial_x g| \leq \rho^{l+\text{fil}(g)}.$$

Therefore, for $i = 1, \ldots, n$,

$$|\xi'_i \partial_x g| \leq \rho^{\text{fil}(g)}.$$

This completes the proof of the Theorem

Remark 15. We observe that $\zeta = \sum_{i=1}^{n} \xi_i \frac{\partial}{\partial x_i} \in V_{l,x,i}$ if and only if $\text{supp}(\xi_i) \subset R_{l,i}$ (we recall that $R_{l,i} = \{ \alpha \in \mathbb{Q}_+^n : \langle \alpha, w^F \rangle \geq l + w^F_i, \forall F \in \mathcal{F}(A) \}$) which is also equivalent to $|\xi_i| \leq \sum_{\alpha \in \text{Ver}(R_{l,i})} |w^\alpha|$. Hence, the Damon-Gaffney condition implies a (w^A)-regularity condition with $\rho_{l,i}$ as compensation factors, where $\rho_{l,i}$ denotes the ith compensation factor of type (iii) as defined in 2.1.

Acknowledgement. The author wishes to express his sincere gratitude to T. Fukui, S. Koike, T.-C. Kuo, A. Parusiński and L. Paunescu for many helpful discussion during the preparation of this paper.

BIBLIOGRAPHY

Manuscrit reçu le 19 août 2003,
accepté le 9 décembre 2003.

Ould M. ABDERRAHMANE,
Saitama University
Faculty of Science
Department of Mathematics
255 Shimo-Okubo
Urawa, 338-8570 (Japan).

vould@rimath.saitama-u.ac.jp