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THE SERRE PROBLEM WITH REINHARDT FIBERS

by Peter PFLUG &#x26; Wlodzimierz ZWONEK

1. Introduction and the main result.

Our aim is to discuss the Serre problem, i.e., the problem whether
a holomorphic fiber bundle 7r : E - B with a Stein base B and a Stein
fiber F is Stein. For a comprehensive list of positive partial results to this
problem see e.g. [Siu].

In our paper we consider this problem under the additional assump-
tion that the fiber F is a pseudoconvex hyperbolic Reinhardt domain in
~2. Note that the first example showing that the answer to the Serre prob-
lem is in general negative were constructed for Reinhardt fibers (see [Sko],
[Dem], and [Loeb]). Also first counterexamples with bounded domains as
fibers were found in the class of pseudoconvex Reinhardt domains (see
[Coe-Loeb]).

We are interested in the problem, which bounded pseudoconvex
Reinhardt domains as fibers guarantee that the holomorphic fiber bundle
with Stein basis is Stein, in other words for which bounded pseudoconvex
Reinhardt domains the answer to the Serre problem is positive.

Since in the class of pseudoconvex Reinhardt domains hyperbolicity
(in the sense of Carath6odory, Kobayashi or Brody) is equivalent to the
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boundedness of domains (see [Zwol]), it is natural that instead of bounded
we study the class of pseudoconvex hyperbolic Reinhardt domains.

Let us denote the class of Stein domains D for which the answer to

the Serre problem (with the fiber equal to D) is positive by 6.

Now we may formulate our main theorem, which gives the charac-
terization of hyperbolic pseudoconvex Reinhardt domains in (C2 belonging
to 6.

THEOREM 1. - Let D be a pseudoconvex hyperbolic Reinhardt
domain in (~2. Then D ¢ 6 if and only if D is algebraically equivalent
to a Reinhardt domain D C C2 for which there is a matrix A E with

the eigenvalues A and - where A &#x3E; 1, such that

where v, w E ]R2 are eigenvectors corresponding to the eigenvalues A and
and cp : (0,oo) H ~0, oo) (respectively, cp : (-00, 0) H [0, oo)) is a convex
function satisfying the equality (0, oo) (respectively,
t E (-oo, 0)).

Note that D C C~.
Recall that the first known example of a bounded domain not be-

longing to 6 was a domain from the class considered in Theorem 1. More
precisely, it was a domain associated to A = 1 1 ~ ] and p m 0 (defined
on (0, oo)) - see [Coe-Loeb]. Later, D. Zaffran in [Zaf] delivered other do-
mains not from 6 of the same type. Namely, he considered domains asso-
ciated to so-called ’even Dloussky matrices’ i.e. 2s i]?
s, kj E N B 101, and with cp == 0. Those are closely related to surfaces of
Kodaira of class VIIO.

The authors express their thanks to the referee for his valuable

suggestions to improve the shape of the original paper.

2. The structure of the proof of Theorem 1.

In our considerations the key role in the proofs of positive results (i.e.
the facts that domains are from the class 6) will be played by the criterion
of Stehlé, which we formulate in the form that we shall use in our paper.

THEOREM 2 (see [Ste] and [Mok]). - Let D be a domain in C~.
If there exists a real-valued plurisubharmonic exhaustion function u on D
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such that for any F E Aut D the function u o F - u is bounded frorn above

on D, then D E 6.

Aut D denotes the group of holomorphic automorphisms of D.

Observe that Theorem 2 gives D E 6 if D is pseudoconvex and Aut D
is compact (see also [K6n] and [Sib]). Therefore, in the proof below we shall
be interested only in the case when the group Aut D is not compact.

The proof of Theorem 1 will be divided into three different cases,
depending on the number of axis of (C2 which intersect the domain D.

Formally, for a pseudoconvex Reinhardt domain D C ~n we define

where 1

The three different cases we shall deal with in the proof of Theorem 1

correspond to the three possible values of t (recall that n = 2):
If t = 2 (equivalently, 0 E D) the result will simply follow from the

well-known sufficiency results for a domain to belong to 6. In fact this case
has already been done in [K6n].

In the cases t = 1 (these domains will always belong to 6) and t = 0
we shall concentrate on the structure of Aut D. In the case when t = 1

there will only be three classes of model domains for which the group is
not compact (the result will follow from [Shi]). Two of the classes will be
relatively simple to deal with and the third class will consist of one special
domain for which we shall use the Stehlé criterion together with Theorem 6.

In the case t = 0 we shall use the result of [Shi] to see that Aut D
coincides with the group of algebraic automorphisms, Autalg D. Studying
the geometric structure of D we shall see that there are two classes of
domains admitting non-compact automorphism groups. Because of the
geometry of the logarithmic image we call these two classes ‘parabolic’ and
’hyperbolic’. In the hyperbolic case, which will deliver us a negative answer
to the Serre problem, we shall construct a counterexample proceeding as
in [Co-Loeb]. On the other hand the parabolic case will be done similarly
as the special case of the domain in the case t = 1.

3. Results needed for the proof of Theorem 1.

Before we go on to the proof of Theorem 1 let us recall the description
of pseudoconvex hyperbolic Reinhardt domains, some results and notions
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related to this class of domains, and the structure of automorphism groups
of such domains.

Recall that for a pseudoconvex Reinhardt domain in Cn the logarith-
mic image of D:

is convex.

We shall use the notion of an algebraic map, i.e. a mapping of the

following form: 
1

where

we denote or z E C’~ such that if aj  0 0.

THEOREM 3 (see [Zwol]). - Let D be a pseudoconvex Reinhardt
domain in C’. Then the following conditions are equivalent:

- D is (Kobayashi, Carathéodory or Brody) hyperbolic,
- D is algebraically equivalent to a bounded domain,
- log D contains no straight lines and D n vj is empty or hyperbolic

(as a domain in (~n-1~, j = 1,..., n.

Remark. - Observe that the number t remains fixed under algebraic
biholomorphism.

In view of Theorem 3 we see that for a pseudoconvex Reinhardt
domain D c Cn:

( 1 ) D is hyperbolic if and only if log D contains no straight lines.

If D is a pseudoconvex Reinhardt domain in then any element

-4~ E Autalg D must be of the following form:

Consequently, the mapping
(log bl ~ , ... , log is an affine isomorphism of log D.

We may easily verify (from Theorem 3 and Cartan’s Theorem on
limits of sequences of automorphisms, see e.g. [Nar], Chapter 5, Theo-
rem 4) that for a pseudoconvex hyperbolic Reinhardt domain D the group
Autalg D is not compact if and only if
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(2) there is a sequence (llIn) corresponds to lfn E Autalg D) such
that for some (equivalently, any) x E log D we 2013~ oo as
n -~ oo .

Following the notation in [Zwo2], for a pseudoconvex Reinhardt
domain D C ~n and a E log D (chosen arbitrarily) we denote

Recall that is a closed convex cone with the origin at 0, independent of
a. It is easy to verify that for any q&#x3E; E Autalg D, where D is a pseudoconvex
Reinhardt domain in 

where A denotes the matrix associated to ~.

Remark. - Consider a pseudoconvex hyperbolic Reinhardt domain
D in t~2 with t - 1. We claim that in this case Autalg D is compact.
Actually, take any &#x26; E Autalg D. Without loss of generality D n V1 - 0,
D n ~2 7~ 0. Then one may easily verify from the description of Autalg D
that (blztl, b2zrl Z2), zED, for some al E Z and 4t(.,O) is a

biholomorphism of D n V2 (as a subdomain of C), from which we conclude
that Autalg D is compact.

The problem of characterization of automorphism groups of Rein-
hardt domains was studied in [Shi] and in [Kru], see also [Car]; for Rein-
hardt domains with smooth boundary see also [Isa-Kra] and papers quoted
there. The results obtained there together with the above remarks lead us
to the following description of pseudoconvex hyperbolic Reinhardt domains
in (~2 with t = 1 and non-compact automorphism groups.

THEOREM 4 (see [Shi], Theorem 5, and [Kru]). - Let D be a
pseudoconvex hyperbolic Reinhardt domain in (C2 with t = 1. Then Aut D
is not compact if and only if D is algebraically equivalent to one of the
domains:

(4)

Moreover, when D is as in (4), then the group of automorphisms consists
of the mappings of the form
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where a is an automorphism of A and b is the automorphism of Per, 1).
When D is as in (5), then the automorphism group consists of the

mappings of the form

where

When D is as in (6), then the automorphism group consists of the
mappings of the form

where

Let us formulate one more auxiliary result. In the proof of Lemma 6

(and later in the proof of Theorem 8) the important role will be played once
more by a result of S. Shimizu (which is combined below with Theorem 3).

THEOREM 5 (see [Shi]). - Let D be a pseudoconvex hyperbolic
Reinhardt domain in C~. Then Aut D = Autaig D.

LEMMA 6. - Let D be a pseudoconvex Reinhardt domain in C2
such that

Then for E Aut D:

. Assume additionally that

Proof of Lemma 6. - To prove the first part of the lemma it suffices
to show only the inclusion ’C’. Denote (D : := (4) 1, Q2). Since

or some I zo  1. It remains to show that zo = 0.2 
, , , 

2

Suppose the contrary. Then the fact that (1,0) ~ ~(D) implies that the
well-defined holomorphic function 4 is bounded, so
constant. Therefore, .P is constant on D n (C x {0} - contradiction.
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Assume now additionally (8). It follows from the first part of the
lemma that c Aut D.

Assume for a while that each -t E Aut D extends holomorphically
onto D. We claim that such an extension maps D to D. In fact, let

~ E Aut D and let ~ denote the extension of lll to D, ~ : : D ~ D.
Our aim is to show that ~(D) c D. In the case (o, 0) E D the existence
of plurisubharmonic peak functions for aD together with the maximum
principle for subharmonic functions easily shows that 0, which
finishes the proof in this case. So assume that C(D) = R+ (0, - 1). Then
(0,0) E 9D. Similarly as in the previous case (use the plurisubharmonic
peak functions and the maximum principle for subharmonic functions) we
see that lll(D) n (o~D B ~ (0, 0) ~ ) - 0. Suppose that (o, 0) Then

certainly (o, 0) - (zo, 0) for some zo E C*. Let zg E C* be such that
(z°, E D. Since lll E Aut D = Autalg D (use Theorem 5) and because
of the equality ~4(C(D)) = C(D), where A is the matrix corresponding to
(D, we get that for some which

contradicts the continuity of -4 and the (o, 0) .

Therefore, to prove the other inclusion (Aut D) j D D Aut D we have to
show that each (D E Aut D extends holomorphically onto D. Let -1) E Aut D.
Note that Q2 is bounded, so it extends holomorphically onto D. Therefore,
we may expand Q2 into the Hartogs-Taylor series in D:

where jo &#x3E; 0 and cjo 0- 0.

Write the Hartogs-Laurent expansion of in D:

Since llli is not constant, there is an s E Z such that ds fl 0. Note that
there is a j E Z such that 0 for any k  j., Actually, otherwise the
function ~2 would be unbounded on D, which would contradict (8).
Let jI denote the smallest j satisfying this property. To finish the proof
it is sufficient to show that 0. Suppose the contrary. Then there is a
k E N such that + jo  0. But this implies that the function ~2 is
unbounded on D, which contradicts (8). D

Let us formulate a result we shall need in the proof of Theorem 1.

THEOREM 7. - Let D be a pseudoconvex domain in en and let
M be a pure one-codimensional analytic subset of D. Put D := D B M.
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Assume, additionally, that Aut f)l D = Aut D. Then the fact that b E E5
implies that D E 6.

Proof of Theorem 7. - Since Aut DID = Aut D, we may replace the
typical fiber D of E by 17 and obtain a new bundle E such that E B E is a
hypersurface. 0

Now, as preparations for the case t = 0 we shall show some auxil-

iary results. More precisely, we characterize all pseudoconvex hyperbolic
Reinhardt domains D in C2 with non-compact automorphism groups.

Additionally, for our future needs we give some necessary conditions
on the form of automorphisms in one of the cases.

THEOREM 8. - Let D be a hyperbolic pseudoconvex Reinhardt
domain in Cf (i.e. t = 0). Then Aut(D) is not compact if and only if
D is algebraically biholomorphic to a Reinhardt domain b in C2 of one of
the following two types:

( 11 ) there are a matrix A E and a number ,Q2 ~ 0 such that

and 1 is the only eigenvalue of A with the eigenvector w (so Aw = w),
Av = v + w for some v E R’, and o : R - 11~ is a convex (or concave in the
second case) function satisfying the property -f- ,Q2) = t t E R;
(12)
there is a matrix A E with the eigenvalues A and 1 ,A &#x3E; 1 such thatg A 

&#x3E;

where v, w E R 2 are eigenvectors corresponding to the eigenvalues A and

1 and ~p : (0, oo) H [0, too) (or p : (-00,0) ~ [0, oo)) is a convex function
satisfying the equality &#x3E;

Moreover, in the case (11) each automorphism 1&#x3E; must be such that

where and one of three possibilites holds:

- there is some
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- the number -1 is the second eigenvalue of A with the corresponding
eigenvector equal to v.

Additionally, in all cases, if uTe denote x = tV+8W and -$ (x) - 
then 9 - 0(i) = s - 0(t), t, t, s, 9 E IR.

Remark 9. - In fact the domains representing two different cases
in (11) are actually algebraically equivalent (use the biholomorphism z- ff2
where 12 denotes the unit matrix).

The examples of functions ~p from (12) are the functions defined as
follows p(t) := 1, t &#x3E; 0 (or t  0), where a is some fixed number, a &#x3E; 0

(or a ~ 0).
The examples of functions 0 from (11) are the functions defined as

follows 0(t) 
One of the examples of matrices satisfying (12) has already been given

in the remarks after Theorem 1. More generally, the examples of matrices
satisfying (12) may be of the following form ,
or even Dloussky matrices as defined in [Zaf].

Let us note that as an example of a matrix A satisfying (11) we may
take the matrix ~], where 1~ E Z B 101. Then w = (0, 1), v = (î, 0).

Because of the geometry of log D let us call the domains satisfying
(11) of ‘parabolic’ type and those satisfying (12) of ’hyperbolic’ type.

Now let us go to the proof of Theorem 8.

Proof of Theorem 8. - Assume that Aut D is not compact. Then in
view of (1), (2) and (3) equals

vhere v’, w’ are linearly independent.

- 

Let 4) c Aut D - Autalg D. Denote the corresponding mapping

First we claim that A must have a positive eigenvalue. We consider
two possibilities as given in (13). Consider the first case = Then

from the invariance A(C(D)) = we easily get that v’ is an eigenvector
with the positive eigenvalue. So assume that ~(D) = R+v’ + R+w’ . We use
once more the equality ~4((~(D)) = to see that two cases have to be

discussed, namely:
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Note that in the first case we are done. In the second one using a continuity
argument we easily find the existence of a u E + such that

which also finishes the proof of our claim.

Remark that if A = 12 then, because of (1), b = 0.

Note also that if A has a negative eigenvalue different from -1 then
taking instead of P the automorphism (D 2we see that Aut D has an element
with the associated matrix A having two positive eigenvalues, both different
from 1. Therefore, we see that if Aut D consists of more elements than

those associated to A = ~2 (and then automatically, b = 0) then Aut D
must contain an element of one of the following forms:

(14) A has two eigenvalues; one of them equals 1 and the other - 1,

(15) A has only one eigenvalue equal to 1 and 

(16) A has two positive eigenvalues A and A ,A &#x3E; 1.

Since a subgroup of affine transformations of R 2which stabilizes a proper
convex cone and is generated by elements whose linear part consist of
reflections has at most two elements, we may assume that Aut(D) contains
a transformation whose linear part A satisfies (15) or (16).

Let us make one more remark. If we choose A E with I det AI = 1
and with all eigenvalues different from 1 then moving the domain, if

necessary, we may assume that b = 0. In fact, since det(A - I ) ~ 0 there
is a vector xo E JR2 such that Axo + ~ Consequently, for any x E R 2
the following equalities hold:

Therefore, moving the coordinate system, if necessary, we may assume that

where A is as above.

In addition to the previous remark note that, when the only eigenvalue
is 1 and A is not the identity, then some simplification of the form of -~
is also possible. Namely, then there are linearly independent vectors v, w
such that Aw = w and Av = v + w. Then (A - ~2)(II~2) = Rw. Write any
element x E ]R2 in the form x = + a2v, b = + /?2~. Then there is
an xo E R 2 such that
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Consequently,

which implies that moving the coordinate system, if necessary, we may
assume that

Assume now that there is an automorphism of D such that the
associated matrix A satisfies (15). Then we may also assume that ~ satisfies
(18). There are linearly independent vectors v, w such that Aw = w and
Av = w + v. Note that

Now (1), (19), and the convexity of log D imply that /?2 ~ 0 and for any
t E R there is (exactly one) s := s(t) E R such that sw + tv E 0 log D.
Moreover, the convexity of log D together with (19) implies that if $2 &#x3E; 0

then sw + tv E log D for any s &#x3E; s(t) and if (32  0 then sw + tv E log D
for any s  s(t). Denote :== s(t). Then because of the equality

å(logD), the property (19) (applied for k = 1), and the
convexity of log D, we get the convexity (or concavity) of the function 0
and the property ’ljJ(t + $2) + t, t E R, which gives us the form as in

(11). Note also that the domain as in (11) has a non-compact automorphism
group. In fact, note that 1

Consider now the case when there is an automorphism 4) of D as in

(16). Then because of (17) we may assume that b = 0.

Consider any point x = sw + tv E log D, t, s E R, where v, w E 1I~2
are eigenvectors corresponding to eigenvalues A, -1. Then
and, consequently, for any k E Z:

Taking - log D instead of log D, if necessary, (which corresponds to the
mapping z-~2 ), we may assume that there is a vector xo - sow + tov E
log D, where so &#x3E; 0, 0. Assume that to &#x3E; 0 (the case to  0 goes

along the same lines). Then it easily follows from (20), the convexity of
log D, and (1) that log D c (sw + tv : t, s &#x3E; 0}. Now one may easily see
from (20) and the convexity of log D that It &#x3E; 0 : there is an s &#x3E; 0 such

that tv -I- sw E logD} is an open interval (0, oo ) . Moreover, for any t &#x3E; 0

there is exactly one s(t) &#x3E; 0 such that sw + tv E log D for s &#x3E; s(t) and
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sw + tv g log D for any s  s(t). We define p(t) := s(t). The convexity of
p follows from the convexity of log D. The property easily
follows from the property (20).

If we assume that log D is of the form as in (12) then it follows from
the properties of A -t oo as k - oo, x E log D, which gives
non-compactness of Aut D.

Now let us go to the study of the necessary form of the automorphisms
of D in the case (11).

Since the cones C(D) in both cases (11) and (12) are not linearly
isomorphic we easily conclude from the considerations that led us to the
construction of the domain as in (11) that each of the automorphisms must
be of one of the forms as in (14) or (15) or its corresponding matrix must
be the identity. Therefore, to finish the proof it is sufficient to verify the
invariance condition. Note that 8logD. Then elementary
calculations show that the invariance condition holds for all the possible
automorphisms. 0

4. Proof of Theorem 1.

Proof of Theorem 1 for t = 2. - In this case 0 C D and D is

bounded, so D is Carath6odory complete (see [Pfl]) and, consequently,
because of [Hir] D E 6. As mentioned earlier this case has already been
done in 0

Proof of Theorem 1 for t = 1. - As earlier announced we consider

only cases when Aut D is not compact. When D is as in (4) then one may
easily verify that the following exhausting function:

satisfies the assumptions of Stehl6’s criterion.

When D is as in (5), then one may easily verify that the following
exhausting function:

satisfies the assumptions of the criterion of Stehlé.

Now assume that D is of the form as in (6).
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Denote

Therefore, we get from Lemma 6 (note that

Now we prove that D E 6. Elementary calculations show that for any
4&#x3E; E Aut 17:

where

Define

where p : ~-oo, 0) ~ [0, oo) is a continuous, C2-smooth on (-oo, 0), convex
and increasing function such that limt-0- p(t) = oo (e.g. p(t) := tl , t  0).
Then it is trivial to see that u is exhausting for D. Calculating the Levi
form of po U we see that po U is plurisubharmonic on D (and consequently,
because of the Riemann extension theorem, on D). Moreover, it follows from
(10) and the form of Aut D that for any t E Aut D the function u is

bounded from above on D, which implies, in view of the criterion of Stehlé,
that 17 E 6.

Then, because of (9) we may make use of Theorem 7 to see that
D E 6, too. 0

Proof of Theorem 1 for t - 0. - As noted earlier it suffices to

consider only the cases of non-compact Aut D. As proven in Theorem 8
there are two possibilities. We consider the first (hyperbolic) one. We show
that if D is such that [12] is satisfied then D g 6.

We proceed as in [Coe-Loeb], we even follow the notation from that
paper. We define

It is obvious that V/Z2 is biholomorphic to D. We put 0 :_ C x V.

We define the group of automorphisms Gz induced by Z x Z2 on Q
as follows. Let Then
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where

Note that the fact that the functions defined above leave the set S~2

invariant follows from the properties of p. Namely,

if and only if Ism((2) &#x3E; 

for any (respectively, with Im (1  0).

Now, we define the desired holomorphic fiber bundle E := n/G71,
which has V/Z~ as the fiber and C/Z as the basis.

Below we show that there is no plurisubharmonic exhaustion function
on E. Suppose the contrary. Let u denote a plurisubharmonic exhaustion
function on E.

First recall that there is a family (fR)R&#x3E;l of holomorphic functions
A ~---~ C satisfying the following properties:

One may define ,

Note that c Z, t E [1,A] (respectively, t E
[2013A, 20131]) and cp is continuous. Therefore, there is a constant a &#x3E; 0

(respectively, a  0) such that t &#x3E; W(t), t &#x3E; 0 (respectively, t  0).
Now for any R &#x3E; 1 we find functions gR and hR holomorphic on 0,

continuous on 4N and such that

(respectively,

Since for any 1(1 - 1, the inequality p(Im gR(()) - Im hR (~)  0 holds,
the maximum principle for subharmonic functions (note that p o h, where
h is harmonic on 0, is subharmonic on 0) implies that for any ( E
0, the inequality ImhR(()  0 holds (or, equivalently,

Define
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Certainly, Bl1 R is subharmonic on some neighborhood of 0.

It follows from the definition of E that

for any ( E ~ ( ~x~ in the inner brackets denotes the largest integer not
exceeding x).

Note that the real part of the first component in the formula above is
from the interval [0, 1) and its imaginary part is from the interval I
Moreover, for ( ~ ~ = 1:

I

and, similarly,

(respectively,

Consequently, there is some constant M E R such that for any R &#x3E; 1:

Then the maximum principle for subharmonic functions gives for any
R &#x3E; 1:

Note that (the sign depends on one of two possible cases)

Similarly,

Therefore, since Re fR (0) = 0, Im fR (0) E (0, 7r), and u is exhaustive on E,
we get = oo - contradiction. This finishes the proof of the

hyperbolic case.



144

Now we are left only with the parabolic case.

Applying the mapping z-ff2 we may reduce ourselves to the case
/?2  0 (and then V) is concave). Note that we may assume that v and
w are from 7~2 and the coordinates of w are relatively prime. Using some
algebraic biholomorphism (mapping w to (-l, 0) and being such that the
determinant of the corresponding matrix composing of integers is one)
we may assume additionally that w = (0, - 1). Note that in this case
~(D) _ ~+(~~ -1).

Consider now the domain D := int D. Note that D n (C x ~0~) -
cC* x 101, x R. 0 for some R &#x3E; 0 and C(D) = R+(0, -1). Then
Lemma 6 implies that Aut D = Therefore, as earlier, because of
Theorem 7, it is sufficient to show that D E 6.

Now we define

[-oo, 0) - R is a continuous, increasing and a convex function, C’-
smooth on (-oo, 0) and oo (e.g. p(t) = 0).
Note that assuming that 0 is additionally C2-smooth we may verify,
calculating the Levi form of p o u, that p 0 u is plurisubharmonic on D.
Then applying the standard approximation of a concave function with the
help of the increasing sequence of C2-smooth concave functions we get that
p o u is plurisubharmonic on D without the additional assumption on its
smoothness, too. Consequently, u is plurisubharmonic on D, and then also
on D.

It is clear that u is an exhausting function for D. We claim that for
any ~ E Aut D, u is bounded from above on D.

Actually, take 4) E Aut D. It follows from the description of Aut D in
Theorem 8 that . One may also verify that for
any (D E AutD, 
is bounded from above on D. Then the Stehlé criterion applies and
D e 6. 0

Remark 10. - As we saw in the proof of Theorem 1 there were three
non-trivial cases. The (C2 : 0  |z2| ]  for

t = 1 and the domains of parabolic type for t = 0 are domains for which
the automorphism group is non-compact. The proof that they belong to
class 6 relies upon the proof of belonging to the class 6 of some larger
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domain. On the other hand the domains of hyperbolic type are always not
from 6 and the proof is based upon the construction of Coeur6 and Loeb.

It is natural to ask the question what happens in higher dimension.
Is there a similar geometric-like description of the class of hyperbolic
pseudoconvex Reinhardt domains from 6?
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